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GESTURE IMITATION LEARNING
IN HUMAN-ROBOT INTERACTION

SUMMARY

This is an on-going study and part of a project which aims to assist in teaching Sign
Language (SL) to hearing-impaired children by means of non-verbal communication
and imitation-based interaction games between a humanoid robot and a child. In
this paper, the problem is geared towards a robot learning toimitate basic upper
torso gestures (SL signs) using different machine learningtechniques. RGBD sensor
(Microsoft Kinect) is employed to track the skeletal model of humans and create a
training set. A novel method called Decision Based Rule is proposed. Additionally,
linear regression models are compared to find which learningtechnique has a higher
accuracy on gesture prediction. The learning technique with the highest accuracy is
then used to simulate an imitation system where the Nao Robotimitates these learned
gestures as observed by the users. Decision Based Rule had a 96% accuracy in
prediction.

Futher more, this study also proposes an interactive game between a NAO H25
humanoid robot and preschool children based on Sign Language. Currently the demo
is in Turkish Sign Language (TSL) but it will be extended to ASL, too. Since the
children do not know how to read and write, and are not familiar with sign language,
we prepared a short story including special words where the robot realized the specially
selected word with sign language as well as pronouncing the word verbally.

After recognizing every special word with sign language therobot waited for response
from children, where the children were asked to show colour flashcards with the
illustration of the word. If the flashcard and the word match the robot pronounces the
word verbally and continues to tell the story. At the end of the story the robot realizes
the words one by one with sign language in a random order and asks the children to
put the sticker of the relevant flashcard on their play cards which include the story with
illustrations of the flashcards.

We also carried the game to internet and tablet pc environments. The aim is to evaluate
the children’s sign language learning ability from a robot,in different embodiments and
make the system available to children disregarding the costof the robot, transportation
and knowhow issues.

This study started from developing a robust interface for rotation invariant Gesture
Recognition. It involves the view-based detection and recognition of static hand
gestures by using a single camera. Several image processingtechniques are used to
detect the hand region successfully. After the hand region is successfully detected
geometric descriptors and Fourier descriptors are extracted. The gesture is classified
using neural network.
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The main contribution of this study is the features used for classification, a hybrid
feature set consisting of Fourier Descriptors and a set of Geometric Descriptors which
are introduced in this study. A color image segmentation algorithm is implemented
to detect and segment the hand to create different feature sets. The proposed gesture
recognition model has been used to control an autonomous mobile robot. The method
has also been tested on different hand shapes and the result has been discussed.

With the availability of RGBD camera like kinect, the job on image processing in
determining a good feature for gesture classification became easier. This study also
presents human motion imitation using the calibrated skeletal view derived from
openNI (open Natural Interface) connected to the Kinect camera. This study
provides a system for computing the joint angles based on thekinematics of the skeletal
view relative to the Kinect camera and these values are passed to a Nao robot simulated
environment. In this study Choregraphe is used to simulate the Nao robot. Based on
Nao’s degree of freedom and kinematic constraints, estimated joint angles (recognized
getures) are simulated to reflect a sense of imitation.
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TAKL İT YOLU İLE HAREKET Ö ĞRENME
INSAN ROBOT ETK İLEŞ İM İ

ÖZET

Bu çalışma, insansı robot ve çocuk arasında sözlü olmayan iletişim ve taklit tabanlı
etkileşim oyunları aracılığı ile işitme engelli çocuklarıṅIşaret Dili ö̆grenimine
yardımcı olmayı amaçlayan devam eden bir çalışmadır. Bu çalışma farklı makine
öğrenme teknikleri kullanarak 5 temel hareketi (jest) veyaİşaret Dili hareketlerini
taklit ederek ö̆grenme ile ilgilenmektedir.̇Insan iskelet modelini izlemek ve bir eğitim
seti oluşturmak için RGBD sensör (Microsoft Kinect) kullanılmıştır. Kural tabanlı
hareket tanıma olarak adlandırılan yeni bir yöntem önerilmiştir. Ayrıca, hareketi
tanıma da hangi ö̆grenme metodlarının daha doğru sonuç ürettĭgini bulmak için lineer
regresyon modelleri karşılaştırılmıştır. Kullanıcılardan alınan 5 farklı hareket Nao
Robot tarafından en yüksek doğruluk oranına sahip ö̆grenme teknĭgi kullanılarak taklit
edilmiştir. Kural tabanlı hareket tanıma yaklaşımı %96 doğruluk oranına sahiptir.

İşaret dili çalışmalarını gerçek robot üzerinde gerçekleştirdikten sonra robot ve insan
arasında işaret diline dayalı çocuklara işaret dilinin temel kavramlarını ö̆gretmek
için interaktif bir oyun geliştirildi. Oyun Türkİşaret Dili (TSL) için tasarlandı
ama AmerikaṅIşaret Dili (ASL) içinde gerçekleştirilmesi düşünülmektedir. Okuma
yazma bilmeyen ve işaret diline aşina olmayan çocuklar için oyun içerisinde robotun
kelimeleri sözlü olarak da söylediği ve işaret dili ile algılayibildĭgi özel olarak şeçilmiş
işaret dili kelimeleri kullanıldı. Robot Türkçe bir hikaye anlatıyor. Hikaye içerisinde
bazı kelimeleri işaret dili ile anlatıyor ve bekliyor. Çocuk bu kelimeleri tanıyıp
uygun resimli kartı gösteriyor. Robot üzerindeki resim tanıma programı sayesinde
bunu tanıyor ve ĕger dŏgru resim gösterilmişse kelimenin ismini söylüyor ve hikaye
devam ediyor. Dŏgru resim gösterilmemişse kullandığımız kurguya göre bekliyor
ışıklarıyla ya da hareketleriyle bunun yanlış olduğunu ifade ediyor ve çoçuğu bir daha
denemesi için teşvik ediyor. Hikayenin sonunda robot işaret dili kelimelerini rastgele
olarak teker teker gerçekleyerek çocuktan oyun kartları içerisinden ilgili kelimenin
resmini gösteren bilgi kartını ilgili yere yapıştırmasını istiyor. Bu oyunu tablet
bilgisayar üzerine videoya dayalı bir şekilde taşıdık. Burdaki amacımız çocukların
farklı cisimlerdeki robotlar tarafından işaret dili öğrenme yetenĕgini dĕgerlendirmek
ve sistemi robot maliyeti göz önüne alınmaksızın, ulaşım ve teknik bilgi konularında
çocuklara uygun hale getirebilmektir.

Bu çalışma dĕgişmeyen rotasyon ile hareket tanıma için sağlam bir arayüz
geliştirmekle başladı. Çalışmada tek bir kamera kullanarak statik el hareketlerini
görünüme dayalı algılama ve tanıma gerçekleştirildi. El bölgesini tespit etmek için
çeşitli görüntü işleme teknikleri başarıyla uygulandı. El bölgesi başarılı bir şekilde
tespit edildikten sonra geometrik tanımlayıcılar ve Fourier tanımlayıcıları çıkarıldı. El
hareketi yapay sinir ăgları kullanılarak sınıflandırıldı.
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Bu çalışmanın ana katkısı, sınıflandırma için kullanılan ,fourier tanımlayıcılar ve
geometrik tanımlayıcı dizilerinden oluşan melez özelliklerdir. Farklı özellik setleri
oluşturmak için el tespit ve segmentasyonu için renkli görüntü bölütleme algoritması
uygulanmıştır. Önerilen hareket tanıma modeli kendi kendini yöneten otonom bir
mobil robotu kontrol etmek için kullanılmıştır. Yöntem farklı el şekilleri üzerinde
test edilmiş ve sonuçlar tartışılmıştır.

Hareket sınıflandırması için iyi özelliği belirleyen görüntü işleme RGBD özelliğe sahip
Microsoft Kinect kamerası kullanılmasıyla birlikte daha kolay hale geldi. Bu çalışma
aynı zamanda insan hareketlerini, kinect kamerası için üretilen açık kaynak kodlu
openNI (Open Natural Interface) kütüphanesinin sağladı̆gı kalibre edilmiş iskelet
görünümünü kullanarak taklit etmektedir. Ayrıca kinect kamerası ile elde edilen iskelet
görünümü kinematiğine dayalı olarak eklem açılarının hesaplanmasını ve hesaplanan
dĕgerlerin similasyon ortamında Nao Robot üzerinde gerçeklenmesini içermektedir.
Nao Rabot similasyonu için Choregraphe kullanılmıştır. Nao robotun serbestlik
dereceleri ve kinematik kısıtlamaları temel alınarak hesaplanan eklem açıları (tanınmış
hareketler) taklit duygusu yansıtacak şekilde simule edilmiştir.

Halen sürmekte olan bu çalışma, duyma özürlü çocuklara insansı robot ve çocuk
arasında sözsüz iletişim ve emitasyon tabanlı etkileşimoyunları vasıtasıyla işaret
dilini öğretmekte yardımcı olmayı hedeflemektedir. Bu çalışmada yönelinen problem,
bir robotun farklı makine ö̆grenmesi teknikleri kullanarak 5 temel el hareketi veya
işaret dili işaretlerini taklit etmeyi ö̆grenmesidir. RGDB sensörü (Microsoft Kinect)
insanların iskelet modelini takip etmekte ve bir öğrenme kümesi oluşturmakta
kullanılmıştır. Karar Tabanlı Kural isimli yeni bir metodönerilmiştir. Buna ek
olarak, işaret dili tahmininde hangi öğrenme teknĭginin daha yüksek kesinliğe sahip
olduğunun belirlenebilmesi için dŏgrusal regresyon modelleri karşılaştırılmıştır. En
yüksek kesinlĭge sahip ö̆grenme teknĭgi daha sonra kullanıcılar tarafından gözlemlenen
Nao Robot’un 5 farklı işaret dilini taklit ettiği sistemi simule etmekte kullanıldı. Karar
Tabanlı Kural method %96 kesinlik değerine sahiptir.

Bunların yanında, bu çalışmada ayrıca bir NAO H25 insansı robot ile okul öncesi
çocŭgun işaret dili tabanlı, etkileşimli bir oyun önerilmiştir. Şu anda demo Türk̇Işaret
dilindedir ancak ASL için de genişletilecektir. Çocuklarokuma yazma bilmediği ve
işaret diline alışkın olmadığı için, robotun işaret dili ile tanıdığı ve sözlü olarak telaffuz
ettiği özel seçilmiş kelimeleri içeren kısa bir hikaye hazırladık.

Her özel kelimeyi bir işaret dili ile tanıdıktan sonra, robot çocuktan yanıt bekler.
Çocuktan kelimenin ilustrasyonu ile renkli okuma fişini göstermesi istenmiştir. Ĕger
okuma fişi ile kelime eşleşirse robot kelimeyi sözlü olarak telaffuz eder ve hikayeyi
anlatmaya devam eder. Hikayenin sonunda, robot kelimelerirastgele olarak tek tek
işaret dilinde anlar ve çocuktan, okuma fişlerinin ilüstrasyonları ile hikayeyi içeren
oyun kartları üzerindeki ilgili okuma fişine etiket koymasını ister.

Oyunu ayrıca internet eve tablet kişisel bilgisayarlara da koyduk. Amaç çocukların
işaret dili ö̆grenme yetenĕgini farklı şekillerde ölçmek ve sistemi robotun masrafı,
taşıması ve teknik bilgisi gibi konuları gözardı ederek çocuklara uygun hale
getirmektir.

Bu çalışma, işaret dili sabitlerinin rotasyonu için güvenilir bir arayüz geliştirmekten
başlamıştır. Görüntü tabanlı saptama ve sabit el hareketlerinin tek bir kamera
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kullanarak tanınmasını içerir. El bölgesinin başarı ile saptanması için pek çok
görüntü işleme tekniği kullanılmıştır. El bölgesi başarılı bir şekilde saptandıktan sonar
geometric tanımlayıcılar ve Fourier tanımlayıcılar çıkartılır. İşaretler yapay sinir ăgları
kullanılarak sınıflandırılır.

Bu çalışmanın ana katkısı sınıflandırma için kullanılan özelliklerdir. Bu çalışmada
tanıtılan özellikler, Fourier tanımlayıcıları içeren hybrid bir özellik kümesi ve
geometric tanımlayıcıları içeren bir kümedir. Farklı özellik kümeleri yaratmak için
eli tesbit edip bölmelemekte bir renkli görüntü bölmeleme algoritması uygulanmıştır.
Sunulan işaret tanıma modeli otonom, taşınabilir bir robotu kontrol etmek için
kullanılmıştır. Bu method ayrıca farklı el şekilleri üzerinde test edilmiş ve sonuçlar
tartışılmıştır.

Kinect gibi bir RGBD kameranın kullanılabilirliği ile işaret sınıflandırma için iyi
özellikler belirleme daha kolay hale gelmiştir. Bu çalışma ayrıca Kinect kameraya
băglı openNI’dan türetilen ayarlanabilir iskelet görünüsü kullanarak insan hareketleri
imitasyonunu sunmaktadır. Bu çalışma Kinect kamera ile ilgili iskelet görüntüsünün
devimbilimsellerine dayalı ortak açıların hesaplanması için bir sistem săglar. Bu
çalışmada, Nao robotu simule etmesi için Choregraphe kullanılmıştır. Nao’nun
özgürlük derecesine devimbilimsel kısıtlamalarına dayanarak tahmin edilen ortak
açılar, imitasyon hissinin yansıtılmasını simule etmektedir.
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1. INTRODUCTION

In recent years, research has progressed steadily in regards to the use of computers in

recognizing or visualizing sign languages. Sign Language (SL) is a complete, complex

language that employs signs made by hand motion combined with facial expressions

and postures of the body.

This study started from developing a robust interface for rotation invariant Gesture

Recognition. It involves the view-based detection and recognition of static hand

gestures by using a single camera. Several image processingtechniques are used to

detect the hand region successfully. After the hand region is successfully detected,

geometric descriptors and Fourier descriptors are extracted. With the availability of

RGBD camera like Kinect, the job on image processing in determining a good feature

for gesture classification became easier.

This paper presents human motion imitation using the calibrated skeletal view derived

from OpenNI(open Natural Interface) [1] connected to the Kinect camera. This

study provides a system for computing the joint angles basedon the kinematics of the

skeletal view relative to the Kinect camera and these valuesare passed to a Nao robot

simulated environment. In this study and in [2], Choregraphe is used to simulate the

Nao robot. Based on the Nao’s degree of freedom and kinematicconstraints, estimated

joint angles (recognized gestures) are simulated to reflecta sense of imitation. A

complete description of the Nao robot as shown in Figure 1.1 is available in [3]. This

study contributes to the development of different learningtechniques that recognize

different human gestures.

The previous work is explained in Section 1.2. The implementation and the methods

for data preparation are detailed in Chapter 2.1. In this section, two different data

sets are created- a training set, and a test set. Next, we performed offline supervised

learning (Chapter 3.1) to compute parameters of different models in the literature. A

novel method called Decision Based Rule is also proposed. Finally, the computed

1



Figure 1.1: Nao description [3].

parameters of the different models are tested on the test setto determine which learning

technique has a higher accuracy and less error in predictionas shown in Chapter 4.

Conclusion and future work are presented in Chapter 5.

1.1 Purpose of Thesis

The purpose of this study is to design a system from which a humanoid robot can

imitate upper body gestures with the aim of using it to teach sign languages to people

(especially children) through interactive games.

1.2 Background

The purpose of this study is to design a system from which a humanoid robot can

imitate upper body gestures with the aim of using it to teach sign languages to people

(especially children) through interactive games. In our previous study [4], the robot is

able to express a word in Sign Language (SL) among a set of chosen words using hand

movements, body and face gestures. On having comprehended the word, the child will

give relevant feedback to the robot.

This paper is part of a novel study which proposes an interaction game [5], [6] based

on Sign Language, between children and a humanoid robot (currently Nao H25 with

fingers). The aim of this game is to assist sign language tutoring especially for

preschool children [7], [8], [9]. During the game, the robottells a simple and short

child story (Figure 1.2) and within the story uses some special words in sign language.

The game is based on interaction, sign language interpretation (gesture implementation

and recognition) and turn-taking.

2



(a) (b) (c)

Figure 1.2: Screen shots from the game [10]
(a) Robot performing a sign, (b) Child shows the colored cardof the word "dad" to
robot and (c) Child completes the playcard using stickers ofthe colored cards.

Further more, this study will emphasize how the robot is taught to imitate human

gestures. The problem is simplified by teaching the robot fivebasic gestures or SL

signs as shown in Figure 1.3 using different machine learning techniques. The robot

learns to imitate the human using the learned model. The RGBDsensor is used to

compute joint angles from the skeletal model of the human using an approach based

on Pythagoras theorem [11].

Our work is inspired by previous studies which use three-dimensional (3D) Cartesian

coordinates (XYZ position). In [12], a system that recognizes gestures using 3D

trajectories consisting of a reduced set of key-points was proposed. This was extracted

from their novel adaptive curvature function. In [13], the authors described trajectory

learning from multiple demonstrations with a 3D dimensional model of the human

hand for pick and place operations. In [14], the authors proposed the Maximum Margin

algorithm that solves imitation problems by learning linear mappings from features to

cost functions in a planning domain. Also, [14] demonstrated that imitation learning

of long horizon and goal-directed behavior can be naturallyformulated as a structured

prediction problem over a space of policies. In [15], the authors discuss that imitation

learning is reduced to a regression problem. In addition, [15] demonstrated the validity

of their approach by learning to map motion capture data fromhuman actors to a

humanoid robot, and the composition of several regression models yields qualitatively

better imitation results than using a single, more complex regression model. Hidden

Markov Models (HMMs) can be considered an advanced modelingscheme used in

gesture recognition which have been employed in similar works [16], [17].
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(a) side gesture (b) forward gesture

(c) pi gesture (d) up gesture

(e) down gesture

Figure 1.3: Five basic gestures.

Different techniques in solving the problem of gesture recognition has been widely

investigated. Hand gesture recognition can be very roughlyconsidered as the

successful accomplishment of three large sets: Hand regionsegmentation, extraction

of descriptors and gesture classification. The generic flowchart is shown in Figure 1.4.

1.2.1 Hand region segmentation

In this section the methods which have been used for hand region segmentation

in literatures is discussed. This study focuses on the View-based methods.

Wrist-cropping techniques also exist, such as in the study of Wah Ng and Ranganath

[27].

Figure 1.4: Flowchart of the generic approach used in literature for solving hand
gesture recognition problem.
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1.2.1.1 Color based segmentation

Information has been widely used due to the distinctive color of the hand. In the

popular study of Brand, Oliver and Pentland [28] titled “A Bayesian Computer Vision

System for Modeling Human Interactions”, color information has been used. As

its name suggests, this work is a more comprehensive study involving the modeling

of human attitude. Another study involving hand segmentation based on color

information is the study of Kjeldsen and Kender [29], which dedicated only for solving

the detection of the skin color and not recognition of hand gesture. A comprehensive

study for color based detection is the study of J. Yang, A. Waibel [30], which actually

involves face detection but can operate equally well for hand gesture recognition.

One other publication regarding gesture recognition in which hand detection problem

is solved via color information is the paper of Chan Wah Ng, Surendra Ranganath

[27]. This paper involves a real-time application development using hand gesture

recognition. Color segmentation has been widely used with different techniques and

in several color spaces, such as HSV, YCbCr which are much more convenient forms

for color-based segmentation.

1.2.1.2 Gray level based segmentation

Another popular approach is the usage of intensity levels indetection of hand region.

Eickeler, Kosmala and Rigoll worked for real-time hand gesture recognition in their

study titled “Hidden Markov model based continuous online gesture recognition” [31].

The gray level detection takes advantage of the hand shape information, but usually it is

not sufficient, therefore enhanced methods such as neural network based classification

are necessary. Intensity-level information is mostly combined with other information

such as motion and color.

1.2.1.3 Motion based segmentation

Motion provides very valuable information in the accomplishment of the goal

mentioned in this paper. Filtered conveniently, motion gives a huge clue about gesture.
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A sample study involving pure motion is the study of Kohler [32] in which success

under unconstrained conditions was aimed.

1.2.1.4 Combination of different information

It is obvious that human hand has a very unique color comparedto many objects and

scenes in real life. Therefore color information is not discarded in most studies. But

color by itself is mostly insufficient for robust segmentation. Combining information

from different sources is mostly the key in success of such applications. Different

combinations of color, motion and shape have been widely used. For one, is the study

of Crowley [33] in which tracking of human body parts is discussed, where gray-level

and color data are combined. In the popular paper of Triesch and Malsburg [25] color

and motion data are combined. The combination of color and motion is really widely

used.

1.2.2 Feature extraction

There are many candidates in literature for hand feature extraction. Fingertips have

been used in many papers (Davis and Shah [34] , Nolker and Ritter [35]). Geometric

properties are also widely used. One instance is the popularwork of Starner [36]

regarding the interpretation of American Sign Language. Another work is the study of

Brand, Oliver and Pentland [28], in which several region properties have been used,

such as elongation, eccentricity, centroid, mass etc. A famous paper is the paper

of Freeman [37], which is based on orientation histogram usage for hand gesture

recognition. However orientation histograms are not very robust in this case, so they

are not used widely.

Fourier descriptors are also very popular and very handy as they provide very robust

information, data invariant to translation, rotation and scaling [38]. The drawback of

this method is that it is totally 2D dependent, as many of the descriptors mentioned

here. Fourier descriptors have been used in the following studies: “Real-time gesture

recognition system and application” [27],“Hand gesture recognition using a real-time

tracking method and hidden Markov models” [39]. These are only two sample studies,

Fourier descriptors have been subject of countless hand gesture recognition studies.
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1.2.3 Classification

Nearly in every study involving hand gesture recognition mentioned so far, machine

learning based classification is used instead of rule based classification. A very

rare example to a study in which machine learning is not used,is the study of

Triesch and Malsburg [25] in which elastic graph matching has been preferred

for classification. The focus of this work has been researching, comparing and

testing several segmentation techniques and various features, and also comparing

classification methods. A backpropagation network has beenused and it has been the

only classification algorithm tested, no comparison between methods has been made.

However in literature Hidden Markov Models, various neuralnetworks and the

combination of these two have been widely used, compared andtested.
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2. IMPLEMENTATION

Several works in the literature make use of supervised learning such as [15] and [18].

In supervised learning, a feature vector and a target labelx1,x2,x3, . . . ,xn− > Y are

assumed to be given. For example, the feature vectors are different computed arm

joint angles and the target label is the desired gesture. Machine learning is carried

out on past experience to create a hypothesis that fits the features to the labels. The

goal is to choose a function among a family of functionsf (x) = Y that allows us to

predict gesturesY based on new feature datax. Ten different discriminative arm joint

angles (’RShoulderRoll’, ’RShoulderPitch’, ’RElbowRoll’, ’RElbowYaw’, ’RHand’,

’LShoulderRoll’, ’LShoulderPitch’, ’LElbowRoll’, ’LElbowYaw’, ’LHand’) are used

for the feature set. In supervised learning, given a dataset:

DataSetm,n =











x1,1 x1,2 · · · x1,n −> Y1
x2,1 x2,2 · · · x2,n −> Y2

...
...

.. .
...

xm,1 xm,2 · · · xm,n −> Ym











Given anyxm or future vectorx, it should predict the target labelY. f (xm) =Y.

2.1 Data Preparation

2.1.1 Feature generation procedure

A platform known as OpenNI [1] (Open Natural Interaction) provided by Prime Sense

[19] is used to interface with the Kinect sensor unit. It offers a good solution as it has

already been used to track a person and his joints in 3D space.NiUserTracker sample

code is used as a base for our implementation. The depth-sensor of Kinect is used to

gather depth information that enables OpenNI to gather the xyz coordinate system of

the scene. Using an RGB camera instead would be computationally expensive. The
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Figure 2.1: One-to-One human-robot imitation system.

depth information is used for segmentation and 3D scene recognition for tracking the

calibrated human body.

Basic mathematical geometry of 3D vectors is used in the computation of joint angles

of the different joint poses. A one-to-one mathematical model for human motion

imitation using the calibrated skeletal view derived from OpenNI connected to the

RGBD sensor was developed [20]. Using OpenNI, the human bodyis calibrated and

a skeletal model is segmented and tracked. The computed joint angles are passed to

Choregraphe [21], which is a graphical environment developed by Aldebaran Robotics

for simulating the Nao robot based on joint angle constraint. We are thereby able

to map the human joints to the corresponding joint of the Nao robot to simulate an

imitation system (Figure 2.1).

2.1.2 Joint angle computation

• Get Skeleton Joint Positions rightshoulderJoint, rightelbowJoint, righthandJoint in

terms of (x,y,z) plane.

• Build the directional vectors between the joints as shown inFigure 2.2.

• Compute roll,pitch,yaw rotation matrix by projecting the vectors to the

xy/yz/xz-plane or axis.

• Compute the vector in dependencies to the previous joints (elbow depends on

shoulder and shoulder to torso).

10



Figure 2.2: Representation of shoulder-elbow vector and hand-elbow vector.

The dot product of the directional vectors (righthandelbowand shoulderelbow)

between the shoulder and elbow and the elbow to hand is computed in order to calculate

the angles for the RightElbowRoll and LeftEblowRoll.

2.1.3 Angle between 3D vectors [22]

The dot product is used for computing the angle: cosθ is equal to dot product of two

vectors. The formula for the angleθ between two vectors is:

cosθ =
f ·g

‖ f‖ · ‖g‖
(2.1)

Given two vectors:f =
(

xf ,yf ,zf
)T

andg= (xg,yg,zg)
T

The angles that separates the two vectors are computed below:

1. Lengths are:

| f |2 =
(

xf ,yf ,zf
)T

·
(

xf ,yf ,zf
)T

= x2
f +y2

f +z2
f , (2.2a)

|g|2 = (xg,yg,zg)
T · (xg,yg,zg)

T = x2
g+y2

g+z2
g, (2.2b)

2. The normalized vectors are:

fu =
(

xf ,yf ,zf
)T

/
√

x2
f +y2

f +z2
f , (2.3a)

gu = (xg,yg,zg)
T /

√

x2
g+y2

g+z2
g, (2.3b)
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3. The dot product is:

fu ·gu =
(

xf ,yf ,zf
)T

· (xg,yg,zg)
T /

(√

x2
f +y2

f +z2
f

√

x2
g+y2

g+z2
g

)

, (2.4a)

=
(

xf ×xg+yf ×yg+zf ×zg
)

/
(√

x2
f +y2

f +z2
f

√

x2
g+y2

g+z2
g

)

, (2.4b)

4. The angle is:

cosθ =
(

xf ×xg+yf ×yg+zf ×zg
)

/
(√

x2
f +y2

f +z2
f

√

x2
g+y2

g+z2
g

)

, (2.5a)

θ = arccos
(

xf ×xg+yf ×yg+zf ×zg
)

/
(√

x2
f +y2

f +z2
f

√

x2
g+y2

g+z2
g

)

,

(2.5b)

We show that it is possible to use the RGBD camera (Kinect) to implement an imitation

system. The computation was based on points in a 3D Cartesiancoordinate system.

A survey was carried out on several users as shown in Table 2.1. This is the result of

our previous work which from observation, the simulated Naorobot imitated actions

considered unsafe to apply on a real Nao robot. The problem was due to noise in the

environment and the misalignment of the segmented skeletalimage from which the

human pose is computed.

2.1.4 Good arm joint feature

Based on the one-to-one robot control shown in the previous section and the

observations from different users, we noticed that there are manipulations that can not

be implemented on the real Nao robot due to its degree of freedom and singularities.

So we decided to make use of different machine learning techniques to create a system

in which the Nao robot learns the observed human gesture and performs the right

imitation. We implemented this learning system using Decision Based Rule [17], linear

regression learning techniques [18], [15] for offline learning of joint feature parameters

for robot control which will be explained in the next section. Figure 2.3 shows the

system design for Joint Angle computation.

Figure 2.3: Data preparation system design.
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Table 2.1: One-to-One imitation demo survey.

Name Sex Demo Comments

User1 female [20] Very good, slow, some computation errors.

User2 male [20] Successfully imitates though a few computation
errors.

User3 male [20] Slow due to the speed of the PC. The left arm imitates
accurately but the right arm does not imitate all
gestures. In general, works successfully.

User4 male [20] There are some gestures that can not be performed on
the right arm due to wrong computation.

User5 male [20] The left arm imitates accurately but there are certain
manipulations in which the right arm gives a wrong
imitation. This study can be used in games.

User6 male [20] A nice project. Responds to movement with ease. The
right arm was not responding well compared to the
left.

User7 male [20] Good initiative and successful project. It worked
really fine on all gestures tested.

User8 male [20] A very good study. Perhaps a learning method could
be adapted.

Arm gestures are the primary component of sign language communication. Hence, a

good system that accurately classifies the needed features of the arm for sign language

gesture recognition is neccesary. The use of joint angles base on the orientation of the

arms reduces the challenge faced in Human Robot Interactionresearch, in respect to

tracking and segmentation of human arms using different computer vision techniques.

Several proposed solutions addressing this issue constrain the users actions one way or

the other thereby limiting the degree of communication. These constraints vary from

making the user wear markers or position his arms at a particular distance relative to the

camera. However, while performing sign language gestures,most of these constraints

affects the users sign space. Thereby the gestures performed by the users are not in

the natural sequence. The use of machine learning techniques helps to remove this

constraints such that the users can express the sign language as natural as possible.

[26] proposed a new method for recognising primitive movements using Bayesian

classifiers which can be applied in complex motion analysis.Sign language recognition
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Table 2.2: Dataset of joint angle gestures of different users.

RSR RSP RER REY RH LSR LSP LER LEY LH Behavior
87 6 165 92 7 -86 7 159 -87 3 side
18 17 165 0 8 -9 10 171 0 2 forward
76 0 98 9 86 -78 -1 97 -12 85 piUp
27 81 155 -12 89 -33 81 151 9 92 Up
22 -85 161 -2 -90 -22 -82 150 5 -89 down
84 -11 168 79 4 -80 -21 160 -80 4 side
22 0 159 3 34 -11 0 156 7 41 forward
72 2 98 4 77 -87 3 95 1 77 piUp
24 83 169 6 89 -22 93 169 -3 86 Up
23 -88 161 -5 -88 -18 -87 160 5 -85 down
87 4 163 79 -4 -88 -7 174 -78 -4 side
13 5 169 0 0 -21 3 165 0 0 forward
67 -3 94 19 75 -72 -6 97 -22 76 piUp
32 84 168 11 90 -39 80 163 -13 86 Up
22 -88 153 3 -81 -21 -89 153 0 -83 down
51 -7 40 -40 -28 -2 -46 37 -4 53 side
5 -30 64 0 0 12 -48 37 -19 48 forward
5 -30 64 0 0 12 -48 37 -19 48 piUp
18 92 162 -6 88 -27 86 164 -10 89 Up
15 -71 161 2 -78 -10 -75 158 -3 -76 down

is a complex problem, which requires a divide-and-conquer approach. Complex sign

recognition can be considered as recognition of a sequence of primitive movements. It

is, however, usually difficult to recognise primitive movements from raw images. This

is mainly because getting motion information from raw images usually involves target

detection and visual tracking that are also complex problems in computer vision.
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3. SUPERVISED LEARNING

Imitation learning can be seen as a subset of Supervised Learning. In Supervised

Learning the system is presented with labeled training dataand learns an

approximation to the function which produced the data.

Learning capabilities are essential for successful integration of robots in human-robot

domains, in order to learn from human demonstrations and facilitate natural interaction

with people.

3.1 Learning Techniques

3.1.1 Model representation

The task is to predict the correct gesture based on user jointangles of the different

features. This problem is tackled as both a regression whereby we predict real-valued

output and a classification whereby we predict discrete-valued output.

Table 3.1 and Table 3.2 show the experimental statistics carried out in this study in

generating both the training set and test set.

• Notations used:

– n = number of features

– m = number of training examples

– x’s = input features (joint angles)

– y’s = output gesture (side= 1, forward = 2, piUp = 3, up = 4, and down = 5)

– (x,y) = one training example

– (x(i),y(i)) = ith training example
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Table 3.1: Training set.

Number of Users 10

Number of features (n) 10

Number of examples (m) 50

Number of behaviors 5

Table 3.2: Test set.

Number of Users 9

Number of features (n) 10

Number of examples (m) 45

Number of behaviors 5

Figure 3.1: Behavior prediction model.

In designing a learning algorithm, we need to decide how we represent the hypothesis.

Figure 3.1 shows a general representation of deciding on a hypothesis that can predict

a behavior from the set of joint angle features. The hypothesis (h), maps x’s to y’s.

3.1.2 Data visualization

Before determining the hypothesis, we first visualized the data to see the sparsity.

Figure 3.2 shows that our dataset cannot be separated based on the side and piUp

gestures as shown in Figure 1.3(a) and Figure 1.3(c) by a straight line through the plot.

Therefore, a straight forward application of logistic regression would not perform well

on this dataset since logistic regression only finds a lineardecision boundary. We

decided to check the data set for features that are linearly dependent.

Figure 3.3 shows that our dataset can be separated after reducing the feature set

to ensure that all features are not linearly dependent. Therefore, a straightforward

application of linear regression and logistic regression is expected to perform well on

this dataset. The next section shows our attempt using linear regression.
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Figure 3.2: Plot of training data with poor sparsity.

Figure 3.3: Plot of training data with good sparsity.

3.1.3 Linear regression analysis (LRA)

In linear regression, the idea is to chooseθ ′sso thathθ (X) is close toy for our training

examples(x,y). This can be solved as an optimization problem:

min
θ0,θ1

Σm
i=1(hθ (X

(i))−y(i))2 (3.1)

Find the value ofθ0,θ1 that makes the equation minimized. This is a squared error

function used for regression problems. In this study, we have a set of 10 features. The

form of hypothesis is:

hθ (X) = θ0+θ1X1+θ2X2+ . . .+θ10X10 (3.2)
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For convenience of notation, defineX0 = 1

X =













X0

X1

...

X10













∈ R
n+1, θ =













θ0

θ1

...

θ10













∈ R
n+1

hθ (X) = θTX

This is known asMultivariate linear regression. We have multiple features in which

we try to predict the value y. In this study, both Gradient Descent and Normal Equation

learning models (Figure 3.4) are used and compared.

Figure 3.4: Offline supervised learning.

3.1.3.1 LRA with gradient descent

Forn>= 1 the gradient descent algorithm is:

repeat{

θi := θi −α ∂
∂θi

J(θ)

} (simultaneously updateθi for everyi = 0, . . . ,n)

where ∂
∂θi

J(θ) = 1
mΣm

i=1(hθ (x(i))−y(i))X(i)
i

The Gradient descent is used for minimizing the cost function J(θ), and α is the

learning rate. Using the data set as represented in Table 3.1, Figure 3.5 shows 10

training examples.

X =

87 6 165 92 7 −86 7 159−87 3
18 17 165 0 8 −9 10 171 0 2
76 0 98 9 86 −78 −1 97 −12 85
27 81 155−12 89 −33 81 151 9 92
22 −85 161 −2 −90 −22 −82 150 5 −89
84 −11 168 79 4 −80 −21 160−80 4
22 0 159 3 34 −11 0 156 7 41
72 2 98 4 77 −87 3 95 1 77
24 83 169 6 89 −22 93 169 −3 86
23 −88 161 −5 −88 −18 −87 160 5 −85

, Y =

1
2
3
4
5
1
2
3
4
5

Figure 3.5: 10 Training Examples.

Figure 3.6 shows the convergence of gradient descent with the best learning rate found.

With a small learning rate, the gradient descent takes a verylong time to converge to
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Table 3.3: LR with gradient descent optimized value forθ .

LR parameters (θ )

1.902 -0.109 -0.106 0.062 -0.268 -0.055 0.033 -0.052 0.046 0.320 -0.109

Table 3.4: A sample instance and the predicted gesture.

X Y

[-13 42 170 -6 30 40 16 3 -19 31]2.237

the optimal value. Conversely, with a large learning rate, the gradient descent might

not converge or might even diverge!

Figure 3.6: Convergence of gradient descent with an appropriate learning rate.

The gradient descent was run until convergence to find the final values ofθ . Next, the

value ofθ was used to predict the behavior of users from the computed joint angle

features as shown in Table 3.3 and Table 3.4. Out of 50 gestures from 10 users the

system had a 70% accuracy.

3.1.3.2 LRA with normal equation

It gives a better way to solve for the parameterθ analytically rather than solving

it iteratively using Gradient Descent. In our experiment, we havem= 50 training

examples. In order to implement this Normal Equation Method, an extra column

X0 = 1 is added as shown in Table 3.5. Then we created a matrix of allfeatures and

called it X. We did the same for label y which we want to predict.
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Table 3.5: Feature set X (joint angles).

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
1 87 6 165 92 7 -86 7 159 -87 3
1 18 17 165 0 8 -9 10 171 0 2
1 76 0 98 9 86 -78 -1 97 -12 85
1 27 81 155 -12 89 -33 81 151 9 92
1 22 -85 161 -2 -90 -22 -82 150 5 -89
1 84 -11 168 79 4 -80 -21 160 -80 4
1 22 0 159 3 34 -11 0 156 7 41
1 72 2 98 4 77 -87 3 95 1 77
1 24 83 169 6 89 -22 93 169 -3 86

The normal equation is:

θ = (XTX)−1XTy (3.3)

which gives the value ofθ that minimizes the cost function. Using Normal Equation,

feature scaling is not needed. Out of 50 gestures from 10 users, the system had a 72%

accuracy.

3.1.3.3 Comparison of methods

So long as the number of features is not too large, the Normal Equation gives us a

great alternative method to solve for the parametersθ . Hence, so long as the number

of featuresn < 103, Normal Equation is preferable. Table 3.6 shows the comparison

of the two learning models.

Table 3.6: Comparison of the different linear regression methods.

Gradient Descent Normal Equation
Need to chooseα No need to chooseα
Needs many iterations Do not need to iterate
Works well even when
n is large

Need to compute
(XTX)−1 of ordern×n
Slow if n is very large
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Figure 3.7: Decision-Based learning gesture detection pipeline.

3.2 Online Imitation System

Online learning from data sequences is a challenging aspectof machine learning.

In this study, we developed a novel idea calledDecision Based Rule (DBR) Online

Learningwhich learns from streams of generated pose (position and orientation) of

a human hand joint as shown in Figure 3.7. Online learning allows learning from a

continuous stream of data (Figure 3.8). Decision is based onthe current instance of

data. It can adapt to changing user poses (i.e, ifp(y|x,θ) changes over time). For

recogntion, we need obserprocessingvations, or data.

The first robotics work to address imitation was focused on assembly task-learning

from observation. Typically, a series of arm trajectories of a human, performing

object moving/stacking tasks, were recorded either using amanipulandum, with the

advantage of measuring directly the joint torques or using video images. Data

were analyzed to remove inconsistencies and extract key features of movement.

An industrial non-human-like robotic arm would then be trained to reproduce the

trajectory which maximizes the data key features. These efforts constitute a significant

body of research in robotics, and contribute to data segmentation and understanding.

3.2.1 Decision-Based human-robot imitation learning method

• Given four problems:

Hands Up, Down, Forward and Sideways as shown in Figure 3.9

• Goal: We derived a cost function that takes into consideration the space of

manipulation.

(costHandsUp× HandsUp)+ (costHandsDown× HandsDown)+ (costHandsForward×

HandsForward)+ (costHandsSideways× HandsSideways),
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• Problem Constraint:

(positionHandUp× HandsUp)+ (positionHandDown× HandsDown)+ (positionHand-

Forward× HandsForward)+ (positionHandSideways× HandsSideways)< T,

WhereT is a position threshold in thex,y,z coordinate dependent on the Shoulder

and Elbow position of the user.

Behavior Decision depends on the difference between the Shoulder and Elbow joint

position and direction vector relative to the Kinect (RGBD)camera origin.

• Simulation Decision Constraint for behavior selection algorithm:

{

if ((DiffBetRShoAndRElbowPosZ > T1 && DiffBetRShoAndRElbowPosZ < T2) &&
(DiffBetRShoAndRElbowPosX > T3 && DiffBetRShoAndRElbowPosX < T4) && directionVector > 0)
SetBehavior = HandsUp;

else if ((DiffBetRShoAndRElbowPosZ > T5 && DiffBetRShoAndRElbowPosZ < T6) &&
(DiffBetRShoAndRElbowPosY > T7 && DiffBetRShoAndRElbowPosY < T8))
SetBehavior = HandsSideways;

else if ((DiffBetRShoAndRElbowPosX > T9 && DiffBetRShoAndRElbowPosX < T10) &&
(DiffBetRShoAndRElbowPosY > T11 && DiffBetRShoAndRElbowPosY < T12) )
SetBehavior = HandsForward;

else if ((DiffBetRShoAndRElbowPosZ > T13 && DiffBetRShoAndRElbowPosZ < T14) &&
(DiffBetRShoAndRElbowPosX > T15 && DiffBetRShoAndRElbowPosX < T16) && directionVector < 0)
SetBehavior = HandsDown;

}

Figure 3.8: Online imitation system.

(a) Hands Up (b) Hands Down

(c) Hands Forward (d) Hands Sideways

Figure 3.9: Four basic gestures.
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4. EXPERIMENTAL RESULTS

In this section, we present the performance of the differentmethods experimented

in this study. The performance was tested on several participants to detect its level

of accuracy. We present the results of the one-to-one real-time imitation system, the

results of the linear regression normal equation (NE) learning method and our decision

based rule (DBR) method.

The learning model was trained to distinguish between side,forward, pi, up and down

gestures. Table 4.1 shows a confusion matrix that summarizes the results of linear

regression normal equation algorithm. 50 behaviors were tested from 10 users - 10

side, 10 forward, 10 pi, 10 up and 10 down gestures. In this confusion matrix, the

model predicted two forward gesture, of the ten actual side gestures, and of the ten

forward gestures, it predicted that one was a up gesture and four were pi gestures. All

correct predictions are located in the diagonal of the table, so it is easier to visually

inspect the table for errors, as these are represented by anynon-zero values outside the

diagonal.

Table 4.1: ConfusionMatrix. Using LRA with normal equation.

Predicted gesture

side forward pi up down

Actual gesture

side 8 2 0 0 0

forward 0 5 4 1 0

pi 0 2 8 0 0

up 0 0 3 7 0

down 0 0 0 2 8
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(a) Demo 1 (b) Demo 2 (c) Demo 3

(d) Occluded (e) Hands Down (f) Hands Down

(g) Hands Up1 (h) Hands Up2 (i) Wave Gesture

Figure 4.1: One-to-One imitation result.

4.0.2 Numerical Simulation Result

A screen shot from the one-to-one simulation system demo presentation can be seen in

Figure 4.1.

A screen shot from the supervised learning system demo presentation can be seen in

Figure 4.2. For Gradient Descent, out of 50 behaviors from 10users, the system had a

70% accuracy. Similarly, for NE, out of 50 behaviors from 10 users, the system had a

72% accuracy.

A screen shot from the Decision-Based Rule system demo presentation can be seen in

Figure 4.3. For DBR [23], after testing on 10 people with 5 different gestures, given a

total of 50 gestures, 48 cases were correctly detected. Hence a 96% accuracy, which

can be improved by getting a better threshold for the DBR Algorithm.
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(a) User 34 (b) User 42 (c) User 3

(d) User 18 (e) User 4 (f) User 27

(g) User 10 (h) User 33

Figure 4.2: Supervised learning using normal equation imitation result.

(a) Hands Up (b) Hands Down

(c) Hands Forward (d) Hands Sideways

Figure 4.3: Decision based rule imitation result.
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5. CONCLUSION AND FUTURE WORK

In this paper, we present the results of the different learning techniques used for

imitation. Out of 50 behaviors from 10 users, the best resultfor linear regression was

72% accuracy and that of Decision Based Learning was 96%. Improving the feature

set will lead to a better and faster imitation model. Decision Based Learning, a new

imitation method for the humanoid robot was proposed.

The different methods in the literature are expensive in terms of computational

cost, memory consumption and gesture recognition ability.[18] for example, is

computationally expensive, unlike our approach using DBR.Our approach refers to

the position of the X-, Y-, and Z-axis of the arm in 3D space in making a decision of

the gesture.

Several avenues of future research would increase system usability. So far, our model

is user dependent, in which the proposed Decision Based Rulealgorithm threshold

values have to be adjusted for each user. We propose combining several regression

models to see if this will improve the imitation accuracy.

This study involved using RGB-D cameras like Kinect for Human motion capturing

which is used for Robot Imitation and American Sign Languagetutoring. The

contribution of this study involved building different learning techniques that

recognized different Human Gestures.

More studies are needed in order to obtain better objective and detailed data.

Sometimes creating new features determine better model andwe propose to try

several polynomial regression methods. We also propose an experimental environment

in ROS. Applying other classification methods than linear regression and logistic

regression to learn a better hypothesis for imitation such as Neural Networks, Support

Vector Machines will be implemented. We are working towardsmaking the system
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more flexible and dependent on user’s state since the goal is towards a better social

interaction between human and robot.

I have always thought of how Robotics can be used in enhancingAgricultural

capability building with teleoperated Robots. With the resent drought in the Horn

of Africa, it shows how little effort is made in Agriculturalresearch. Having Robots

explore the environment autonomously or teleoperated withmechanism of analyzing

the soil will be a novel idea in Africa. This can lead to the discovery of seeds that

are tolerant to droughts and resistant to disease base on thequality of soil in different

terrains. Tertiary institutions do not have to have Robots to already commence this

research. The students with the use of ROS and the Robot simulated environment can

already start mapping how Robots can explore different regions using the terrain data.

Then rather than waiting for a natural or man-made disaster,the Robots will be able to

save life by preventing famine in the world.

28



REFERENCES

[1] OpenNI User Guide, 2010.http://www.openni.org/documentation.

[2] E.Pot, J.Monceaux, R.Gelin, and B.Maisonnier, 2009. Choregraphe: a Graphical
Tool for Humanoid Robot Programming, Robot and Human Interactive
Communication, Toyama, Japan.

[3] Gouaillier D., Hugel V. et al, 2009. "Mechatronic design of NAO humanoid". IEEE
Int. Conf. on Robotics and Automation, Kobe.

[4] Kose-Bagci, H., R. Yorganci, and Itauma I.I. , 2011. "Humanoid Robot Assisted
Interactive Sign Language Tutoring Game", 2011 IEEE International
Conference on Robotics and Biomimetics (ROBIO) Phuket Island,
Thailand.7-11 Dec.

[5] Kose-Bagci, H., E. Ferrari , K. Dautenhahn, D. S. Syrdal, and C. L. Nehaniv,
2009. “Effects of Embodiment and Gestures on Social Interaction in
Drumming Games with a Humanoid Robot“, Special issue on Robot and
Human Interactive Communication, Advanced Roboticsvol.24, no.14.

[6] Kose-Bagci, H., K. Dautenhahn, D. S. Syrdal, and C. L. Nehaniv, 2010. “Effects
of embodiment and gestures on social interaction in drumming games with
a humanoid robot,” Connection Sciencevol. 22, no. 2, pp. 103– 134

[7] Kose-Bagci, H., R. Yorganci, and H. E. Algan, 2011 accepted. “Evaluation of
the Robot Sign Language Tutor using video-based studies”, 5th European
Conference on Mobile Robots (ECMR11)7-9 Sep

[8] Kose-Bagci, H., and R. Yorganci, 2011 accepted. “Tale of a robot: Humanoid
Robot Assisted Sign Language Tutoring”, 11th IEEE-RAS International
Conference on Humanoid Robots, Bled, Slovenia (HUMANOIDS 2011)
Oct. 26-28

[9] Kose-Bagci, H., R. Yorganci, H. E. Algan, and D. S. Syrdal, 2011. “Evaluation
of the Robot Assisted Sign Language Tutoring using video-based studies”,
SORO special issue on "Measuring Human-Robot Interaction.[accepted].

[10] SL Tutoring Game, http://www.youtube.com/watch?v=SB_
YJqMM-x8, IEEE ROBIO 2011 [Last accessed: 14.01.2012].

[11] Matthias Greuter , Michael Rosenfelder, Michael Blaich, and Oliver Bittel ,
2011. "Obstacle and Game Element Detection with the 3D-Sensor
Kinect". Research and Education in Robotics - EUROBOT 2011.

29



[12] Bandera J.P., R. Marfil , A. Bandera, J.A. Rodriguez, L. Molina-Tanco,
and F. Sandoval, 2009. “Fast gesture recognition based on a two-level
representation”, Pattern Recognition letters.

[13] Aleotti J., and S. Caselli, 2006. “Robust trajectory learning and approximation
for robot programming by demonstration”, Robotics and Autonomous
Systems.

[14] Ratliff, N. , Bagnell, J.A, and Zinkevich, M., 2006. “Maximum Margin
Planning”, Twenty second International Conference on Machine Learning
(ICML06).

[15] Shon A.P., Grochow K., and Rao R.P.N, 2005. Robotic Imitation from Human
Motion Capture using Gaussian Processes”. In Humanoid Robots, 2005
5th IEEE-RAS International Conference on, pages 129-134.

[16] Asfour T., F. Gyarfas, P. Azad., and R. Dillemann, 2004. “Imitation Learning
of Dual-Arm Manipulation Tasks in Humanoid Robots”, Institute for
Computer Science and Engineering (CSE/IAIM).

[17] Sylvian C., Florent G., and Aude B., 2005. “Goal-Directed Imitation in a
Humanoid Robot”, International Conference on Robotics andAutomation.

[18] Ratliff, N. , Bagnell, J.A, and Chestnut, J., 2007. “Boosting Structured Prediction
for Imitation Learning”, Robotics Institute.http://repository.
cmu.edu/robotics/54.

[19] Prime SensorTM NITE 1.3 Algorithms notes, 2010. PrimeSense Inc.http://
www.primesense.com.

[20] One-to-one Imitation system, http://www.youtube.com/playlist?
list=PLFBDA2B2B2757358B, [Last accessed: 14.01.2012].

[21] NAO robot , http://www.aldebaran-robotics.com/en/
Discover-NAO/Software/choregraphe.html, Aldebaran
Robotics.

[22] Vector Math for 3D Computer Graphics , http://chortle.ccsu.
edu/vectorlessons/vectorIndex.html, [Last accessed:
14.01.2012].

[23] Decision-based Imitation, http://www.youtube.com/watch?v=
qK0F3VxcZXw, [last accessed: 09.02.2012].

[24] Jonathan C. H., 2011. "How to Do Gesture Recognition
With Kinect Using Hidden Markov Models",
http://www.creativedistraction.com/demos/

gesture-recognition-kinect-with-hidden-markov-models-hmms/,
[Last accessed: 16.01.2012].

[25] Triesh J., and Malsburg C., 2002. Classification of hand postures against complex
backgrounds using elastic graph. Image and Vision Computing.

30



[26] Wong S-F, and Cipolla R., 2005. Real-time Interpretation of Hand Motions using
a Sparse Bayesian Classifier on Motion Gradient OrientationImages”. In:
The 16th British Machine Vision Conference (BMVC’05), pp. 379-388.

[27] Wah Ng C., and Ranganath S., 2002. Real-time gesture recognition system and
application. Image and Vision Computing.

[28] M. Oliver , Rosario B., and Pentland P., 2000. A Bayesian Computer Vision
System for Modeling Human Interactions. IEEE Transactionson Pattern
Analysis and Machine Intelligence.

[29] R. Kjeldsen, and J. Kender, 1996. Finding skin in color images.

[30] J. Yang, and A. Waibel, 1995. Tracking Human Faces in Real Time. Technical
Report CMU–CS–95–210, Department of Computer Science, Carnegie
Mellon University.

[31] Eickeler, S., Kosmala, A., and Rigoll, G., 1998. Hidden Markov model based
continuous online gesture recognition.

[32] Kohler, M.R.J. , 1997. System architecture and techniques for gesture recognition
inunconstrained environments.

[33] K. Schwerdt et J. L. Crowley, 2000. "Roboust Face Tracking using Color",
4th IEEE International Conference on Automatic Face and Gesture
Recognition", Grenoble, France,March .

[34] J.Davis, and M.Shah., 1994. Recognizing hand gestures.

[35] Nölker C., and Ritter H. , 1999. Visual Recognition of Hand Postures.

[36] Starner T., 1995. Visual Recognition of American Sign Language Using Hidden
Markov Models.

[37] Freeman W., 1995. Orientation Histograms for Hand Gesture Recognition Export.

[38] Persoon, E., Fu, 1977. Shape discrimination using Fourier Descriptors.

[39] Feng-Sheng C., and Fu, Huang, 2003. Hand gesture recognition using a real-time
tracking method and hidden Markov models.

[40] Color Space, http://en.wikipedia.org/wiki/Lab_color_space,
Lab color space - Wikipedia, the free encyclopedi. Wikipedia. [Online]
Wikimedia. [Cited: 01 2011, 21.]

[41] Mahalanobis distance, http://en.wikipedia.org/wiki/
Mahalanobis_distance, Mahalanobis distance - Wikipedia,
the free encyclopedia. Wikipedia. [Online] [Cited: 01 2011, 21.]

[42] Rafael C. Gonzalez, and Richard E. Woods, 1992. Digital Image Processing
(2nd ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

31



32



APPENDICES

APPENDIX A.1 : Training set

33



34



APPENDIX A.1

Table A.1: Training set.

RSR RSP RER REY RH LSR LSP LER LEY LH Behavior
87 6 165 92 7 -86 7 159 -87 3 side
18 17 165 0 8 -9 10 171 0 2 forward
76 0 98 9 86 -78 -1 97 -12 85 piUp
27 81 155 -12 89 -33 81 151 9 92 Up
22 -85 161 -2 -90 -22 -82 150 5 -89 down
84 -11 168 79 4 -80 -21 160 -80 4 side
22 0 159 3 34 -11 0 156 7 41 forward
72 2 98 4 77 -87 3 95 1 77 piUp
24 83 169 6 89 -22 93 169 -3 86 Up
23 -88 161 -5 -88 -18 -87 160 5 -85 down
87 4 163 79 -4 -88 -7 174 -78 -4 side
13 5 169 0 0 -21 3 165 0 0 forward
67 -3 94 19 75 -72 -6 97 -22 76 piUp
32 84 168 11 90 -39 80 163 -13 86 Up
22 -88 153 3 -81 -21 -89 153 0 -83 down
51 -7 40 -40 -28 -2 -46 37 -4 53 side
5 -30 64 0 0 12 -48 37 -19 48 forward
5 -30 64 0 0 12 -48 37 -19 48 piUp
18 92 162 -6 88 -27 86 164 -10 89 Up
15 -71 161 2 -78 -10 -75 158 -3 -76 down
98 -7 168 93 0 -111 -7 172 -90 0 side
5 6 173 -3 6 -11 5 174 -4 5 forward
82 17 102 -1 87 -85 16 98 5 87 piUp
16 92 162 -14 93 -35 85 159 0 93 Up
36 -98 158 7 -98 -35 -103 162 -13 -101down
90 -4 170 86 5 -100 -9 175 -77 -2 side
-1 2 176 1 9 -2 -4 169 9 11 forward
83 -4 87 0 86 -78 -14 79 0 96 piUp
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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