

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

M.Sc. THESIS

JANUARY 2012

A NOVEL PARTICLE SWARM OPTIMIZATION ALGORITHM

Shahriar ASTA

Department of Computer Engineering

Computer Engineering Programme

JANUARY 2012

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

A NOVEL PARTICLE SWARM OPTIMIZATION ALGORITHM

M.Sc. THESIS

Shahriar ASTA

(504091538)

Department of Computer Engineering

Computer Engineering Programme

Thesis Advisor: Assoc.Prof. Dr. Şima ETANER UYAR

OCAK 2012

İSTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ

A NOVEL PARTICLE SWARM OPTIMIZATION ALGORITHM

YÜKSEK LİSANS TEZİ

Öğrenci Shahriar ASTA

(504091538)

Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Mühendisliği Programı

Tez Danışmanı: Doç. Dr. Şima ETANER UYAR

v

Thesis Advisor : Assoc.Prof. Dr. Şima Etaner Uyar

 İstanbul Technical University

Jury Members : Assoc.Prof. Dr. Zehra ÇATALTEPE

İstanbul Technical University

Prof. Dr. İbrahim EKSİN

İstanbul Technical University

Shahriar ASTA, a M.Sc. student of ITU Institute of / Graduate School of Science

and Technology student ID 504091538, successfully defended the

thesis/dissertation entitled “A NOVEL PARTICLE SWARM

OPTIMIZATION”, which he/she prepared after fulfilling the requirements

specified in the associated legislations, before the jury whose signatures are below.

Date of Submission : 19 December 2011

Date of Defense : 24 January 2012

vi

vii

FOREWORD

Special thanks to Assoc.Prof.Dr Şima Etaner Uyar for her inspiring suggestions.

December 2011

 Shahriar ASTA

 (Computer Engineer)

viii

ix

TABLE OF CONTENTS

Page

FOREWORD .. vii
TABLE OF CONTENTS .. ix
ABBREVIATIONS ... xi

LIST OF TABLES .. xiii
LIST OF FIGURES ... xv
SUMMARY .. xvii
ÖZET .. xix
1. INTRODUCTION .. 1

1.1 Research Motivations ... 2

1.2 Contributions .. 3

2. PARTICLE SWARM OPTIMIZATION .. 5
2.1 Problem Formulation .. 5
2.2 Evolution of The Particle Swarm Optimization Algorithm 5

2.2.1 The original particle swarm optimization ... 5
2.2.2 Inertia .. 7

2.2.3 Constriction factor ... 7
2.2.4 Particle velocity ... 8

3. MEMORY BASED PARTICLE SWARM OPTIMIZATION 9
3.1 Local Optima and Convergence Speed in Standard Particle Swarm

Optimization ... 9

3.2 Utilizing Internal and External Memory .. 9

4. THE PROPOSED ALGORITHM .. 11
4.1 Motivation For A New Memory Based Particle Swarm Optimization 11
4.2 The Design of The Proposed Algorithm .. 11

5. PROBLEMS AND COMPARED ALGORITHMS .. 15
5.1 Optimization Problems ... 15

5.1.1 Benchmark optimization functions ... 15
5.1.2 Humanoid robot , the kick problem .. 17

5.1.2.1 Introducing the robot .. 17
5.1.2.2 Formulating the kick action as an optimization problem 19
5.1.2.3 Designing the fitness function .. 22

5.2 Compared Algorithms .. 22
5.2.1 Comprehensive learning particle swarm optimization algorithm 22

5.2.1.1 Comprehensive learning particle swarm optimization, an introduction

 .. 22
5.2.1.2 Advantages and disadvantages ... 23

5.2.2 Covariance matrix adaptation evolutionary strategies 24
5.2.2.1 Covariance matrix adaptation evolutionary strategies, an introduction

 .. 24
5.2.2.2 Advantages and disadvantages ... 25

6. TEST AND COMPARISONS ... 27
6.1 Experimental Settings .. 27
6.2 Analysis of Parameter Settings .. 29
6.3 Experimental Results on Benchmark Functions .. 30
6.4 Experimental Results on The Robot ... 39

7. CONCLUSIONS .. 43

x

REFERENCES ... 45

APPENDICES .. 47
CURRICULUM VITAE .. 57

xi

ABBREVIATIONS

PSO : Particle Swarm Optimization

GA : Genetic Algorithms

CMA-ES : Covariance Matrix Adaptation Evolutionary Strategy

CBCW-PSO : Closest Best , Closest Worst Particle Swarm Optimization

CLPSO : Comprehensive Learning Particle Swarm Optimization

xii

xiii

LIST OF TABLES

Page

Table 5.1 : Benchmark Functions, preliminary experiments 16

Table 5.2 : Benchmark Functions, second round of experiments 18

Table 6.1 : Perliminary experimental results .. 30

Table 6.2 : First Hit ... 31

Table 6.3 : Comparative results... 32

Table 6.4 : Comparative results of the robot experiment .. 40

xiv

xv

LIST OF FIGURES

Page

Figure 1.1 : The evolution of particles through search space 2

Figure 4.1 : Pseudo-code of CBCW-PSO algorithm ... 14

Figure 4.2 : The effect of the C coefficient in equations (4.4) and (4.5) 14

Figure 5.1 : Aldebaran NAO robot. .. 19

Figure 5.2 : A multi-funnel function. .. 26

Figure 6.1 : A demonstration of Schaffer‟s function in 3D 33

Figure 6.2 : Evolution of best fitness for non-noisy benchmark functions 35

Figure 6.3 : Evolution of best fitness for benchmark functions with uniform noise 37

Figure 6.4 : Evolution of best fitness for benchmark functions with Gaussian noise

 ... 39

Figure 6.5 : Best fitness evolution of the robot experiment 40

Figure 6.2 : The resulting kick action ... 41

xvi

xvii

A NOVEL PARTICLE SWARM OPTIMIZATION ALGORITHM

SUMMARY

Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995), which is a

population-based global search method is known to suffer from premature

convergence prior to discovering the true global minimizer. In this thesis, a novel

memory-based method is proposed which aims to guide the particles through the

information deduced from the external memory contents rather than to re-inject them

into the population.

This is done by calculating a coefficient, based on the distance of the current particle

to the closest best and closest worst particles in the external memory at each

iteration. Later, when updating the velocity component, this coefficient is added to

the current velocity of the particle with a certain probability.

Also randomized upper bound and lower bound values have been defined for the

inertia component. The algorithm starts with the upper bound value of the inertia. At

each particle evaluation the inertia is decreased non-linearly with a small value and

when its value reaches the lower bound, the inertia value is reset to its upper bound.

The resulting PSO finds the global optima much faster than the original PSO and it

have been shown that it also performs better compared with a recent improvement of

PSO, CLSPO namely. A state-of-the-art algorithm, CMA-ES (Covariance Matrix

Adaptation Evolutionary Strategy), has also been chosen for comparison purposes. It

has been shown by experiments that although the CMA-ES shows a better

performance than that of our algorithm, in some cases where the overall topology

pointing to the global optimum is missing and the attractor volume of global

optimum is small, our algorithm performs better and finds the desired optimum

value of the function in lesser evaluation counts. The tests have been consucted on

standard benchmark functions as well as a simulation of the Aldebaran NAO robot

for developing a kick action.

xviii

xix

YENİ BİR PARÇACIK SÜRÜ OPTİMİZASYON ALGORİTMASI

ÖZET

Parçacık Sürü Optimizasyonu (Particle Swarm Optimization) (PSO) 1995‟te Dr.

Eberhart ve Dr. Kennedy tarafından geliştirilmiş popülasyon temelli sezgisel bir

optimizasyon tekniğidir. Bu teknik, kuş sürülerinin davranıslarından esinlenilerek

geliştirilmiş popülasyon tabanlı stokastik optimizasyon tekniğidir. Doğrusal olmayan

problemlerin çözümü için tasarlanmıştır. Çok parametreli ve çok değişkenli

optimizasyon problemlerine çözüm bulmak için kullanılmaktadır. PSO, genetik

algoritmalar gibi evrimsel hesaplama teknikleriyle bir çok benzerlik gösterir. Sistem

rastgele çözümler içeren bir popülasyonla başlatılır ve nesilleri güncelleyerek en

optimum çözümü araştırır. PSO da parçacık olarak adlandırılan olası muhtemel

çözümler, o andaki optimum parçacığı izleyerek problem uzayında dolaşırlar.

PSO‟nun klasik optimizasyon tekniklerinden en önemli farklılığı türev bilgisine

ihtiyaç duymamasıdır. PSO‟yu uygulamak, algoritmasında ayarlanması gereken

parametre sayısının az olması sebebiyle oldukça basittir. PSO, fonksiyon

optimizasyonu, bulanık sistem kontrolü, yapay sinir ağı eğitimi gibi bir çok alanda

başarıyla uygulanabilmektedir.

Bu tekniğin bilinen dezavantajı, gerçek optimumu bulmadan önce erken yakınsama

sergilenmesidir. Bu çalışmada, literatürde geleneksel hale gelen ve yeni parçacıkları

popülasyona yeniden enjekte etmeyi öneren yöntemlere karşın, parçacıkları harici

belleklerden alınan bilgilere göre yönlendiren yeni bir parçacık sürü optimizasyon

algoritmasını sunmaktadır. Bunun için, algoritmada iki ayrı harici bellek ön

görülmuştur. Bu belleklerden biri en kötü parçacıkları barındırmakta, diğeri ise en iyi

parçacıkları barındırmaktadır. Bu belleklerin boytuları birbirinden bağımsız

olmaktadır ve belleklerin içeriği her nesilde güncelleştirilmektedir.

Önerilen algoritma başlamadan önce, belleklerin içi doldurulmaktadır. İlk değerlerle

dolduktan sonra, her nesilde tüm parçacıklar değerlendiriliyor ve uygunluk değerleri

hesaplanıyor. Daha sonraki adımda, parçacığın harici bellekteki parçacıklar

arasından, parçacığa en yakın olan en iyi ve en kötü parçacıkların uzaklığı hesaplanıp

bir katsayi üretilmektedir. Bu katsayı adım boyutunu belirlemektedır. Sonra her

parçacık için hız bileşenini hesaplarken bu katsayı belli bir olasılıkla mevcut hıza

eklenmektedir. İlk 1998‟de önerilen atalet bileşeni, önerdiğimiz algoritmada

periyodik biçimde yeniden başlatılmaktadır. Bu, literatürde ilk kez önerilmektedir ve

hesapladığımız katsyı ile birleştirildiği zaman, yakınsama hızını doğrudan

etkilemektedir.

xx

Ayrıca randomize bir üst ve alt sınır atalet bileşeni için tanınmaktadır. Algoritmada

atalet bileşeni üst sınırdan başlayıp ve her parçacığı değerlendirdikten sonra küçük

bir değerle non-linear bir şekilde azaltılmaktadır. Atalet bileşeni randomize alt sınıra

ulaştığı zaman, bu bileşenin değeri randomize üst sınırın değeriyle sıfırlanmaktadır.

Böylece parçacıklar, onlara en yakın olan en kötü parçacıktan uzaklaştırılmaktadır.

Çıkan PSO evrensel optima‟yi orjinal PSO‟den daha hızlı bulmaktadır. Bu çalışma

önerilen algoritmanın en güncel PSO‟ların arasında olan CLPSO algoritmasından

daha hızlı olduğunu ve daha kaliteli çözümler ürettiğini ortaya çıkarılmıştır.

CLPSO Algoritması, Karınca Koloni Optimizasyon ve Parçacık Sürü Optimizasyon

yöntemlerini birleştirilmektedir. Bu yöntemde, ilk önce orijinal PSO kaç nesil

uygulamkata ve kullandığı harici bellekler doldurulmaktadır. Bundan sonraki

adımda, algoritma parçacıklardan bir koloni oluşturarak, koloniden çıkan en iyi

parçacığı popülasyona enjekte etmektedir. CLPSO ve önerdiğimiz yöntem arasında

farklardan biri, CLPSO‟nun harici belleği doldurmak için seçici davranmasıdır. Bu

seçici davranış nedeniyle, CLPSO‟deki orijinal PSO‟den CLPSO algoritmasına geçiş

uzayabilir. Ayrıca bu geçişin ne kadar süreceği tamamen fonksyona bağlı olduğu

gözlemlenmiştir. Başka bir fark ise, CLPSO‟nun dahili bellek kullanmasıdır. Dahili

bellekler parçacığın kişisel deneyimlerini tutmaktadır. CLPSO‟de dahilli bellekler

randomize olmak üzere dolduruluyor ve bu de algoritmanın bazen bulduğu iyi

çözümden geri dönmesini sağlamaktadır. Bu nedenlerden dolayı, CLPSO,

önerdiğimiz yöntemden daha yavaş yakınsamakta ve bulduğu çözümlerin kalitesi

daha düşük olmaktadır.

Literatürde en iyi ve güncel optimizasyon algoritmaların arasında olan CMA-ES

algoritması de kıyaslamak amacıyla seçilmiştir. CMA-ES algoritmsaı problemdeki

parametrelerinin normal dağılımını örneklemekte ve kovaryans matrisini

hesaplamaktadır. Bu kovaryans matrisi vesilesiyle, algoritma yeni nesiller

üretmektedir. CMA-ES, gerek yakınsama hızı, gerek bulduğu çözümün kalitesi

açısından bilinen en iyi algoritmalardan biridir.

Deneyler için standart fonksyonler düşünülmüştür. Bu fonksyonler değişik

özelliklere sahipler. Deneme fonksyonlar kümesi, bazi basit fonksyonlar yanısıra,

arama uzayında plato oluşturan veya multi-modal ve multi-funnel özelliklere sahip

olan fonksyonlardan oluşmaktadır. Multi-modal özelliğe sahip olan bir fonksyon,

evrensel optimanın yanı sıra, çeşitli değerlerle bölgesel optimumler barındırmaktadır.

Multi-funnel fonksyonlar ise, multi-modal olmakla beraber, iki (veya daha fazla)

bölgede farklı bacalarda farklı bölgesel optimumlerı barındırmaktadır. Bir bölgede

arama yapan bir parçacığın diğer bölgelere geçme olasılığı bu fonksyonlarda oldukca

düşükdur. Multi-modal ve multi-funnel fonksyonlarda, evrensel optima‟yi bulmak ve

tüm parçacıkların bu optimaya yakınasamasını sağlamak zor bir problem olarak

kabul ediliyor.

Deneylerin sonucunda, CMA-ES‟in genelde PSO‟den daha iyi olmasına rağmen,

bazi durumlarda, sunulan yöntemin daha üstün bir performans sergilediği ortaya

çıkarılmıştır. Evrensel optima‟yı gösteren evrensel bir topolojinin eksik olduğu veya

fonksyonun havzasının çeker hacmı küçük olan problemlerde, sunulan algoritma

daha hızlı davrandığı gösterilmiştir.

xxi

Ayrıca, önerilen yöntem, kıyaslanan yöntemlerle birlikte, Aldebaran üretimi olan

NAO insansıl robotu üzerinde denetilmektedir. NAO robotu RoboCup

yarışmalarında, 3D benzetim ligin standart robotudur. Bu ligde Simspark yazılımı

benzetim ortamı olarak kullanılmaktadır. Benzetim ortamı gerçkcil olmakla beraber,

gerçek dünya koşullarına uyum sağlamak adına gürültü içermektedir. Benzetim

ortamında öngörülen gürültülerin tipi normal ve tekdüzedir.

Robot deneylerinde, robot için daha önce tasarlanan ve düşük kalitesi olan bir top

atışın kalitesinin artması amaçlanıyor. Tasarlanan top atışının manzili 3 metredir ve

atışıtan sonra top robotun gövdesinin x aksanından sapmaktadır. Ayrıca top atışından

sonra robot düşmektedir. Top atışını iyileştirmek için, robotun kinematic

denkelmleri kullanılmaktadır. Bu denkelmler PFS modeli ile osilatör oluşturup

harmonik bir şeklide robotu hareketini sağlamaktadır. Bu denkelmler, toplam olarak

40 parametre içeren bir fonksyon oluşturmaktadır. Ayrıca topun atıştan sonraki

robot‟dan uzaklığı ve sapma değerinden oluşan, uygunluk değeri hesaplayan bir

fonksyon tasarlanmıştır. Robot‟un atıştan sonraki düşmesi durumunda, bu uygunluk

değerine ceza uygulanarak, arama sırasında iyi atışlara neden olan ama robotun

düşmesine sebebiyet veren bireyler çözüm olarak sunulmamaktadır.

Deneylerin sonucunda, algoritmamız diğer algoritmalardan (CLPSO ve CMA-ES)

daha üstün bir başarı sergilemektedir. Top atışının menzili 6 metre olmakla beraber,

robot düşmemekte ve top gövdeden sapmamaktadır.

xxii

1

1. INTRODUCTION

The origins of Particle Swarm Optimization goes back to 1987 where Reynolds

introduced the simulation of particles similar to that of bird flocks. In this simulation

each particle or agent tries to keep a distance from too-close neighbors and steers

towards the average heading of the flock while maintains it‟s position within the

flock. Later Kennedy and Eberhart [1] introduced few parameters to this simulation

and came up with the idea of Particle Swarm Optimization. In their work, each

particle remembered it‟s best position regarding to the global optima and shared this

information with others about that best position. Figure 1.1 shows the evolution of

particles in a simple, 2D search space.

In technical words, PSO, is a population-based stochastic search in which each

particle represents a potential candidate solution to the problem. Elements of each

particle are in fact the parameters of the problem. This technique shares many

similarities with other evolutionary computing techniques like Genetic Algorithms

(GA). First the population of particles are initialized by random parameter values and

these parameter values are updated in each iteration (generation), until a stop criteria

has been met or the algorithm is converged to some optima. However, this technique

does not include special operators like mutation or crossover. In PSO the

particles”fly” over the search space by following the current optimum particles. The

ultimate purpose of any optimization algorithm is to estimate the inverse of the

Hessian matrix (approximation of the second derivative of the function) of the

function and calculate a function‟s contour map to find the global optima. However

methods like PSO (population-based methods in general) as well as our method are

independent from the gradient of the function and use “intuition” and social behavior

of the individuals to achieve the global optimum of the function.

2

(a) (b)

(c) (d)

(e) (f)

1.1 Research Motivations

Based on the observations achieved from the application of evolutionary algorithms

on robot motion, one can say that sometimes, while producing new individuals,

which represent a solution for the problem under optimization, a certain portion of

the individual is close to that of the optimal solution. Only a few parameters inside

the current individual are diverse and far from being a part of the optimum solution.

Figure 1.1 : The evolution of particles through search space

3

Although the number of these parameters may be small, the effect of it may turn the

performance of the individual close to that of the worst case.Considering a landscape

in which we have many minima and maxima points, one can also say that, while

updating the position of the individual, keeping it far away from the maxima (in a

minimization problem) will increase the speed of the convergence to the optima.

However, this alone might not help since there are problems for which both minima

and maxima are in close neighborhood or when there are many local minima. Then

we need to equip the optimization algorithm with the ability to escape from the

maxima and move towards the minima even when the minima are close to both the

current position of the particle and the maxima.Some algorithms consider a

combination of multiple algorithms to achieve this goal. Re-injecting the best

solution found so far, to the population of solutions or applying genetical operators

such as mutation or crossovers (partially exchanging the variabla vector of the

current solution with the variable vector of the best-known solution) are few

examples. In this work however, we consider to deduce information from the best

available solutions in order to guide particles through the search space. The expected

result is to reduce the number of iterations and function evaluations and find a better

solution in a reasonably shorter time.

1.2 Contributions

A novel algorithm along with its parameter setting scheme in which finds the global

minimum of a function in reasonable evaluation counts (less than that of the original

PSO and the latest improvement on PSO) is presented in this thesis. The resulting

algorithms converges faster and is a good means for application which have time

constraints.

4

5

2. PARTICLE SWARM OPTIMIZATION

2.1 Problem Formulation

The goal of any optimization problem is to maximize or minimize an objective

function ⃗ where ⃗ is the decision vector consisting of n dimensions or decision

variables consisting of real numbers. Since maximization of any function ⃗ is

equivalent to minimization of ⃗ , the literature generally focuses on

minimization without loss of generality. Solution ⃗⃗⃗⃗⃗ is a global minimizer of ⃗ if

and only if (⃗⃗⃗⃗⃗) ⃗ for all x in the domain of ⃗ . The unconstrained

minimization problem of consideration here can be formulated as.

 Minimize ⃗

 where :

2.2 Evolution of The Particle Swarm Optimization Algorithm

2.2.1 The original particle swarm optimization

Particle Swarm Optimization (PSO) is a nature inspired meta-heuristic method. This

method was first introduced by Kennedy and Eberhart in 1995 [1]. It is inspired by

the swarm behavior of birds flocking, and utilizes this behavior to guide the particles

to search for globally optimal solutions. Basically, in PSO, a population of particles

is spread randomly throughout the search space. The particles are assumed to be

flying in the search space. The velocity and position of each particle is updated

iteratively based on personal and social experiences. Each particle possesses a local

memory in which the best so far achieved experience is stored. Also a global

6

memory keeps the best solution found so far. The sizes of both memories are

restricted to one. The local memory represents the personal experience of the particle

and the global memory represents the social experience of the swarm. The balance

between the effect of the personal and social experiences are maintained using

randomized correction coefficients. The philosophy behind the update procedure is to

reduce the distance between the particle and the best personal and social known

locations. PSO is very easy to implement and there have been many successful

implementations based on PSO in several real world applications. PSO is a

population based approach in which finding the optimal solution is not guaranteed.

Also, it can get stuck in local optima when dealing with complex multi modal

functions. This is why accelerating the convergence speed as well as avoiding the

local optima problem are two primary goals in PSO research. Multiple methods and

approaches have been suggested to improve the performance of the original PSO in

terms of these goals. In [2], these efforts have been divided into four categories. The

first category includes the parameter selection methods. Introducing the inertia and

constriction factors into the basic velocity expression or developing strategies for

time independent variation of algorithm parameters are among the many

methodologies in this category. The method presented in this paper fits best within

this category. Other categories pointed in [2] are Applications of PSO into different

problems areas (second category), Generation of different algorithm strategies and

analysis of convergence (third category) and finally Hybridization (Fourth category).

Although, the novel approach presented in this paper focuses on parameter

selection, it also tries to generate a different strategy and attempts to reduce the

iteration count. This is why, this work can also be included in the third category. In

the basic PSO, each particle is considered as a potential solution to the numerical

optimization problem in a D dimensional space. Every particle has a position in this

search space and a velocity assigned to it. The position of the particle is represented

by . The velocity of a particle is given as .

Also, each particle has a local memory (pBest) which keeps the best position that is

experienced by the particle so far. A globally shared memory (gBest) keeps the best

global position found so far. These information contribute to the flying velocity of

each particle, using the following equation :

 (2.1)

7

The position update is then as:

 (2.2)

where, and are positive constants determining the relative influence of the

personal and social experiences during the search. Defining an upper bound for the

velocity component increases the performance of the approach

2.2.2 Inertia

In [3], it has been shown that the introduction of an inertia factor to the Eq.(2.1)

improves performance, since it adjusts the velocity over time and improves the

search precision of the particles. Eq.(2.1) can be rewritten as:

 (2.3)

where ω is the inertia factor. The inertia weight ω is employed to control the impact

of the previous history of velocities on the current velocity, thus to influence the

trade-off between global (wide-ranging) and local (nearby) exploration abilities of

the "flying points". A larger inertia weight ω facilitates global exploration (searching

new areas) while a smaller inertia weight tends to facilitate local exploration to fine-

tune the current search area. Suitable selection of the inertia weight ω can provide a

balance between global and local exploration abilities and thus require less iterations

on average to find the optimum. In this thesis a new inertia scheme is introduced for

the first time in which the inertia is considered to be changing linearly between a

lower and upper bound (starting from upper bound) and it is being periodically

restarted to it‟s upper bound whenever it reaches to the value of of the lower bound.

It has been shown that restarting has a tremendous effect on the performance of the

algorithm.

2.2.3 Constriction factor

Clerc[4] introduced a constriction factor K for more efficient control and

constraining of velocities. Then Eq.(2.1) was modified as:

 () (2.4)

where K can be expressed as:

8

| √ |
 (2.5)

here, . In [5] Eberhart concludes that constriction factors has a

far better impact on convergence and it‟s speed.

2.2.4 Particle velocity

According to [2] success of inertia and constriction factor equations are problem

dependent. This is why, in this thesis both equations have been used and the best out

coming result has been presented. This is to say that algorithms with which the

functions are optimized with and compared are tested in a limited and small number

of times using each of the equations (2.4) and (2.3) for each function under

optimization and the best responding equation is chosen for that. This is equivalent to

chosing the best step size and velocity for particles for a specific problem.

9

3. MEMORY BASED PARTICLE SWARM OPTIMIZATION

3.1 Local Optima and Convergence Speed in Standard Particle Swarm

Optimization

The convergence speed of PSO in it‟s original form is fast, however, the main

problem of the PSO is that it sometimes gets trapped in local optima and the

convergence speed rate decreases considerably in later period of evolution. When the

algorithm reaches near global optima the algorithm stops optimizing and thus the

accuracy the algorithm can achieve is limited. Many approaches have been

introduced to overcome this problem. Among them, linearly decreasing the inertia

weight, randomizing the inertia weight, utilizing external memory and etc. Since

external memory is employed in this thesis we will focus on the methods where this

approach has been applied.

3.2 Utilizing Internal and External Memory

Memory based PSO proposals are mainly concentrated on various methods, by

which the local and global best positions are selected and used. The work of

CoelloCoello et al. [5] is one of the first in this respect. In this work, the global best

is determined by selection of a non-dominant solution from the external memory.

Local best is updated with respect to the Pareto dominance. Hu et al. [6] extended

their work using dynamic neighborhoods and employed an external memory to

memorize all potential Pareto optimal solutions. In their work the global best is

selected among the candidates within the external memory by defining a

neighborhood objective and an optimization objective. The global best is found

among the particles neighbors, subject to the defined neighborhood objective.One

other attempt to employ additional memory in PSO is the work of Wang [7]. In this

10

method, The Triggered Memory-Based PSO, they try to adjust the parameters of the

PSO in dynamic environments where the characteristics of the search space change

over time. However, this method is novel and successful in terms of presenting the

effects of utilizing additional memory into PSO. In their work a certain, predefined

number of globally best positions, are kept and re-injected into the search population

when necessary. This method is particularly successful when the location of the

optima change over time. One other successful work which utilizes external memory

is the work of Acan [8]. In their work a single globally best position is kept along

with a certain number of globally worst positions. A crossover operator is used to

replace a randomly chosen set of particles after each iteration. Yet in another work,

Acan [2] introduced a hybrid method where there is a global memory and also a local

memory for each particle. A colony, consisting of the local and global positions is

then constructed and at each evaluation, members of these colonies are used to

update the velocity and position of the particle in process. Then the new positions are

evaluated and the best outcome, replaces the particle‟s current velocity. There are

many approaches, both employing additional memory and/or hybridization or other

techniques, for which additional information can be found in [2,9]. However, the

main idea in almost all of these memory utilizing approaches is to re-inject the

globally best position into the population during the search. In our study, however,

the main idea is to deduce information from the contents of the external memory in

order to affect the velocity of the particles towards the global optima.

11

4. THE PROPOSED ALGORITHM

4.1 Motivation For A New Memory Based Particle Swarm Optimization

The resulting algorithm is supposed to find the optimum parameters of a kick action

for a soccer playing humanoid robot in simulation environment. Although the tests

are conducted on simulator, and since each experiment takes approximately 11

seconds to complete, there is a need for a faster algorithm which finds the optimum

values of robot‟s joint oscillators for the kick action in less evaluation counts. This is

why in this thesis we focus on finding an algorithm which is optimizing the target

function in a reasonably shorter time. As shown in the test results, even the most

recent version of memory utilizing PSO is slower than the algorithm presented in this

thesis. Also comparative tests has been conducted on one the best known algorithms

and it is shown by experiments that our algorithm performs better than the forth

mentioned algorithm (CMA-ES) under certain circumstances. These circumstances

include noisy test environments which are not rare and one can assume it as the

normal nature of any robot experiment.

4.2 The Design of The Proposed Algorithm

In this thesis we propose an algorithm, with which the particles, are guided far away

from the closest worst location by correcting their position to the location at which

the particle is supposed to be, prior to updating its position. In order to do this, we

construct two lists of the so far found global best and global worst positions. Each of

the two lists are in fact, two separate external memories of the PSO. Before updating

the velocity of the particles, we scan the external memory which keeps the best

positions and determine the best location inside the external memory which is closest

to the particle. Let's call this closest best position CB. Again we scan the external

12

memory which keeps the global worst positions and in a similar way, we find the

global worst position which is closest to the particle. We call this position CW. In

our experiments Euclidean distances are used. However, any other distance measure

may also be used for this purpose. After choosing the closest best and worst elements

of the two external memories with respect to the particle, we measure the similarity

of the particle with each of these elements, using the two parameters CB and CW:

√∑

 (4.1)

√∑

 (4.2)

Here and are the upper and lower bounds for the values that the particle can

take in each dimension. In our experiments this value range has been considered to

be equal for all dimensions. Equation (4.1) measures the amount of similarity

between the closest best and the particle. Equation (4.2) measures the similarity

between the closest worst and the particle. The position correction coefficient can be

defined as in follow:

| |

 (4.3)

Here . We now are able to present our algorithm as follows. First, as

mentioned earlier, we define two external memories: one contains a certain fixed

number of global best positions and the other one contains a certain fixed number of

global worst positions. The sizes of these two external memories are not necessarily

equal. Before utilizing these memories in our approach, we have to initialize them

properly. In order to do this, we run the basic PSO until the iteration count is equal to

the maximum of the two external memory sizes. At each iteration, we insert the

global best and worst positions into the corresponding external memories. This way,

the external memories are initialized. After initialization, we now are able to

calculate the C coefficient in equation (4.3). In other words, after each evaluation of

all the particles, we refresh the external memory contents, and based on the

information available in the external memories we calculate the necessary

13

coefficient. However, there is a special method with which we use this coefficient.

According to a particular probability, we either use the basic equation or the

following equations which are the modified forms of equations (2.3) and (2.4)

respectively:

 (4.4)

 () (4.5)

In equations (4.4) and (4.5), we add the current velocity of the particle with the

coefficient, in order to move the particle away from the worst position towards the

global best. When we use equation (4.4) for velocity update, based on observations,

we can say that decreasing the inertia factor linearly, will decrease the effect of the

coefficient and yield early convergence. Decreasing the inertia factor means that

during this period we increase the importance of the social and cognitive factors, and

pay less attention to the actual velocity of the particle. In cases where the particle is

stuck in local optima, using a linearly decreasing inertia leaves the particle with a

velocity less than the amount that the particle requires to escape those optima. This is

why we have tried to decrease the inertia value linearly until a certain threshold is

reached. At such a point, the inertia is reset to its initial value. Here we have defined

a lower bound and an initial value for the inertia. In order to achieve diversification,

some randomness is added in the upper bound, lower bound and decreasing factor.

Since this algorithm is based on the distance of the particle to its globally closest best

and globally closest worst, we refer to it as CBCW PSO from here on. Figure 4.1

shows the pseudo-code of the algorithm.

As mentioned earlier this algorithm has the effect that it guides the particles away

from the closest worst towards the direction of the optima. This is due to the fact that

without applying the C coefficient in equations (4.4) and (4.5), the particle heads in

a direction which is a direction between the direction of local best and that of the

global best (depending on the value of and variables). C coefficient is realtive

to the distance difference between the closest best and worst and the closest best is

not any worse than particle‟s local best. So, without applying the coefficient the

particle already moves away from the closest worst. Applying the coefficient will

add to the speed without changing the direction of the particle. Thus when particle is

14

closer to a worst position than it‟s best position, the C coefficient will be higher and

the speed of the particle towards the local and global best will be higher. This is

illustrated in Figure 4.2.

Initialize the particles uniformly in acceptable range and velocities to zero

Define external memory for best positions (bests) . Initialize it to zeros

Define external memory for worst positions (worsts). Initialize it to zeros

while a certain number of iterations is reached or converged do

for each particle do

if particle position at each dimension exceeds its acceptable range

 = random from range

val = evaluate particle

update the local best

replace the worst in bests array with gbest

replace the best in worsts array with gworst

if iteration count > max(size(bests), size(worsts))

for each particle

CB = closest best to particle

CW = closest worst to particle

Calculate and according to equation (4.1) and (4.2)

calculateC according to equation (4.3)

for each dimension

with probability p

update the position like the basic PSO in equation (2.3) or (2.4)

otherwise

update the position like equation (4.4) or (4.5)

if 𝜃 ≥ 𝑙𝑜𝑤 𝑏𝑜𝑢 + 𝜀

𝜃 = 𝜃 − Δ𝜃 − 𝜀

else

𝜃 = 𝑢 𝑏𝑜𝑢 – 𝜀

end

Figure 4.1 : Pseudo-code of CBCW-PSO algorithm

when C coefficient is not used

when C coefficient is used

Directions given by basic PSO equation

Figure 4.2 : The effect of the C coefficient in equations (4.4) and (4.5)

15

5. PROBLEMS AND COMPARED ALGORITHMS

Tests are performed in two platforms. In one platform, the new algorithm as well as

CLPSO and CMA-ES algorithms are tested and evaluated on standard benchmark

functions. The global minimum of these functions are known and properties of each

function is described in [7]. Knowing these properties helps us to understand the

weaknesses and strengths of our algorithm comparing with other algorithms.

However, the ultimate purpose is to apply our new algorithm on a Humanoid Robot

(Aldebaran NAO) and develop a Kick action for a soccer-playing robot. Also in this

platform, all the three algorithms are employed for optimizing an available kick

action and the results are compared with each other. Thus, we have two platforms for

our tests. The former is the standard benchmark functions platform and the latter is

humanoid robot platform. The subsequent sections describe each platform in detail.

5.1 Optimization Problems

5.1.1 Benchmark optimization functions

Two rounds of experiments has been conducted on benchmark functions. In the first

round, as will be described later, only CBCW-PSO and CLPSO are being compared

to one another. The purpose is to understand the basic behaviour of the proposed

algorithm when a wide range of functions (simple, uni-modal, multi-modal and hard-

to-solve functions) is considered. In the second round of experiments more attention

is paid to more complicated functions where the benchmark functions are chosen to

be hybrid, highly multi-modal and/or multi-funnel. All the benchmark problems are

adopted from [6], [7] and [8]. The functions used in the first round of experiments

are shown in Table 5.1 and the results are discussed further in [13]. The majority of

these functions are adopted from 2005 IEEE Congress on Evolutionary Computing

(CEC 2005). The benchmark functions provided by the conference are standard

16

functions and algorithms are being tested and compared to each other, using these

benchmark functions.

Benchmark Problems Min Range

 ⃗ ∑

0

 ⃗ ∑ ∑

0

 ⃗ ∑ | |

 ∏

0

 ⃗ ∑ (⌊

⌋)

0

 ⃗ ∑ |
 |

0

 ⃗ (∑

) [[

0

 ⃗ ∑

0

 ⃗ ∑ (
)

0

 ⃗ ∑ √| |

-12569.5

 ⃗ ∑

0

 ⃗

(∑

) (∏ (

√
)

)

0

 ⃗ (√

∑

) (

 𝑜)

0 -

 ⃗ ∑(∑ (𝑏)

) ∑ 𝑏

0

 ⃗

1.0316

 ⃗ (

)

 (

)

0.398

 ⃗
 √

0

In the second round of experiments, in addition to more multi-modal and multi-

funnel functions, hybrid functions are also employed. The reason is that they inherit

various properties with different optimization considerations from their consisting

components and expose each algorithm to a hard-to-solve problem. As an example

function in table 5.2 is consisted of a sphere function with two plateaues, a

Weierstrass function which guarantees a huge number of local optima and continuity

with the exception of being differentiable only on a set of points, Griewank and

Ackley function to make sure that there are local minima at the boundaries and a

Rastrigin function to make sure that this already hard-to-solve function shapes the

global minimum and that the hybrid function is separable near this global minima.

Table 5.1 : Benchmark functions for preliminary experiments

17

The list of the chosen test functions and some of their characteristics can be seen in

Table5.2.

Function is the Shifted rotated Griewank function which is non-separable, scalable

and multimodal. Function is the shifted rotated Ackley‟s function with global

minima on the boundary. It is multi-modal and non-separable. Functions and

are two different versions of the Rastrigin function in which the former shifted and

the latter is both shifted and rotated, both are based on the function of De Jong with

the addition of cosine modulation in order to produce frequent local optima. This

function is highly multimodal, however the location of local minima are regularly

distributed. Function is the shifted rotated Weierstrass and as noted before is

Continuous but differentiable only at a set of points. This function is both highly

multi-modal and multi-funnel. The concept of multi-funnel functions and teir

characteristics are covered in section 5.2.2.2. Function is consisted of Griewank

and Rosenbrock‟s functions. It is multi-modal, multi-funnel and non-separable. This

function is a hybrid function. Function is the shifted rotated version of Scaffer‟s

functionand is multi-modal. Finally function , which was discussed earlier, is a

hybrid multi-funnel and highly multi-modal function.

5.1.2 Humanoid robot , the kick problem

5.1.2.1 Introducing the robot

Aldebaran Nao robot model in Simspark simulation environment has been used for

experiments. Simspark is the official simulator for RoboCup competitions and uses

ODE (Open Dynamics Engine) for physics simulation [9]. Physical rules along with

physical interactions with the environmen (collision, friction, gravity and etc.) have

been modeled in the simulator. The main difference with the real world is the fact

that robot‟s servo motors are somehow ideal comparing with the real ones. This only

affects the motion speed and the parameters found by this (or any) optimization

method could be used in the real world.

18

Benchmark Problems Biased

Min

Range

 𝑢 𝑜 ∑

0

 𝑜 𝑏 𝑜 𝑢 𝑜 ∑

0

 ⃗

(∑

) (∏ (

√
)

)

-180

 ⃗ (√

∑

) (

 𝑜)

-140 -

 ⃗ ∑

-330

 ⃗ ∑

-330

 ⃗ ∑(∑ (𝑏)

) ∑ 𝑏

90

 ⃗ 𝑏 𝑜 𝑜 -130

 ⃗ (
((√))

()
)

-300

 ⃗ 𝑜 𝑜 𝑜 𝑏 𝑜 𝑜 𝑜 𝑜 120

The robot‟s vision system is equipped with a camera installed at the torso of the

robot. In the simulation environment, the robot actually does not perform any

image processing or 3D vision computing. Instead, the seen objects are reported to

the robot from the simulation server. These objects are reported by their polar

coordinates . This includes the relative distance, horizontal and vertical angles of the

object with respect to the robot. The distance is in meters and the angles are in

radians.

According to [9] two types of intentional noise are added to the vision system to keep

the environment realistic. There is a static calibration error for the camera position in

each axis. This noise is of uniform type and is distributed between -0.005m and

0.005m. This error is calculated once and stays the same for the entire match. A

dynamic noise is employed for the percepted objects. This noise has a zero mean

Gaussian distribution and is measured as:

- For Polar Distance

Table 5.2 : Benchmark Functions for the second round of experiments.

19

- For Horizontal Angle

- For Vertical Angle

As for Nao robot, it has 22 degrees of freedom of which only 14 have been used in

the kick motion model. The height of the robot is 57 cm and its weight is 4.3 kg.

Since the simulated Nao robot is a realistic representation of the Nao humanoid

robot, its joint structure is the same with the real one.

5.1.2.2 Formulating the kick action as an optimization problem

The kick motion can be modeled by a smoothed rolling polygonal shape and a non-

periodic function accordingly. A preliminary design has been made for the kick

action. The parameters however are not optimum and need to be optimized. The

purpose of the kick action is to shoot the ball as far and as straight as possible. The

available kick action has a range of 3 meters. In order to analyze the kick behaviour

easier, the action has been separated into four phases.

(a)

(c) (b)

Figure 5.1 : Aldebaran NAO (a)Simulation. (b)Real Robot. (c)Joint Structure

20

- Expansion Phase: In which the kicking leg is raised above the ground

without relocating the Center of Mass (COM). At the same time the

support leg is moved such that the torso makes an inclination outwards

while the ankle makes an inward inclination in order to compensate the

absense of the kicking leg on the ground.

- Preparation Phase: In which the kicking leg is moved backward in order

to achieve energy for the kicking phase. The support leg continues the

action it performed in the previous phase.

- Execution Phase: In which the kicking leg actually performs the kick and

moves towards the ball. In this phase the support leg makes a reverse

inclination comapring to the first two phases.

- Wrap-around Phase: In which the legs are returned to their initial position

which is the standing position.

The motion of each joint is considered to be pandulum around a certain offset with

an amplitude, special to each joint and each phase. This is mathematically presented

in the following equation:

 ∑

 (5.1)

Where C is the offset of the joint, N is the number of frequencies, is the

amplitude, T the period, t the time for each phase and finally is the phase shift.

One can think of equation (5.1) as a function of multiple frequencies and decompose

it using Partial Fourier Transform (PFS) into it‟s components. Each component

represents a joint. An example of a joint‟s motion equation in a certain moment can

then achieved by using the set of equations in (5.2) applied to the respective joints.

There is an oscillation equation for each joint and it includes the joints in right and

left legs. In most of robot motion models however, one leg is considered to be the

support leg and the other leg, the swinging leg. In non-periodic motions (including

the kick action which is the motion of ineterst in this thesis) the optimum value of the

left leg joints and corresponding right leg joints are considered separately. What we

are trying to find is the optimum value for in equation set

(5.2) with which the robot kicks best. It also has to be mentioned thaht only

21

execution pahse has been considered for optimization. The parameters of the

oscillators of other kick phases are considered to be fixed.

 (

) (

)

 (

) (

)

 (

) (

) (5.2)

 (

) (

)

 (

) (

)

 (

) (

)

 However there is a parameter which has a global effect on the motion

performance. In order to send the new angles calculated in equation (5.2) to the

servos, the following equation has been used:

 (𝜃 𝜃) (5.3)

Where 𝜃 is the angular value of the joint. Here, the Speed value is global in the sense

that it is considered to be a constant for all the phases. However the , 𝑙

and joints of the kicking leg have their own angular speed values. In other

words, the Speed, together with the angular speed of the the , 𝑙 and

 joints of the kicking leg are also subjected to optimization. To achieve the

maximum kick range, one has to raise the ball above the ground right before kicking

in order to reduce the friction between the ball and the ground. To do this the ankle

of the robot has to pitch upwards in a very specific moment in the execution phase

(here by ankle we refer to 𝑙 which is a pitch joint). This is why we have

considered this specific time as a parameter subjected to optimization. This

parameter is symbolized by w . So in general, we want to achieve the optimum

value of the following variables in order to perform an optimum kick:

 - : The amplitudes of the oscillators of the kicking leg.

- : The offsets of the oscillators of the kicking leg.

22

- : The phase shift of the oscillators of the kicking leg.

- : The motion period.

- Speed: Consists of four angular speed variables. One for the general

angular speed of the joints during all the kick phases. And three angular

speed variables for , 𝑙 and joints of the kicking leg at

the execution phase.

- w: The time at which the 𝑙 of the kicking leg raises in order to lift

the ball and reduce the friction in the execution phase.

5.1.2.3 Designing the fitness function

The fitness function is rather simple. What we expect from the kick action is to kick

the ball as far as it can and as straight as possible without falling down. So literally

the fitness function can be calculated as:

| |

 (5.4)

Where is the maximum ball distance within 4.25 seconds after starting the

kick action and is the angle of the ball with respect to the robot at the end of each

evaluation. Each parameter in the above equation is normalized with respect to its

maximum achievable value. A penalty value of 0.2 has been considered and added to

the fitness value if the robot falls during the evaluation of the individuals.

5.2 Compared Algorithms

5.2.1 Comprehensive learning particle swarm optimization algorithm

5.2.1.1 Comprehensive learning particle swarm optimization, an introduction

CLPSO was introduced by Acan[2]. The algorithm employs externally implemented

global (shared) and particle-based (local) memories and a colonization approach

similar to artificial immune system algorithms is considered. At any iteration,

23

particle-based memories keep a number of previously best performing personal

positions for each particle and the global memory keeps a number of globally best

positions found so far. A set of velocities is computed for each particle using each of

the personal best positions within its local memory and a number of randomly

selected positions from the global memory. This way, a colony of new positions is

obtained for each particle and the one with the best fitness is selected and put within

the new swarm. Global and local memories are also updated using the solutions

within each colony.

5.2.1.2 Advantages and disadvantages

Given enough evaluation counts as the maximum number of evaluation that the

algorithm can actually perform, CLPSO is an algorithm with good optimization

quality. However according to [13] The algorithm suffers from few drawbacks.

Randomness has been considered to fill and update the local memory. As a result, the

algorithm sometimes replaces a better solution with a worse and may divert from a

globally good solution to a worse solution and hence the best fitness does not show a

monotonicaly decreasing descent. This restarting from a worse solution also causes

the algorithm to require more iterations comparing with CBCW-PSO. One other

problem is that this method is based on reinjection of the best particle among the

individuals inside the colony into the population. This reduces the convergence speed

since the algorithm needs individuals (in the memories) which enables it to move in

the direction of the global minimum. Finding this kind of individuals is time

consuming and in fact it is all the optimization task is about. Finally, CLPSO, in it‟s

initialization phase only performs the original PSO to fill its local and external

memories with “promising” individuals [2]. Not only this takes time but also the

“prmising” constraint sometimes causes the algorithm to perform many iterations on

the function using only original PSO. As a result, when there is a maximum number

of evaluations constraint, sometimes the algorithm reaches that maximum evaluation

counts even without actually getting out of the initialization phase.

24

5.2.2 Covariance matrix adaptation evolutionary strategies

5.2.2.1 Covariance matrix adaptation evolutionary strategies, an introduction

CMA-ES stands for Covariance Matrix Adaptation Evolutionary Strategy. The

CMA-ES is a stochastic method for real-parameter (continuous domain) optimization

of non-linear, non-convex functions. As mentioned in the introduction approximating

the second derivative or Hessian information of the function under optimization, one

can infer the rate of descent and construct a Taylor polynomial. This polynomial

could then be used as a contour map. This is the basic idea behind Newton‟s method

in function optimization where the inverse of the Hessian matrix is the solution of the

system. CMA-ES in it‟s purest form tries to estimate the inverse of the Hessian

matrix through covariance matrix adaptation. In the CMA Evolution Strategy, a

population of new search points (individuals, offspring) is generated by sampling a

multivariate normal distribution. The basic equation for sampling the search points,

for generation number , reads:

 () 𝑜 (5.5)

 () is a multivariate normal distribution with zero mean and covariance

matrix .

 is the k-th offspring from generation .
 is

the mean value of the search distribution at generation g.

 is the overall

standard deviation or step size, at generation g.
 is the covariance matrix

at generation g. is the covariance matrix of the search distribution. is the

population size (sample size or number of offsprings). At each iteration, new

offsprings are being produced according to the following parameter update in

equations (5.6) and (5.7):

 〈 〉 𝑤 〈 〉 ∑

 (5.6)

Where (
) and means the first best individuals achieved from

equation (5.1). Also:

25

∑

〈 〉〈 〉
 (5.7)

Here
 ⁄ . is the learning rate of the algorithm. Iterating the steps

(producing new offsprings using equation (5.5) and then updating the mean and

covariance matrix according to equations (5.6) and (5.7)) will result in adaptation of

the covariance matrix into the inverse of the Hessian matrix. Various stopping

conditions could be considered for the algorithm of which few are Stopping when

maximum iteration counts reached or when the algorithm is experiencing stagnation.

5.2.2.2 Advantages and disadvantages

CMA-ES is a very strong algorithm with state-of-the-art converging speed and

optimization quality. As shown in the section 5.3.3 the algorithm outperforms both

CBCW-PSO and CLPSO for many of the benchmark functions. But accroding to the

“No Free Lunch Theorem”, there is no algorithm that optimizes all the functions.

Every algorithm has it‟s own weaknesses. According to [10], [11] and [12], though

CMA-ES is a very strong algorithms in terms of convergence speed and optimization

quality, it sometimes suffers from some drawbacks. As an example, CMA-ES

experiences difficulties to solve the problems in which the atractor volume of the

global optimum is small and an overall topology pointing to the global optimum is

missing. This is mainly a concern when the function under optimization is non-

separable. In [12] it has been shown that, in multi-funnel functions, where local

optima can not be interpreted as perturbations to an underlying convex (unimodal)

topology, the performance of the CMA-ES algorithm decreases. An example of a

multi-funnel function is shown in Figure 5.2. As shown in the Figure 5.2, the

function contains two funnels where the gray ridge seprates funnel 1 (left) from

funnel 2 (right). Funnel 1 consists of global minimum as well as multiple local

minima. Also several local minima are spread across the funnel 2. Funnel 2 is a

broad funnel and any heuristic can be trapped in funnel 2. This topology is

considered to be a hard one for optimization algorithms.

26

Figure 5.2 : Adapted from [11], a 2D multi-funnel function.

27

6. TEST AND COMPARISONS

6.1 Experimental Settings

As mentioned earlier, two rounds of experiments has been conducted. The

experimental setting for both round of settings are identical unless otherwise is

stated.

Each experiment consists of 50 runs. In the first round of experiments, the maximum

number of evaluation counts is set to 40000 for both algorithms (CBCW-PSO and

CLPSO). In the second round of experiments however, Since the number of

evaluations in CMA-ES algorithm is not fixed and the stopping criteria of CL PSO

and CBCW-PSO algorithms is to reach a certain evaluation count, we first conducted

the tests using CMA-ES and measured the number of evaluation in each experiment

for 50 runs and then set the maximum number of evaluations in CLPSO and CBCW-

PSO algorithms to the maximum number of evaluations in CMA-ES algorithm for

the corresponding experiment.

Since the environment under which the robot performance is evaluated is noisy, we

also consider the effect of noise on benchmark functions to have an idea about the

effect of noise (both uniform and Gaussian) on the robot experiments. This is why

three separate experiments has been considered for each algorithm-benchmark

function pair: (1) when the fitness value of the function has no noise (2) when the

fitness value of the function has uniform noise and (3) when the function is

considered to have Gaussian noise in fitness value.

The size of the external memory for best and worst global positions is 2 and 4

respectively. This is according to [13] where the best results are achieved. Also the

sizes of local and external memories in CLPSO is set to 4 and 5 respectively, since

28

the best results for this algorithm in the literature have been achieved using these

settings. The swarm size in all the experiments is constant and set to be equal to 30

which is the dimension of the functions. The algorithm settings for which the

experiments have been done are as follows: 𝜃 𝜀 𝑙𝑜𝑤 𝑏𝑜𝑢

 𝑢 𝑏𝑜𝑢 The upper and lower bound of θ as well as ∆θ are

randomized with a small number, ε. The value of ε has been chosen to be smaller

than the value of ∆θ to prevent θ from exceeding its boundaries. Choosing a small

value for ε also makes sure that θ‟s value maintains a smooth and slow motion

between its boundaries as if ∆θ where not randomized. The value for ∆θ is chosen

such that it shows a decrement rate close to that of [2] for the sake of comparison.

The upper bound value is used as suggested in several publications and its validity

has been verified in our experiments. The lower bound, however, is experimentally

tuned to the value with which the best results are achieved.

Each experiment on the robot consists of 5 runs and has the following settings.

Before each evaluation, the robot is beamed at the center of the field (coordinates

X=0 , Y=0) and the head‟s roll joint „he1‟ in Figure 5.1, is set to 0 degrees and the

head‟s pitch joint, „he2‟ is set to the inverse (negative) value of the ball‟s vertical

angle. This way, after the initialization the robot has a guaranteed visual of the ball.

The time for each evaluation for all the algorithms is equal and is set to 11 seconds.

After this initiation phase, there is one second waiting to make sure that everything is

loaded and the robot will start the simulation normally without extreme system load.

At this moment the simulator enters the kick-off phase where the robot will be able

to move the joints. All the mentioned procedures has a duration of 2.5 seconds. This

is where the robot starts to perform the kick action and it enters the Execution phase

in the 3rd second of the game. No matter if the kick action is successful (the robot‟s

leg hits the ball) or not, the robot‟s head is fixed on the ball during the experiment.

The purpose is to determine a good quality fitness value, based on the distance of the

ball to the robot. It has to be mentioned that if the robot falls (no matter if it sees the

ball after falling or not), the last distance value, recorded when the robot was

standing will be considered by the fitness evaluation.This is necessary due to the fact

that if the robot falls backward, it still may be able to see the ball, however in this

case, the distance between the robot and the ball will increase proportional to the

29

length of the robot (57.5 cm). This, in turn, will decrese the fitness value of equation

(5.4), and the algorithm(s) may converge in favour of the individuals which result in

falling of the robot backward. This is certainly not desirable. The same rule is

accounted for the ball angle with respect to the robot, say, the last ball angle value

for which the robot had a stable kinematic state (a no-fall state) is considered for the

fitness evaluation. The stop criteria is set to maximum evaluation counts which is set

to be 8000. The test platform is an 8 core (3.2 GHz) system running on Ubuntu 10.04

with 4 GB RAM.

6.2 Analysis of Parameter Settings

The value of the probability p has a direct effect on the convergence speed of the

algorithm. The lower this value is, the more the algorithm switches to equations (4.4)

or (4.5). This adds an extra amount to the velocity of the particle in the direction of

the global best position. But there is a trade-off. Frequently using the extra velocity

for a long time, results in convergence in a wrong direction. This is due to the fact

that local optimum may be scattered and far from each other but at a relatively equal

distance with respect to the particle. This is why an amount above 0.5 has been

considered for the probability. However, our experiments show that setting the

probability p proportional to 1-θ, increases the convergence speed, since, binding the

p to the value of θ, which is a randomized value, provides more diversification.

Replacing the linearly decreasing inertia in equation (4.5) with θ , which is subject to

multiple restarts, also shows to be a very influencing factor on convergence speed.

This is the methodology of choice in our experiments.

One can easily show through experiments that eliminating one the parameters

introduced in CBCW-PSO decreases the performance of the algorithm. This is to say

that if we reject using the coefficient C and instead employ only the inertia restart, or

vice versa the performance will decrease. Though one can replave the probability p

to a constant positive less than 1 instead of changing it dynamically with the

complement value of inertia. For some functions it does not affect the performance

but for some other functions it will dramatically decrease the performance. Also

30

lower and upper bounds have a huge effect on the performance and thus cannot be

eliminated.

6.3 Experimental Results on Benchmark Functions

A preliminary set of experiments has been conducted on CBCW-PSO and CLPSO on

some of the benchmark functions in [6],[7] and [8]. The benchmark functions along

with some of their properties are shown in Table 5.1. The goal is to compare the

convergence speed of CBCW-PSO and that of CLPSO. The results are shown in

Table 6.1. As can be seen in the table, CBCW-PSO outperforms CLPSO in terms of

solution quality. The results of the employed t-test show the cases where CBCW-

PSO is statistically significant than CLPSO. In the last column, S+ means that

CBCW-PSO is statistically significant comparing to CLPSO and S means that none

of the two methods are statistically significant. However, considering the

convergence speed as a criteria, the minimum evaluation count in which each

algorithm finds the optima (first-hit) is also measured in the experiments. The results

are shown in Table 6.2. Again here S+ means that CBCW-PSO is statistically

significant than CLPSO and S means that none of the two methods are statistically

significant. Achieving the satisfactory results in the preliminary experiments, we ran

another round of tests and included CMA-ES algorithm in comparisons. In this new

round of comparative tests, as shown in Table 5.2, special attention has been paid to

more complicated benchmark functions .

Functions Dim CLPSO CBCW-PSO t-test

Min Max Avg Min Max Avg

 ⃗ 30 0 0 0 0 0 0 S

 ⃗ 30 0 0 0 0 0 0 S

 ⃗ 30 0 0 0 0 0 0 S

 ⃗ 30 0 0 0 0 0 0 S

 ⃗ 30 0 0 0 0 0 0 S

 ⃗ 30 0 0 0 0 0 0 S

 ⃗ 30 0 0 0 0 0 0 S

 ⃗ 30 0.033 7.93 3.899 0.001 4.001 0.911 S+

 ⃗ 30 -12451 -11622 -12107.5 -12569.5 -12332 -12438 S+

 ⃗ 30 48.915 237.94 173.8 0 1.989 0.994 S+

 ⃗ 30 0 0.11 0.042 0 0.041 0.012 S+

 ⃗ 30 2.2209 5.22 3.318 0 0 0 S+

 ⃗ 30 2.7555 7.19 5.922 0 1.57 0.15 S+

 ⃗ 2 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 S

 ⃗ 2 0.398 0.398 0.398 0.398 0.398 0.398 S

 ⃗ 2 0 0 0 0 0 0 S

Table 6.1 : Perliminary experimental results

31

They are more complicated in the sense that they are highly multi-modal, highly

multi-funnel and hybrid. In Table 6.3, the minimum, average and the value of

standard deviation, obtained over 50 runs of CMA-ES, CLPSO and CBCW-PSO are

given. Outcomes with a difference less than or equal to with respect to the

known global optima, is considered as the value of the global optima.

Functions CLPSO CBCW-PSO t-test

 ⃗ 122820 15255 S+

 ⃗ 165900 31419 S+

 ⃗ 299880 122265 S+

 ⃗ 1199400 77832 S+

 ⃗ 100920 2340 S+

 ⃗ 122280 7605 S+

 ⃗ 247860 33582 S+

 ⃗ - -

 ⃗ - 1109850 S+

 ⃗ - 1076010 S+

 ⃗ 1094340 963669 S

 ⃗ - 57153 S+

 ⃗ - 646980 S+

 ⃗ 3180 531 S+

 ⃗ 2700 489 S+

 ⃗ 2120 775 S+

The dimension of each function is set to 30 for all the experiments. Better results are

shown in bold in the table. An ANOVA test at a significance level of 0.95 has been

performed to test for the statistical significance of the differences. In the last column,

 means that CBCW PSO results are statistically significant than the results of

the other algorithms and means that the CLPSO algorithm performs better than

others and finally means that CMA-ES offers better solutions. The details of

the ANOVA analysis can be found in Figures A.1, A.2 and A.3 in the Appendices.

Also multi column comparison results for all the experiments can be found in

Figures A.4, A.5 and A.6 in the Appendices. These figures, show those algorithms

which are statistically significant from the others.

Table 6.2 : First Hit

32

Table 6.3 shows that, for non-noisy function CMA-ES has a better performance

comparing with CBCW-PSO and CLPSO. However functions, and are

exceptions. In case of function since the optimum value is in the boundary and

CBCW-PSO, due to its smart boundary control, has a good ability to find the optima

at the boundaries, it outperforms the other two algorithms. However it also implies

that CBCW-PSO performs well when the basin of attraction is small. As of , the

Schaffer‟s function, there are multiple local optima in the form of circles and the

global optima lies in the center circle in the function. Figure 6.1 shows the function

in a 2D demonstration.

Functions

C
B

C
W

-P
S

O

C
L

P
S

O

C
M

A
-E

S

A
N

O
V

A

Min Min Min

N
o

 N
o

is
e

 ⃗ -179.9 -176.6 11.0 -144.8 -73.8 51.85 -180 -179 0.001

 ⃗ -119.2 -119.0 0.09 -119.1 -118 0.053 -118 -118 0.068

 ⃗ -291.1 -254.0 25.4 -316.5 -297 13.0 -311 -289 27.04

 ⃗ -260.3 -174.7 48.3 -224.76 -148 35.36 -313 -298 25.18

 ⃗ 113.1 118.9 3.3 118.08 128.8 3.308 93.8 103.7 4.04

 ⃗ -125.3 -119.7 2.78 -120.76 -110 9.17 -128 -126 0.75

 ⃗ -288.2 -287.0 0.44 -287.18 -286 0.27 -286 -285 0.19

 ⃗ 245.4 414.2 111.1 240.73 412.4 133.0 155.2 171.7 9.31

U
n

if
o

rm
 N

o
is

e

 ⃗ -178.9 -170.5 24.33 -169.91 -106 44.64 -178 -178 0.01

 ⃗ -119.0 -118.7 0.08 -118.9 -118 0.07 -118 -118 0.07

 ⃗ -282.6 -234.2 37.56 -288.7 -256 21.89 -279 -131 33.44

 ⃗ -270.9 -162.8 60.67 -167.6 -60.1 43.45 -310 -114 31.97

 ⃗ 113.7 121.8 3.96 128.9 134.2 2.05 131.1 135.4 1.40

 ⃗ -124.7 -117.2 4.82 -32.01 390.7 495.8 -127 -118 6.88

 ⃗ -287.1 -286.3 0.31 -286.6 -285 0.27 -286 -285 0.15

 ⃗ 250.6 475.9 161.6 382.3 562.4 105.3 317.3 368.9 17.75

G
au

ss
ia

n
 N

o
is

e

 ⃗ -178.9 -169.9 18.0 -163.1 -117 32.25 -178 -178.8 0.026

 ⃗ -118.9 -118.7 0.084 -118.8 -118 0.05 -118 -118.6 0.07

 ⃗ -267.2 -209.1 33.48 -267.46 -203 39.14 -115 -86.15 16.4

 ⃗ -248.1 -137.9 68.62 -85.6 -2.29 46.06 -99.7 -65.72 16.45

 ⃗ 113.3 121.9 3.88 129.2 134.8 1.62 132.3 135.4 1.37

 ⃗ -124.7 -115.9 4.70 -70.1 518.1 985.3 -114 -109.7 1.58

 ⃗ -286.6 -286.0 0.29 -286.5 -285 0.21 -286 -285.7 0.14

 ⃗ 235.4 458.2 160.4 364.9 547.4 162.2 376.5 414.4 17.6

Table 6.3 : Comparative results

33

Here the inertia restart strategy as well as linear decrement of the inertia value, helps

the CBCW-PSO to escape from local optima and avoids the premature convergence.

At the same time the structure of the function could be considered a plus for the

employed external memory policy since subsequent (neighboring) local maxima and

minima are much more probable and hence the value of the C variable in equations

(4.3), (4.4) and (4.5) maintains a constant value close to 1 which at the same time

increases the step size and forces the particles to go one step higher in the function‟s

circle levels. This helps the algorithm in the sense that it prevents the particles from

getting trapped inside many local optima in the function.

The results are also presented in graphical form in Figure 6.2. Please note that if

there is a missing algorithm in the figures, it means that the values produced by that

algorithm is so high that plotting it may avoid investigating the details of the other

Figure 6.1 : A demonstration of Schaffer‟s function in 3D

34

(a) (b)

(c) (d)

(e) (f)

Figure 6.2 : The evolution of the best fitness, averaged over 50 runs for each function

 for non-noisy fitness values. (a)𝑓 . (b)𝑓 . (c)𝑓 . (d)𝑓 .(e) 𝑓 . (f) 𝑓 .

 (g) 𝑓 . (h) 𝑓

35

(g) (h)

algorithms. A missing CLPSO plot in Figure 6.2 (f) is an example. In such cases

Table 6.3 could be considered. Again in Table 6.1 as well as in Figure 6.3, one can

see that CBWC-PSO outprtforms the other two algorithms in functions , ,

and when there is a Uniform Noise added to the fitness value. The function is

more or less similar to functions and in the sense that the number of local

optima is very large, and that they are regularly spread over the function space.

Again, the inertia restart strategy as well as the new velocity update helps the

CBCW-PSO to escape from those local optima. The regular spread of local optima

across the search space has the obvious advantage that they produce almost

subsequent worst and best neighborhoods which results in a continuous boost in the

value of the variable C in equations (4.3), (4.4) and (4.5) and this forces the particles

to check for new and better neighborhoods (if any). This is similar to the case of

function in the previous discussion. In general, this yields that, whenever the

basin of attraction has a small size or there is an overal topology, pointing towards

the global optimum, our algorithm performs well. As discussed earlier, the reason for

this is the way the C value in equations (4.3), (4.4) and (4.5) is boosted in such

topologies.

Figure 6.2 (continued): The evolution of the best fitness, averaged over 50 runs for

 each function for non-noisy fitness values. (a)𝑓 . (b)𝑓 .

 (c)𝑓 . (d)𝑓 . (e) 𝑓 . (f) 𝑓 . (g) 𝑓 . (h) 𝑓

36

(a) (b)

(c) (d)

(e) (f)

Figure 6.3 : The evolution of the best fitness, averaged over 50 runs for each function

 for fitness values with uniform noise. (a)𝑓 . (b)𝑓 . (c)𝑓 . (d)𝑓 .

 (e) 𝑓 . (f) 𝑓 . (g) 𝑓 . (h) 𝑓

37

(g) (h)

Finally Figure 6.4 and the last 8 rows of Table 6.1 show the experiment results for

the case when Gaussian noise is added to the fitness value. The better results in

favour of CBCW-PSO are partially due to the fact that the original PSO and the

descendants of this algorithm are noise resistant. It‟s easy to see that the performance

difference between CBCW-PSO and CLPSO are preserved when the noise type is

changed. In case of the CMA-ES algorithm, however, setting the NOISE option in

CMA-ES algorithm to ON, ends up in worse results for noisy functions and, Setting

the same option to OFF for the same noisy function, ends up in fitness values close to

that of the first 8 rows of Table 6.1 (this is to say that the results will be similar to

the case where there is no noise in the fitness value). However, in addition to

discussing the effect of the noise and it‟s type on the performance of each algorithm,

our goal here is also to show that for some functions, no matter if CMA-ES treats the

function as a noisy function or not, and if there actually is noise or not, there are

cases where CBCW-PSO outperforms the CMA-ES. is an example that emerges

from these experiments. As stated earlier in section 5.2.2.2, it has been shown in

literature that, in multi-funnel functions, where local optima can not be interpreted as

perturbations to an underlying convex (unimodal) topology, the performance of the

CMA-ES algorithm decreases. This is why we believe that, in fact in case of noisy or

Figure 6.3 (continued): The evolution of the best fitness, averaged over 50 runs for

 each function for fitness values with uniform noise.

 (a)𝑓 . (b)𝑓 . (c)𝑓 . (d)𝑓 . (e) 𝑓 . (f) 𝑓 . (g) 𝑓 . (h) 𝑓

38

multi-funnel functions, the main advantage of our algorithm is it‟s independence

from the underlying global topology and the use of intuitive coefficient which allows

it to simply escape local optima towards better coordinates in the search space. A

question may rise about the performance of the CLPSO algorithm in multi-funnle

and/or noisy functions. The main reason why CLPSO fails to converge to the global

optimum in these functions is it‟s time consuming initialization phase. Observations

during the experiemnts (as well as the graphical representations in Figures 6.2, 6.3

and 6.4) show that the CLPSO algorithm consumes a lot of time in the initialization

phase and due to its random substitution policy in external memories, it also may

reset to a worse fitness value as global best (the various peaks that are observable in

many graphics, representing CLPSO‟s performance).

(a) (b)

(c) (d)

Figure 6.4 : The evolution of the best fitness, averaged over 50 runs for each function

 for fitness values with Gaussian Noise. (a)𝑓 . (b)𝑓 . (c)𝑓 . (d)𝑓 .

 (e) 𝑓 . (f) 𝑓 . (g) 𝑓 . (h) 𝑓

39

(e)
(f)

(g) (h)

6.4 Experimental Results on The Robot

Finally, Figure 6.5 and Table 6.4 show the experimental results on the robot kick

action. As can be seen, CBCW-PSO outperforms the other two algorithms. From this

experiment, one can conclude in many ways about the robot‟s kick search space.

Earlier, during the experiments on benchmark functions, we saw that small basin of

attraction, missing overall topology in the search space and multi-funnelty in the

function under optimization may all be the reasons for an inferior performance In

CMA-ES and a superior performance in CBCW-PSO. However, also the

Figure 6.4 (continued): The evolution of the best fitness, averaged over 50 runs for

 each function for fitness values with Gaussian Noise.

 (a)𝑓 . (b)𝑓 . (c)𝑓 . (d)𝑓 . (e) 𝑓 . (f) 𝑓 . (g) 𝑓 . (h) 𝑓

40

performance of CLPSO helps us to provide an explanation about the reason why,

CBCW-PSO outperforms CMA-ES. The resulting fitness evolution is similar to that

of , in terms of the order with which each algorithm performs better and also the

way the best fitness value decsends. The resulting kick action has a range of nearly 6

meters. The ball does not deviate from the x axis of robot‟s torso as desired. The

described kick action has been utilized in RoboCup competitions at Istanbul, 2011

and the robot was able to kick a goal score using the designed kick action. An

ANOVA analysis also has been made on the outcomes of the three algorithms in

which can be seen in Figure A.4 in the Appendices (Appendix A.1). Figure 6.6

shows the resulting kick in Simspark simulator.

Functions

D
im

C
B

C
W

-P
S

O

C
L

P
S

O

C
M

A
-E

S

A
N

O
V

A

Min Min Min

 𝑜𝑏𝑜 40 0.170 0.17956 0.0098849 0.20704 0.21373 0.00626 0.19646 0.23387 0.051844

Table 6.4 : Comparative results of the robot experiment

Figure 6.5 : Best fitness evolution of the robot experiment

41

Figure 6.6 : The resulting kick action

42

43

7. CONCLUSIONS

In this thesis, we have proposed a new and novel PSO, based on external memory for

Optimization problems. The algorithm has been subjected to comparative

experiments on well-known benchmark functions as well as an optimization problem

defined on the robot action (kick action). We showed that the proposed algorithm

outperforms a recent improvement of PSO, namely CLPSO in the benchmark

function experiments. Also in some cases, the proposed algorithm outperforms the

CMA-ES algorithm. It has been explicitly shown that our new algorithm outperforms

the other two algorithm in terms of convergence speed and the solution quality for

the cases where the function under optimization is either noisy, multi-funnel, has

small basin of attraction or does not have a global topology. Also the algorithm

performs very well for the robot case where an optimum set of parameters are being

sought for the kick action.Future work will include an adaptation strategy with which

the algorithm tunes it‟s parameter according to the function it optimizes. These

parameters include the sizes of the external memories and lower and upper band

values in the algorithm.

44

45

REFERENCES

J.Kennedy , R.C.Eberhart . (1995) “A New Optimizer Using Particle Swarm

Theory” , Sixth International symposium on Micro Machine and Human Science ,

IEEE

A.Acan . (2009) “A Memory-Based Colonization Scheme for Particle Swarm

Optimization”, IEEE Congress on Evolutionary Computation (CEC)

Y.Shi ,R.C.Eberhart , (1998) “Parameter Selection in Particle Swarm

Optimization” , Proceedings of the 7th International Conference on Evolutionary

Programming VII. (EP)

M.Clerc (1999), “The Swarm and The Queen: Towards a deterministic and

Adaptive Particle Swarm Optimization” , IEEE Congress on Evolutionary

Computation (CEC). Eberhart,

R.C., Shi, Y. (2000) "Comparing Inertia Weights and Constriction Ffactors in

Particle Swarm Optimization", IEEE Proceedings of the Congress on Evolutionary

Computation, La Jolla, CA , USA

R.Thomsen ,J.Vesterstrom. (2004) , “A Comparative Study of Differential

Evolution, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical

Benchmark Problems”, IEEE Congress on Evolutionary Computation (CEC).

P. N. Suganthan1, N. Hansen, J. J. Liang, K. Deb, Y. -P. Chen, A. Auger, S.

Tiwari. (2005), “Problem Definitions and Evaluation Criteria for the CEC 2005

Special Session on Real-Parameter Optimization” , IEEE Congress on Evolutionary

Computation (CEC)

M. Molga, C. Smutnicki. (2005), Test functions for optimization needs, Available at

http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

Boedecker, J., Dorer, K., Rollman, M., Xu, Y., Xue, F., Buchta,. M., Vatankhah,

H.,”Simspark Manual” , 2010

C.L.Müller, I.F.Sbalzarini . (2009) “A Tunable Real-World Multi-Funnel

Benchmark Problem For Evolutionary Optimization”, In Proc. Intl. Joint Conf.

Computational Intelligence (IJCCI), pages 248–253, Funchal, Madeira, Portugal,

October 5–7 2009. INSTICC Press.

C. L. Müller, B. Baumgartner, and I. F. Sbalzarini. (2009) Particle swarm CMA

evolution strategy for the optimization of multi-funnel landscapes. In Proc. IEEE

Congress on Evolutionary Computation (CEC), pages 2685-2692, Trondheim,

Norway, May 2009

Stefan Kern, Sibylle D. Müller, Nikolaus Hansen, Dirk Büche, Jiri Ocenasek

and Petros Koumoutsakos. (2004) “Learning probability distributions in continuous

evolutionary algorithms – a comparative review”, Journal of Natural Computing,

Volume 3 Number 1pages 77-112. Netherlands

S.Asta, Ş.E.Uyar. (2011), “A Novel Particle Swarm Optimization”, In proceedings

of Artificial Evolution, 24-26 October 2011, Angers, France.

http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

46

47

APPENDICES

APPENDIX A : ANOVA Test Results

48

 APPENDIX A

49

Figure A.1 : The ANOVA Test results for various benchmark functions with noisy

 fitness value (Gaussian noise type).

50

Figure A.2 : The ANOVA Test results for various benchmark functions with noisy

 fitness value (Uniform noise type).

51

Figure A.3 : The ANOVA Test results for various benchmark functions with

 non-noisy fitness value.

52

Figure A.4 : The ANOVA Test results for various benchmark functions with noisy

 fitness value (Gaussian noise type).

53

Figure A.5 : The ANOVA Test results for various benchmark functions with noisy

 fitness value (Uniform noise type).

54

Figure A.6 : The ANOVA Test results for various benchmark functions with

 non-noisy fitness value.

Figure A.7 : The ANOVA Test results for the robot kick function.

55

Figure A.8 : The ANOVA Test results for the robot kick function.

56

57

CURRICULUM VITAE

Name Surname: Shahriar ASTA

Place and Date of Birth: Oroumieh IRAN , 11 June 1980

Address: İTÜ Ayazağa campus, Institute of Science and Technology

E-Mail: shahriarasta@gmail.com

B.Sc.: University of Isfahan , IRAN

M.Sc. (If exists):

Professional Experience and Rewards:

List of Publications and Patents:

PUBLICATIONS/PRESENTATIONS ON THE THESIS

 S.Asta, Ş.E.Uyar. (2011), “A Novel Particle Swarm Optimization”, In proceedings

of Artificial Evolution, 24-26 October 2011, Angers, France.

