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A NOVEL PARTICLE SWARM OPTIMIZATION ALGORITHM 

SUMMARY 

Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995), which is a 

population-based global search method is known to suffer from premature 

convergence prior to discovering the true global minimizer. In this thesis, a novel 

memory-based method is proposed which aims to guide the particles through the 

information deduced from the external memory contents rather than to re-inject them 

into the population.  

This is done by calculating a coefficient, based on the distance of the current particle 

to the closest best and closest worst particles in the external memory at each 

iteration. Later, when updating the velocity component, this coefficient is added to 

the current velocity of the particle with a certain probability.  

Also randomized upper bound and lower bound values have been defined for the 

inertia component. The algorithm starts with the upper bound value of the inertia. At 

each particle evaluation the inertia is decreased non-linearly with a small value and 

when its value reaches the lower bound, the inertia value is reset to its upper bound.  

The resulting PSO finds the global optima much faster than the original PSO and it 

have been shown that it also performs better compared with a recent improvement of 

PSO, CLSPO namely. A state-of-the-art algorithm, CMA-ES (Covariance Matrix 

Adaptation Evolutionary Strategy), has also been chosen for comparison purposes. It 

has been shown by experiments that although the CMA-ES shows a better 

performance than that of our algorithm, in some cases where the overall topology 

pointing to the global optimum is missing and the attractor volume of global 

optimum is small, our algorithm  performs better and finds the desired optimum 

value of the function in lesser evaluation counts. The tests have been consucted on 

standard benchmark functions as well as a simulation of the Aldebaran NAO robot 

for developing a kick action. 
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YENİ BİR PARÇACIK SÜRÜ OPTİMİZASYON ALGORİTMASI 

ÖZET 

 

 

Parçacık Sürü Optimizasyonu (Particle Swarm Optimization) (PSO) 1995‟te Dr. 

Eberhart ve Dr. Kennedy tarafından geliştirilmiş popülasyon temelli sezgisel bir 

optimizasyon tekniğidir. Bu teknik, kuş sürülerinin davranıslarından esinlenilerek 

geliştirilmiş popülasyon tabanlı stokastik optimizasyon tekniğidir. Doğrusal olmayan 

problemlerin çözümü için tasarlanmıştır. Çok parametreli ve çok değişkenli 

optimizasyon problemlerine çözüm bulmak için kullanılmaktadır. PSO, genetik 

algoritmalar gibi evrimsel hesaplama teknikleriyle bir çok benzerlik gösterir. Sistem 

rastgele çözümler içeren bir popülasyonla başlatılır ve nesilleri güncelleyerek en 

optimum çözümü araştırır. PSO da parçacık olarak adlandırılan olası muhtemel 

çözümler, o andaki optimum parçacığı izleyerek problem uzayında dolaşırlar.  

 

PSO‟nun klasik optimizasyon tekniklerinden en önemli farklılığı türev bilgisine 

ihtiyaç duymamasıdır. PSO‟yu uygulamak, algoritmasında ayarlanması gereken 

parametre sayısının az olması sebebiyle oldukça basittir. PSO, fonksiyon 

optimizasyonu, bulanık sistem kontrolü, yapay sinir ağı eğitimi gibi bir çok alanda 

başarıyla uygulanabilmektedir.  

 

Bu tekniğin bilinen dezavantajı, gerçek optimumu bulmadan önce erken yakınsama 

sergilenmesidir. Bu çalışmada, literatürde geleneksel hale gelen ve yeni parçacıkları 

popülasyona yeniden enjekte etmeyi öneren yöntemlere karşın, parçacıkları harici 

belleklerden alınan bilgilere göre yönlendiren yeni bir parçacık sürü optimizasyon 

algoritmasını sunmaktadır. Bunun için, algoritmada iki ayrı harici bellek ön 

görülmuştur. Bu belleklerden biri en kötü parçacıkları barındırmakta, diğeri ise en iyi 

parçacıkları barındırmaktadır. Bu belleklerin boytuları birbirinden bağımsız 

olmaktadır ve belleklerin içeriği her nesilde güncelleştirilmektedir.  

 

Önerilen algoritma başlamadan önce, belleklerin içi doldurulmaktadır. İlk değerlerle 

dolduktan sonra, her nesilde tüm parçacıklar değerlendiriliyor ve uygunluk değerleri 

hesaplanıyor. Daha sonraki adımda,  parçacığın harici bellekteki parçacıklar 

arasından, parçacığa en yakın olan en iyi ve en kötü parçacıkların uzaklığı hesaplanıp 

bir katsayi üretilmektedir. Bu katsayı adım boyutunu belirlemektedır. Sonra her 

parçacık için hız bileşenini hesaplarken bu katsayı belli bir olasılıkla mevcut hıza 

eklenmektedir. İlk 1998‟de önerilen atalet bileşeni, önerdiğimiz algoritmada 

periyodik biçimde yeniden başlatılmaktadır. Bu, literatürde ilk kez önerilmektedir ve 

hesapladığımız katsyı ile birleştirildiği zaman, yakınsama hızını doğrudan 

etkilemektedir.  
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Ayrıca randomize bir üst ve alt sınır atalet bileşeni için tanınmaktadır. Algoritmada 

atalet bileşeni üst sınırdan başlayıp ve her parçacığı değerlendirdikten sonra küçük 

bir değerle non-linear bir şekilde azaltılmaktadır. Atalet bileşeni randomize alt sınıra 

ulaştığı zaman, bu bileşenin değeri randomize üst sınırın değeriyle sıfırlanmaktadır. 

Böylece parçacıklar, onlara en yakın olan en kötü parçacıktan uzaklaştırılmaktadır. 

Çıkan PSO evrensel optima‟yi orjinal PSO‟den daha hızlı bulmaktadır. Bu çalışma 

önerilen algoritmanın en güncel PSO‟ların arasında olan CLPSO algoritmasından 

daha hızlı olduğunu ve daha kaliteli çözümler ürettiğini ortaya çıkarılmıştır.  

 

CLPSO Algoritması, Karınca Koloni Optimizasyon ve Parçacık Sürü Optimizasyon 

yöntemlerini birleştirilmektedir. Bu yöntemde, ilk önce orijinal PSO kaç nesil 

uygulamkata ve kullandığı harici bellekler doldurulmaktadır. Bundan sonraki 

adımda, algoritma parçacıklardan bir koloni oluşturarak, koloniden çıkan en iyi 

parçacığı popülasyona enjekte etmektedir. CLPSO ve önerdiğimiz yöntem arasında 

farklardan biri, CLPSO‟nun harici belleği doldurmak için seçici davranmasıdır. Bu 

seçici davranış nedeniyle, CLPSO‟deki orijinal PSO‟den CLPSO algoritmasına geçiş 

uzayabilir. Ayrıca bu geçişin ne kadar süreceği tamamen fonksyona bağlı olduğu 

gözlemlenmiştir. Başka bir fark ise, CLPSO‟nun dahili bellek kullanmasıdır. Dahili 

bellekler parçacığın kişisel deneyimlerini tutmaktadır. CLPSO‟de dahilli bellekler 

randomize olmak üzere dolduruluyor ve bu de algoritmanın bazen bulduğu iyi 

çözümden geri dönmesini sağlamaktadır. Bu nedenlerden dolayı, CLPSO, 

önerdiğimiz yöntemden daha yavaş yakınsamakta ve bulduğu çözümlerin kalitesi 

daha düşük olmaktadır.  

 

Literatürde en iyi ve güncel optimizasyon algoritmaların arasında olan CMA-ES 

algoritması de kıyaslamak amacıyla seçilmiştir. CMA-ES algoritmsaı problemdeki 

parametrelerinin normal dağılımını örneklemekte ve kovaryans matrisini 

hesaplamaktadır. Bu kovaryans matrisi vesilesiyle, algoritma yeni nesiller 

üretmektedir. CMA-ES, gerek yakınsama hızı, gerek bulduğu çözümün kalitesi 

açısından bilinen en iyi algoritmalardan biridir.  

 

Deneyler için standart fonksyonler düşünülmüştür. Bu fonksyonler değişik 

özelliklere sahipler. Deneme fonksyonlar kümesi, bazi basit fonksyonlar yanısıra, 

arama uzayında plato oluşturan veya multi-modal ve multi-funnel özelliklere sahip 

olan fonksyonlardan  oluşmaktadır. Multi-modal özelliğe sahip olan bir fonksyon, 

evrensel optimanın yanı sıra, çeşitli değerlerle bölgesel optimumler barındırmaktadır. 

Multi-funnel fonksyonlar ise, multi-modal olmakla beraber, iki (veya daha fazla) 

bölgede farklı bacalarda farklı bölgesel optimumlerı barındırmaktadır. Bir bölgede 

arama yapan bir parçacığın diğer bölgelere geçme olasılığı bu fonksyonlarda oldukca 

düşükdur. Multi-modal ve multi-funnel fonksyonlarda, evrensel optima‟yi bulmak ve 

tüm parçacıkların bu optimaya yakınasamasını sağlamak zor bir problem olarak 

kabul ediliyor.  

 

Deneylerin sonucunda, CMA-ES‟in genelde PSO‟den daha iyi olmasına rağmen, 

bazi durumlarda, sunulan yöntemin daha üstün bir performans sergilediği ortaya 

çıkarılmıştır.  Evrensel optima‟yı gösteren evrensel bir topolojinin eksik olduğu veya 

fonksyonun havzasının çeker hacmı küçük olan problemlerde, sunulan algoritma 

daha hızlı davrandığı gösterilmiştir.  
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Ayrıca, önerilen yöntem, kıyaslanan yöntemlerle birlikte, Aldebaran üretimi olan 

NAO insansıl robotu üzerinde denetilmektedir. NAO robotu RoboCup 

yarışmalarında, 3D benzetim ligin standart robotudur. Bu ligde Simspark yazılımı 

benzetim ortamı olarak kullanılmaktadır. Benzetim ortamı gerçkcil olmakla beraber, 

gerçek dünya koşullarına uyum sağlamak adına gürültü içermektedir. Benzetim 

ortamında öngörülen gürültülerin tipi normal ve tekdüzedir.  

 

Robot deneylerinde, robot için daha önce tasarlanan ve düşük kalitesi olan bir top 

atışın kalitesinin artması amaçlanıyor. Tasarlanan top atışının manzili 3 metredir ve 

atışıtan sonra top robotun gövdesinin x aksanından sapmaktadır. Ayrıca top atışından 

sonra robot düşmektedir.  Top atışını iyileştirmek için, robotun kinematic 

denkelmleri kullanılmaktadır. Bu denkelmler PFS modeli ile osilatör oluşturup 

harmonik bir şeklide robotu hareketini sağlamaktadır. Bu denkelmler, toplam olarak 

40 parametre içeren bir fonksyon oluşturmaktadır. Ayrıca topun atıştan sonraki 

robot‟dan uzaklığı ve sapma değerinden oluşan, uygunluk değeri hesaplayan bir 

fonksyon tasarlanmıştır. Robot‟un atıştan sonraki düşmesi durumunda, bu uygunluk 

değerine ceza uygulanarak, arama sırasında iyi atışlara neden olan ama robotun 

düşmesine sebebiyet veren bireyler çözüm olarak sunulmamaktadır. 

 

Deneylerin sonucunda, algoritmamız diğer algoritmalardan (CLPSO ve CMA-ES) 

daha üstün bir başarı sergilemektedir. Top atışının menzili 6 metre olmakla beraber, 

robot düşmemekte ve top gövdeden sapmamaktadır. 
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1.  INTRODUCTION 

The origins of Particle Swarm Optimization goes back to 1987 where Reynolds  

introduced the simulation of particles similar to that of bird flocks. In this simulation 

each particle or agent tries to keep a distance from too-close neighbors and steers 

towards the average heading of the flock while maintains it‟s position within the 

flock. Later Kennedy and Eberhart [1] introduced few parameters to this simulation 

and came up with the idea of Particle Swarm Optimization. In their work, each 

particle remembered it‟s best position regarding to the global optima and shared this 

information with others about that best position.   Figure 1.1 shows the evolution of 

particles in a simple, 2D search space.      

                          

In technical words, PSO, is a population-based stochastic search in which each 

particle represents a potential candidate solution to the problem. Elements of each 

particle are in fact the parameters of the problem. This technique shares many 

similarities with other evolutionary computing techniques like Genetic Algorithms 

(GA). First the population of particles are initialized by random parameter values and 

these parameter values are updated in each iteration (generation), until a stop criteria 

has been met or the algorithm is converged to some optima. However, this technique 

does not include special operators like mutation or crossover. In PSO the 

particles”fly” over the search space by following the current optimum particles. The 

ultimate purpose of any optimization algorithm is to estimate the inverse of the 

Hessian matrix (approximation of the second derivative of the function) of the 

function and calculate a function‟s contour map to find the global optima. However 

methods like PSO (population-based methods in general) as well as our method are 

independent from the gradient of the function and use “intuition” and social behavior 

of the individuals to achieve the global optimum of the function.    
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(a) (b) 

(c) (d) 

(e) (f) 

           

           

            

1.1 Research Motivations 

Based on the observations achieved from the application of evolutionary algorithms 

on robot motion, one can say that sometimes, while producing new individuals, 

which represent a solution for the problem under optimization, a certain portion of 

the individual is close to that of the optimal solution. Only a few parameters inside 

the current individual are diverse and far from being a part of the optimum solution. 

Figure 1.1 : The evolution of particles through search space 
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Although the number of these parameters may be small, the effect of it may turn the 

performance of the individual close to that of the worst case.Considering a landscape 

in which we have many minima and maxima points, one can also say that, while 

updating the position of the individual, keeping it far away from the maxima (in a 

minimization problem) will increase the speed of the convergence to the optima. 

However, this alone might not help since there are problems for which both minima 

and maxima are in close neighborhood or when there are many local minima. Then 

we need to equip the optimization algorithm with the ability to escape from the 

maxima and move towards the minima even when the minima are close to both the 

current position of the particle and the maxima.Some algorithms consider a 

combination of multiple algorithms to achieve this goal. Re-injecting the best 

solution found so far, to the population of solutions or applying genetical operators 

such as mutation or crossovers (partially exchanging the variabla vector of the 

current solution with the variable vector of the best-known solution) are few 

examples. In this work however, we consider to deduce information from the best 

available solutions in order to guide particles through the search space. The expected 

result is to reduce the number of iterations and function evaluations and find a better 

solution in a reasonably shorter time. 

1.2 Contributions 

A novel algorithm along with its parameter setting scheme in which finds the global 

minimum of a function in reasonable evaluation counts (less than that of the original 

PSO and the latest improvement on PSO) is presented in this thesis. The resulting 

algorithms converges faster and is a good means for application which have time 

constraints.          
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2.  PARTICLE SWARM OPTIMIZATION 

2.1 Problem Formulation 

The goal of any optimization problem is to maximize or minimize an objective 

function     ⃗  where  ⃗ is the decision vector consisting of n dimensions or decision 

variables consisting of real numbers. Since maximization of any function     ⃗  is 

equivalent to minimization of      ⃗ , the literature generally focuses on 

minimization without loss of generality. Solution   ⃗⃗⃗⃗⃗ is a global minimizer of     ⃗  if 

and only if   (  ⃗⃗⃗⃗⃗)      ⃗  for all x in the domain of     ⃗ . The unconstrained 

minimization problem of consideration here can be formulated as.            

    Minimize     ⃗      

    where :         

2.2 Evolution of The Particle Swarm Optimization Algorithm 

 

2.2.1 The original particle swarm optimization 

 

Particle Swarm Optimization (PSO) is a nature inspired meta-heuristic method. This 

method was first introduced by Kennedy and Eberhart in 1995 [1]. It is inspired by 

the swarm behavior of birds flocking, and utilizes this behavior to guide the particles 

to search for globally optimal solutions. Basically, in PSO, a population of particles 

is spread randomly throughout the search space. The particles are assumed to be 

flying in the  search space. The velocity and position of each particle is updated 

iteratively based on personal and social experiences. Each particle possesses a local 

memory in which the best so far achieved experience is stored. Also a global 
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memory keeps the best solution found so far. The sizes of both memories are 

restricted to one. The local memory represents the personal experience of the particle 

and the global memory represents the social experience of the swarm. The balance 

between the effect of the personal and social experiences are maintained using 

randomized correction coefficients. The philosophy behind the update procedure is to 

reduce the distance between the particle and the best personal and social known 

locations. PSO is very easy to implement and there have been many successful 

implementations based on PSO in several real world applications. PSO is a 

population based approach in which finding the optimal solution is not guaranteed. 

Also, it can get stuck in local optima when dealing with complex multi modal 

functions. This is why accelerating the convergence speed as well as avoiding the 

local optima problem are two primary goals in PSO research. Multiple methods and 

approaches have been suggested to improve the performance of the original PSO in 

terms of these goals. In [2], these efforts have been divided into four categories. The 

first category includes the parameter selection methods. Introducing the inertia and 

constriction factors into the basic velocity expression or developing strategies for 

time independent variation of algorithm parameters are among the many 

methodologies in this category. The method presented in this paper fits best within 

this category. Other categories pointed in [2] are Applications of PSO into different 

problems areas (second category), Generation of different algorithm strategies and 

analysis of convergence (third category) and finally Hybridization (Fourth category). 

Although, the novel approach  presented in this paper  focuses on parameter 

selection, it also tries to generate a different strategy and attempts to reduce the 

iteration count. This is why, this work can also be included in the third category. In 

the basic PSO, each particle is considered as a potential solution to the numerical 

optimization problem in a D dimensional space. Every particle has a position in this 

search space and a velocity assigned to it. The position of the particle is represented 

by                  . The velocity of a particle is given as                 . 

Also, each particle has a local memory (pBest) which keeps the best position that is 

experienced by the particle so far. A globally shared memory (gBest) keeps the best 

global position found so far. These information contribute to the flying velocity of 

each particle, using the following equation :      

                                                (2.1) 
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The position update is then as:        

                                (2.2)

                             

where,   and    are positive constants determining the relative influence of the 

personal and social experiences during the search. Defining an upper bound for the 

velocity component increases the performance of the approach    

2.2.2 Inertia 

 

In [3], it has been shown that the introduction of an inertia factor to the Eq.(2.1) 

improves performance, since it adjusts the velocity over time and improves the 

search precision of the particles. Eq.(2.1) can be rewritten as:                   

                                                    (2.3) 

where ω is the inertia factor. The inertia weight ω is employed to control the impact 

of the previous history of velocities on the current velocity, thus to influence the 

trade-off between global (wide-ranging) and local (nearby) exploration abilities of 

the "flying points". A larger inertia weight ω facilitates global exploration (searching 

new areas) while a smaller inertia weight tends to facilitate local exploration to fine-

tune the current search area. Suitable selection of the inertia weight ω can provide a 

balance between global and local exploration abilities and thus require less iterations 

on average to find the optimum. In this thesis a new inertia scheme is introduced for 

the first time in which the inertia is considered to be changing linearly between a 

lower and upper bound (starting from upper bound) and it is being periodically 

restarted to it‟s upper bound whenever it reaches to the value of of the lower bound. 

It has been shown that restarting has a tremendous effect on the performance of the 

algorithm.  

 

2.2.3 Constriction factor 

 

Clerc[4] introduced a constriction factor K for more efficient control and 

constraining of velocities. Then Eq.(2.1) was modified as:                

      (                                          ) (2.4) 

where K can be expressed as:        
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|     √     |
               (2.5)

                      

here,             . In [5] Eberhart concludes that constriction factors has a 

far better impact on convergence and it‟s speed.      

   

2.2.4 Particle velocity 

 

According to [2] success of inertia and constriction factor equations are problem 

dependent. This is why, in this thesis both equations have been used and the best out 

coming result has been presented. This is to say that algorithms with which the 

functions are optimized with and compared are tested in a limited and small number 

of times using each of the equations (2.4) and (2.3) for each function under 

optimization and the best responding equation is chosen for that. This is equivalent to 

chosing the best step size and velocity for particles for a specific problem. 
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3.  MEMORY BASED PARTICLE SWARM OPTIMIZATION 

3.1 Local Optima and Convergence Speed in Standard Particle Swarm 

Optimization 

The convergence speed of PSO in it‟s original form is fast, however, the main 

problem of the PSO is that it sometimes gets trapped in local optima and the 

convergence speed rate decreases considerably in later period of evolution. When the 

algorithm reaches near global optima the algorithm stops optimizing and thus the 

accuracy the algorithm can achieve is limited. Many approaches have been 

introduced to overcome this problem. Among them, linearly decreasing the inertia 

weight, randomizing the inertia weight, utilizing external memory and etc. Since 

external memory is employed in this thesis we will focus on the methods where this 

approach has been applied. 

3.2 Utilizing Internal and External Memory 

Memory based PSO proposals are mainly concentrated on various methods, by 

which the local and global best positions are selected and used. The work of 

CoelloCoello et al. [5] is one of the first in this respect. In this work, the global best 

is determined by selection of a non-dominant solution from the external memory.  

Local best is updated with respect to the Pareto dominance. Hu et al. [6] extended 

their work using dynamic neighborhoods and employed an external memory to 

memorize all potential Pareto optimal solutions. In their work the global best is 

selected among the candidates within the external memory by defining a 

neighborhood objective and an optimization objective. The global best is found 

among the particles neighbors, subject to the defined neighborhood objective.One 

other attempt to employ additional memory in PSO is the work of Wang [7]. In this 
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method, The Triggered Memory-Based PSO, they try to adjust the parameters of the 

PSO in dynamic environments where the characteristics of the search space change 

over time. However, this method is novel and successful in terms of presenting the 

effects of utilizing additional memory into PSO. In their work a certain, predefined 

number of globally best positions, are kept and re-injected into the search population 

when necessary. This method is particularly successful when the location of the 

optima change over time. One other successful work which utilizes external memory 

is the work of Acan [8]. In their work a single globally best position is kept along 

with a certain number of globally worst positions. A crossover operator is used to 

replace a randomly chosen set of particles after each iteration.  Yet in another work, 

Acan [2] introduced a hybrid method where there is a global memory and also a local 

memory for each particle. A colony, consisting of the local and global positions is 

then constructed and at each evaluation, members of these colonies are used to 

update the velocity and position of the particle in process. Then the new positions are 

evaluated and the best outcome, replaces the particle‟s current velocity.  There are 

many approaches, both employing additional memory and/or hybridization or other 

techniques, for which additional information can be found in [2,9]. However, the 

main idea in almost all of these memory utilizing approaches is to re-inject the 

globally best position into the population during the search. In our study, however, 

the main idea is to deduce information from the contents of the external memory in 

order to affect the velocity of the particles towards the global optima.  
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4.  THE PROPOSED ALGORITHM 

4.1 Motivation For A New Memory Based Particle Swarm Optimization 

The resulting algorithm is supposed to find the optimum parameters of a kick action 

for a soccer playing humanoid robot in simulation environment. Although the tests 

are conducted on simulator, and since each experiment takes approximately 11 

seconds to complete, there is a need for a faster algorithm which finds the optimum 

values of robot‟s joint oscillators for the kick action in less evaluation counts. This is 

why in this thesis we focus on finding an algorithm which is optimizing the target 

function in a reasonably shorter time. As shown in the test results, even the most 

recent version of memory utilizing PSO is slower than the algorithm presented in this 

thesis. Also comparative tests has been conducted on one the best known algorithms 

and it is shown by experiments that our algorithm performs better than the forth 

mentioned algorithm (CMA-ES) under certain circumstances. These circumstances 

include noisy test environments which are not rare and one can assume it as the 

normal nature of any robot experiment. 

4.2 The Design of The Proposed Algorithm 

In this thesis we propose an algorithm, with which the particles, are guided far away 

from the closest worst location by correcting their position to the location at which 

the particle is supposed to be, prior to updating its position. In order to do this, we 

construct two lists of the so far found global best and global worst positions. Each of 

the two lists are in fact, two separate external memories of the PSO. Before updating 

the velocity of the particles, we scan the external memory which keeps the best 

positions and determine the best location inside the external memory which is closest 

to the particle. Let's call this closest best position CB. Again we scan the external 
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memory which keeps the global worst positions and in a similar way, we find the 

global worst position which is closest to the particle. We call this position CW. In 

our experiments Euclidean distances are used. However, any other distance measure 

may also be used for this purpose. After choosing the closest best and worst elements 

of the two external memories with respect to the particle, we measure the similarity 

of the particle with each of these elements, using the two parameters CB and CW: 

       
√∑        

  
   

       
                         (4.1)

        
√∑        

  
   

       
                          (4.2)

                                  

Here    and    are the upper and lower bounds for the values that the particle can 

take in each dimension. In our experiments this value range has been considered to 

be equal for all dimensions. Equation (4.1) measures the amount of similarity 

between the closest best and the particle. Equation (4.2) measures the similarity 

between the closest worst and the particle. The position correction coefficient can be 

defined as in follow:         

           

        
|     |

       
                          (4.3)

                      

Here       . We now are able to present our algorithm as follows. First, as 

mentioned earlier, we define two external memories: one contains a certain fixed 

number of global best positions and the other one contains a certain fixed number of 

global worst positions. The sizes of these two external memories are not necessarily 

equal. Before utilizing these memories in our approach, we have to initialize them 

properly. In order to do this, we run the basic PSO until the iteration count is equal to 

the maximum of the two external memory sizes. At each iteration, we insert the 

global best and worst positions into the corresponding external memories. This way, 

the external memories are initialized. After initialization, we now are able to 

calculate the C coefficient in equation (4.3). In other words, after each evaluation of 

all the particles, we refresh the external memory contents, and based on the 

information available in the external memories we calculate the necessary 
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coefficient. However, there is a special method with which we use this coefficient. 

According to a particular probability, we either use the basic equation or the 

following equations which are the modified forms of equations (2.3) and (2.4) 

respectively:                                           

                                                        (4.4) 

      (                                              )         (4.5) 

               

In equations (4.4) and (4.5), we add the current velocity of the particle with the 

coefficient, in order to move the particle away from the worst position towards the 

global best. When we use equation (4.4) for velocity update, based on observations, 

we can say that decreasing the inertia factor linearly, will decrease the effect of the 

coefficient and yield early convergence. Decreasing the inertia factor means that 

during this period we increase the importance of the social and cognitive factors, and 

pay less attention to the actual velocity of the particle. In cases where the particle is 

stuck in local optima, using a linearly decreasing inertia leaves the particle with a 

velocity less than the amount that the particle requires to escape those optima. This is 

why we have tried to decrease the inertia value linearly until a certain threshold is 

reached. At such a point, the inertia is reset to its initial value. Here we have defined 

a lower bound and an initial value for the inertia. In order to achieve diversification, 

some randomness is added in the upper bound, lower bound and decreasing factor. 

Since this algorithm is based on the distance of the particle to its globally closest best 

and globally closest worst, we refer to it as CBCW PSO from here on.  Figure 4.1 

shows the pseudo-code of the algorithm.      

                         

As mentioned earlier this algorithm has the effect that it guides the particles away 

from the closest worst towards the direction of the optima. This is due to the fact that 

without applying the C coefficient in equations (4.4) and (4.5), the particle heads in 

a direction which is a direction between the direction of local best and that of the 

global best (depending on the value of    and    variables). C coefficient is realtive 

to the distance difference between the closest best and worst and the closest best is 

not any worse than particle‟s local best. So, without applying the coefficient the 

particle already moves away from the closest worst. Applying the coefficient will 

add to the speed without changing the direction of the particle. Thus when particle is 
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closer to a worst position than it‟s best position, the C coefficient will be higher and 

the speed of the particle towards the local and global best will be higher. This is 

illustrated in Figure 4.2.  

Initialize the particles uniformly in acceptable range and velocities to zero 

Define external memory for best positions (bests) . Initialize it to zeros 

Define external memory for worst positions (worsts). Initialize it to zeros 

while a certain number of iterations is reached or converged do 

for each particle    do 

           

if particle position at each dimension exceeds its acceptable range 

  = random from range 

val = evaluate particle 

update the local best 

replace the worst in bests array with gbest 

replace the best in worsts array with gworst 

if iteration count > max(size(bests), size(worsts)) 

for each particle    

CB = closest best to particle 

CW = closest worst to particle 

Calculate    and    according to equation (4.1) and (4.2) 

calculateC according to equation (4.3) 

for each dimension 

with probability p 

update the position like the basic PSO in equation (2.3) or (2.4) 

otherwise 

update the position like equation (4.4) or (4.5) 

if 𝜃 ≥ 𝑙𝑜𝑤   𝑏𝑜𝑢   + 𝜀 

𝜃 = 𝜃 − Δ𝜃 − 𝜀 

else 

𝜃 = 𝑢     𝑏𝑜𝑢   – 𝜀 

end 

           

            

 

          

Figure 4.1 : Pseudo-code of  CBCW-PSO algorithm 

when C  coefficient is not used  

when C  coefficient is used  

 

Directions given by basic PSO equation 

 

Figure 4.2 : The effect of the C coefficient in equations (4.4) and (4.5) 
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5.   PROBLEMS AND COMPARED ALGORITHMS 

Tests are performed in two platforms. In one platform, the new algorithm as well as 

CLPSO and CMA-ES algorithms are tested and evaluated on standard benchmark 

functions. The global minimum of these functions are known and properties of each 

function is described in [7]. Knowing these properties helps us to understand the 

weaknesses and strengths of our algorithm comparing with other algorithms. 

However, the ultimate purpose is to apply our new algorithm on a Humanoid Robot 

(Aldebaran NAO) and develop a Kick action for a soccer-playing robot. Also in this 

platform, all the three algorithms are employed for optimizing an available kick 

action and the results are compared with each other. Thus, we have two platforms for 

our tests. The former is the standard benchmark functions platform and the latter is 

humanoid robot platform. The subsequent sections describe each platform in detail.
  

5.1 Optimization Problems 

5.1.1 Benchmark optimization functions 

 

Two rounds of experiments has been conducted on benchmark functions. In the first 

round, as will be described later, only CBCW-PSO and CLPSO are being compared 

to one another. The purpose is to understand the basic behaviour of the proposed 

algorithm when a wide range of functions (simple, uni-modal, multi-modal and hard-

to-solve functions) is considered. In the second round of experiments more attention 

is paid to more complicated functions where the benchmark functions are chosen to 

be hybrid, highly multi-modal and/or multi-funnel. All the benchmark problems are 

adopted from [6], [7] and [8]. The functions used in the first round of experiments 

are shown in Table 5.1 and the results are discussed further in [13]. The majority of 

these functions are adopted from 2005 IEEE Congress on Evolutionary Computing 

(CEC 2005). The benchmark functions provided by the conference are standard 
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functions and algorithms are being tested and compared to each other, using these 

benchmark functions.               

           

           

         

Benchmark Problems Min Range 
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In the second round of experiments, in addition to more multi-modal and multi-

funnel functions, hybrid functions are also employed. The reason is that they inherit 

various properties with different optimization considerations from their consisting 

components and expose each algorithm to a hard-to-solve problem. As an example 

function     in table 5.2 is consisted of a sphere function with two plateaues, a 

Weierstrass function which guarantees a huge number of local optima and continuity 

with the exception of being differentiable only on a set of points, Griewank and 

Ackley function to make sure that there are local minima at the boundaries and a 

Rastrigin function to make sure that this already hard-to-solve function shapes the 

global minimum and that the hybrid function is separable near this global minima.   

Table 5.1 : Benchmark functions for preliminary experiments 
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The list of the chosen test functions and some of their characteristics can be seen in 

Table5.2.               

Function    is the Shifted rotated Griewank function which is non-separable, scalable 

and multimodal. Function    is the shifted rotated Ackley‟s function with global 

minima on the boundary. It is multi-modal and non-separable. Functions    and     

are two different versions of the Rastrigin function in which the former shifted and 

the latter is both shifted and rotated, both are based on the function of De Jong with 

the addition of cosine modulation in order to produce frequent local optima. This 

function is highly multimodal, however the location of local minima are regularly 

distributed. Function     is the shifted rotated Weierstrass and as noted before is 

Continuous but differentiable only at a set of points. This function is both highly 

multi-modal and multi-funnel. The concept of multi-funnel functions and teir 

characteristics are covered in section 5.2.2.2. Function     is consisted of Griewank 

and Rosenbrock‟s functions. It is multi-modal, multi-funnel and non-separable. This 

function is a hybrid function. Function     is the shifted rotated version of Scaffer‟s 

functionand is multi-modal. Finally function    , which was discussed earlier, is a 

hybrid multi-funnel and highly multi-modal function.    
      

5.1.2 Humanoid robot , the kick problem 

  

5.1.2.1 Introducing the robot 

 

Aldebaran Nao robot model in Simspark simulation environment has been used for 

experiments. Simspark is the official simulator for RoboCup competitions and uses 

ODE (Open Dynamics Engine) for physics simulation [9]. Physical rules along with 

physical interactions with the environmen (collision, friction, gravity and etc.) have 

been modeled  in the simulator. The main difference with the real world is the fact 

that robot‟s servo motors are somehow ideal comparing with the real ones. This only 

affects the motion speed and the parameters found by this (or any) optimization 

method could be used in the real world.      
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The robot‟s vision system is equipped with a camera installed at the torso of the 

robot. In the simulation environment, the robot actually does  not perform any 

image processing or 3D vision computing. Instead, the seen objects are reported to 

the robot from the simulation server. These objects are reported by their polar 

coordinates . This includes the relative distance, horizontal and vertical angles of the 

object with respect to the robot. The distance is in meters and the angles are in 

radians.           

            

According to [9] two types of intentional noise are added to the vision system to keep 

the environment realistic. There is a static calibration error for the camera position in 

each axis. This noise is of uniform type and is distributed between -0.005m and 

0.005m. This error is calculated once and stays the same for the entire match. A 

dynamic noise is employed for the percepted objects. This noise has a zero mean 

Gaussian distribution and is measured as:             

-                        For Polar Distance          

Table 5.2 : Benchmark Functions for the second round of experiments. 
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-          For Horizontal Angle              

-             For Vertical Angle      

                         

As for Nao robot, it has 22 degrees of freedom of which only 14 have been used in 

the kick motion model. The height of the robot is 57 cm and its weight is 4.3 kg. 

Since the simulated Nao robot is a realistic representation of the Nao humanoid 

robot,  its joint structure is the same with the real one.  

         

          

            

5.1.2.2 Formulating the kick action as an optimization problem 

 

The kick  motion can be modeled by a smoothed rolling polygonal shape and a non-

periodic function accordingly. A preliminary design has been made for the kick 

action. The parameters however are not optimum and need to be optimized. The 

purpose of the kick action is to shoot the ball as far and as straight as possible. The 

available kick action has a range of 3 meters. In order to analyze the kick behaviour 

easier, the action has been separated into four phases.    

    

(a) 

(c) (b) 

Figure 5.1 : Aldebaran NAO (a)Simulation. (b)Real Robot. (c)Joint Structure 
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- Expansion Phase: In which the kicking leg is raised above the ground 

without relocating the Center of Mass (COM). At the same time the 

support leg is moved such that the torso makes an inclination outwards 

while the ankle makes an inward inclination in order to compensate the 

absense of the kicking leg on the ground. 

- Preparation Phase: In which the kicking leg is moved backward in order 

to achieve energy for the kicking phase. The support leg continues the 

action it performed in the previous phase. 

- Execution Phase: In which the kicking leg actually performs the kick and 

moves towards the ball. In this phase the support leg makes a reverse 

inclination comapring to the first two phases. 

- Wrap-around Phase: In which the legs are returned to their initial position 

which is the standing position.      

The motion of each joint is considered to be pandulum around a certain offset with 

an amplitude, special to each joint and each phase. This is mathematically presented 

in the following equation:        

                  ∑        
  

 
       

 
                (5.1)

                   

Where C is the offset of the joint, N is the number of frequencies,    is the 

amplitude, T the period, t the time for each phase and finally    is the phase shift. 

One can think of equation (5.1) as a function of multiple frequencies and decompose 

it using Partial Fourier Transform (PFS) into it‟s components. Each component 

represents a joint. An example of a joint‟s motion equation in a certain moment can 

then achieved by using the set of equations in (5.2) applied to the respective joints. 

There is an oscillation equation for each joint and it includes the joints in right and 

left legs. In most of robot motion models however, one leg is considered to be the 

support leg and the other leg, the swinging leg. In non-periodic motions (including 

the kick action which is the motion of ineterst in this thesis) the optimum value of the 

left leg joints and corresponding right leg joints are considered separately. What we 

are trying to find is the optimum value for                         in equation set 

(5.2) with which the robot kicks best. It also has to be mentioned thaht only 
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execution pahse has been considered for optimization. The parameters of the 

oscillators of other kick phases are considered to be fixed.   

                     (
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   However there is a parameter which has a global effect on the motion 

performance. In order to send the new angles calculated in equation (5.2) to the 

servos, the following equation has been used:     

           

           (𝜃       𝜃       )             (5.3)

                   

Where 𝜃 is the angular value of the joint. Here, the Speed value is global in the sense 

that it is considered to be a constant for all the phases. However the       ,    𝑙   

and      joints of the kicking leg have their own angular speed values. In other 

words, the Speed, together with the angular speed of the the       ,    𝑙   and 

     joints of the kicking leg are also subjected to optimization. To achieve the 

maximum kick range, one has to raise the ball above the ground right before kicking 

in order to reduce the friction between the ball and the ground. To do this the ankle 

of the robot has to pitch upwards in a very specific moment in the execution phase 

(here by ankle we refer to    𝑙   which is a pitch joint). This is why we have 

considered this specific time  as a parameter subjected to optimization. This 

parameter is symbolized by w . So in general, we want to achieve the optimum 

value of the following variables in order to perform an optimum kick:  

 -          : The amplitudes of the oscillators of the kicking leg. 

-      : The offsets of the oscillators of the kicking leg. 
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-      : The phase shift of the oscillators of the kicking leg. 

-  : The motion period. 

- Speed: Consists of four angular speed variables. One for the general 

angular speed of the joints during all the kick phases. And three angular 

speed variables for       ,    𝑙   and      joints of the kicking leg at 

the execution phase. 

- w: The time at which the    𝑙  of the kicking leg raises in order to lift 

the ball and reduce the friction in the execution phase. 

 

5.1.2.3 Designing the fitness function 

 

The fitness function is rather simple. What we expect from the kick action is to kick 

the ball as far as it can and as straight as possible without falling down. So literally 

the fitness function can be calculated as:      

           

       
  

       
 

| |

   
               (5.4)

                   

Where         is the maximum ball distance within 4.25 seconds after starting the 

kick action and   is the angle of the ball with respect to the robot at the end of each 

evaluation. Each parameter in the above equation is normalized with respect to its 

maximum achievable value. A penalty value of 0.2 has been considered and added to 

the fitness value if the robot falls during the evaluation of the individuals.  
         

5.2 Compared Algorithms 

5.2.1 Comprehensive learning particle swarm optimization algorithm 

5.2.1.1 Comprehensive learning particle swarm optimization, an introduction 

 

CLPSO was introduced by Acan[2]. The algorithm employs externally implemented 

global (shared) and particle-based (local) memories and a colonization approach 

similar to artificial immune system algorithms is considered. At any iteration, 
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particle-based memories keep a number of previously best performing personal 

positions for each particle and the global memory keeps a number of globally best 

positions found so far. A set of velocities is computed for each particle using each of 

the personal best positions within its local memory and a number of randomly 

selected positions from the global memory. This way, a colony of new positions is 

obtained for each particle and the one with the best fitness is selected and put within 

the new swarm. Global and local memories are also updated using the solutions 

within each colony. 

   

5.2.1.2 Advantages and disadvantages 

 

Given enough evaluation counts as the maximum number of evaluation that the 

algorithm can actually perform, CLPSO is an algorithm with good optimization 

quality. However according to [13] The algorithm suffers from few drawbacks. 

Randomness has been considered to fill and update the local memory. As a result, the 

algorithm sometimes replaces a better solution with a worse and may divert from a 

globally good solution to a worse solution and hence the best fitness does not show a 

monotonicaly decreasing descent. This restarting from a worse solution also causes 

the algorithm to require more iterations comparing with CBCW-PSO. One other 

problem is that this method is based on reinjection of the best particle among the 

individuals inside the colony into the population. This reduces the convergence speed 

since the algorithm needs individuals (in the memories) which enables it to move in 

the direction of the global minimum. Finding this kind of individuals is time 

consuming and in fact it is all the optimization task is about. Finally, CLPSO, in it‟s 

initialization phase only performs the original PSO to fill its local and external 

memories with “promising” individuals [2]. Not only this takes time but also the 

“prmising” constraint sometimes causes the algorithm to perform many iterations on 

the function using only original PSO. As a result, when there is a maximum number 

of evaluations constraint, sometimes the algorithm reaches that maximum evaluation 

counts even without actually getting out of the initialization phase.   
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5.2.2 Covariance matrix adaptation evolutionary strategies 

  

5.2.2.1 Covariance matrix adaptation evolutionary strategies, an introduction 

 

CMA-ES stands for Covariance Matrix Adaptation Evolutionary Strategy. The 

CMA-ES is a stochastic method for real-parameter (continuous domain) optimization 

of non-linear, non-convex functions. As mentioned in the introduction approximating 

the second derivative or Hessian information of the function under optimization, one 

can infer the rate of descent and construct a Taylor polynomial. This polynomial 

could then be used as a contour map. This is the basic idea behind Newton‟s method 

in function optimization where the inverse of the Hessian matrix is the solution of the 

system. CMA-ES in it‟s purest form tries to estimate the inverse of the Hessian 

matrix through covariance matrix adaptation. In the CMA Evolution Strategy, a 

population of new search points (individuals, offspring) is generated by sampling a 

multivariate normal distribution. The basic equation for sampling the search points, 

for generation number              , reads:     

           

    
     

           (      )    𝑜                       (5.5)

                      

 (      )  is a multivariate normal distribution with zero mean and covariance 

matrix     .   
     

    is the k-th offspring from generation    .   
       is  

the mean value of the search distribution at generation g.   
      

  is the overall 

standard deviation or step size, at generation g.   
         is the covariance matrix 

at generation g.      is the covariance matrix of the search distribution.     is the 

population size (sample size or number of offsprings). At each iteration, new 

offsprings are being produced according to the following parameter update in 

equations (5.6) and (5.7):        

           

               〈    〉  𝑤         〈    〉  ∑       
 
                (5.6)

                   

Where      (   
   ) and      means the first best   individuals achieved from 

equation (5.1). Also:         
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∑   
  

   

〈    〉〈    〉
              (5.7)

                      

Here       
  ⁄ .      is the learning rate of the algorithm. Iterating the steps  

(producing new offsprings using equation (5.5) and then updating the mean and 

covariance matrix according to equations (5.6) and (5.7)) will result in adaptation of 

the covariance matrix into the inverse of the Hessian matrix. Various stopping 

conditions could be considered for the algorithm of which few are Stopping when 

maximum iteration counts reached or when the algorithm is experiencing stagnation. 

  

5.2.2.2 Advantages and disadvantages   

 

CMA-ES is a very strong algorithm with state-of-the-art converging speed and 

optimization quality. As shown in the section 5.3.3 the algorithm outperforms both 

CBCW-PSO and CLPSO for many of the benchmark functions. But accroding to the 

“No Free Lunch Theorem”, there is no algorithm that optimizes all the functions. 

Every algorithm has it‟s own weaknesses. According to [10], [11] and [12], though 

CMA-ES is a very strong algorithms in terms of convergence speed and optimization 

quality, it sometimes suffers from some drawbacks. As an example, CMA-ES 

experiences difficulties to solve the problems in which the atractor volume of the 

global optimum is small and an overall topology pointing to the global optimum is 

missing. This is mainly a concern when the function under optimization is non-

separable. In [12] it has been shown that, in multi-funnel functions, where local 

optima can not be interpreted as perturbations to an underlying convex (unimodal) 

topology, the performance of the CMA-ES algorithm decreases. An example of a 

multi-funnel function is shown in Figure 5.2. As shown in the Figure 5.2, the 

function contains two funnels where the gray ridge seprates funnel 1 (left) from 

funnel 2 (right). Funnel 1 consists of global minimum as  well  as multiple  local  

minima. Also several local minima are spread across the funnel 2. Funnel 2 is a 

broad funnel and any  heuristic can be trapped in funnel 2. This topology is 

considered to be a hard one for optimization algorithms.    
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Figure 5.2 : Adapted from [11], a 2D multi-funnel function. 
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6.  TEST AND COMPARISONS 

6.1 Experimental Settings 

As mentioned earlier, two rounds of experiments has been conducted. The 

experimental setting for both round of settings are identical unless otherwise is 

stated.                     

Each experiment consists of 50 runs. In the first round of experiments, the maximum 

number of evaluation counts is set to 40000 for both algorithms (CBCW-PSO and 

CLPSO). In the second round of experiments however, Since the number of 

evaluations in CMA-ES algorithm is not fixed and the stopping criteria of CL PSO 

and CBCW-PSO algorithms is to reach a certain evaluation count, we first conducted 

the tests using CMA-ES and measured the number of evaluation in each experiment  

for 50 runs and then set the maximum number of evaluations in CLPSO and CBCW-

PSO algorithms to the maximum number of evaluations in CMA-ES algorithm for 

the corresponding experiment.        

                     

Since the environment under which the robot performance is evaluated is noisy, we 

also consider the effect of noise on benchmark functions to have an idea about the 

effect of noise (both uniform and Gaussian) on the robot experiments.    This is why 

three separate experiments has been considered for each algorithm-benchmark 

function pair: (1) when the fitness value of the function has no noise  (2) when the 

fitness value of the function has uniform noise and (3) when the function is 

considered to have Gaussian noise in fitness value.      

             

The size of the external memory for best and worst global positions is 2 and 4 

respectively. This is according to [13] where the best results are achieved. Also the 

sizes of local and external memories in CLPSO is set to 4 and 5 respectively, since 
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the best results for this algorithm in the literature have been achieved using these 

settings. The swarm size in all the experiments is constant and set to be equal to 30 

which is the dimension of the functions. The algorithm settings for which the 

experiments have been done are as follows:  𝜃            𝜀            𝑙𝑜𝑤   𝑏𝑜𝑢   

      𝑢     𝑏𝑜𝑢        The upper and lower bound of θ as well as ∆θ are 

randomized with a small number,  ε. The value of ε has been chosen to be smaller 

than the value of ∆θ to prevent θ from exceeding its boundaries. Choosing a small 

value for ε also makes sure that θ‟s value maintains a smooth and slow motion 

between its boundaries as if ∆θ where not randomized.  The value for ∆θ is chosen 

such that it shows a decrement rate close to that of [2] for the sake of comparison. 

The upper bound value is used as suggested in several publications and its validity 

has been verified in our experiments. The lower bound, however, is experimentally 

tuned to the value with which the best results are achieved.    

                     

Each experiment on the robot consists of 5 runs and has the following settings. 

Before each evaluation, the robot is beamed at the center of the field (coordinates 

X=0 , Y=0) and the head‟s roll joint „he1‟ in Figure 5.1, is set to 0 degrees and the 

head‟s pitch joint, „he2‟ is set to the inverse (negative) value of the ball‟s vertical 

angle. This way, after the initialization the robot has a guaranteed visual of the ball. 

The time for each evaluation for all the algorithms is equal and is set to 11 seconds. 

After this initiation phase, there is one second waiting to make sure that everything is 

loaded and the robot will start the simulation normally without extreme system load. 

At this moment the simulator enters the kick-off phase where the robot will be able 

to move the joints. All the mentioned procedures has a duration of 2.5 seconds. This 

is where the robot starts to perform the kick action and it enters the Execution phase 

in the 3rd second of the game. No matter if the kick action is successful (the robot‟s 

leg hits the ball) or not, the robot‟s head is fixed on the ball during the experiment. 

The purpose is to determine a good quality fitness value, based on the distance of the 

ball to the robot. It has to be mentioned that if the robot falls (no matter if it sees the 

ball after falling or not), the last distance value, recorded when the robot was 

standing will be considered by the fitness evaluation.This is necessary due to the fact 

that if the robot falls backward, it still may be able to see the ball, however in this 

case, the distance between the robot and the ball will increase proportional to the 
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length of the robot (57.5 cm). This, in turn, will decrese the fitness value of equation 

(5.4), and the algorithm(s) may converge in favour of the individuals which result in 

falling of the robot backward. This is certainly not desirable. The same rule is 

accounted for the ball angle with respect to the robot, say, the last ball angle value 

for which the robot had a stable kinematic state (a no-fall state) is considered for the 

fitness evaluation. The stop criteria is set to maximum evaluation counts which is set 

to be 8000. The test platform is an 8 core (3.2 GHz) system running on Ubuntu 10.04 

with 4 GB RAM.         
   

6.2 Analysis of Parameter Settings 

The value of the probability p has a direct effect on the convergence speed of the 

algorithm. The lower this value is, the more the algorithm switches to equations (4.4) 

or (4.5). This adds an extra amount to the velocity of the particle in the direction of 

the global best position. But there is a trade-off. Frequently using the extra velocity 

for a long time, results in convergence in a wrong direction. This is due to the fact 

that local optimum may be scattered and far from each other but at a relatively equal 

distance with respect to the particle. This is why an amount above 0.5 has been 

considered for the probability. However, our experiments show that setting the 

probability p proportional to 1-θ, increases the convergence speed, since, binding the 

p to the value of θ, which is a randomized value, provides more diversification. 

Replacing the linearly decreasing inertia in equation (4.5) with θ , which is subject to 

multiple restarts, also shows to be a very influencing factor on convergence speed. 

This is the methodology of choice in our experiments.    

             

One can easily show through experiments that eliminating one the parameters 

introduced in CBCW-PSO decreases the performance of the algorithm. This is to say 

that if we reject using the coefficient C and instead employ only the inertia restart, or 

vice versa the performance will decrease. Though one can replave the probability p 

to a constant positive less than 1 instead of changing it dynamically with the 

complement value of inertia. For some functions it does not affect the performance 

but for some other functions it will dramatically decrease the performance. Also 
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lower and upper bounds have a huge effect on the performance and thus cannot be 

eliminated.  

6.3 Experimental Results on Benchmark Functions 

A preliminary set of experiments has been conducted on CBCW-PSO and CLPSO on 

some of the benchmark functions in [6],[7] and [8]. The benchmark functions along 

with some of their properties are shown in Table 5.1. The goal is to compare the 

convergence speed of CBCW-PSO and that of CLPSO. The results are shown in 

Table 6.1.  As can be seen in the table, CBCW-PSO outperforms CLPSO in terms of 

solution quality. The results of the employed t-test show the cases where CBCW-

PSO is statistically significant than CLPSO. In the last column, S+ means that 

CBCW-PSO is statistically significant comparing to CLPSO and S means that none 

of the two methods are statistically significant. However, considering the 

convergence speed as a criteria, the minimum evaluation count in which each 

algorithm finds the optima (first-hit) is also measured in the experiments. The results 

are shown in Table 6.2.  Again here S+ means that CBCW-PSO is statistically 

significant than CLPSO and S means that none of the two methods are statistically 

significant. Achieving the satisfactory results in the preliminary experiments, we ran 

another round of tests and included CMA-ES algorithm in comparisons. In this new 

round of comparative tests, as shown in Table 5.2, special attention has been paid to 

more complicated benchmark functions .      

           

Functions Dim CLPSO CBCW-PSO t-test 

Min Max Avg Min Max Avg 

    ⃗  30 0 0 0 0 0 0 S 

    ⃗  30 0 0 0 0 0 0 S 

    ⃗  30 0 0 0 0 0 0 S 

    ⃗  30 0 0 0 0 0 0 S 

    ⃗  30 0 0 0 0 0 0 S 

    ⃗  30 0 0 0 0 0 0 S 

    ⃗  30 0 0 0 0 0 0 S 

    ⃗  30 0.033 7.93 3.899 0.001 4.001 0.911 S+ 

    ⃗  30 -12451 -11622 -12107.5 -12569.5 -12332 -12438 S+ 

     ⃗  30 48.915 237.94 173.8 0 1.989 0.994 S+ 

     ⃗  30 0 0.11 0.042 0 0.041 0.012 S+ 

     ⃗  30 2.2209 5.22 3.318 0 0 0 S+ 

     ⃗  30 2.7555 7.19 5.922 0 1.57 0.15 S+ 

     ⃗  2 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 S 

     ⃗  2 0.398 0.398 0.398 0.398 0.398 0.398 S 

     ⃗  2 0 0 0 0 0 0 S 

Table 6.1 : Perliminary experimental results 
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They are more complicated in the sense that they are highly multi-modal, highly 

multi-funnel and hybrid. In Table 6.3, the minimum, average and the value of 

standard deviation, obtained over 50 runs of CMA-ES, CLPSO and CBCW-PSO are 

given. Outcomes with a difference less than or equal to       with respect to the 

known global optima, is considered as the value of the global optima.  

           

   

Functions CLPSO CBCW-PSO t-test 

    ⃗  122820 15255 S+ 

    ⃗  165900 31419 S+ 

    ⃗  299880 122265 S+ 

    ⃗  1199400 77832 S+ 

    ⃗  100920 2340 S+ 

    ⃗  122280 7605 S+ 

    ⃗  247860 33582 S+ 

    ⃗  - -  

    ⃗  - 1109850 S+ 

     ⃗  - 1076010 S+ 

     ⃗  1094340 963669 S 

     ⃗  - 57153 S+ 

     ⃗  - 646980 S+ 

     ⃗  3180 531 S+ 

     ⃗  2700 489 S+ 

     ⃗  2120 775 S+ 

                

The dimension of each function is set to 30 for all the experiments. Better results are 

shown in bold in the table. An ANOVA test at a significance level of 0.95 has been 

performed to test for the statistical significance of the differences. In the last column, 

      means that CBCW PSO results are statistically significant than the results of 

the other algorithms and     means that the CLPSO algorithm performs better than 

others and finally      means that CMA-ES offers better solutions. The details of 

the ANOVA analysis can be found in Figures A.1, A.2 and A.3 in the Appendices. 

Also multi column comparison results for all the experiments can be found in 

Figures A.4, A.5 and A.6 in the Appendices. These figures, show those algorithms 

which are statistically significant from the others.     

           

           

Table 6.2 : First Hit  
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Table 6.3 shows that, for non-noisy function CMA-ES has a better performance 

comparing with CBCW-PSO and CLPSO. However functions,    and     are 

exceptions. In case of function    since the optimum value is in the boundary and 

CBCW-PSO, due to its smart boundary control, has a good ability to find the optima 

at the boundaries, it outperforms the other two algorithms. However it also implies 

that CBCW-PSO performs well when the basin of attraction is small. As of    , the 

Schaffer‟s function, there are multiple local optima in the form of circles and the 

global optima lies in the center circle in the function. Figure 6.1 shows the function 

in a 2D demonstration.         

 

 

 

Functions 
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C
L

P
S

O
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A
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Min     Min     Min      

N
o

 N
o

is
e 

    ⃗  -179.9 -176.6 11.0 -144.8 -73.8 51.85 -180 -179 0.001      

    ⃗  -119.2 -119.0 0.09 -119.1 -118 0.053 -118 -118 0.068       

    ⃗    -291.1 -254.0 25.4 -316.5 -297 13.0 -311 -289 27.04      

     ⃗    -260.3 -174.7 48.3 -224.76 -148 35.36 -313 -298 25.18      

     ⃗    113.1 118.9 3.3 118.08 128.8 3.308 93.8 103.7 4.04      

     ⃗    -125.3 -119.7 2.78 -120.76 -110 9.17 -128 -126 0.75      

     ⃗    -288.2 -287.0 0.44 -287.18 -286 0.27 -286 -285 0.19       

     ⃗    245.4 414.2 111.1 240.73 412.4 133.0 155.2 171.7 9.31      

U
n

if
o

rm
 N

o
is

e 

    ⃗    -178.9 -170.5 24.33 -169.91 -106 44.64 -178 -178 0.01      

    ⃗    -119.0 -118.7 0.08 -118.9  -118  0.07 -118 -118 0.07       

    ⃗    -282.6 -234.2 37.56 -288.7 -256 21.89 -279 -131 33.44     

     ⃗    -270.9 -162.8 60.67 -167.6 -60.1 43.45 -310 -114 31.97       

     ⃗    113.7 121.8 3.96 128.9 134.2 2.05 131.1 135.4 1.40       

     ⃗    -124.7 -117.2 4.82 -32.01 390.7 495.8 -127 -118 6.88      

     ⃗    -287.1 -286.3 0.31 -286.6 -285 0.27 -286 -285 0.15       

     ⃗    250.6 475.9 161.6 382.3 562.4 105.3 317.3 368.9 17.75      

G
au

ss
ia

n
 N

o
is

e 

    ⃗   -178.9 -169.9 18.0 -163.1 -117 32.25 -178 -178.8 0.026      

    ⃗   -118.9 -118.7 0.084 -118.8 -118 0.05 -118 -118.6 0.07       

    ⃗   -267.2 -209.1 33.48 -267.46 -203 39.14 -115 -86.15 16.4       

     ⃗   -248.1 -137.9 68.62 -85.6 -2.29  46.06 -99.7 -65.72 16.45       

     ⃗   113.3 121.9 3.88 129.2 134.8 1.62 132.3 135.4 1.37       

     ⃗   -124.7 -115.9 4.70 -70.1 518.1 985.3 -114 -109.7 1.58       

     ⃗   -286.6 -286.0 0.29 -286.5 -285 0.21 -286 -285.7 0.14       

     ⃗   235.4 458.2 160.4 364.9 547.4 162.2 376.5  414.4 17.6      

Table 6.3 : Comparative results 
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Here the inertia restart strategy as well as linear decrement of the inertia value, helps 

the CBCW-PSO to escape from local optima and avoids the premature convergence. 

At the same time the structure of the function could be considered a plus for the 

employed external memory policy since subsequent (neighboring) local maxima and 

minima are much more probable and hence the value of the C variable in equations 

(4.3), (4.4) and (4.5) maintains a constant value close to 1 which at the same time 

increases the step size and forces the particles to go one step higher in the function‟s 

circle levels. This helps the algorithm in the sense that it prevents the particles from 

getting trapped inside many local optima in the function.    

             

The results are also presented in graphical form in Figure 6.2. Please note that if 

there is a missing algorithm in the figures, it means that the values produced by that 

algorithm is so high that plotting it may avoid investigating the details of the other

Figure 6.1 : A demonstration of Schaffer‟s function in 3D 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.2 : The evolution of the best fitness, averaged over 50 runs for each function 

          for  non-noisy  fitness  values.  (a)𝑓 .  (b)𝑓 .  (c)𝑓 .  (d)𝑓  .(e) 𝑓  . (f) 𝑓  . 

         (g) 𝑓  . (h) 𝑓   
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(g) (h) 

           

           

           

                    

algorithms. A missing CLPSO plot in Figure 6.2 (f) is an example. In such cases 

Table 6.3 could be considered. Again in Table 6.1 as well as in Figure 6.3, one can 

see that CBWC-PSO outprtforms the other two algorithms in functions   ,    ,     

and     when  there is a Uniform Noise added to the fitness value. The function     is 

more or less similar to functions    and     in the sense that the number of local 

optima is very large, and that they are regularly spread over the function space. 

Again, the inertia restart strategy as well as the new velocity update helps the 

CBCW-PSO to escape from those local optima. The regular spread of local optima 

across the search space has the obvious advantage that they produce almost 

subsequent worst and best neighborhoods which results in a continuous boost in the 

value of the variable C in equations (4.3), (4.4) and (4.5) and this forces the particles 

to check for new and better neighborhoods (if any). This is similar to the case of 

function     in the previous discussion. In general, this yields that, whenever the 

basin of attraction has a small size or there is an overal topology, pointing towards 

the global optimum, our algorithm performs well. As discussed earlier, the reason for 

this is the way the C value in equations (4.3), (4.4) and (4.5) is boosted in such 

topologies.          

         

Figure 6.2 (continued): The evolution of the best fitness, averaged over 50 runs for 

                   each function for  non-noisy  fitness  values.  (a)𝑓 .  (b)𝑓 .  

        (c)𝑓 .  (d)𝑓  . (e) 𝑓  . (f) 𝑓  . (g) 𝑓  . (h) 𝑓   
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.3 : The evolution of the best fitness, averaged over 50 runs for each function 

          for   fitness   values  with  uniform  noise.  (a)𝑓 .    (b)𝑓 .    (c)𝑓 .   (d)𝑓  .   

          (e) 𝑓  . (f) 𝑓  . (g) 𝑓  . (h) 𝑓   
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(g) (h) 

           

           

           

  

Finally Figure 6.4 and the last 8 rows of Table 6.1 show the experiment results for 

the case when Gaussian noise is added to the fitness value.  The better results in 

favour of CBCW-PSO are partially due to the fact that the original PSO and the 

descendants of this algorithm are noise resistant. It‟s easy to see that the performance 

difference between CBCW-PSO and CLPSO are preserved when the noise type is 

changed. In case of the CMA-ES algorithm, however, setting the NOISE option in 

CMA-ES algorithm to ON, ends up in worse results for noisy functions and, Setting 

the same option to OFF for the same noisy function, ends up in fitness values close to 

that of the first 8 rows of Table 6.1 (this is to say that the results will be similar to 

the case where there is no noise in the fitness value). However, in addition to 

discussing the effect of the noise and it‟s type on the performance of each algorithm, 

our goal here is also to show that for some functions, no matter if CMA-ES treats the 

function as a noisy function or not, and if there actually is noise or not, there are 

cases where CBCW-PSO outperforms the CMA-ES.     is an example that emerges 

from these experiments. As stated earlier in section 5.2.2.2, it has been shown in 

literature that, in multi-funnel functions, where local optima can not be interpreted as 

perturbations to an underlying convex (unimodal) topology, the performance of the 

CMA-ES algorithm decreases. This is why we believe that, in fact in case of noisy or 

Figure 6.3 (continued): The evolution of the best fitness, averaged over 50 runs for 

                   each function for   fitness   values  with  uniform  noise.  

        (a)𝑓 .    (b)𝑓 . (c)𝑓 .   (d)𝑓  . (e) 𝑓  . (f) 𝑓  . (g) 𝑓  . (h) 𝑓   
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multi-funnel functions, the main advantage of our algorithm is it‟s independence 

from the underlying global topology and the use of intuitive coefficient which allows 

it to simply escape local optima towards  better coordinates in the search space. A 

question may rise about the performance of the CLPSO algorithm in multi-funnle 

and/or noisy functions. The main reason why CLPSO fails to converge to the global 

optimum in these functions is it‟s time consuming initialization phase. Observations 

during the experiemnts (as well as the graphical representations in Figures 6.2, 6.3 

and 6.4) show that the CLPSO algorithm consumes a lot of time in the initialization 

phase and due to its random substitution policy in external memories, it also may 

reset to a worse fitness value as global best (the various peaks that are observable in 

many graphics, representing CLPSO‟s performance).     

(a) (b) 

(c) (d) 

Figure 6.4 : The evolution of the best fitness, averaged over 50 runs for each function 

          for    fitness    values   with   Gaussian Noise.  (a)𝑓 .  (b)𝑓 .  (c)𝑓 .  (d)𝑓  . 

         (e) 𝑓  . (f) 𝑓  . (g) 𝑓  . (h) 𝑓   
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(e) 
(f) 

(g) (h) 

           

            

            

6.4 Experimental Results on The Robot       

Finally, Figure 6.5 and Table 6.4 show the experimental results on the robot kick 

action. As can be seen, CBCW-PSO outperforms the other two algorithms. From this 

experiment, one can conclude in many ways about the robot‟s kick search space. 

Earlier, during the experiments on benchmark functions, we saw that small basin of 

attraction, missing overall topology in the search space and multi-funnelty in the 

function under optimization may all be the reasons for an inferior performance In 

CMA-ES and a superior performance in CBCW-PSO. However, also the 

Figure 6.4 (continued): The evolution of the best fitness, averaged over 50 runs for 

               each function for    fitness    values   with   Gaussian Noise.  

        (a)𝑓 .  (b)𝑓 . (c)𝑓 .  (d)𝑓  . (e) 𝑓  . (f) 𝑓  . (g) 𝑓  . (h) 𝑓   
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performance of CLPSO helps us to provide an explanation about the reason why, 

CBCW-PSO outperforms CMA-ES. The resulting fitness evolution is similar to that 

of      , in terms of the order with which each algorithm performs better and also the 

way the best fitness value decsends. The resulting kick action has a range of nearly 6 

meters. The ball does not deviate from the x axis of robot‟s torso as desired. The 

described kick action has been utilized in RoboCup competitions at Istanbul, 2011 

and the robot was able to kick a goal score using the designed kick action.  An 

ANOVA analysis also has been made on the outcomes of the three algorithms in 

which can be seen in Figure A.4 in the Appendices (Appendix A.1). Figure 6.6 

shows the resulting kick in Simspark simulator.      
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Min     Min     Min      

 𝑜𝑏𝑜        40 0.170 0.17956 0.0098849 0.20704 0.21373 0.00626 0.19646 0.23387 0.051844       

Table 6.4 : Comparative results of the robot experiment 

Figure 6.5 : Best fitness evolution of the robot experiment 
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Figure 6.6 : The resulting kick action 
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7.  CONCLUSIONS  

In this thesis, we have proposed a new and novel PSO, based on external memory for 

Optimization problems. The algorithm has been subjected to comparative 

experiments on well-known benchmark functions as well as an optimization problem 

defined on the robot action (kick action). We showed that the proposed algorithm 

outperforms a recent improvement of PSO,  namely CLPSO in the benchmark 

function experiments. Also in some cases, the proposed algorithm outperforms the 

CMA-ES algorithm. It has been explicitly shown that our new algorithm outperforms 

the other two algorithm in terms of convergence speed and the solution quality for 

the cases where the function under optimization is either noisy, multi-funnel, has 

small basin of attraction or does not have a global topology. Also the algorithm 

performs very well for the robot case where an optimum set of parameters are being 

sought for the kick action.Future work will include an adaptation strategy with which 

the algorithm tunes it‟s parameter according to the function it optimizes. These 

parameters include the sizes of the external memories and lower and upper band 

values in the algorithm.  
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APPENDIX A : ANOVA Test Results 
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Figure A.1 : The ANOVA Test results for various benchmark functions with noisy 

           fitness value (Gaussian noise type). 
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Figure A.2 : The ANOVA Test results for various benchmark functions with noisy 

           fitness value (Uniform noise type). 
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Figure A.3 : The ANOVA Test results for various benchmark functions with  

           non-noisy fitness value. 
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Figure A.4 : The ANOVA Test results for various benchmark functions with noisy 

           fitness value (Gaussian noise type). 
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Figure A.5 : The ANOVA Test results for various benchmark functions with noisy 

           fitness value (Uniform noise type). 



 

 

 

 

 

54 

  
           

           

           

           

           

           

            

 
           

           

    

Figure A.6 : The ANOVA Test results for various benchmark functions with  

           non-noisy fitness value. 

Figure A.7 : The ANOVA Test results for the robot kick function. 
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Figure A.8 : The ANOVA Test results for the robot kick function. 
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