




ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

DESIGN AND IMPLEMENTATION OF RSA CRYPTOSYSTEM
USING PARTIALLY INTERLEAVED MODULAR

KARATSUBA-OFMAN MULTIPLIER

M.Sc. THESIS

Ahmet ARIŞ
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DESIGN AND IMPLEMENTATION OF RSA CRYPTOSYSTEM
USING PARTIALLY INTERLEAVED MODULAR

KARATSUBA-OFMAN MULTIPLIER

SUMMARY

Importance of cryptography is becoming more and more important day by day. Secure
communication will always be a crucial need independent from the technology in use.
Applications of cryptography can be seen in online banking, purchases of goods and
services by means of credit cards, ID cards, remote lock and start systems for cars,
telecommunication, and in many more places. Different cryptosystems are employed
according to different needs and different security levels.

Rivest-Shamir-Adleman(RSA) Algorithm is one of the most popular cryptosystem
that is used in many sectors like banking. It takes its strength from factorization of
very large integers. Briefly, it consists of modular exponentiations with large integers
which are 1024-bit or 2048-bit numbers. As modular exponentiation operations
are fundamentally composed of modular multiplications, designing a fast RSA
cryptosystem becomes possible only with a fast modular multiplier implementation.
Due to security and speed issues, modular exponentiation in RSA is implemented in
software and modular multiplications are carried out in modular multipliers which are
implemented in hardware.

Many methods exist in the literature in order to perform modular exponentiation.
These methods try to reduce the total number of multiplications that are required
for a modular exponetiation operation. In addition to modular exponentiation
algorithms, there are several techniques to do modular multiplication as well.
Modular multiplication may be carried out either by multiplying first and performing
reduction later on, or by interleaving multiplication and reduction stages. In order
to reach compact hardware designs the latter approach is utilized. According
to the direction of reduction operation, modular multiplication algorithms may be
classified into two groups, which are algorithms reducing from left-to-right and from
right-to-left. The most well known examples of left-to-right approach are Blakley
and Barrett algorithms, whereas Montgomery multiplication is the only member of
the right-to-left modular multiplication. Although fast multiplication algorithms, such
as Karatsuba-Ofman(KO), Schönhage-Strassen exist, these multiplication methods
can not be interleaved with reduction algorithms. This is caused from the
reduction approaches not allowing parallel processing. However, Bipartite Modular
Multiplication(BMM) method introduced by Kaihara and Takagi proposes a partial
solution to the parallel reduction problem. This reduction method modifies a feature
of Montgomery algorithm. This modification separates the multiplier bits into two
halves so that a product can be reduced from left and right simultaneously without a
dependency issue.

xxi



The first method which combines Karatsuba-Ofman multiplication with bipartite
reduction was proposed by Gökay Saldamlı. His algoritm, namely Partially Interleaved
Modular Karatsuba-Ofman Multiplication, interleaves KO multiplier with the bipartite
reduction on the uppermost layer of KO’s recursion. Implementation of this new
method requires Montgomery multiplier, Blakley multiplier and standard integer
multipliers. However, for this approach, both Montgomery and Blakley multipliers
are needed to be designed in a way that, they compute not only the modular
multiplication result, but also quotient values, what is somewhat different than existing
implementations.

In this thesis, two hardware implementations of Partially Interleaved Modular KO
Multiplication and an RSA implementation utilizing the designed multiplier are
proposed. The first design is Radix-2 implementation on FPGA technology. The
second hardware implementation explores the design methodologies in order to reach
a faster modular multiplier. These design methodologies include employing high
radices, optimization of critical path according to the effect of control signals and
analyzing parameter dependencies in Partially Interleaved Modular KO Multiplier and
scheduling jobs effectively. Improved design was implemented on ASIC technology
using 90 nm TSMC standard cell libraries in Design Compiler.

Hardware implementations proposed in this thesis are the first hardware implementa-
tions of Partially Interleaved Modular KO Multiplication method. Montgomery and
Blakley multiplication algorithms were modified in order to produce desired results.
Maple libraries which emulate the operation of hardware building blocks were written
and both hardware implementations were firstly implemented in Maple. Tests were run
with random input vectors and when correct operation of Maple implementations were
verified, hardwares were described in VHDL and implemented using FPGA and ASIC
design tools respectively. The second implementation of Partially Interleaved Modular
KO multiplier was used as a modular multiplier for RSA cryptosystem and very
promising results which are comparable with commercial RSA chips were achieved.
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İKİ PARÇALI ÖRGÜ
MODÜLER KARATSUBA-OFMAN ÇARPICISI KULLANARAK

RSA KRİPTOSİSTEMİ TASARIMI VE GERÇEKLEMESİ

ÖZET

Kriptografinin, yani şifreleme biliminin önemi gün geçtikçe artmaktadır. Kullanılan
teknoloji ne olursa olsun güvenli iletişim her zaman en başta gelen ihtiyaçlardan birisi
olacaktır. Günümüzde şifreleme, sistemlere kullanıcı hesabıyla giriş yapılıyorken,
internetten herhangi bir hizmet ya da ürün satın alınıyorken, iletişim araçları
kullanılıyorken, araçların kapıları uzaktan kilitlenip açılıyorken ve daha birçok yerde
kullanılmaktadır. Kullanım alanına ve güvenlik ihtiyacının niteliğine göre değişik
şifreleme algoritmaları farklı teknolojilerle karşımıza çıkmaktadır. Bu algoritmaların
bir tanesi de Rivest-Shamir-Adleman(RSA) şifreleme sistemidir. RSA bankacılık
başta olmak üzere birçok sektörde şifreleme ve sayısal imza işlemleri için sıklıkla
kullanılmaktadır.

RSA algoritması gücünü çok büyük sayıların asal çarpanlarına ayrılmalarındaki
zorluktan almaktadır. Özetle çok büyük sayılarla yapılan modüler üs alma
işlemlerinden oluşmaktadır. Modüler üs alma işlemleri de özünde modüler çarpma
işlemlerinden ibaret olduğu için hızlı bir RSA gerçeklemesi ancak hızlı modüler
çarpma işlemi yapan bir tasarımla mümkün olmaktadır. Güvenlik ve hız gibi
sebeplerden ötürü RSA kriptosistemi genellikle modüler üs alma işleminin yazılımda
gerçeklenmesi ve modüler çarpma işlemlerinin de donanımda tasarlanan özel bloklarla
yapılması yoluyla gerçeklenir.

Modüler üs alma işlemi için birçok yöntem mevcuttur. Bu yöntemler modüler üs
alma işlemi esnasında yapılan modüler çarpma işlemi sayısını değişik yöntemlerle
en aza indirmeye çalışırlar. Modüler çarpma işlemi için de bilim dünyasında epeyi
çalışmalar yapılmıştır. Modüler çarpma, önce çarpıp sonra indirgeme yapma ya
da çarpma ve indirgeme işlemlerini iç-içe yapma gibi iki yöntemle mümkündür.
Alan kısıtlamaları sebebiyle çoğunlukla ikinci metot tercih edilmektedir. İndirgeme
işleminin uygulanma yönüne göre modüler çarpma algoritmaları soldan sağa doğru
işleyenler ve sağdan sola doğru işleyenler olmak üzere ikiye ayrılır. Soldan sağa doğru
işleyen yöntemlerin en bilindik örnekleri Blakley ve Barrett algoritmalarıdır. Sağdan
sola doğru indirgeme yapan sınıfa ise tek örnek Montgomery yöntemidir. Hızlı çarpma
yapan Karatsuba-Ofman, Schönhage-Strassen gibi yöntemler olsa da bu hızlı çarpıcılar
indirgeme algoritmalarıyla birleştirilememektedirler. Bu sorun paralel çalışmaya izin
vermeyen indirgeme yöntemlerinden kaynaklanmaktadır. Ancak Kaihara ve Takagi
tarafından bilim dünyasına sunulan İki Parçalı Modüler çarpma yöntemi bu soruna bir
nebze de olsa çözüm bulmaktadır. Bu indirgeme metodu Montgomery algoritmasının
sahip olduğu bir özelliği kullanarak modüler çarpmadaki çarpanı ikiye ayırmakta ve
böylelikle Blakley ve Montgomery paralel olarak çalışabilmektedir.
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Hızlı çarpma algoritmalarından birisi olan Karatsuba-Ofman yöntemiyle İki Parçalı
indirgemeyi birleştiren ilk çalışma Gökay Saldamlı tarafından ortaya atılmıştır. İki
Parçalı Örgü Karatsuba-Ofman çarpıcısı iki parçalı indirgemeyi Karatsuba-Ofman
rekürsif çarpma yönteminin en üst katmanında birleştirmektedir. Bu yeni yöntemin
gerçeklenmesinde Montgomery çarpıcısına, Blakley modüler çarpıcısına ve standart
çarpma yapan bloklara ihtiyaç vardır. Ancak bu algoritma Montgomery ve Blakley
modüllerinde literatürdeki daha önceki gerçeklemelerde bulunmayan değerlerin de
hesaplanmasına gereksinim duymaktadır.

Bu tezde İki Parçalı Modüler Örgü Karatsuba-Ofman çarpıcısının donanımda
gerçeklenmesine ait iki çalışma ve bu tasarımlardan birisi kullanılarak gerçeklenen
RSA kriptosistemi anlatılmaktadır. Bu çalışmalardan ilki çarpanı birer bit işleyen
gerçeklemedir. FPGA teknolojisinde gerçeklenmiştir. İkinci gerçekleme ise ilk
tasarımdaki eksikleri kapatan ve daha hızlı bir modüler çarpma için kodlama
yöntemleri, daha fazla sayıda bit işleme, donanımın çalışma frekansını arttırmak için
en büyük gecikmeye sahip yolu kontrol sinyallerini kullanarak optimize etmeye çalışan
bir ASIC gerçeklemesidir.

Bu tezdeki donanım tasarımları İki Parçalı Örgü Karatsuba-Ofman çarpma yönteminin
ilk gerçeklemeleridirler. Montgomery ve Blakley algoritmaları bu yeni yöntem için
yeniden düzenlenmiştir. Tasarımların ikisi için de Maple’da kütüphaneler oluşturulmuş
ve iki tasarım da Maple ortamında donanımla aynı yapıda gerçeklenmiş, gerekli
testler yapılmış ve simülatörlerden gelen sonuçlarla yazılım gerçeklemesinden gelen
sonuçlar karşılaştırılarak tasarımların doğru çalıştığı kanıtlanmıştır. İkinci modüler
çarpma gerçeklemesi RSA kriptosistemi içinde modüler çarpıcı olarak kullanılmış ve
piyasadaki RSA kırmıklarıyla karşılaştırılabilir sonuçlara ulaşılmıştır.
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1. INTRODUCTION

The importance of cryptography dates back to the time of Julius Caesar. Since

then, the communication medium has been changing from letter to radio, radio to

telephone, personal computers and Internet, and currently smart phones. But the

need for communicating securely remained crucial, independent from the underlying

technology.

Cryptosystems may be classified into two categories: Symmetric Key Cryptosystems

and Public Key Cryptosystems(PKC). In symmetric key cryptosystems, same secret

key is used both for encryption and decryption operations. AES [1] is the most famous

algorithm used in this class. A simple diagram can be seen in the Figure 1.1

In PKC, there are key pairs for each communication endpoints, namely public key and

private key. As shown in the Figure 1.2, when Alice wants to send a message to Bob,

Alice encrypts her message(plain text) with the public key of Bob which is public to

everybody. She sends the encrypted message(cipher text) over an insecure channel.

Underlying mathematical properties of PKC allow only Bob to decrypt it with his

private key, which is only known by him.

RSA [2] is the most popular PKC. It gets its strength from the difficulty of large integer

factorization. In exchange for providing a robust security, it has the drawback of

modular exponentiation operation with very large integers(i.e. 1024, 2048-bit). Due to

Alice Bob

Encryption Decryption

K K

Insecure 

Network

Plain textPlain text Cipher textCipher text

Figure 1.1: Symmetric Key Cryptography.
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Alice Bob

Encryption Decryption

Public KBob Private KBob

Insecure 

Network

Plain textPlain text Cipher textCipher text

{Public KAlice , Private KAlice} {Public KBob , Private KBob}

Figure 1.2: Public Key Cryptography.

the timing and security requirements, RSA cyrptosystem has been widely implemented

on dedicated hardware, rather than software, either on FPGA or ASIC chips.

Modular exponentiation with large modulus in RSA consists of modular multiplication

operations. Favorably, modular exponentiation is implemented in software, using

modular multipliers that are implemented in hardware. In order to perform

fast encryption or decryption, one has to decrease the total number of modular

multiplications within a modular exponentiation by means of scanning techniques like

m-ary method.

The key point in reaching a fast RSA cryptosystem is implementing a fast modular

multiplier and using it with a modular exponentiation method which allows RSA to

be performed in the least number of modular multiplications in the shortest amount of

time.

Modular multiplication operation can be performed in two ways: either multiplying

first and then reducing the product later or, interleaving the multiplication and

reduction stages. In order to reach compact hardware designs, second approach is

generally preferred by designers. There are various methods of applying reduction.

There are also many ways to perform fast multiplication. The logical way to design a

fast modular multiplier would be selecting best candidates from each set. But because

of the dependency issue of the reduction algorithms which does not allow parallel

reduction, fast multipliers such as Karatsuba-Ofman (KO) [3] could not be interleaved

with these methods. However, couple of recent studies [4], [5] demonstrated a partial

method of interleaving KO multiplier with the bipartite reduction on the uppermost

layer of KO’s recursion. Bipartite Modular Multiplication (BMM) method [6], [7]

2



which was originally introduced by Kaihara and Takagi, outlines a global method

of parallel reduction in the way that, a product can be reduced from left and right

simultaneously without a dependency issue.

In this thesis, two hardware implementations and an RSA cryptosystem employing

the designed fast multiplier will be presented. The first multiplier design implements

Partially Interleaved Modular KO Multiplier on FPGA platform. The second

one explores the optimizations for the algorithm and for the previous design and

implements the high radix version of the multiplier on ASIC, in order to reach a very

fast RSA with the help of selected modular exponentiation methods. This work also

aims to propose a new design methodology to the cryptographic hardware developers

that has never been paid attention to. Up until now, the effect of control path to the

critical path of a design has always been neglected. But, when a critical path of a design

is analyzed, the impact of control path shows itself with extra logic gates inserted into

the critical path, which was not an issue that designer counts. This study emphasizes

control-path-aware digital design which will hopefully help designers to achieve faster

cryptographic hardware designs.

This thesis is organized in a way that, firstly preliminaries will be given in Chapter

2. Then in Chapter 3, implementation environment and design tools will be presented.

Hardware implementations of Partially Interleaved Modular KO Multiplication method

will be explained in detail in Chapter 4. Chapter 5 will conclude the thesis.

3
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2. THEORETICAL BACKGROUND

In this chapter, preliminaries will be given about RSA cryptosystem, modular

exponentiation and modular multiplication operations, Partially Interleaved Modular

Karatsuba-Ofman Multiplication algorithm, standard multiplication algorithm and

Booth Encoding.

2.1 The RSA Cryptosystem

The RSA is one of the most famous public key cryptosystem. It was invented by Rivest,

Shamir and Adleman [2]. It is used both to exchange private messages and sign digital

documents. In RSA every communication endpoint has a key pair, particularly public

key and private key. These keys are calculated as follows [8]:

Let p and q be two distinct large random primes. The modulus n is the product of these

two primes: n = pq. Euler’s totient function of n is given by

φ(n) = (p−1)(q−1) (2.1)

Now, select a number 1 < e < φ(n) such that

gcd(e,φ(n)) = 1

and compute d with

d ≡ e−1 mod φ(n)

using the extended Euclidean algorithm [9]. Here, e is the public exponent and d is

the private exponent. Usually one selects a small public exponent, e.g., e = 216 + 1.

The modulus n and the public exponent e are published. The value of d and the prime

numbers p and q are kept secret.

5



With public exponent e and modulus n and private exponent d, encryption and

decryption operations of RSA are performed as follows:

Let plain text and cipher text are denoted by M and C respectively. Then, RSA

encryption is the operation of

C = Me(mod n) (2.2)

where 0≤M < n. Retrieval of the original message, which is simply RSA decryption

is carried out as

M =Cd(mod n) (2.3)

The correctness of RSA algorithm follows from Euler’s theorem : Let n and a be

positive, relatively prime integers. Then,

aφ(n) = 1(mod n). (2.4)

Since we have ed = 1 mod φ(n), i.e., ed = 1+Kφ(n) for some integer K, we can write

Cd=(Me)d(mod n)

=Med(mod n)

=M1+Kφ(n)(mod n)

=M · (Mφ(n))K(mod n)

=M ·1(mod n)

provided that gcd(M,n) = 1.

Public-key directory, as shown in the Table 2.1, contains the pairs (e,n)for each user.

The pair na and ea are the modulus and public exponent for Alice respectively. If Alice

wants to send a private message to Bob, then she executes the following steps [8]:
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Table 2.1: Public-key Directory, adapted from (Koç, 1994).

User Public Keys
Alice (ea,na)
Bob (eb,nb)
... ...

1. Alice obtains Bob’s public-key exponent and modulus (eb,nb) from the directory.

2. Alice computes C = Meb(mod nb).

3. Alice sends C to Bob over the network.

4. Bob receives C and uses his private-key exponent and modulus and computes M =

Cdb(mod nb) in order to obtain M.

RSA provides robust security by means of its large distinct primes p and q. Large

modulus n and d makes integer factorization infeasible using the current technology.

As processing capabilities of computers increase, security parameters of RSA change

in parallel.

In exchange for ensuring a strong security, RSA has a drawback of modular

exponentiation operations with very large integers(i.e., 1024-bit). Due to the timing

and security requirements RSA cyrptosystem is widely implemented on dedicated

hardware(either on FPGA or ASIC chips), rather than software.

2.2 Modular Exponentiation

As Koç states in his report [8], the first rule of modular exponentiation is not to compute

C = Me(mod n)

by first exponentiating

Me

and then performing a division to obtain the remainder
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C = Me(%n).

Due to the space requirements, temporary results must be reduced modulo n at each

step of the exponentiation. This means modular exponentiation operation has to consist

of series of modular multiplications.

Accompanying different methods for modular exponentiation yields different

performances. In order to speed up the modular exponentiation operation, a scanning

method for the exponent must be chosen which allows modular exponentiation to

be performed in the least number of modular multiplications. The simplest way to

compute C = Me(mod n) would be starting with C = M(mod n) and then performing

C = C ·M(modn) for e− 1 times. For example, assume e = 20, then using this

approach, one modular exponentiation would be completed in 19 multiplications:

M→M2→M3→M4→M5→ ··· →M20

However, not all powers of M are needed to be computed in order to obtain M20. For

example a faster method to compute M20 is shown below:

M→M2→M4→M5→M10→M20

As it can be seen clearly, only 5 multiplications are needed to calculate M20. This

approach is known as binary method or square and multiply method and it can be used

to compute Me for any e [8].

2.2.1 The binary method

The binary method scans the exponent bit by bit either from left to right(MSB to LSB)

or right to left. At it can be understood from the name, a squaring is performed at each

step and then according to the scanned exponent bit, either a multiplication is done or

not. Let k denote the number of bits in the exponent, then the binary method can be

seen in the Algorithm 1.

For example, let e = 116 = (1110100). Here k = 7. Since ek−1 = e6 = 1 initially

C = M. The binary method proceeds as shown in the Table 2.2.
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Algorithm 1 The Binary Method.
Require: M,e,n
Ensure: C = Me(mod n)

1: if ek−1 = 1 then
2: C := M;
3: else
4: C := 1;
5: end if
6: for i = k−2 downto 0 do
7: C :=C ·C(mod n)
8: if ei = 1 then
9: C :=C ·M(mod n)

10: end if
11: end for
12: return C

Table 2.2: Binary Method Steps, adapted from (Koç, 1994).

i ei Step 7 Step 9
5 1 (M)2 = M2 M2 ·M = M3

4 1 (M3)2 = M6 M6 ·M = M7

3 0 (M7)2 = M14 M14

2 1 (M14)2 = M28 M28 ·M = M29

1 0 (M29)2 = M58 M58

0 0 (M58)2 = M116 M116

As shown in the Table 2.2, in order to compute M116 6+ 3 = 9 multiplications are

needed. For an arbitrary k-bit number e with ek−1 = 1, the binary method requires [8]:

• Squarings(Step 7): k−1

• Multiplications(Step 9): H(e)−1 where H(e) is the Hamming Weight of e.

0 ≤ H(e)− 1 ≤ k− 1, assuming e > 0. Total number of multiplications is found as

shown in the Table 2.3 below:

Table 2.3: Total Number of Multiplication for Binary Method, adapted from(Koç,
1994).

Case Number of Multiplications
Maximum (k−1)+(k−1) = 2(k−1)
Minimum (k−1)+0 = (k−1)
Average (k−1)+ 1

2(k−1) = 3
2(k−1)
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2.3 Modular Multiplication

In the literature, there are various proposals and enhancements for carrying out

the modular multiplication operations in RSA. These proposals can be divided into

two simple categories with respect to their reduction approach: namely, algorithms

reducing from left-to-right and from right-to-left [4]. In fact, for left-to-right approach,

several proposals exist [10], [11]. Algorithms including the standard division can be

put into this category. Whereas Montgomery multiplication [12] is the only example

of right-to-left reduction.

2.3.1 Classic modular multiplication

Algorithms including the standard division can be put into this category [4], [5].

Assume that A, B and N are positive numbers; division algorithm states that there

exist positive integers Q and T (namely quotient and remainder) such that

A ·B = Q ·N +T for 0≤ T < N (2.5)

Blakley [10] describes one of the simplest algorithm in this class. As presented in the

following paragraphs, the computation of AB mod N is achieved by interleaving the

shift-add steps of the standard multiplication and the shiftsubtract steps of the usual

reduction.

Let ai and bi represent the bits of the k-bit numbers A and B, respectively. Then, the

product, which is a 2k-bit number can be written as [8]:

A ·B = (
k−1

∑
i=0

ai2i) ·B =
k−1

∑
i=0

(ai ·B)2i (2.6)

Blakley’s algorithm is based on the above formulation of the product; it interleaves the

shift-add steps of the standard multiplication and the shift-subtract steps of the usual

reduction to make sure that the remainder is less than the modulus N.

In the Algorithm 2, reduction operation is performed between the steps 4 and 9. These

steps of the algorithm can also be denoted as R := R mod N or :

qi := b R
N c
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Algorithm 2 Blakley’s Algorithm.
Require: Integers A, B and N
Ensure: P = AB(mod N)

1: R := 0
2: for i = k−1 downto 0 do
3: R := 2R+ai ·B
4: if R≥ N then
5: R := R−N
6: end if
7: if R≥ N then
8: R := R−N
9: end if

10: end for
11: return R

R := R−qi ·N

Note that, if the last representation is used for the reduction step of the Blakley

algorithm, then qis can be accumulated to constitute the Q value, which is the quotient

in the standard division algorithm.

Let A, B, N and Q are represented with k = 2h bits for some positive integer h. They

can be partitioned into their least and most significant h bits as:

A = A1 ·2h +A0 = A1 · r+A0

B = B1 ·2h +B0 = B1 · r+B0

N = N1 ·2h +N0 = N1 · r+N0

Q = Q1 ·2h +Q0 = Q1 · r+Q0

where r = 2h. Operation of Blakley, namely left-to-right modular multiplication , can

be illustrated as shown in the Figure 2.1 [4].

The interpretation of the Figure 2.1 can be made as classic modular multiplication

consists of multiplication and reduction stages and in order to compute the result

AB mod N, QN which is Q1N2h +Q0N, is subtracted from the product of AB. During

the first h cycles of the algorithm Q1N2h is subtracted from AB and the least significant

h bits of AB, that is filled with dashed pattern in the figure is not manipulated.
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A₁ A₀ 

B₀ B₁  

A B

Q₁ N

Q₀ N

A B mod N0

× 

+

≡ 
A B mod N

Figure 2.1: Left-to-Right Modular Multiplication, adapted from (Saldamlı, 2011).

2.3.2 Montgomery Multiplication

Montgomery multiplication, which was proposed by Peter L. Montgomery [12] is the

only example of right-to-left reduction and the most preferable method of modular

multiplication in comparison with left-to-right methods. It replaces costly compare and

reduce step of the classic modular multiplication with simple add and shift operations.

Let A, B, and N are k-bit binary numbers. The Montgomery reduction computes R =

AB mod N without performing a division by the modulus N. Assuming that modulus

N is a k bit number, i.e. 2k−1 ≤ N < 2k, let R be 2k [8]. Montgomery reduction

algorithm requires R and N to be relatively prime, i.e. gcd(R,N) = gcd(2k,N) = 1.

This is satisfied when N is odd.

N-residue of an integer A (0≤ A < N) with respect to R is defined as:

Ā = A ·R mod N.

Montgomery reduction of A modulo N with respect to R is defined as:

A ·R−1 mod N.
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Then, Montgomery reduction of two N-residues Ā, and B̄ is ĀB̄R−1 mod N =

ABR mod N. This observation is used for modular exponentiation [9]. For example,

in order to compute A5 mod N, firstly N-residue of A, Ā = A ·R mod N, is computed.

Then the Montgomery reduction of ĀĀ, which is X = Ā2R−1 mod N, is computed.

The Montgomery reduction of X2 is X2R−1 mod N = Ā4R−3 mod N. Finally, the

Montgomery reduction of (X2R−1 mod N)Ā is (X2R−1)ĀR−1 mod N = Ā5R−4 mod

N = A5R mod N. Multiplying this value by R−1 mod N and reducing modulo N gives

A5 mod N.

If N is represented as a base b integer of length k, then a typical choice for R is bk [9].

In order to describe the Montgomery reduction algorithm, an additional quantity, N′,

is needed, which is an integer with the property of [8]

R ·R−1−N ·N′ = 1. (2.7)

The integers R−1 and N′ can both be computed by the extended Euclidian

algorithm [9]. The Montgomery reduction algorithm which computes AR−1 mod N

is given in the Algorithm 3.

Algorithm 3 Montgomery Reduction Algorithm.

Require: Integers A = (a2k−1a2k−2 · · ·a0)b < NR, N = (nk−1nk−2 · · ·n0)b with
gcd(N,b) = 1, R = bk, N′ =−N−1 mod b.

Ensure: AR−1(mod N)
1: T := A
2: for i = 0 to (k−1) do
3: qi := tiN′ mod b
4: T := T +qiNbi

5: end for
6: T := T/bk

7: if T ≥ N then
8: T := T −N
9: end if

10: return T

Montgomery reduction of the product of two integers, namely Montgomery

multiplication is outlined in Algorithm 4. Montgomery multiplication algorithm pieces

Montgomery reduction and ordinary multiplication up together. In its reduction steps,

firstly, a multiple of the modulus is determined by the least significant digit of the
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partial sum and partial product. This multiple is then added to the partial sum making

the least significant digit 0 which means a trivial right shift is applicable for reduction.

Algorithm 4 Montgomery Multiplication Algorithm.

Require: Integers X = (xk−1xk−2 · · ·x0)b, Y = (yk−1yk−2 · · ·y0)b, N =
(nk−1nk−2 · · ·n0)b with 0 ≤ X ,Y < N, R = bk with gcd(N,b) = 1 and
N′ =−N−1 mod b.

Ensure: XY R−1(mod N)
1: A := 0(Notation: A := (akak−1 · · ·a0)b.)
2: for i = 0 to (k−1) do
3: qi := (a0 + xiy0)N′ mod b
4: A := (A+ xiY +qiN)/b
5: end for
6: if A≥ N then
7: A := A−N
8: end if
9: return A

Let qi values are accumulated throughout the Montgomery multiplication and stored

to constitute the Q′ value. As mentioned in the previous section, let A, B, N and Q′ are

represented with k = 2h bits for some positive integer h. They can be partitioned into

their least and most significant h bits as:

A = A1 ·2h +A0 = A1 · r+A0

B = B1 ·2h +B0 = B1 · r+B0

N = N1 ·2h +N0 = N1 · r+N0

Q′ = Q′1 ·2h +Q′0 = Q′1 · r+Q′0

where r = 2h. Operation of Montgomery multiplication, namely left-to-right modular

multiplication, can be illustrated as shown in the Figure 2.2 [4].

As illustrated in the Figure 2.2, Montgomery multiplication combines multiplication

and reduction stages. In order to get the result ABr−2 mod N, Q′N = Q′0N +Q′1Nr is

added to the product of AB. Note that, during the first h cycles of the algorithm Q′0N

is added to the product of AB and the most significant h bits of AB, that is shaded in

the figure is not modified.
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A₁ A₀ 

B₀ B₁  

A B

Q₀ʹ  N

Q₁ʹ  N

A B r-2  mod N 0

× 

+

≡ 
A B mod N

Figure 2.2: Right-to-Left Modular Multiplication, adapted from (Saldamlı, 2011).

2.3.3 Bipartite Modular Multiplication

Bipartite Modular Multiplication(BMM) method introduced by Kaihara and Takagi

in [6] and [7], presents a semi parallel reduction based on an observation that a

product could simultaneously be reduced from left and right without a dependency

issue. Although, the dependency exists within each direction, BMM algorithm outlines

a global method of parallel reduction [4], [5].

In the previous sections left-to-right and right-to-left reduction approaches were

explained. In order to boost the speed up, BMM method links these two approaches

by setting the R parameter in Montgomery algorithm less than the modulus N. This

condition enables the multiplier to be split into two parts, which can be processed

separately in parallel [7].

Let X = (xk−1xk−2 · · ·x0)b and Y = (yk−1yk−2 · · ·y0)b be k-digit N-residue integers with

N = (nk−1nk−2 · · ·n0)b, 0 ≤ X ,Y < N, gcd(N,b) = 1, R = bt and 0 < t < k. Now

consider the multiplier B in Montgomery multiplication of ABR−1 mod N to be split

into two parts BH and BL , so that B = BH ·bt +BL. Then, Montgomery multiplication

of the N-residue integers A and B with respect to R = bt can be computed as follows:
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ABR−1 mod N=A(BH ·R+BL)R−1 mod N

=(ABHRR−1 +ABLR−1) mod N

=(ABH mod N +ABLR−1 mod N) mod N

The left term inside the last parentheses, AB mod N, can be calculated using the

classical modular multiplication algorithm that processes the upper part of the split

multiplier BH . The second term, ABLR−1 mod N, can be calculated using the

Montgomery algorithm that processes the lower part of the split multiplier BL [7].

Since left-to-right and right-to-left reductions do not have any dependency during the

first half of their reduction steps as stated in Blakley and Montgomery sections, they

could be combined as seen in Figure 2.3. In fact, the figure gives a sketch of the

bipartite reduction [5].

A₁ A₀ 

B₀ B₁  

A B

Q₀ʹ  N

Q₁  N

A B r -1  mod N

× 

+

≡ 
A B mod N

00

Figure 2.3: Bipartite Modular Multiplication, adapted from (Saldamlı, 2011).

In the Fig. 2.3, Q′0N represents the reduction value that is to be added to the lower part

of the product AB in Montgomery multiplication and Q1N corresponds to the reduction
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value which is subtracted from the upper part of the product in Blakley multiplication.

They can be applied in parallel without any dependency issue.

2.4 Partially Interleaved Modular Karatsuba-Ofman Multiplication

Partially Interleaved Modular Karatsuba-Ofman(KO) Multiplication was proposed

by Gökay Saldamlı. His algorithm [4] combines KO multiplier and bipartite

modular reduction and presents an interleaved processing on the uppermost layer

of KO’s recursion. As stated in the introduction section, this thesis proposes two

hardware implementations which are based on Saldamlı’s algorithm and applicable

improvements to the algorithm. In the following subsections, preliminaries will be

given related to this algorithm.

2.4.1 Karatsuba-Ofman multiplication

Karatsuba-Ofman algorithm [3] presents a recursive method that requires asymptot-

ically fewer bit operations than the standard multiplication. For a brief explanation,

firstly, decompose A and B into two equal-size parts:

A := 2hA1 +A0,

B := 2hB1 +B0,

i.e., A1 and A0 represent the most and least significant h bits of A respectively, assuming

k is even and 2h = k [4], [5]. The Karatsuba-Ofman multiplication algorithm breaks

the multiplication of A and B into multiplication of the parts A1, A0, B1 and B0 [8].

Since,

T := A ·B

:= (2hA1 +A0)(2hB1 +B0)

:= 22h(A1B1)+2h(A1B0 +A0B1)+A0B0

:= 22hT2 +2hT1 +T0 .
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standard multiplication of two 2h-bit numbers seems to require the multiplication of

four h-bit numbers, Karatsuba-Ofman algorithm is based on the observation that only

three multiplications suffice to achieve the same purpose as seen in

T0 := A0 ·B0

T2 := A1 ·B1

T1 := (A0 +A1)(B0 +B1)−T0−T2

:= A0 ·B1 +A1 ·B0 .

Karatsuba-Ofman recursive multiplication algorithm(KORMA) is shown below [8]:

function KORMA(A,B)
T0 := KORMA(A0,B0)
T2 := KORMA(A1,B1)
U0 := KORMA(A0 +A1,B0 +B1)
T1 :=U0−T0−T2
return (22hT2 +2hT1 +T0)

Note that, one has the option of stopping at any point during the recursion [4].

For example, one level of recursion can be applied first and then required three

multiplications can be computed using the standard nonrecursive multiplication

algorithm. Operation of KO multiplication can be seen in the Figure 2.4.

2.4.2 Interleaving BMM and KO multiplication

As mentioned in the introduction section, because of the reduction algorithms not

allowing parallel reduction due to data dependency issues, these methods can not be

interleaved with fast multipliers. But, Saldamlı’s algorithm [4] solves this problem to

an extend by interleaving bipartite reduction with Karatsuba-Ofman multiplier on the

uppermost layer of KO recursion [5].

Q, Q′ and N in Bipartite reduction can be rewritten as:
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A₁ A₀ 

B₀ B₁  

T₀ = A₀ B₀ 

A B

× 

+

T₁ = (A₀ + A₁) (B₀ + B₁) 

- T₀ = - A₀ B₀ 

- T₂ = - A₁ B₁  

T₂ = A₁ B₁  

Figure 2.4: Karatsuba-Ofman Multiplication, adapted from (Saldamlı, 2011).

N := 2hN1 +N0

Q := 2hQ1 +Q0

Q′ := 2hQ′1 +Q′0

Following partial products are defined as:

T ′0 · r=A0 ·B0−Q′0 ·N0 = T0−Q′0 ·N0

T ′2=A1 ·B1−Q1 ·N1 = T2−Q1 ·N1
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Using these values, T ′1 can be calculated as follows [4];

T ′1=T1 +T ′0 +T ′2r−Q′0N1−Q1N0

=(A0 +A1)(B0 +B1)−T0−T2 + T ′0 +T ′2r−Q′0N1−Q1N0

=(A0 +A1)(B0 +B1)− (T ′0r+Q′0N0)− (T ′2 +Q1N1)+ T ′0 +T ′2r−Q′0N1−Q1N0

=(A0 +A1)(B0 +B1)− (Q′0 +Q1)(N0 +N1)+ T ′0−T ′0r−T ′2 +T ′2r .

In fact, T ′1 gives the desired modular reduction, ABr−1 mod N. For a simpler

explanation of T ′1 calculation, remember the Fig. 2.3 of Bipartite reduction. In order

to compute the result ABr−1 mod N, Montgomery and Blakley reduction values Q′0N,

Q1N had to be subtracted respectively from the product AB. As Karatsuba-Ofman

calculates the product AB using the following equation:

A ·B := 22hT2 +2hT1 +T0

:= 22hA1B1 +2h((A0 +A1)(B0 +B1)−T2−T 0)+A0B0

Subtracting the Bipartite reduction values Q′0N and Q1N from KO product AB gives

the desired modular reduction of ABr−1 mod N. Partially Interleaved Modular KO

multiplication is shown in the Figure 2.5.

As shown in the Fig. 2.5, firstly Q′0N0 and Q1N1 are subtracted from T0 = A0B0 and

T2 = A1B1 respectively. And T ′0r and T ′2 are computed as results. These operations are

simply half-sized reductions of right-to-left(Montgomery) and left-to-right(Classic).

Remember that Partially Interleaved Modular KO multiplier combines bipartite

reduction with KO multiplication. As bipartite reduction values are Q′0N = Q′0N1r+

Q′0N0 and Q1N = Q1N1r+Q1N0, half of these reduction values are(Q′0N0 and Q1N1)

used up here and Q′0N1r and Q1N0 are left. T1 and −Q′0N1 and −Q1N0 are summed

up with the calculated T2 and T ′0 values to give the modular reduction, ABr−1 mod N.

These operations are rearranged in the second half of the figure. At it can be seen,

the desired modular reduction can be computed as: ABr−1 mod N = (T ′2r&T ′0) +

(A0 +A1)(B0 +B1)− (Q′0 +Q1)(N0 +N1)− (T ′0r&T ′2), where & is the concatenation

operation.
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A₁ A₀ 

B₀ B₁  

T₀ = A₀ B₀ 

A B r -1 mod N 

× 

+

T₁ = (A₀ + A₁) (B₀ + B₁) 

T₂ = A₁ B₁  

- Q₀ʹ N₀ - Q₁ N₁ 

T₀ʹ  T₂ʹ 00

- Q₀ʹ N₁  

- T₀ = - A₀ B₀ = - Q₀ʹ N₀ - T₀ʹ r  

- T₂ = - A₁ B₁ = - Q₁ N₁ - T₂ʹ

- Q₁ N₀

=

T₂ʹ T₀ʹ 

T₁ = (A₀ + A₁) (B₀ + B₁) 

- (Q₀ʹ + Q₁) (N₀ + N₁)

- T₀ʹ - T₂ʹ 

00

≡ 
A B mod N

+ +

Here Q₀ʹ N₀ is 

subtracted from T0 

and T0' r is computed. 

Q₀ʹ N1 is left. 

Here Q1N1 is 

subtracted from T2 

and T2' is computed . 

Q1 N0 is left. 

T2 r
2 + T1 r + T0 gives 

KO product of A B. 

Here T1 is calculated.

Here Q₀ʹ N1 is 

subtracted.  

Here Q1N0 is 

subtracted.

Figure 2.5: Partially Interleaved Modular Karatsuba-Ofman Multiplication, adapted
from (Saldamlı, 2011).
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Block diagram of the method can be seen in Figure 2.6. As shown in the figure, firstly

using the half-sized left-to-right interleaved multiplication and right-to-left interleaved

multiplication T ′2, T ′0, Q1 and Q′0 are calculated. Then, standard multiplication

operations (A0+A1)(B0+B1) and (Q′0+Q1)(N0+N1) are done. And finally, additions

are made in order to get the modular multiplication result.

(A₀ + A₁) ( B₀ + B₁) (Q₀ʹ + Q₁) (N₀ + N₁)

T₀ʹ, T₂ʹ, Q₀ʹ and Q₁ 

Half-sized Half-sized

left-to-right right-to-left

interleaved interleaved

multiplication multiplication

Additions for T₁ʹ

calculation

Figure 2.6: Block Diagram of the Method, adapted from (Saldamlı, 2011).

Neglecting the addition operations, implementation of this method can be done by

using Classic modular multiplication for left-to-right reduction, Montgomery multi-

plication for right-to-left reduction and integer multiplication for the multiplication

operations of (A0 + A1)(B0 + B1) and (Q′0 + Q1)(N0 + N1). In the next section,

preliminaries about the multiplication algorithms will be presented.

2.5 Integer Multiplication

Various multiplication algorithms exist in the literature in order to perform

fast multiplication. Examples of such methods are Karatsuba-Ofman [3],

Schönhage-Strassen [13] and Fürer [14]. Among these, Karatsuba-Ofman

multiplication was explained in Section 2.4.1. In order to use the similar hardware

structures and balance the delays of hardware modules, basic shift-and-accumulate

method was accomodated in this work. Shift-and-accumulate approach is explained in

the following subsection.
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2.5.1 Shift and accumulate method

Let multiplicand A, multiplier B be k-bit, and product P be 2k-bit numbers as follows:

A := (ak−1ak−2 · · ·a0)

B := (bk−1bk−2 · · ·b0)

P := AB = (p2k−1 p2k−2 · · · p0)

Figure 2.7 shows the multiplication of two 4-bit unsigned binary numbers in dot

notation [15]. Multiplicand A and multiplier B are shown at the top. Each of the

following four rows of dots corresponds to the product of A and a single bit of B,

where each dot represents the product of two bits. Since numbers are in binary form,

each dot can either be 0 or 1 and each row can either be A or 0. Thus the binary

multiplication problem reduces to adding a set of numbers, each of which is 0 or a

shifted version of the multiplicand A.

x
....
....

....
....

....
....

........

A

B

b0 A 20

b1 A 21

b2 A 22

b3 A 23

P= A B

Figure 2.7: Shift and Accumulate Method, adapted from (Parhami, 2000).

Sequential or bit-at-a-time multiplication can be done in two directions, either from

left-to-right, or right-to-left. In case of left-to-right, a cumulative partial product, which
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is initialized to 0 is shifted left at each step and proper biA is added to it. Left-to-right

operation can be shown as:

P = ((((P+b3A) ·2+b2A) ·2+b1A) ·2+b0A), (P = 0 initially)

In right-to-left operation, at each step, a cumulative partial product, again initialized to

0 is summed up with the proper biA and least significant bit of it is stored in another

variable, namely right part of the product. This operation goes on until the end of the

multiplication. At the end, right part of the product and cumulative partial product is

concatenated to get the product.

Here, number of partial products is equal to the bit length of the multiplier. As

multiplier is k-bit long, product P is computed via addition of k generated partial

product one by one. This operation can be accelerated by grouping the bits of the

multiplier into pairs, triples or quadruples and so on. The way of grouping the

multiplier bits widens the partial product set and bring advantages and disadvantages.

A very famous encoding method, namely Booth Encoding which groups the multiplier

bits effectively will be presented in the following section.

2.6 Booth Encoding

A generator that creates a smaller number of partial products will allow the partial

product summation to be faster and use less hardware [16]. A basic way of reducing

the number of partial products could be grouping the multiplier bits into pairs. In

this way, partial products would be selected from the set of {0,A,2A,3A}, where A

is the multiplicand. This reduces the number of partial products by half but brings a

problem: generation of 3A. 0, A, 2A are very easy to generate. But, 3A generation

needs either 2A+A precomputed and stored, or on the fly calculation. Instead of this,

a method known as Modified Booth’s Algorithm [17], [16] is used, which reduces the

number of partial products by about a factor of two and does not require 3A neither to

be precomputed, nor on the fly computation. The idea of Booth’s algorithm is doing

a little more work when decoding the multiplier such that the required multiples of

multiplicand come from the set of {0,A,2A,4A+−A}. All of the elements of this set

can be generated by simple shift operations. This method works by replacing any use of
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Table 2.4: Modified Booth Encoding Scheme.

bi+1 bi bi−1 I bi+1 bi bi−1 I
0 0 0 0 1 0 0 -2A
0 0 1 A 1 0 1 -A
0 1 0 A 1 1 0 -A
0 1 1 2A 1 1 1 0

3A either by 4A−A. Depending on the adjacent multiplier bits either 4A is pushed into

the next most significant group(becoming A because of the different arithmetic weight

of the group) or −A is pushed into the previous least significant group, becoming

−4A [16]. Figure 2.8 shows the dot diagram of 8x8 multiplication using the 2 bit

version of the algorithm.
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Figure 2.8: 8x8 Modified Booth Multiplication, adapted from (Bewick, 1994).

As shown in the Fig. 2.8, multiplier is partitioned into overlapping groups of 3 bits.

Each group starting from LSB is decoded to select a single partial product(I) according

to the selection Table 2.4. Corresponding multiple of the multiplicand is determined

according to the addition of (−2 · bi+1 + bi + bi−1), where b−1, bk and bk+1 bits are

padded with 0. Booth encoded partial products are showns as horizontal row of dots in

the figure. Each partial product is shifted 2 bit positions with respect to its neighbours.

Number of partial products are reduced to 5, instead of 8. In general, the number of

partial products is bk+2
2 c, where k is the length of the multiplier [16].

All partial products shown in the Table 2.4 can be generated by simple operations like

shift and complement. Negative partial products can be easily generated by bit-by-bit

complementing the corresponding positive product and adding 1 to the least significant
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position of the partial product, which is shown as s at the LSB position of partial

products.

In the Fig. 2.8, it can be seen that some partial products’ MSB positions are padded

with s, s′ or 1. This padding is called as sign extension. As Booth encoding scheme

generates both positive and negative multiples of the multiplicand, it is difficult to

control the sign and guarantee the product to have the desired sign. Incorporating sign

extension solves this problem by padding s, s′ and 1 to corresponding partial products’

MSB positions. The logic of sign extension is providing a general form, which works

in any combination of positive and negative multiples.

The partial products for the 8x8 multiplication example, assuming that all partial

products are positive, are shown in the Figure 2.9. Each partial product, except for

the bottom one, is 9 bits long, since numbers as large as 2 times the multiplicand must

be dealt with [16]. The bottom partial product is 8 bits long, because multiplier is

padded with two zeroes in order to guarantee the positive result.
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Figure 2.9: 8x8 Booth Multiplication with Positive Partial Products, adapted from
(Bewick, 1994).

Figure 2.10 shows the partial products if they all happen to be generated negative.

Using 2’s complement, every bit of the negated partial products is complemented,

including any leading zeroes and 1 is added at the LSB. The bottom partial product

is never negated, because zero padding assures that it is always positive [16]. Triangle

of 1’s on the left handside can be summed to produce the Figure 2.11, which is exactly

equivalent to the situation shown in Fig. 2.10.
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Now, suppose that a particular partial product turns out not be negative. The leading

string of 1’s in that particular partial product can be converted back to a leading of

zeroes, by adding a single 1 at the least significant bit of the string. In addition to

this, a 1 is added into the least significant bit of a partial product, only if it is negative.

Figure 2.8 illustrates this configuration. The s′ bits represent the 1’s that are needed to

clear the sign extension bits for positive partial products, and the s bits represent the 1’s

that are added at the least significant bit of each partial product if it is negative [16].
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3. IMPLEMENTATION ENVIRONMENT

In this section, implementation environment will be described. Implementation

environment includes device technologies(FPGA and ASIC), and design & verification

tools which were used throughout the hardware implementations.

Two hardware designs are proposed in this thesis. The first one is FPGA

implementation of Partially Interleaved Modular KO Multiplier [5]. The second

one is ASIC implementation of high radix and optimized version of the first design

and incorporation of it in RSA cryptosystem. VHDL was used as a hardware

description language. Before coding of the design elements in VHDL, Maple library

of building blocks and primitives, which emulate the hardware components, were

prepared. Then, same hardware designs were implemented in Maple using these

building blocks. Maple implementation of the design is tested and verified. In the

next step, design was coded in VHDL. According to the implementation technology,

Xilinx(for FPGA implementation), or Synopsys tools(for ASIC implementation) were

used for synthesis, mapping, placing and routing operations. Behavioral and gate level

simulations were performed using Modelsim and VCS simulators. Verification of

correct operation was done according to the results computed in Maple and results

produced in simulations. In the following subsections these device technologies and

design tools will be briefly described.

3.1 Device Technologies

There are varieties of device technologies which can be chosen to build a custom digital

system. Designer has to consider the trade-offs among various factors, including chip

area, speed, power consumption and cost.

Device technologies can be classified according to the customization method. The

customization of a circuit can be performed "in the field", by downloading a

connection pattern, also known as programming file to the device’s internal memory.
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These devices are Field Programmable Gate Arrays(FPGA) and Complex Field

Programmable Logic Devices(CPLD). On the other hand, some device technologies

need one or more patterned layers(silicon, polysilicon, metal, etc.) to be fabricated.

This process is expensive and complex and can only be done in a fabrication

plant(known as a foundry or a fab). Device technologies requiring a fab to do

customization is called as Application Specific Integrated Circuit(ASIC) [18].

3.1.1 FPGA

Field Programmable Gate Array devices(FPGA) were introduced by Xilinx in mid

1980s [19]. Designers benefit from its features of flexibility, low cost, high

performance and short configuration time. The basic architecture of an FPGA is shown

in Figure 3.1 [20].

Figure 3.1: FPGA Architecture, adapted from (Brown, 1996).

As illustrated in Fig. 3.1, FPGA architecture consists of matrix of configurable logic

blocks(CLB). These blocks are connected to each other via vertical and horizontal

routing channels which are shown as a mesh network in the figure. CLBs and

routing channels are enclosed with programmable input/output blocks. CLBs usually

accomodate several logic gates, lookup tables, multiplexers, adders and flip-flops. An

FPGA may also have different CLBs which may be memory blocks, or multiplier

blocks, etc.
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3.1.2 ASIC

Application Specific Integrated Circuits(ASIC) in an integrated circuit(IC) customized

for a particular use, rather than intended for general-purpose use [21]. As it is

customized for a special application, it provides efficient use of chip area, low power

dissipation and usually the smallest propagation delay and best speed.

ASICs can be full-custom, gate-array or standard-cell based. In this work Taiwan

Semiconductor Manufacturing Company(TSMC) 90 nm standard-cell library is used.

With this reason, standard-cell ASIC will be explained.

In standard-cell ASIC technology, a circuit is constructed by using a set of predefined

logic components, known as standard cells. These cells are predesigned and their

layouts are validated and tested. Standard-cell ASIC technology allows a designer

to work at the gate level rather than at the transistor level, thus greatly simplifies

the design process. The device manufacturer provides a library of standard cells as

the basic building blocks. This library consists of basic logic gates, combinational

components and memory elements [18]. Standard cell libraries may target different

design challenges. For instance, a standard cell library might have been specially

designed for low-power consumption and another library may be full of cells which

can operate in very high frequencies.

3.2 Maple

Maple is a mathematical software which can be used for differentiation, integration,

finding limits, solving equations, working with matrices and polynomials. All of these

functionalities of it can be integrated with modules and libraries coded in Maple.

As stated in Sec. 2.1, RSA algorithm requires modular multiplications with very large

integers, i.e. 1024-bit. When hardware is designed, verification of correct operation

becomes a very difficult process as operands in the design are such long integers. For

example, finding the error which causes i’th bit of a 512-bit operand can be such a big

problem if there is not a way to compare partial results bit-by-bit in every layer of the

design. The reasons of using Maple in this work are:

• Discovering possible design problems before description of hardware,
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• Having a functionally correct working software emulation of the same hardware in

hand,

• Using Maple result for debugging the hardware simulations,

• Identifying the upper limits of operands in hardware and using this information to

describe a more efficient hardware.

Incorporating Maple allows a designer to manage all of the advantages above. In fact,

any programming languages and any software development environment can provide

the similar functionality. But, Maple makes it simpler and provides extra functions in

its libraries which can be used with polynomials, matrices, equations, etc.

Maple procedures are described as:

procedure_name := proc( list_of_parameters )

variable declarations

functionality

...

end proc:

Procedures are Maple modules. They can be written with any aim. For example

a procedure may describe a simple print operation, or a relatively more complex

encryption operation. Maple implementation of AND and XOR gates and a half adder

are shown below:

#AND gate

AND:=proc(x,y)

return min(x,y);

end proc:

#XOR gate

XOR:=proc(x,y)

return (max(x,y)-min(x,y));
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end proc:

#Half adder

HA:=proc(x,y)

local s,c;

s:=XOR(x,y);

c:=AND(x,y);

return(c,s);

end proc:

There are four Maple procedures defined above. As AND gate in hardware produces

logic 1 when its inputs are (1,1), and logic 0 for the rest, Maple procedure AND

emulates this behavior by means of Maple function min, which gives the smaller one

of the operands x and y there. This procedure gives 1 as output only when both x and

y are 1 and 0 to the rest of inputs, which means there is at least one 0 among operands

which is always the minimum value.

In HA procedure, previously defined modules(XOR and AND) are used to produce

sum s and carry c values. This is simply the operation of a half adder, accepting two

binary inputs and producing sum and carry as outputs. Example instantiation of HA

module is given below, where d stores the sum and carry values of a+ b and e stores

sum and carry values of 1+0.

a:=1;

b:=1;

d:=HA(a,b);

e:=HA(1,0);

print("d=a+b",d);

a := 1

b := 1
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d := 1, 0

e := 0, 1

"d=a+b", 1, 0

3.3 FPGA Design Tools

Partially Interleaved Modular KO multiplication was implemented on Xilinx Virtex 5

XCVFX130T FPGA using Xilinx ISE Design Suite. ISE software provides tools for

HDL coding of the design, synthesis of a design description, implementation of the

synthesized design specific to the selected FPGA device, programming the FPGA. In

addition to these features, ISE can generate various reports related to timing, area and

power dissipation analyses which specify the performance of the design. Note that

Xilinx ISE can be used only for Xilinx FPGA devices. Other FPGA manufacturers

provide similar tools to carry out the same operations.

The first step of the FPGA design is the Design Entry step, where design is described

in an HDL. FPGA family, device, package and speed parameters are determined in this

step. HDL source files are created and checked against any syntax errors. This is called

as Register Transfer Level(RTL) description. Before the Design Synthesis step, design

can be functionally verified by behavioral simulation. Behavioral simulation, which

can be performed with simulators like ISim, Modelsim, VCS verifies the functionality

of the design without taking delays into account.

When a design’s functionality is verified, then the next step is the Design Synthesis

step. In this step, ISE software allows a designer to use either Xilinx’s synthesis

tool of XST or different synthesis tools like Design Compiler of Synopsys. Various

parameters can be set here related to optimization goal and effort, hiearchical options,

utilization of FPGA resources, power reduction, etc. When synthesis tool is run, it

performs RTL-level synthesis. The synthesizer converts HDL (VHDL/Verilog) code

into a gate-level netlist (represented in the terms of the UNISIM component library, a
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Xilinx library containing basic primitives) [22]. After the synthesis step, post-synthesis

simulations can be made via simulation tools.

Design Implementation step consists of translate, map, place&route operations.

During the translate phase previously synthesized gate-level netlist is converted to

another netlish which is represented in the terms of the SIMPRIM component library

of Xilinx. In the mapping phase, SIMPRIM primitives of the netlist are mapped on

specific device resources, like lookup tables, flip-flops, etc. Place&route tool defines

how device resources are located and interconnected inside an FPGA [22]. Again,

several parameters can be set here about placing and routing efforts, optimization,

etc. Post-translate, post-map and post-place&route simulations are performed after

each step. Here, the most important one is the post-place&route simulation, where

simulation is performed with the true delay information of the design.

After the implementation step, next step is generating a programming file and

programming the FPGA. Note that, timing and placement constraints can be given

to the implementation tool in order to direct the implementation process to give the

desired results.

3.4 ASIC Design Tools

High radix and optimized version of Partially Interleaved Modular KO multiplier was

implemented on ASIC 90nm TSMC technology library using Synopsys Design Vision.

Design Vision is in fact a graphical user interface of Synopsys Design Compiler

program. As all synthesis and implementation operations can be performed via scripts

running on a terminal emulator, same operations can be done using Design Vision

graphical user interface. Synopsys VCS simulator was used for behavioral, and post

synthesis simulations.

Firstly VHDL source files of the design are created using an editor, i.e. a simple text

editor. Then configuration files are prepared for Design Vision which point out the

location of working director, standard cell libraries, logical library mappings, etc. In

addition to this, a script file is created which will give constraint directives to Design
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Compiler. Again several constraints can be given here. For example ’CLK_PERIOD’

constraint, which sets the clock’s period to 0.9 nano second can be given as:

set CLK_PORT [get_ports clock]

set CLK_PERIOD 0.9

Before synthesis operations VCS simulator can be used to perform behavioral

simulation. After the behavioral simulation, synthesis process starts by Desing Vision,

reading and analyzing HDL files. In synthesis phase, Design Compiler uses technology

libraries and other libraries(synthetic, symbol, etc.) to translate the HDL description to

components extracted from the generic technology library which is independent from

technology [23].

After translating the HDL description to gates, Design Compiler optimizes and maps

the design to target library. This process is contraint driven. The result of the logic

synthesis process is an optimized-gate level netlist, which is a list of circuit elements

and their interconnections and ready for the place&route tools. [23].
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4. HARDWARE IMPLEMENTATION

This section will propose two hardware designs which are based on the same modular

multiplication algorithm, namely Partially Interleaved Modular KO Multiplication

which was described in Sec. 2.4 and a very fast RSA implementation which utilizes

the implemented modular multiplier. The first design, that was implemented on Xilinx

Virtex 5 XCVFX130T FPGA, includes Radix-2 Montgomery and Radix-2 Classic

Modular multipliers and Radix-4 Integer Multipliers. The second design implements

a high radix and optimized version of the same algorithm on 90 nm ASIC technology.

In includes Radix-4 Booth Encoded Montgomery Multiplier, Radix-4 Classic Modular

Multiplier and Radix-8 Integer Multipliers. RSA was implemented using the high

radix modular multiplier.

Although both of the implementations differ in many ways, they have some common

properties. These properties are implementation organizations and a few hardware

modules having the same structures. The first property is dot diagrams. Dot diagrams

were created for every multiplier module. These diagrams, which will be explained in

the next sections, provide a view to the designer. Designer can plan how to design the

data path of the hardware easily by analyzing the dot diagram of the design. Another

property that hardware implementations share is, adder structures. In both designs,

Carry Save Adder(CSA) and Carry Lookahead Adder(CLA) were used. Before HDL

coding and synthesis processes, designs were implemented and verified in Maple.

In the next sections, dot diagrams, adder structures and hardware implementations will

be explained in detail.

4.1 Dot Diagrams

Figure 4.1 shows the dot digram for a simple 8-bit multiplication. Each dot in

the diagram represents a single bit which can be zero or one. Partial products are

represented by a horizontal row of dots. Each partial product is determined according
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to the corresponding multiplier bit in that arithmetic weight [16]. If multiplier bit is

1, then partial product is equal to the multiplicand, and 0 if multiplier bit is 0. The

partial products are shifted to account for the differing arithmetic weight of the bits in

the multiplier, aligning dots of the same arithmetic weight vertically [16]. The product

is shown below which is 16 bits long.
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Figure 4.1: 8-bit Multiplication Dot Diagram, adapted from (Bewick, 1994).

Roughly speaking, the number of dots in the partial product section of the dot diagram

is proportional to the amount of hardware required to sum the partial products and form

the final product [16]. Dot diagram of Radix-2 Montgomery multiplication is shown

in Figure 4.2 where multiplicand, multiplier and modulus N operands are 8 bits. Here,

partial result is kept in sum and carry vectors. In every step of Montgomery algorithm

a new partial product is generated. Then a specific value is determined according to

the least significant bits of partial result and partial product, which is denoted as Q′ ∗N

vector in the figure. Aim of Q′ ∗N is making the least significant bit of partial result

0, so that a right shift can be applied without any data loss. Here, dot diagram shows

general operation of Montgomery. At each step, these vectors can be summed by

utilizing a carry save adder(CSA) and a full adder(FA). At the end of the multiplication
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steps, a ripple carry adder(RCA) can be used to determine the result of Montgomery

multiplication.

Using dot diagrams, designer can understand the overall design process. These

diagrams help designers to create parametric designs, to map parts of a design to

hardware modules efficiently.
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Figure 4.2: Radix-2 Montgomery Multiplication Dot Diagram.
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4.2 Adder Structures

Addition operations constitute the body of multiplication operations. Multiplication

is nothing more than series of partial product summations. In order to design a fast

multiplier, one has to consider employing fast adders. In this section adders will be

explained starting from basic addition blocks to fast adders.

Addition operations in this work are performed by adder modules which use basic

adder circuits iteratively. Adder modules accept binary input vectors and produce

binary output vectors. Same addition operation is applied to each bit position.

A straightforward implementation of an adder module to sum two binary vectors X =

(xk−1 · · ·x2x1x0) and Y = (yk−1 · · ·y2y1y0) is achieved through the use of k basic units,

called full adders(FA) [24]. A full adder accepts two operand bits xi and yi and an

incoming carry bit ci and then produces the corresponding sum bit si and an outgoing

carry bit ci+1. This outgoing carry bit is used as the incoming carry bit in the next FA,

which accepts xi+1 and yi+1 as inputs. Boolean functions for the FA are as follows:

si=xi⊕ yi⊕ ci

ci+1=(xi∧ yi)∨ (xi∧ ci)∨ (yi∧ ci)

where ⊕ is the exclusive-or(XOR) operation, ∧ is the AND operation and ∨ is the OR

operation. A full adder and a ripple carry adder which sums two 4-bit binary vectors

X and Y are shown in Figure 4.3.
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Figure 4.3: Full Adder and A 4-bit Ripple Carry Adder, adapted from (Koren, 2002).

As shown in the Fig. 4.3, in order to get correct result from ripple carry adder, carry

produced in a FA has to propagate until the FA in the MSB position. In other words,

one has to wait until the carries ripple through all FAs before claiming the output
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correct. With this reason it is called as ripple carry adder. Note that in the ripple carry

adder, first incoming carry, c0 is 0 at the beginning of addition operation. This means

that FA in LSB position can be changed with a simpler adder circuit, which adds two

bits and produce two bits results, sum and outgoing carry. This can be accomplished

by using an half adder(HA), which accepts two input bits xi and yi and produces sum

si and outgoing carry bit ci+1. Boolean equations of an HA is:

si=xi⊕ yi

ci+1=(xi∧ yi)

The ripple carry adder, although simple in concept, has a long circuit delay due to

the many gates in the carry path from LBS to MSB [25]. This delay may reach

unacceptable values when size of operands increase and affect the performance of

multiplier negatively. Eliminating this bottleneck is possible to a certain extend. Two

approaches can be employed to achieve this:

• Partitioning carry propagation path into blocks and using a faster adder iteratively

to perform additions in these smaller blocks,

• If producing one binary vector from summation of two or more vectors is

unnecessary for a while, then keeping produced sum and outgoing carries in two

separated vectors, namely carry-save form.

Both of these approaches were used in this work. For cyclic summation of binary

vectors(more than 2 vectors) a special class of adders, Carry Save Adders(CSA) were

used and partial result, which is represented by vectors of produced sum and outgoing

carries, is kept in carry-save form as long as possible. When there is no more binary

vectors left for addition, sum and carry vectors were partitioned into groups and result

is produced by repetitive use of Carry Lookahead Adders(CLA) which are faster than

basic ripple carry adders. CLA and CSA will be explained in the next sections.
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4.2.1 Carry Lookahead Adder

The most commonly used scheme for accelerating carry propagation is the

carry-lookahead scheme [24]. It is a practical design with reduced delay at the price

of more complex hardware [25]. CLA reduces the delay by computing each carry bit

independent from each other, which means in order to get the correct result no carry

propagation between FAs are needed.

PGU

x3 y3 x2 y2 x1 y1 x0 y0 

CLU 
c0 

c1 c2 c3 
c4 cout cin 

s3 s2 s1 s0 

PGUPGUPGU

p0 g0 p1 g1 p2 g2 p3 g3 

Figure 4.4: 4-bit Carry Lookahead Adder, adapted from (Pedroni, 2004).

A 4-bit CLA is shown in the Fig. 4.4. Implementation of CLA is based on the generate

and propagate concept [19]. The generate(g) and propagate(p) signals for two input

vectors X = (xk−1 · · ·x1x0) and Y = (yk−1 · · ·y1y0) are defined as:

gi=xi∧ yi

pi=xi⊕ yi

Since these signals do not have any dependency with carry bits, they can be computed

in advance. Now, consider the carry vector C = (ck−1 · · ·c1c0). Each carry bit can be

computed from propagate and generate signals as:

c0=cin

c1=c0 p0∨g0

c2=c0 p0 p1∨g0 p1∨g1

c3=c0 p0 p1 p2∨g0 p1 p2∨g1 p2∨g2,etc.
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As it can be seen from equations above, each carry bit is computed independent from

each other. No wait for carry propagation is required. This is in fact the reason of

CLA, being faster than ripple carry adder. On the other hand, the hardware complexity

grows very fast, limiting this approach to just a few bits, typically 4 [19]. These 4-bit

units can be combined to implement larger adders.

As shown in the Fig. 4.4, the PGU(Propagate−Generate Unit) computes p, g and

sum bit s, and the CLAU(Carry−Lookahead Unit) computes the carry bits.

4.2.2 Carry Save Adder

According to the mathematical operation, sometimes three or more vectors have to be

added simultaneously. For example, consider the modular multiplication operation.

At every step, in addition to the partial product, a reduction vector has to be added to

the partial sum and this has to be repeated several times, until all multiplier bits are

processed. Employing a ripple carry adder causes time-consuming carry propagation

several times. The technique which is most-commonly used to lower the carry

propagation is carry save addition [24]. Carry-save addition allows carry propagation

only in the last step. In all other steps partial sum and generated carries are kept in two

vectors separately. The basic carry-save adder(CSA) accepts three k-bit operands and

produces k-bit sum and k+1-bit carry, which means a CSA can reduce the number of

operands from 3 to 2 without waiting for carries.

The simplest method to implement a CSA is using full adders, which accepts three

input bits and generate two output bits. CSAs are also called as counters. Because,

the outputs of CSAs are the weighted binary representation of the number of 1s in the

inputs [24]. A (3,2) CSA consists of k FAs operating in parallel with no carry links

between them is shown in Figure 4.5.

Another type of CSA, which accepts four binary vectors is (4,2) CSA. A (4,2) CSA

consists of (5;3) compressors, which is made up of two FAs connected to each other.

A (5;3) compressor accepts four operands and an incoming carry, and produces sum,

carry and outgoing carry bits. A (5;3) compressor and a (4,2) CSA are shown in the

Figure 4.6.
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In this work, both (3,2) CSA and (4,2) CSA were used in modular multipliers and

integer multipliers in order to eliminate the delay of carry propagation until the very

last addition. In the next section, hardware implementations will be explained.

4.3 Partially Interleaved Modular KO Multiplier

Hardware implementation of Partially Interleaved Modular KO Multiplication was

done using separate multiplier modules. To be more specific, classic(Blakley)

modular multiplier, Montgomery multiplier and integer multipliers were utilized for

left-to-right, right-to-left and integer multiplications respectively [5]. Block diagram

of the method was shown in Fig. 2.6. Hardware implementation of Partially Interleaved

Modular KO Multiplier can be seen in Fig. 4.7.
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As shown in the Figure 4.7, the most significant half of multiplier A, multiplicand B

and modulus N are processed in classic modular multiplier, while the least significant

half of them are processed in Montgomery multiplier. Left-to-right reduction and

right-to-left reduction are performed here. T ′2 which is the modular multiplication

result and Q1 are produced in classic modular multiplier. Montgomery multiplier

computes T ′0 and Q′0 values. These partial results are stored in registers. In the second

part of the design, multiplication operations of (A0+A1)(B0+B1) and (Q′0+Q1)(N0+

N1) are carried out by means of integer multipliers. At the last step of the design, final

additions/subtractions are performed and modular multiplication result ABr−1 mod N

is computed, where r = 2h. Note that all multiplier modules implemented here are

half-sized modules. Three types of adder modules are employed: (3,2) CSA, (4,2)

CSA and iteratively used 64-bit CLA which is made up of 16 4-bit CLA adder blocks

serially connected. Details of multiplier blocks will be given in the following sections.

4.3.1 Radix-2 Classic Modular Multiplier

Classic modular multiplication accomodates several subtractions at each step of

reduction as previously shown in Algorithm 2. As stated in Bunimov et al. [26],

classical approach has some drawbacks that, it requires three additions with carry

propagation and also two full-bits-lengthed comparisons in the worst case. An

estimation logic using the most significant two bits of intermediate result and modulus

was proposed in their work in order to reduce the subtractions to a single subtraction.

This method also brings the advantage that, instead of two full-bits-lengthed

comparisons with modulus, only a comparison to t · 2k(t = 0,1, · · · ,6) is performed

at each step, which can be done in constant time, as values of t · 2k mod N are

precomputed before the execution of the loop.

In order to get rid of carry propagation in additions, (3,2) CSAs were employed in

their work. They also proposed an optimized version of the algorithm, where only

one carry save addition is performed at each step with a few changes made in lookup

table. It has the overhead of lookup table and calculation of table elements before the

modular multiplication steps. Bunimov’s algorithm is shown below:
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Algorithm 5 Classic Modular Multiplication Algorithm of Bunimov.
Require: Integers X ,Y,N with 0≤ X ,Y ≤ N.
Ensure: P≡ XY mod N

k :number of bits in X
xi :i’th bit of X .

1: S := 0; C := 0; A := 0;
2: for i = k−1 downto 0 do
3: S := S mod 2k;
4: C :=C mod 2k;
5: S := 2S;
6: C := 2C;
7: A := 2A;
8: I := xi ·Y ;
9: (S,C) :=CSA(S,C, I);

10: (S,C) :=CSA(S,C,A);
11: A := (2 · sk+1 + sk +2 · ck+1 + ck) ·2k mod N
12: end for
13: P := (S+C) mod N
14: return P

In the algorithm shown above, (2 · sk+1 + sk + 2 · ck+1 + ck) determines the value of

t. As all possible values of t · 2k mod N were precomputed, value of A is evaluated

in constant time. Here, sum S and carry C values can never exceed k + 2 bits, so

operations in (3) and (4) are simple operations as making the most significant two bits

of S and C 0.

Classic modular multiplication with quotient calculation is outlined in Algorithm 6.

Note that, this algorithm is different than ordinary classic modular multiplication

algorithm in the way that an additional value Q is calculated.

At each cycle of the algorithm, t · 2k mod N value, which is denoted by A, is added

to the intermediate results where the most significant two bits of sum S and carry C

determine the value of t. Operations of determining the regarding t · 2k mod N value

according to the most significant two bits of S and C, then adding it to the mod 2k of S

and C mean, reducing the most significant two bits of S and C with respect to mod N.

Here, in order to compute the quotient, value coming from the quotient lookup table

according to t is added to the partial quotient values Q1S and Q1C at each cycle. At the

end of modular multiplication cycles Q1S and Q1C are summed up to constitute Q1. To
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better understand the process of quotient calculation, it would be useful to have a look

at the calculation of lookup table for t ·2k mod N(t = 0,1, · · · ,6) [5].

To determine each lookup value (t · 2k mod N for t = 0,1, · · · ,6), modulus N is

subtracted from the value of t · 2k before the modular multiplication steps. Number

of subtractions for each lookup value is stored in a small lookup table that is used

for quotient calculation. This new lookup table has 7 elements and each element is a

number between 0 and 15, signifying that whenever a reduction of most significant two

bits of S and C is done with A= t ∗2k mod N, Q1New times N is being subtracted from it,

which constitutes the quotient Q1 at the end of the classical modular multiplication [5].

Algorithm 6 Classical Modular Multiplication Algorithm with Quotient Calculation.
Require: Integers X ,Y,N with 0≤ X ,Y ≤ N.
Ensure: P≡ XY mod N ,Q1

k :number of bits in X .
xi :i’th bit of X .
Q1 : Quotient value shown in Figs. 2.1 and 2.5 .
ALookUpTable : Lookup table for all values of t ·2k mod N(t = 0,1, · · · ,6)
QLookUpTable : Lookup table storing the values of b t·2k

N c.

S := 0; C := 0;
A := 0; Q1 := 0; t := 0;
Q1S := 0; Q1C := 0 Q1New := 0;
for i = k−1 downto 0 do

S := S mod 2k;
C :=C mod 2k;
S := 2S;
C := 2C;
A := 2A;
Q1S := 2Q1S;
Q1C := 2Q1C;
Q1New := 2Q1New;
I := xi ·Y ;
(S,C) :=CSA(4,2)(S,C, I,A);
(Q1S,Q1C) :=CSA(3,2)(Q1S,Q1C,Q1New);
t := (2 · sk+1 + sk +2 · ck+1 + ck);
A := ALookU pTable(t);
Q1New := QLookU pTable(t);

end for
P := (S+C) mod N
Q1 := Q1S +Q1C + bS+C

N c;
return P,Q1
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To summarize, at each step of the classical modular multiplication, partial product I,

sum S, carry C and remainder A of the reduction (i.e. the most significant two bits of

S and C from the previous cycle) are added using the (4,2) CSA block without carry

propagation. According the value of t, a quotient value is accumulated and at the end

of the multiplication, T ′2 and Q1 values (shown in Fig. 2.5) are calculated.

Block diagram of Radix-2 Classic modular multiplier is shown in Figure 4.8.

Radix-2 Classic modular multiplier performs modular multiplication with k-bit

operands vectors X , Y and N and computes the k-bit modular multiplication result

P and k+1-bit quotient value Q1.

4.3.2 Radix-2 Montgomery Multiplier

Implementation of Montgomery multiplier module is similar to classical one apart

from the estimation logic. Using the CSA at each step, a partial product I, some

multiple of modulus N and A are added to the sum S and carry C values. The value of

A is determined by using the least significant bits of partial product and sum at each

step. Here number of modulo N’s that are added during the multiplication steps and

subtracted at the end of the algorithm determines the value of Q′0 shown in the Fig. 2.5.

Montgomery multiplication algorithm in CSA form with Q′0 calculation is outlined in

the Algorithm 7.

Note that, Q′0 value computed in the Algorithm 7 may be a negative number in the case

of when no final subtraction is performed. Block diagram of the Radix-2 Montgomery

multiplier with Q′0 calculation is shown in Figure 4.9. Montgomery multiplier accepts

three k-bit vectors X , Y and modulus N and computes k-bit modular multiplication

result P = XY 2−k mod N and k+3 bits signed Q′0 value.

4.3.3 Radix-4 Integer Multiplier

For the integer multiplication operations, a Radix-4 integer multiplier module was

implemented according to Algorithm 8. At each integer multiplication cycle, two

bits of the multiplier are processed from right to left. Two partial products I1 and

I2 are added to the intermediate result, which consists of sum S and carry C using
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Algorithm 7 Radix-2 Montgomery Multiplication with Q′0 Calculation.

Require: N: 2k−1 ≤ N ≤ 2k, gcd(N,2) = 1;
X ,Y : 0≤ X ,Y ≤ N.

Ensure: P≡ XY 2−k mod N ,Q′0
k :number of bits in X .
xi :i’th bit of X .
Q′0 : value shown in Fig. 2.5.

1: S := 0; C := 0; A := 0;
2: Q′0 := 0; Qin := 0; Qout := 0;
3: for i = 0 to k−1 do
4: I := xi ·Y ;
5: u := (s0 + i0) mod 2 ;
6: A := u ·N;
7: (S,C) :=CSA(S,C, I,A);
8: Qin(i) := u;
9: S := S

2 ; C := C
2 ;

10: end for
11: P := (S+C);
12: if P≥ N then
13: P := P−N;
14: Qout(k) := 1;
15: end if
16: if P≥ N then
17: P := P−N;
18: Qout(k) := 0;
19: Qout(k+1) := 1;
20: end if
21: Q′0 := Qout−Qin;
22: return P,Q′0
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the CSA. Product’s least significant k-bits(PR) are accumulated at each cycle and

combined with the most significant k-bit of the product(PL) at the end of the algorithm.

The idea behind designing such an integer multiplier was using the same hardware

skeleton which is used not only in Classic modular multiplier but also in Montgomery

multiplier.

Algorithm 8 Radix-4 Integer Multiplication Algorithm.
Require: X ,Y
Ensure: P := XY

1: S := 0; C := 0; Cin := 0;
2: for i = 0 to k−2 by 2 do
3: I1 := xi ·Y ;
4: I2 := xi+1 ·Y ;
5: (SHA,Cin) := HA(S1,C1);
6: PR(i) := S1;
7: PR(i+1) := SHA;
8: (S,C) :=CSA(S,C, I1, I2,Cin);
9: end for

10: PL := (S+C);
11: return P := (PL&PR);

In order to use Radix-4 Integer Multiplier for multiplication with a negative number,

negative number’s absolute value is multiplied by positive number. And then product

is converted back to 2’s complement notation. These conversions are perfomed in the

top module, which is Partiall Interleaved Modular KO multiplier and Radix-4 Integer

multiplier performes only multiplication of two positive numbers.

4.3.4 Implementation Results

Partially Interleaved Modular KO multiplier was described in VHDL and implemented

on Xilinx Virtex 5 XCVFX130T FPGA. Verification of correct operation of the design

was done according to the modular multiplication values coming from the software

implementation of the same design in Maple.

For the k-bit operands X , Y and modulus N, Radix-2 Montgomery multiplier

implementation performs one modular multiplication operation in (35k/64)+18 clock

cycles. Classic modular multiplier performs modular multiplication in (79k/128)+49

clock cycles. Integer multiplier module performs multiplication in (65k/256)+6 clock
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Table 4.1: FPGA Implementation Results.

Multiplier Size(k) 512 1024
Minimum Period (ns) 10 10
Maximum Frequency (MHz) 100 100
Total # of Clock Cycles 631 1161
Total Computation Time (µs) 6.310 11.610
Area (slice) 28810 55702
Area (LUT) 26202 49509
Area (Flip-Flop) 35276 67007

cycles. As Montgomery multiplier and Classic modular multiplier work in parallel,

first part of the design performs its operation in (79k/128)+ 49 cycles. Two Integer

Multiplier modules work in parallel in the second part of the design and complete

the integer multiplication in (65k/256)+ 6 clock cycles. Based on these values, our

multiplier architecture performs modular multiplication in ((263∗ k)/236)+98 clock

cycles.

Total number of clock cycles, minimum period, maximum frequency, total

computation time and area results of 512, and 1024 bits implementation are shown

in the Table 4.1.

Comparison of the FPGA implementation results with previously proposed designs

is not easy in terms of architectural differences. First of all, BMM is an ASIC

implementation and authors of BMM presented implementation results of their

optimized algorithm, instead of a BMM implementation with plain Blakley and

Montgomery multipliers. Harris [27] implemented a scable Radix-2 Montgomery

multiplier on Xilinx Virtex Pro using processing elements. As FPGA implementation

of Partially Interleaved Modular KO multiplier does not employ processing elements

and does not target a scalable design, it can not be directly compared with Harris’s

work neither. Neverthless, in order to give an idea to the reader, a plain comparison of

these studies are given in Table 4.2.

Although implementation technologies differ, results show that FPGA implementation

of Partially Interleaved Modular KO multiplier could not reach promising results.

In spite of using a newer FPGA technology, it could not provide a faster modular

multiplication. These results pointed out possible problems with the design that has to
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Table 4.2: Comparison of 1024-bit Implementations.

BMM [7] Harris [27] This work
FPGA/ASIC 0.35µm Virtex Pro Virtex 5

XCVFX130T
Area(Slices/Gates) 109851

Gates
5598
Slices+5n
bits RAM

55702
Slices

Frequency 76.27MHz 144MHz 100 MHz
Total Comp. Time 3.42µs 8.05µs 11.60µs

be taken into account in order to take advantage of Partially Interleaved Modular KO

multiplication method and reach faster implementations.

4.4 High Radix Partially Interleaved Modular KO Multiplier

The first hardware implementation of Partially Interleaved Modular KO multiplier

was a naive implementation. Implementation results which were not very promising,

revealed the need for a better implementation to reach a better performance.

In order to achieve a better implementation, the following design methodology was

thought to be used:

• Paying extra attention to control signals in all hiearchies of the design. Reducing

the number of control signals as much as possible, so that effect of control signals

on the operating frequency of design can be minimized.

• Reanalyzing the Partially Interleaved Modular KO multiplication algorithm and

clarifying the dependencies of modules and parameters. This may be useful to

better schedule the additions/subtractions performed at the end of the modular

multiplication.

• Employing high radices in Montgomery, Classic and Integer multiplier modules.

High radix means processing more bits at every clock period, which reduces the

number of clock cycles required for modular multiplication.

• Changing implementation technology from FPGA to ASIC in order to work in high

frequencies.
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4.4.1 Control Signals

Control signals are the signals that control the operation of modules and registers.

These signals are like flags, indicating corresponding module must start processing, or

register to load incoming bits or clear its stored bits to all zeroes. Critical path of a

design, namely the longest path includes not only the data path signals going trough

the components like gates, but also control signals. Every control signal is inserted into

the critical path by means of new gates. Therefore, in order to design a fast circuit, one

has to pay attention to both data path and control path. With this reason, reducing the

number of control signals plays a crucial role. Critical path of a design, highlighted in

red from one register to another, is shown in the Fig. 4.10. Note that control signals and

their paths are highlighted in blue. Although it can not be seen in the figure, control

signals are inserted into the critical path via an AND gate and an OR gate.

Figure 4.10: Critical Path of a Design.

4.4.2 High Radix Choice

Utilizing high radices in multiplier modules reduces the number of partial products

and total number of clock cycles required to complete a multiplication. Because, more

multiplier bits are processed at every step of multiplication. As many radices exist,

such as 4, 8, 16, and more, a suitable radix must be chosen in order to achieve desired

results. Different radices have different requirements which affect the speed or area of

the implementation. As the perfomance criteria for this work is speed, then a suitable

radix that is faster than the rest of them must be selected. About radix selection, this

work took Bewick’s PHD thesis [16] as a reference. In his thesis, Bewick implemented

fast multipliers with different radices and compared implementation results according

to the area, power and delay. Comparison tables show that, according to the delay,
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Radix-4(Booth 2) is the best. Therefore, 4 is chosen as radix for modular multipliers,

which means at every multiplication step, 2 bits of multiplier are processed.

4.4.3 Radix-4 Classic Modular Multiplier

In the first hardware implementation, an estimation logic using the most significant

two bits of intermediate result and modulus, proposed by Bunimov [26] was utilized

in order to reduce the subtractions in Blakley to a single subtraction. This method was

also bringing the advantage that, instead of two full-bits-lengthed comparisons with

modulus, only a comparison to t ·2k(t = 0,1, · · · ,6) was performed at each step, which

could be done in constant time, as values of t ·2k mod N were precomputed and stored

in a lookup table before the execution of the loop.

Classic modular multiplication algorithm in the first implementation was for Radix-2,

whereas for Radix 4 implementation, it needs to be modified. In the case of

Radix-4 multiplication, it is an issue to clarify the number of most significant bits

of intermediate result to be used in the estimation logic. In addition to this, size of the

lookup table storing the precomputed t ·2k mod N values is an issue too. Moreover, as

multiplicand Y is multiplied by two multiplier bits, ai and ai−1 in Radix-4, generated

partial product I has a value set of {0, Y, 2Y, 3Y}. Y and 2Y are easy multiples, whereas

generation of 3Y is another problem.

After analysis, it was understood that the optimal choice in Radix-4 Classical modular

multiplication is to use the most significant three bits for the estimation logic. Using

most significant 3 bits of the intermediate result, which is kept in carry-save form in

the multiplier brought a drawback of t to be in the set of {0,1, ...,14}, which means

doubling the size of the lookup table.

In order to overcome 3Y generation, calculation and storage of 3Y before modular

multiplication steps was decided to be used. Because, analysis showed that employing

Booth encoding causes more lookup table values to be stored. This is due to the

sign extension bits that are added to the MSB positions of partial products in Booth

encoding.
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At every multiplication cycle, partial Q1 value(Q1New) is determined according to the

most significant three bits of S and C. This partial Q1 value is added to the shifted sum

(Q1S) and carry(Q1C) values of Q1 using (3,2) CSA. Here, operations of determining

the regarding t ·2k mod N value according to the most significant three bits of S and C,

then adding it to the mod 2k of S and C mean, reducing the most significant three bits

of S and C with respect to modulus N.

Algorithm 9 Radix-4 Classic Modular Multiplication Algorithm with Quotient
Calculation.
Require: Integers X ,Y,N with 0≤ X ,Y ≤ N.
Ensure: P≡ XY mod N ,Q1

k :Number of bits in X .
xi :i’th bit of X .
Q1 : Quotient value.
ALookUpTable : Lookup table storing all values of t ·2k mod N(t = 0,1, · · · ,14)
QLookUpTable : Lookup table storing the values of b t·2k

N c.
1: S := 0; C := 0; A := 0; t := 0;
2: Q1S := 0; Q1C := 0 Q1New := 0;
3: for i = k−1 downto 0 by −2 do
4: S := S mod 2k;
5: C :=C mod 2k;
6: S := 4S;
7: C := 4C;
8: A := 4A;
9: Q1S := 4Q1S;

10: Q1C := 4Q1C;
11: I := (2xi + xi−1) ·Y ;
12: (S,C) :=CSA(4,2)(S,C, I,A);
13: (Q1S,Q1C) :=CSA(3,2)(Q1S,Q1C,Q1New);
14: t := (4 · sk+2 +2 · sk+1 + sk +4 · ck+2 +2 · ck+1 + ck);
15: A := ALookU pTable(t);
16: Q1New := QLookU pTable(t);
17: end for
18: P := (S+C) mod N
19: Q1 := Q1S +Q1C + bS+C

N c;
20: return P,Q1

As this work proposes an ASIC implementation, both lookup tables ALookU pTable

and QLookU pTable, were implemented as ROM’s storing the precomputed t ·2k mod

N(t = 0,1, · · · ,14) and b t·2k

N c values respectively. Determination of each lookup

element is done in the same way as explained in Sec. 4.3.1. Block diagram of Radix-4

Classic Modular Multiplier is shown in Figure 4.11.
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Figure 4.11: Block Diagram of the Radix-4 Classic Modular Multiplier with Quotient
Calculation.

In order to understand the block diagram assume that there is a separation between

modular multiplication side and quotient calculation side.

In modular multiplication side at every cycle, partial product I and value coming from

ROM_A are added to partial sum S and carry C vectors respectively. Produced sum

and carry vectors are stored in registers Sum_Reg and Carry_Reg. Then in the next

cycle, the most significant 3 bits of S and C are summed up in order to produce new

A value by means of ROM_A. At the same time, new S and C vectors are reformed in

the way that firstly the most significant 3 bits of them are shifted out and these vectors

are multiplied by 4(shifted 2 bits to the left). New partial product I is determined and

I, A, S and C are summed up again.

In quotient calculation side, quotient value Q1_new is determined according to most

significant 3 bits of S and C at every cycle. ROM_Q stores precomputed quotient

values, which are 5-bit unsigned numbers. This new quotient value is added to 2-bit

left shifted Q1_S and Q1_C, which are sum and carry vectors of quotient.

For the k-bit operands X , Y and modulus N, addition of S, C, I and A continues for k/2

cycles. When all multiplier bits are processed 32-bit CLAs are used iteratively in order
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to sum up S and C for modular multiplication result and Q1_S and Q1_C for quotient.

Addition results are stored in registers Sum_Reg and Q1_S_Reg. Final reduction is

performed here which is shown as Step 18 in the Alg. 9. In this step, modulus N

is subtracted from S+C iteratively using the same CLA. Number of subtractions are

added to the quoetient value.

In this design, Sum_Reg and Q1_S_Reg registers are designed in a way that they can

accept binary vectors; at the end of the multiplication they can shift the least significant

32 bits out and accept 32 bits to the MSB position of them when CLAs are used

iteratively for additions.

3Y calculation logic is also shown in Figure 4.11. Here, 3Y is calculated by iterative use

of a 32-bit CLA. In the summation of 2Y and Y , same shifted Y bits are used. Assume

shifted Y bits are denoted as Ys. Then Ys and 2 ∗Ys are sent to the CLA as inputs.

Results are stored in Reg_3Y register. At the same time, shifted bits are restored by

Reg_Y again.

Radix-4 Classical modular multiplier performs one modular multiplication in

(21k/32)+ 17 clock cycles where k is the bit length of X , Y and modulus N. k-bit

modular multiplication result and k+1 bit quotient are computed.

4.4.4 Radix-4 Booth Encoded Montgomery Multiplier

In hardware implementation of Radix-4 Montgomery multiplier, 3 methods were

applied in order to improve the performance.

First of all, as two bits of multiplier is processed at every step, partial product has a

value set of {0,Y,2Y,3Y}. Among the value set, 0, Y and 2Y are easy products which

can be generated by simple shift operations. But 3Y product needs extra operations

such as precomputing and storing or, calculating 2Y +Y during the multiplication.

In order to figure out this burden, Booth encoding(see Sec. 2.6) is used. Utilizing

Booth encoding converts the value set of I from 0,Y,2Y,3Y to {0,Y,2Y,−Y,−2Y} in

which every element of this set can be computed easily by shift and/or complement

operations. Booth encoding scheme takes a bit stream of the multiplier (xi+1,xi,xi−1)2
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Table 4.3: Montgomery Encoding Scheme.

sp1 sp0 n1 qi+1 qi QN Sign
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 1 -N 1
0 1 1 0 1 N 0
1 0 0 1 0 2N 0
1 0 1 1 0 2N 0
1 1 0 0 1 N 0
1 1 1 0 1 -N 1

as input and generates an encoded partial product I according to the Table 2.4 where

x−1 is defined to be 0 [28].

Secondly, in Radix-4 Montgomery multiplication, QN value has to be computed

to make the least significant two bits of the partial result(sum and carry) 0. In

normal operation of the Montgomery algorithm, Q is calculated according to the

least significant two bits of partial result and partial product. As Booth encoding is

incorporated in this design, determination of Q became more and more difficult. A

very simple solution to this problem was proposed in [29] , [30], which is, utilizing

4Y (4*Multiplicand) instead of original Y . This modification makes the least significant

two bits of partial product I always 00. Thus, calculation of Q becomes independent

from I, which means I and Q can be computed in parallel.

Lastly, in Radix-4 Montgomery multiplication, because Q is two bits now, QN has a

value set of {0,N,2N,3N}. Another encoding scheme, namely Montgomery encoding

is used to figure out the 3N problem. Let (sp1,sp0)2 and (n1,n0)2 be the least

significant two bits of the partial result(sum+ carry) and N respectively. Remember

the input condition of N, being odd. Taking this into account, Montgomery encoding

scheme takes a bit stream of (sp1,sp0,n1)2 and generates a recoded QN according

to the Table 4.3, where qi and qi+1 are the recoded quotient bits for QN at the i-th

iteration [28].

Booth encoded Radix-4 Montgomery multiplication algorithm with Q′ calculation is

outlined in Algorithm 10. As Y ∗ is used instead of Y , Alg. 10 iterates one more

cycle than ordinary Montgomery in order to get the correct result P≡ XY 2−k mod N.
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Readers should note that the reason behind the Q+ and Q− variables are the recoded

qi values having different signs as shown in the Table 4.3. Final Q′0 is the Q value in

the Montgomery’s equation: P ≡ (XY +QM)2−k mod N. Block diagram of Radix-4

Montgomery multiplier is shown in Fig. 4.12.

Algorithm 10 Radix-4 Montgomery Multiplication Algorithm with Q′ Calculation.

Require: N: 2k−1 ≤ N ≤ 2k, gcd(N,2) = 1;
X ,Y : 0≤ X ,Y ≤ N. Y ∗ := 4Y ;

Ensure: P≡ XY 2−k mod N ,Q′

k :number of bits in X .
xi : i’th bit of X .

1: S := 0; C := 0; QN := 0; Q′ := 0; Q+ := 0; Q− := 0;
2: for i = 0 to k by 2 do
3: I := BoothEncoder(xi+1,xi,xi−1,Y ∗);
4: (sp1,sp0) := (2s1 + s0 +2c1 + c0);
5: (Sign,qi+1,qi,QN) := MontgomeryEncoder(sp1,sp0,n1);
6: (S,C) :=CSA(4,2)(S,C, I,QN);
7: S := S

4 ;
8: C := C

4 ;
9: if Sign = 0 then

10: Q−(i) := qi;
11: Q−(i+1) := qi+1;
12: else
13: Q+(i) := qi;
14: Q+(i+1) := qi+1;
15: end if
16: end for
17: P := (S+C);
18: Q′ := (Q+−Q−);
19: if P≥ N then
20: P := P−N;
21: Q′ := Q′+2k+2;
22: else if P≤ N then
23: P := P+N;
24: Q′ := Q′−2k+2;
25: end if
26: Q′ := Q′

4 ;
27: return P,Q′

As shown in Fig. 4.12, at every multiplication cycle Booth encoder calculates the

partial product I according to the shifted multiplier bits. Montgomery encoder

computes QN which makes the least significant two bits of S and C 0. Partial result

vectors S and C are summed up with I and QN by means of (4,2) CSA. Readers may
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Figure 4.12: Block Diagram of the Radix-4 Montgomery Multiplier with Q′0
Calculation.

notice four full adders on the right handside of the CSA. As the least significant two

bits of I are zeroes, I is not included in the addition of these two bits of binary vectors.

These FAs are utilized to sum up the least significant two bits of S, C and QN. Four bits

are produced here, where two bits in the LSB position are zeroes(due to Montgomery

reduction) and the other two bits in the same arithmetic weight; one of them is joined

to the LSB position of C and the other one is stored as Carry_in signal for the next

multiplication cycle.

In addition to computing QN, Montgomery encoder module also computes qi and qi+1

signals. These values are stored in Q registers according to the sign bit generated by

Montgomery encoder. At the end of multiplication cycles, S and C vectors and Q− and

Q+ vectors are summed up via 32-bit CLA iteratively. There is a register denoted as

S_MSB_2bit. This register stores the most significant two bits of sum. When S+C is

performed and result is stored in Sum_Reg, the most significant two bits of this result

is registered by S_MSB_2bit. These stored two bits are used in order to determine the

sign of modulus N to be added for the final reduction.
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For the k-bit operands X , Y and modulus N, Radix-4 Montgomery multiplier performs

one modular multiplication in (9k/16)+8 clock cycles.

4.4.5 Radix-8 Integer Multiplier

Radix-8 Integer multiplier scans 3 bits of multiplier at every cycle. As it uses the same

carry save adder structure ((4,2) CSA), in addition to the sum S, and carry C values,

two partial products, namely I1 and I0 are used.

Multiplexers, selecting I1 and I0 according to the 3 multiplier bits xi+2, xi+1 and xi

were designed in the way that, each partial product has a value set with 4 values

and when I1 and I0 are summed up, original value set for 3 multiplier bits is reached

(8 values,{0,Y ,2Y ,3Y ,4Y ,5Y ,6Y ,7Y }) as shown in the Multiplexing table (Table 4.4

below.

Table 4.4: Multiplexing Scheme for Partial Products.

Multiplier Bits Selected Partial Products
xi+2 xi+1 xi I1 I0

0 0 0 0 0
0 0 1 0 Y
0 1 0 Y Y
0 1 1 2Y Y
1 0 0 3Y Y
1 0 1 2Y 3Y
1 1 0 3Y 3Y
1 1 1 3Y 4Y

Radix-8 Integer multiplication algorithm is outlined in Algorithm 11.

Product’s least significant k-bits(R_PART ) are accumulated at each cycle and

concatenated with the most significant k-bit of the product(L_PART ) at the end of

the algorithm.

Note that, for the multiplication operations including negative numbers, firstly number

is converted to its absolute value. Multiplication is performed between two positive

numbers and then result is converted back to negative form.
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Algorithm 11 Integer Multiplication Algorithm.
Require: X ,Y .
Ensure: P := XY

1: S := 0; C := 0; Cin := 0;
2: for i = 0 to k−3 by 3 do
3: I1 := MUX(xi+2,xi+1,xi,Y,2Y,3Y,0);
4: I0 := MUX(xi+2,xi+1,xi,Y,3Y,4Y,Y );
5: (S_HA,C_HA) := HA(S1,C1);
6: (S_FA,Cin) := FA(S2,C2,C_HA);
7: (S,C) :=CSA(S,C, I0, I1,Cin);
8: R_PART (i) := S0; R_PART (i+1) := S_HA; R_PART (i+2) := S_FA;
9: end for

10: L_PART := (S+C);
11: return P := (L_PART &R_PART );

For the k-bit operands X , Radix-8 Integer multiplier performs one multiplication in

(11k/24)+13 clock cycles.

4.4.6 Integration of Multipliers

High radix implementation of Partially Interleaved Modular Multiplier is shown

in Figure 4.13. As shown in the figure, T ′0 and Q′0 are computed by Radix-4

Booth encoded Montgomery multiplier. T ′2 and Q1 are calculated by Radix-4

Classic modular multiplier. A0 and A1, B0 and B1, N0 and N1 are summed

up by means of CLAs and results are stored in A1, B1 and N1 registers

respectively. (A0 +A1) and (B0 +B1) are multiplied by the first integer multiplier.

The second integer multiplier multiplies (N0 + N1) with (Q′0 + Q1). Integer

multiplications’ results are stored in A0A1B0B1_reg and Q0Q1N0N1_reg. Then final

addition/subtraction and reduction operations are performed. Which are simply: P ≡[
(T ′2&T ′0)+(A0+A1)(B0+B1)− (Q′0 +Q1)(N0+N1)− (T ′0&T ′2)

]
mod N. Result is

stored in register T2T0_reg.
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In order to effectively use modular multipliers and integer multipliers parameter

dependencies were analyzed. As main operation is

P≡
[
(T ′2&T ′0)+(A0+A1)(B0+B1)− (Q′0 +Q1)(N0+N1)− (T ′0&T ′2)

]
mod N

operations are needed to be scheduled to perform modular multiplication in the least

number of clock cycles. To achieve this, a scheduling table shown in Figure 4.14 was

prepared for 1024-bit implementation.

Classic

Montgomery

Adder_A

Adder_B

Adder_N

Integer 

Multiplier 1

Integer 

Multiplier 2

Adder_Q

Adder_Result

Classic Modular Multiplication

Montgomery  Multiplication

A_0+A_1

B_0+B_1

N_0+N_1

(A_0+A_1)(B_0+B_1)

Q0‘+Q1

(Q0‘+Q1)(N_0+N_1)

P=T2T0+A0A1B0B1 P=P-T0T2
P=P-

Q0Q1N0N1
P=P-mod N

t=0

(clock cycle)
23 41 289 296 353 374 390 425 624 659 799

Figure 4.14: Job Scheduling Table.

Remember A0, A1, B0, B1, N0, N1 are input values to the High Radix Partially

Interleaved Modular KO Multiplier. These binary vectors are always available to

use. Montgomery multiplier and Classic modular multiplier need these values until

they fill in their registers with these inputs. When they fill their registers, they

start modular multiplication operations and they dont need them any more. With

this reason, firstly Montgomery and Classic multipliers start processing. Their

dependencies to these vectors finish 23 clock cycles later. Then, A0 + A1, B0 +

B1 and N0 + N1 operations are performed by Adder_A, Adder_B and Adder_N
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respectively. At 41st cycle these addition results are ready, so that IntegerMultiplier_1

may start multiplication of (A0 + A1)(B0 + B1). IntegerMultiplier_1 finishes its

operation slightly earlier than Montgomery multiplier. Montgomery multiplier finishes

multiplication at cycle 296 and Classic finishes at cycle 353. Now, T ′2, Q1, T ′0,

Q′0 and (A0 + A1)(B0 + B1) are ready. Adder_Q starts summing up Q′0 and Q1.

Meanwhile T 2T 0+A0A1B0B1 operation starts at Adder_Result. Adder_Q finishes

its operation at cycle 374 and IntegerMultiplier_2 starts multiplying Q′0 + Q1 and

N0+N1. Before IntegerMultiplier_2 finishes multiplication P = T 2T 0+A0A1B0B1

finishes and Adder_Result subtracts T ′0T ′2 between cycles of 390 and 425. When

IntegerMultiplier_2 finishes multiplication at cycle 624, only two jobs are left in the

schedule. Adder_Result subtracts multiplication result of Q0Q1N0N1 from P. And

then three subtractions are performed at most in order to complete the final reduction.

In total, for 1024-bit input vectors A, B and modulus N, one modular multiplication is

completed in 799 clock cycles.

4.4.7 Implementation Results

For the k-bit operands X , Y and modulo N, High Radix Partially Interleaved Modular

KO multiplier performs one modular multiplication in ((35k + 24)/48) + 52 clock

cycles. Design was described in VHDL and synthesized using 90nm TSMC standard

cell libraries in Design Compiler with the following operating conditions:

Operating Condition Name : BCCOM

Library : tcbn90ghpbc

Temperature : 0.00

Voltage : 1.10

Note that BCCOM signifies the best corner conditions in which transistors(PMOS and

NMOS) operate in fast mode in 0◦C and with 1.1V Vdd .

Total number of clock cycles, minimum period, maximum frequency, total

computation time and area results of 1024-bit implementation are shown in the

Table 4.5.
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Table 4.5: Implementation Results of Modular Multiplier.

Min. Period Max. Frequency Total # of Clock Cycles Total computation time

0.8 ns 1.25 GHz 799 639 ns

Table 4.6: Comparison of 1024-bit Implementations.

BMM [7] Harris [27] This work
FPGA/ASIC 0.35µm Virtex Pro 90nm
Area(Slices/Gates) 109851 Gates 5598 Slices+5n bits RAM 253K Gates
Frequency 76.27MHz 144MHz 1.25 GHz
Total Comp. Time 3.42µs 8.05µs 639ns

Comparison of high radix implementation with previous modular multipliers are given

in Table 4.6.

In Table 4.7, implementation results of RSA with binary exponentiation are given.

Recall that 216+1 is selected as the modular exponent for RSA encryption operations.

Table 4.7: Implementation Results of RSA encryption (e = 216 +1).

RSA Comp. Time Throughput # of RSA Encryptions per sec.

10863 ns 92 Mbps 90K

Comparison of this work with commercial RSA chips and recently proposed RSA

implementations is given in Table 4.8 where comparison is done according to RSA

encryption operations with modular exponent 216 +1.

Comparison of 1024-bit RSA decryption operations with the previous works is given

in Table 4.9. These works are the most recent high speed implementations of RSA

cryptosystem. As shown in the table, the only work that is faster than the proposed

RSA implementation among [34], [33], and [34] was introduced by Miyamoto et al.

in [35], where Radix-128 Montgomery multiplier is implemented. As they process

7 bits at a time, their critical path delay is long and shows its effect on operating

frequency of 421.94 MHz. Their design has a smaller area than this design. And there

is only 0.09 ms difference between the RSA computation times of this design and their

design.
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Table 4.8: Comparison of 1024-bit RSA Encryptions.

Encryptek [31] Broadcom [32] [33] This work
FPGA/ASIC 0.13µm XC2V6000 90nm
Area(Slices/Gates) 253K
Frequency 215.83 MHz 1.25 GHz
# of RSA Encryp-
tions per sec.

90K 15K 11K 90K

Table 4.9: Comparison of 1024-bit RSA Decryptions.

[35] [34] [33] This work
ASIC tech. 90nm 0.18µm 0.18µm 90nm
Area(Gates) 153K 192K 184K 253K
Frequency 421.94 MHz 300 MHz 550 MHz 1.25 GHz
RSA comp.
time(ms)

0.89 2.8 3.86 0.98
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5. CONCLUSION

In this thesis two hardware implementations of Partially Interleaved Modular KO

multiplication are proposed. In addition to this the second high performance

implementation of modular multiplier is embedded into RSA cryptosystem and

provided a high speed RSA implementation which is comparable with commercial

RSA chips and one of the fastest works in the literature.

These hardware implementations are the first implementations of Saldamli’s method of

modular multiplication. His algorithm’s requirements were successfully fulfilled with

modified Blakley and Montgomery multipliers. The first implementation targeting

FPGA platforms did not give promising results. These results and possible problems of

the design pioneered the explorations for a better, and faster modular multiplier, which

is the second implementation. In order to boost the speed up, high radix choice was

made according to Bewick’s thesis [16]. High radix bringing the advantage of reduced

number of partial products to be processed brought disadvantages. These drawbacks

were eliminated by incorporation of Booth Encoding and Montgomery Encoding

schemes. What is more, by means of a very simple technique, inner operations

of Montgomery multiplier became parallel. In addition to these approaches, extra

attention was paid into control signals and effect of control signals on critical path was

reduced as much as possible. Moreover, parameter dependencies of multiplier blocks

were reanalyzed in Partially Interleaved Modular KO multiplication and a scheduling

table was prepared which let the modular multiplication operation to be performed in

least number of clock cycles.

As a future work, integer multiplier modules may be replaced with faster integer

multipliers. These new faster multipliers may reduce total number of clock cycles

of the whole design, so a faster modular multiplier may be designed. In addition to

this, pipelining methodology may be incorporated into the multiplier designs. Effect

of pipeling may be researched whether it helps the multiplier to boost the speed up
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or not. Moreover, Montgomery and Classic modular multipliers may be redesigned

to perform the integer multiplication operations and modular multiplication operations

simultaneously. By means of this improvement, total number of clock cycles may be

reduced significantly and probably the fastest RSA hardware implementation may be

achieved.
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