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A NOVEL PARTICLE SWARM OPTIMIZATION ALGORITHM

SUMMARY

Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995), which is a
population-based global search method is known to suffer from premature
convergence prior to discovering the true global minimizer. In this thesis, a novel
memory-based method is proposed which aims to guide the particles through the
information deduced from the external memory contents rather than to re-inject them
into the population.

This is done by calculating a coefficient, based on the distance of the current particle
to the closest best and closest worst particles in the external memory at each
iteration. Later, when updating the velocity component, this coefficient is added to
the current velocity of the particle with a certain probability.

Also randomized upper bound and lower bound values have been defined for the
inertia component. The algorithm starts with the upper bound value of the inertia. At
each particle evaluation the inertia is decreased non-linearly with a small value and
when its value reaches the lower bound, the inertia value is reset to its upper bound.
The resulting PSO finds the global optima much faster than the original PSO and it
have been shown that it also performs better compared with a recent improvement of
PSO, CLSPO namely. A state-of-the-art algorithm, CMA-ES (Covariance Matrix
Adaptation Evolutionary Strategy), has also been chosen for comparison purposes. It
has been shown by experiments that although the CMA-ES shows a better
performance than that of our algorithm, in some cases where the overall topology
pointing to the global optimum is missing and the attractor volume of global
optimum is small, our algorithm performs better and finds the desired optimum
value of the function in lesser evaluation counts. The tests have been consucted on
standard benchmark functions as well as a simulation of the Aldebaran NAO robot
for developing a kick action.
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YENI BiR PARCACIK SURU OPTIMIiZASYON ALGORITMASI

OZET

Parcacik Siirii Optimizasyonu (Particle Swarm Optimization) (PSO) 1995°’te Dr.
Eberhart ve Dr. Kennedy tarafindan gelistirilmis popiilasyon temelli sezgisel bir
optimizasyon teknigidir. Bu teknik, kus siiriilerinin davranislarindan esinlenilerek
gelistirilmis popiilasyon tabanli stokastik optimizasyon teknigidir. Dogrusal olmayan
problemlerin ¢6ziimii i¢in tasarlanmistir. Cok parametreli ve ¢ok degiskenli
optimizasyon problemlerine ¢oziim bulmak ic¢in kullanilmaktadir. PSO, genetik
algoritmalar gibi evrimsel hesaplama teknikleriyle bir cok benzerlik gosterir. Sistem
rastgele ¢oziimler iceren bir popiilasyonla baslatilir ve nesilleri giincelleyerek en
optimum ¢6ziimi arastirir. PSO da pargacik olarak adlandirilan olast muhtemel
¢oziimler, o andaki optimum parcacigi izleyerek problem uzayinda dolasirlar.

PSO’nun klasik optimizasyon tekniklerinden en 6nemli farkliligi tlirev bilgisine
ihtiyag duymamasidir. PSO’yu uygulamak, algoritmasinda ayarlanmasi gereken
parametre sayisinin az olmast sebebiyle olduk¢a basittir. PSO, fonksiyon
optimizasyonu, bulanik sistem kontrolii, yapay sinir ag1 egitimi gibi bir ¢ok alanda
basariyla uygulanabilmektedir.

Bu teknigin bilinen dezavantaji, ger¢ek optimumu bulmadan 6nce erken yakinsama
sergilenmesidir. Bu ¢alismada, literatiirde geleneksel hale gelen ve yeni pargaciklari
poplilasyona yeniden enjekte etmeyi Oneren yontemlere karsin, parcaciklari harici
belleklerden alinan bilgilere gore yonlendiren yeni bir pargacik siirii optimizasyon
algoritmasin1 sunmaktadir. Bunun i¢in, algoritmada iki ayr1 harici bellek ©n
goriilmustur. Bu belleklerden biri en kotii pargaciklart barindirmakta, digeri ise en iyi
parcaciklar1 barindirmaktadir. Bu belleklerin boytular1 birbirinden bagimsiz
olmaktadir ve belleklerin igerigi her nesilde giincellestirilmektedir.

Onerilen algoritma baslamadan 6nce, belleklerin i¢i doldurulmaktadir. ilk degerlerle
dolduktan sonra, her nesilde tiim parcgaciklar degerlendiriliyor ve uygunluk degerleri
hesaplaniyor. Daha sonraki adimda, parcaci@in harici bellekteki parcaciklar
arasindan, parc¢aciga en yakin olan en iyi ve en kot pargaciklarin uzakligi hesaplanip
bir katsayi iretilmektedir. Bu katsayr adim boyutunu belirlemektedir. Sonra her
parcacik i¢in hiz bilesenini hesaplarken bu katsay1 belli bir olasilikla mevcut hiza
eklenmektedir. ilk 1998°de onerilen atalet bileseni, Onerdigimiz algoritmada
periyodik bi¢gimde yeniden baslatilmaktadir. Bu, literatiirde ilk kez dnerilmektedir ve
hesapladigimiz  katsyr ile birlestirildigi zaman, yakinsama hizim1 dogrudan
etkilemektedir.
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Ayrica randomize bir {ist ve alt sinir atalet bileseni i¢in taninmaktadir. Algoritmada
atalet bileseni st sinirdan baslayip ve her pargacigr degerlendirdikten sonra kiigiik
bir degerle non-linear bir sekilde azaltilmaktadir. Atalet bileseni randomize alt sinira
ulastig1 zaman, bu bilesenin degeri randomize {ist sinirin degeriyle sifirlanmaktadir.
Boylece pargaciklar, onlara en yakin olan en kotii parcaciktan uzaklastirilmaktadir.
Cikan PSO evrensel optima’yi orjinal PSO’den daha hizli bulmaktadir. Bu ¢alisma
onerilen algoritmanin en giincel PSO’larin arasinda olan CLPSO algoritmasindan
daha hizli oldugunu ve daha kaliteli ¢oziimler {irettigini ortaya ¢ikarilmistir.

CLPSO Algoritmasi, Karinca Koloni Optimizasyon ve Pargacik Siirii Optimizasyon
yontemlerini birlestirilmektedir. Bu yontemde, ilk 6nce orijinal PSO ka¢ nesil
uygulamkata ve kullandig1 harici bellekler doldurulmaktadir. Bundan sonraki
adimda, algoritma parcaciklardan bir koloni olusturarak, koloniden ¢ikan en iyi
parcacigi popiilasyona enjekte etmektedir. CLPSO ve dnerdigimiz yontem arasinda
farklardan biri, CLPSO’nun harici bellegi doldurmak i¢in segici davranmasidir. Bu
secici davranig nedeniyle, CLPSO’deki orijinal PSO’den CLPSO algoritmasina gegis
uzayabilir. Ayrica bu gecisin ne kadar siirecegi tamamen fonksyona bagli oldugu
gbzlemlenmistir. Baska bir fark ise, CLPSO’nun dahili bellek kullanmasidir. Dahili
bellekler parcacigin kisisel deneyimlerini tutmaktadir. CLPSO’de dahilli bellekler
randomize olmak iizere dolduruluyor ve bu de algoritmanin bazen buldugu iyi
coziimden geri donmesini saglamaktadir. Bu nedenlerden dolayi, CLPSO,
onerdigimiz yontemden daha yavas yakinsamakta ve buldugu g¢oziimlerin kalitesi
daha diisiik olmaktadir.

Literatiirde en iyi ve gilincel optimizasyon algoritmalarin arasinda olan CMA-ES
algoritmasi de kiyaslamak amaciyla secilmistir. CMA-ES algoritmsai problemdeki
parametrelerinin  normal dagilimin1  6rneklemekte ve kovaryans matrisini
hesaplamaktadir. Bu kovaryans matrisi vesilesiyle, algoritma yeni nesiller
tiretmektedir. CMA-ES, gerek yakinsama hizi, gerek buldugu ¢6ziimiin kalitesi
acisindan bilinen en 1yi algoritmalardan biridir.

Deneyler icin standart fonksyonler diisiiniilmiistiir. Bu fonksyonler degisik
ozelliklere sahipler. Deneme fonksyonlar kiimesi, bazi basit fonksyonlar yanisira,
arama uzayinda plato olusturan veya multi-modal ve multi-funnel 6zelliklere sahip
olan fonksyonlardan olusmaktadir. Multi-modal 6zellige sahip olan bir fonksyon,
evrensel optimanin yani sira, ¢esitli degerlerle bolgesel optimumler barindirmaktadir.
Multi-funnel fonksyonlar ise, multi-modal olmakla beraber, iki (veya daha fazla)
bolgede farkli bacalarda farkli bolgesel optimumlert barindirmaktadir. Bir bolgede
arama yapan bir parcacigin diger bolgelere gegme olasiligi bu fonksyonlarda oldukca
diigiikdur. Multi-modal ve multi-funnel fonksyonlarda, evrensel optima’yi bulmak ve
tim parcaciklarin bu optimaya yakinasamasini saglamak zor bir problem olarak
kabul ediliyor.

Deneylerin sonucunda, CMA-ES’in genelde PSO’den daha iyi olmasina ragmen,
bazi durumlarda, sunulan yontemin daha {istiin bir performans sergiledigi ortaya
cikarilmigtir. Evrensel optima’y1 gosteren evrensel bir topolojinin eksik oldugu veya
fonksyonun havzasinin g¢eker hacmi kiigiik olan problemlerde, sunulan algoritma
daha hizl1 davrandig1 gosterilmistir.

XX



Ayrica, Onerilen yontem, kiyaslanan yontemlerle birlikte, Aldebaran iiretimi olan
NAO insansil robotu iizerinde denetilmektedir. NAO robotu RoboCup
yarismalarinda, 3D benzetim ligin standart robotudur. Bu ligde Simspark yazilimi
benzetim ortami1 olarak kullanilmaktadir. Benzetim ortami gergkcil olmakla beraber,
gergek diinya kosullarina uyum saglamak adina giiriiltii icermektedir. Benzetim
ortaminda ongoriilen giiriiltlilerin tipi normal ve tekdiizedir.

Robot deneylerinde, robot i¢in daha 6nce tasarlanan ve diisiik kalitesi olan bir top
atigin kalitesinin artmasi amaglaniyor. Tasarlanan top atisinin manzili 3 metredir ve
atisitan sonra top robotun gévdesinin x aksanindan sapmaktadir. Ayrica top atisindan
sonra robot diismektedir. Top atisi1 iyilestirmek igin, robotun Kkinematic
denkelmleri kullanilmaktadir. Bu denkelmler PFS modeli ile osilator olusturup
harmonik bir seklide robotu hareketini saglamaktadir. Bu denkelmler, toplam olarak
40 parametre iceren bir fonksyon olusturmaktadir. Ayrica topun atigtan sonraki
robot’dan uzakligr ve sapma degerinden olusan, uygunluk degeri hesaplayan bir
fonksyon tasarlanmistir. Robot’un atistan sonraki diismesi durumunda, bu uygunluk
degerine ceza uygulanarak, arama sirasinda iyi atiglara neden olan ama robotun
diismesine sebebiyet veren bireyler ¢oziim olarak sunulmamaktadir.

Deneylerin sonucunda, algoritmamiz diger algoritmalardan (CLPSO ve CMA-ES)

daha iistiin bir basar1 sergilemektedir. Top atisinin menzili 6 metre olmakla beraber,
robot diismemekte ve top govdeden sapmamaktadir.

XXi
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1. INTRODUCTION

The origins of Particle Swarm Optimization goes back to 1987 where Reynolds
introduced the simulation of particles similar to that of bird flocks. In this simulation
each particle or agent tries to keep a distance from too-close neighbors and steers
towards the average heading of the flock while maintains it’s position within the
flock. Later Kennedy and Eberhart [1] introduced few parameters to this simulation
and came up with the idea of Particle Swarm Optimization. In their work, each
particle remembered it’s best position regarding to the global optima and shared this
information with others about that best position. Figure 1.1 shows the evolution of
particles in a simple, 2D search space.

In technical words, PSO, is a population-based stochastic search in which each
particle represents a potential candidate solution to the problem. Elements of each
particle are in fact the parameters of the problem. This technique shares many
similarities with other evolutionary computing techniques like Genetic Algorithms
(GA). First the population of particles are initialized by random parameter values and
these parameter values are updated in each iteration (generation), until a stop criteria
has been met or the algorithm is converged to some optima. However, this technique
does not include special operators like mutation or crossover. In PSO the
particles”fly” over the search space by following the current optimum particles. The
ultimate purpose of any optimization algorithm is to estimate the inverse of the
Hessian matrix (approximation of the second derivative of the function) of the
function and calculate a function’s contour map to find the global optima. However
methods like PSO (population-based methods in general) as well as our method are
independent from the gradient of the function and use “intuition” and social behavior

of the individuals to achieve the global optimum of the function.
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Figure 1.1 : The evolution of particles through search space

1.1 Research Motivations

Based on the observations achieved from the application of evolutionary algorithms
on robot motion, one can say that sometimes, while producing new individuals,
which represent a solution for the problem under optimization, a certain portion of
the individual is close to that of the optimal solution. Only a few parameters inside

the current individual are diverse and far from being a part of the optimum solution.



Although the number of these parameters may be small, the effect of it may turn the
performance of the individual close to that of the worst case.Considering a landscape
in which we have many minima and maxima points, one can also say that, while
updating the position of the individual, keeping it far away from the maxima (in a
minimization problem) will increase the speed of the convergence to the optima.
However, this alone might not help since there are problems for which both minima
and maxima are in close neighborhood or when there are many local minima. Then
we need to equip the optimization algorithm with the ability to escape from the
maxima and move towards the minima even when the minima are close to both the
current position of the particle and the maxima.Some algorithms consider a
combination of multiple algorithms to achieve this goal. Re-injecting the best
solution found so far, to the population of solutions or applying genetical operators
such as mutation or crossovers (partially exchanging the variabla vector of the
current solution with the variable vector of the best-known solution) are few
examples. In this work however, we consider to deduce information from the best
available solutions in order to guide particles through the search space. The expected
result is to reduce the number of iterations and function evaluations and find a better

solution in a reasonably shorter time.

1.2 Contributions

A novel algorithm along with its parameter setting scheme in which finds the global
minimum of a function in reasonable evaluation counts (less than that of the original
PSO and the latest improvement on PSO) is presented in this thesis. The resulting
algorithms converges faster and is a good means for application which have time

constraints.






2. PARTICLE SWARM OPTIMIZATION

2.1 Problem Formulation

The goal of any optimization problem is to maximize or minimize an objective
function f (X) where x is the decision vector consisting of n dimensions or decision
variables consisting of real numbers. Since maximization of any function f (X) is
equivalent to minimization of —f (¥), the literature generally focuses on
minimization without loss of generality. Solution x* is a global minimizer of f (¥) if
and only if f (7) < f (%) for all x in the domain of f (X). The unconstrained
minimization problem of consideration here can be formulated as.

Minimize f (x)

where: f: R" - R

2.2 Evolution of The Particle Swarm Optimization Algorithm

2.2.1 The original particle swarm optimization

Particle Swarm Optimization (PSO) is a nature inspired meta-heuristic method. This
method was first introduced by Kennedy and Eberhart in 1995 [1]. It is inspired by
the swarm behavior of birds flocking, and utilizes this behavior to guide the particles
to search for globally optimal solutions. Basically, in PSO, a population of particles
is spread randomly throughout the search space. The particles are assumed to be
flying in the search space. The velocity and position of each particle is updated
iteratively based on personal and social experiences. Each particle possesses a local

memory in which the best so far achieved experience is stored. Also a global



memory keeps the best solution found so far. The sizes of both memories are
restricted to one. The local memory represents the personal experience of the particle
and the global memory represents the social experience of the swarm. The balance
between the effect of the personal and social experiences are maintained using
randomized correction coefficients. The philosophy behind the update procedure is to
reduce the distance between the particle and the best personal and social known
locations. PSO is very easy to implement and there have been many successful
implementations based on PSO in several real world applications. PSO is a
population based approach in which finding the optimal solution is not guaranteed.
Also, it can get stuck in local optima when dealing with complex multi modal
functions. This is why accelerating the convergence speed as well as avoiding the
local optima problem are two primary goals in PSO research. Multiple methods and
approaches have been suggested to improve the performance of the original PSO in
terms of these goals. In [2], these efforts have been divided into four categories. The
first category includes the parameter selection methods. Introducing the inertia and
constriction factors into the basic velocity expression or developing strategies for
time independent variation of algorithm parameters are among the many
methodologies in this category. The method presented in this paper fits best within
this category. Other categories pointed in [2] are Applications of PSO into different
problems areas (second category), Generation of different algorithm strategies and
analysis of convergence (third category) and finally Hybridization (Fourth category).
Although, the novel approach presented in this paper focuses on parameter
selection, it also tries to generate a different strategy and attempts to reduce the
iteration count. This is why, this work can also be included in the third category. In
the basic PSO, each particle is considered as a potential solution to the numerical
optimization problem in a D dimensional space. Every particle has a position in this
search space and a velocity assigned to it. The position of the particle is represented
by X; = x;1, xi2, ..., Xjp. The velocity of a particle is given as V; = v;1, Vi3, ..., Vip.
Also, each particle has a local memory (pBest) which keeps the best position that is
experienced by the particle so far. A globally shared memory (gBest) keeps the best
global position found so far. These information contribute to the flying velocity of
each particle, using the following equation :

v; = v; + @ Xrand X (pBest; — x;) + ¢, X rand X (gBest — x;) (2.1)



The position update is then as:
X = X + U; (22)

where, ¢,and ¢, are positive constants determining the relative influence of the
personal and social experiences during the search. Defining an upper bound for the

velocity component increases the performance of the approach

2.2.2 Inertia

In [3], it has been shown that the introduction of an inertia factor to the Eq.(2.1)
improves performance, since it adjusts the velocity over time and improves the
search precision of the particles. Eq.(2.1) can be rewritten as:

Vi = w X v; + @, Xrand X (pBest; — x;) + ¢, X rand X (gBest — x;) (2.3)
where o is the inertia factor. The inertia weight o is employed to control the impact
of the previous history of velocities on the current velocity, thus to influence the
trade-off between global (wide-ranging) and local (nearby) exploration abilities of
the "flying points". A larger inertia weight o facilitates global exploration (searching
new areas) while a smaller inertia weight tends to facilitate local exploration to fine-
tune the current search area. Suitable selection of the inertia weight  can provide a
balance between global and local exploration abilities and thus require less iterations
on average to find the optimum. In this thesis a new inertia scheme is introduced for
the first time in which the inertia is considered to be changing linearly between a
lower and upper bound (starting from upper bound) and it is being periodically
restarted to it’s upper bound whenever it reaches to the value of of the lower bound.
It has been shown that restarting has a tremendous effect on the performance of the

algorithm.

2.2.3 Constriction factor

Clerc[4] introduced a constriction factor K for more efficient control and
constraining of velocities. Then Eq.(2.1) was modified as:
v; = K X (vl- + ¢, X rand X (pBest; — x;) + @, X rand X (gBest — xi)) (2.4)

where K can be expressed as:



_ 2
K= o= (2.5)

here, ¢ = ¢, + @, @ > 4. In [5] Eberhart concludes that constriction factors has a

far better impact on convergence and it’s speed.

2.2.4 Particle velocity

According to [2] success of inertia and constriction factor equations are problem
dependent. This is why, in this thesis both equations have been used and the best out
coming result has been presented. This is to say that algorithms with which the
functions are optimized with and compared are tested in a limited and small number
of times using each of the equations (2.4) and (2.3) for each function under
optimization and the best responding equation is chosen for that. This is equivalent to

chosing the best step size and velocity for particles for a specific problem.



3. MEMORY BASED PARTICLE SWARM OPTIMIZATION

3.1 Local Optima and Convergence Speed in Standard Particle Swarm

Optimization

The convergence speed of PSO in it’s original form is fast, however, the main
problem of the PSO is that it sometimes gets trapped in local optima and the
convergence speed rate decreases considerably in later period of evolution. When the
algorithm reaches near global optima the algorithm stops optimizing and thus the
accuracy the algorithm can achieve is limited. Many approaches have been
introduced to overcome this problem. Among them, linearly decreasing the inertia
weight, randomizing the inertia weight, utilizing external memory and etc. Since
external memory is employed in this thesis we will focus on the methods where this
approach has been applied.

3.2 Utilizing Internal and External Memory

Memory based PSO proposals are mainly concentrated on various methods, by
which the local and global best positions are selected and used. The work of
CoelloCoello et al. [5] is one of the first in this respect. In this work, the global best
is determined by selection of a non-dominant solution from the external memory.
Local best is updated with respect to the Pareto dominance. Hu et al. [6] extended
their work using dynamic neighborhoods and employed an external memory to
memorize all potential Pareto optimal solutions. In their work the global best is
selected among the candidates within the external memory by defining a
neighborhood objective and an optimization objective. The global best is found
among the particles neighbors, subject to the defined neighborhood objective.One

other attempt to employ additional memory in PSO is the work of Wang [7]. In this



method, The Triggered Memory-Based PSO, they try to adjust the parameters of the
PSO in dynamic environments where the characteristics of the search space change
over time. However, this method is novel and successful in terms of presenting the
effects of utilizing additional memory into PSO. In their work a certain, predefined
number of globally best positions, are kept and re-injected into the search population
when necessary. This method is particularly successful when the location of the
optima change over time. One other successful work which utilizes external memory
is the work of Acan [8]. In their work a single globally best position is kept along
with a certain number of globally worst positions. A crossover operator is used to
replace a randomly chosen set of particles after each iteration. Yet in another work,
Acan [2] introduced a hybrid method where there is a global memory and also a local
memory for each particle. A colony, consisting of the local and global positions is
then constructed and at each evaluation, members of these colonies are used to
update the velocity and position of the particle in process. Then the new positions are
evaluated and the best outcome, replaces the particle’s current velocity. There are
many approaches, both employing additional memory and/or hybridization or other
techniques, for which additional information can be found in [2,9]. However, the
main idea in almost all of these memory utilizing approaches is to re-inject the
globally best position into the population during the search. In our study, however,
the main idea is to deduce information from the contents of the external memory in

order to affect the velocity of the particles towards the global optima.
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4. THE PROPOSED ALGORITHM

4.1 Motivation For A New Memory Based Particle Swarm Optimization

The resulting algorithm is supposed to find the optimum parameters of a kick action
for a soccer playing humanoid robot in simulation environment. Although the tests
are conducted on simulator, and since each experiment takes approximately 11
seconds to complete, there is a need for a faster algorithm which finds the optimum
values of robot’s joint oscillators for the kick action in less evaluation counts. This is
why in this thesis we focus on finding an algorithm which is optimizing the target
function in a reasonably shorter time. As shown in the test results, even the most
recent version of memory utilizing PSO is slower than the algorithm presented in this
thesis. Also comparative tests has been conducted on one the best known algorithms
and it is shown by experiments that our algorithm performs better than the forth
mentioned algorithm (CMA-ES) under certain circumstances. These circumstances
include noisy test environments which are not rare and one can assume it as the

normal nature of any robot experiment.

4.2 The Design of The Proposed Algorithm

In this thesis we propose an algorithm, with which the particles, are guided far away
from the closest worst location by correcting their position to the location at which
the particle is supposed to be, prior to updating its position. In order to do this, we
construct two lists of the so far found global best and global worst positions. Each of
the two lists are in fact, two separate external memories of the PSO. Before updating
the velocity of the particles, we scan the external memory which keeps the best
positions and determine the best location inside the external memory which is closest

to the particle. Let's call this closest best position CB. Again we scan the external
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memory which keeps the global worst positions and in a similar way, we find the
global worst position which is closest to the particle. We call this position CW. In
our experiments Euclidean distances are used. However, any other distance measure
may also be used for this purpose. After choosing the closest best and worst elements
of the two external memories with respect to the particle, we measure the similarity
of the particle with each of these elements, using the two parameters CB and CW:

/2?:1(68—xi)2
— (4.1)

Ceu—x)

/25’:1(CW—xi)2
=X 4.2)

C =
2 (Xu—x1)

C1:

Here x,, and x; are the upper and lower bounds for the values that the particle can
take in each dimension. In our experiments this value range has been considered to
be equal for all dimensions. Equation (4.1) measures the amount of similarity
between the closest best and the particle. Equation (4.2) measures the similarity
between the closest worst and the particle. The position correction coefficient can be

defined as in follow:

_ lci—ca| (43)

T (a1+62)

Here —1 < C < 1. We now are able to present our algorithm as follows. First, as
mentioned earlier, we define two external memories: one contains a certain fixed
number of global best positions and the other one contains a certain fixed number of
global worst positions. The sizes of these two external memories are not necessarily
equal. Before utilizing these memories in our approach, we have to initialize them
properly. In order to do this, we run the basic PSO until the iteration count is equal to
the maximum of the two external memory sizes. At each iteration, we insert the
global best and worst positions into the corresponding external memories. This way,
the external memories are initialized. After initialization, we now are able to
calculate the C coefficient in equation (4.3). In other words, after each evaluation of
all the particles, we refresh the external memory contents, and based on the

information available in the external memories we calculate the necessary
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coefficient. However, there is a special method with which we use this coefficient.
According to a particular probability, we either use the basic equation or the
following equations which are the modified forms of equations (2.3) and (2.4)
respectively:

v; = w.(v; + C) + @,.rand. (pBest; — x;) + @,.rand. (gBest — x;) (4.4)
v; = K.((v; + C) + @y.rand. (pBest; — x;) + ¢,.rand. (gBest — x;)) (4.5)

In equations (4.4) and (4.5), we add the current velocity of the particle with the
coefficient, in order to move the particle away from the worst position towards the
global best. When we use equation (4.4) for velocity update, based on observations,
we can say that decreasing the inertia factor linearly, will decrease the effect of the
coefficient and yield early convergence. Decreasing the inertia factor means that
during this period we increase the importance of the social and cognitive factors, and
pay less attention to the actual velocity of the particle. In cases where the particle is
stuck in local optima, using a linearly decreasing inertia leaves the particle with a
velocity less than the amount that the particle requires to escape those optima. This is
why we have tried to decrease the inertia value linearly until a certain threshold is
reached. At such a point, the inertia is reset to its initial value. Here we have defined
a lower bound and an initial value for the inertia. In order to achieve diversification,
some randomness is added in the upper bound, lower bound and decreasing factor.
Since this algorithm is based on the distance of the particle to its globally closest best
and globally closest worst, we refer to it as CBCW PSO from here on.  Figure 4.1

shows the pseudo-code of the algorithm.

As mentioned earlier this algorithm has the effect that it guides the particles away
from the closest worst towards the direction of the optima. This is due to the fact that
without applying the C coefficient in equations (4.4) and (4.5), the particle heads in
a direction which is a direction between the direction of local best and that of the
global best (depending on the value of ¢, and ¢, variables). C coefficient is realtive
to the distance difference between the closest best and worst and the closest best is
not any worse than particle’s local best. So, without applying the coefficient the
particle already moves away from the closest worst. Applying the coefficient will

add to the speed without changing the direction of the particle. Thus when particle is
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closer to a worst position than it’s best position, the C coefficient will be higher and
the speed of the particle towards the local and global best will be higher. This is
illustrated in Figure 4.2.

Initialize the particles uniformly in acceptable range and velocities to zero
Define external memory for best positions (bests) . Initialize it to zeros
Define external memory for worst positions (worsts). Initialize it to zeros
while a certain number of iterations is reached or converged do
for each particle x. do
xi= x;+ v;
if particle position at each dimension exceeds its acceptable range
x;= random from range
val = evaluate particle
update the local best
replace the worst in bests array with gbest
replace the best in worsts array with gworst
if iteration count > max(size(bests), size(worsts))
for each particle x;
CB = closest best to particle
CW = closest worst to particle
Calculate ¢; and ¢, according to equation (4.1) and (4.2)
calculateC according to equation (4.3)
for each dimension
with probability p
update the position like the basic PSO in equation (2.3) or (2.4)
otherwise
update the position like equation (4.4) or (4.5)
if 6 > lower bound + ¢
0=60-A0—¢
else

0 = upper bound —

end

Figure 4.1 : Pseudo-code of CBCW-PSO algorithm

L
Global Optima
e 4
Closest Best
©
Particle
et Directions given by basic PSO equation  =-sssesseeess >
Closest Worst q y q
when C coefficient is not used —_—
when C coefficient is used _—

Figure 4.2 : The effect of the C coefficient in equations (4.4) and (4.5)
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5. PROBLEMS AND COMPARED ALGORITHMS

Tests are performed in two platforms. In one platform, the new algorithm as well as
CLPSO and CMA-ES algorithms are tested and evaluated on standard benchmark
functions. The global minimum of these functions are known and properties of each
function is described in [7]. Knowing these properties helps us to understand the
weaknesses and strengths of our algorithm comparing with other algorithms.
However, the ultimate purpose is to apply our new algorithm on a Humanoid Robot
(Aldebaran NAO) and develop a Kick action for a soccer-playing robot. Also in this
platform, all the three algorithms are employed for optimizing an available kick
action and the results are compared with each other. Thus, we have two platforms for
our tests. The former is the standard benchmark functions platform and the latter is

humanoid robot platform. The subsequent sections describe each platform in detail.

5.1 Optimization Problems

5.1.1 Benchmark optimization functions

Two rounds of experiments has been conducted on benchmark functions. In the first
round, as will be described later, only CBCW-PSO and CLPSO are being compared
to one another. The purpose is to understand the basic behaviour of the proposed
algorithm when a wide range of functions (simple, uni-modal, multi-modal and hard-
to-solve functions) is considered. In the second round of experiments more attention
is paid to more complicated functions where the benchmark functions are chosen to
be hybrid, highly multi-modal and/or multi-funnel. All the benchmark problems are
adopted from [6], [7] and [8]. The functions used in the first round of experiments
are shown in Table 5.1 and the results are discussed further in [13]. The majority of
these functions are adopted from 2005 IEEE Congress on Evolutionary Computing

(CEC 2005). The benchmark functions provided by the conference are standard
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functions and algorithms are being tested and compared to each other, using these

benchmark functions.

Table 5.1 : Benchmark functions for preliminary experiments

Benchmark Problems Min Range
@) = ZD xf 0 —5.12<x; <5.12
() = Zl 12/ : 0 —65<x <65
b — .
fa(i)—z |xl|+1_[ 0 10<x<10
=) (l ]) 0 ~100 < x; < 100
f5@ = Z-:J | 0 i<xm<1
fe(@) = (Z;(i + 1)x{l> + rand[0,1] 0 —512<x; <512
(%) = ZD (106)% x? 0 —100 < x; < 100
i=1
fo(®) = 211(100 X (xiH — xiz)z + (x; — 1)?) 0 —30<x; <30
A=Y —wxsinG/ED 25695 | 500 < % < 500
f10(X) = ZD 1(xi2 —10 x cos(2mx;) + 10) 0 —5.12 < x; <5.12
=
2 — <x; <
fi1(®) = 2000 (ZD X;Z) + (H cos (\/Lx-:—_l)> 1 0 600 < x; < 600
i

A R 0 32 < x; < 32
12(X) = =20 xexp| =02 X |- x? | —exp(—cos(2mx) ) + 20 + e
n ¢ n
i=1

D ,Kmax Kmax 0 —05< x; < 0.5

fis() = Z ( Z a® cos (27Tbk(x, +0.5) ) Z (a¥cos(2mb* x 0.5))
=

k=0

N 1 1.031 —5<x; <
fia(®) = 4x2 — 2.1x¢ + §x0 + xo%; — 4x? + 4} 0316 Ssx S5

. 5.1 5 2 1 0.398 —5<x; <15
fis(@) = (x1 =) X2 +— xo 6) +10 (1 - E) cos(xg) + 10

(1 + cos(12y/x2 + x2)) 0 —5.12 < x; <512
%(xg +x2) +2

f16(£) =

In the second round of experiments, in addition to more multi-modal and multi-
funnel functions, hybrid functions are also employed. The reason is that they inherit
various properties with different optimization considerations from their consisting
components and expose each algorithm to a hard-to-solve problem. As an example
function f;¢ in table 5.2 is consisted of a sphere function with two plateaues, a
Weierstrass function which guarantees a huge number of local optima and continuity
with the exception of being differentiable only on a set of points, Griewank and
Ackley function to make sure that there are local minima at the boundaries and a
Rastrigin function to make sure that this already hard-to-solve function shapes the
global minimum and that the hybrid function is separable near this global minima.
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The list of the chosen test functions and some of their characteristics can be seen in
Table5.2.

Function f; is the Shifted rotated Griewank function which is non-separable, scalable
and multimodal. Function fg is the shifted rotated Ackley’s function with global
minima on the boundary. It is multi-modal and non-separable. Functions fy and f;,
are two different versions of the Rastrigin function in which the former shifted and
the latter is both shifted and rotated, both are based on the function of De Jong with
the addition of cosine modulation in order to produce frequent local optima. This
function is highly multimodal, however the location of local minima are regularly
distributed. Function f;; is the shifted rotated Weierstrass and as noted before is
Continuous but differentiable only at a set of points. This function is both highly
multi-modal and multi-funnel. The concept of multi-funnel functions and teir
characteristics are covered in section 5.2.2.2. Function f;5 is consisted of Griewank
and Rosenbrock’s functions. It is multi-modal, multi-funnel and non-separable. This
function is a hybrid function. Function f;, is the shifted rotated version of Scaffer’s
functionand is multi-modal. Finally function f;4, which was discussed earlier, is a

hybrid multi-funnel and highly multi-modal function.

5.1.2 Humanoid robot , the kick problem

5.1.2.1 Introducing the robot

Aldebaran Nao robot model in Simspark simulation environment has been used for
experiments. Simspark is the official simulator for RoboCup competitions and uses
ODE (Open Dynamics Engine) for physics simulation [9]. Physical rules along with
physical interactions with the environmen (collision, friction, gravity and etc.) have
been modeled in the simulator. The main difference with the real world is the fact
that robot’s servo motors are somehow ideal comparing with the real ones. This only
affects the motion speed and the parameters found by this (or any) optimization

method could be used in the real world.
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Table 5.2 : Benchmark Functions for the second round of experiments.

Benchmark Problems Biased Range
Min
b - <x; <
Sphere Function = z x? 0 S12<x <512
=1
b -30<x; <
Rosenbrock's function = Z (100 X (x;41 — x2)?% + (x; — 1)?) 0 30<x <30
i=1
) > D X 180 | —600 < x; < 600
X)) =—— xf) + ﬂcos( ) 1
) = 3500 (ZM L Vitl
. R -140 32<x <32
fe(®) = —20 x exp| —0.2 X ;Z x? | —exp (;COS(ani)> +20+e
i=1
b -330 —512<x; <5.
fo(@) = Z (x% — 10 x cos(2mx;) + 10) S12<x <512
i=1
> R - <x <
fro(®) = Z (x2 =10 % cos(2mx;) + 10) 330 S12<x <512
i=1
D Kmax Kmax 90 _05 < X < 05
fui(® = Z ( Z a* cos(2mb* (x; + O.5))> -D Z (a*cos(2mb* x 0.5))
i=1 k=0 k=0
f13(X) = (Hybridization of fganaf2) -130 -5<x <5
(@) = 05 4 ST +y?) — 05) -300 —5<x <15
%) =0.
B (1+0.001(x2 +y2)’
f16(%) = Rotated version of Hybrid Composition of (f;, fg, fo, f11 and Sphere) 120 —5.12 <x; <5.12

The robot’s vision system is equipped with a camera installed at the torso of the
robot. In the simulation environment, the robot actually does not perform any
image processing or 3D vision computing. Instead, the seen objects are reported to
the robot from the simulation server. These objects are reported by their polar
coordinates . This includes the relative distance, horizontal and vertical angles of the
object with respect to the robot. The distance is in meters and the angles are in

radians.

According to [9] two types of intentional noise are added to the vision system to keep
the environment realistic. There is a static calibration error for the camera position in
each axis. This noise is of uniform type and is distributed between -0.005m and
0.005m. This error is calculated once and stays the same for the entire match. A
dynamic noise is employed for the percepted objects. This noise has a zero mean
Gaussian distribution and is measured as:

- o = 0.0965 * distance /100 For Polar Distance
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- o = 0.1225 For Horizontal Angle
- o = 0.1480 For Vertical Angle

As for Nao robot, it has 22 degrees of freedom of which only 14 have been used in
the kick motion model. The height of the robot is 57 cm and its weight is 4.3 kg.
Since the simulated Nao robot is a realistic representation of the Nao humanoid

robot, its joint structure is the same with the real one.

(@p, Shoulder 1

|| Shoulder 2

Thigh 1

Thigh2

Knee

Ankle 1

Ankle2

(©)

Figure 5.1 : Aldebaran NAO (a)Simulation. (b)Real Robot. (c)Joint Structure

5.1.2.2 Formulating the kick action as an optimization problem

The kick motion can be modeled by a smoothed rolling polygonal shape and a non-
periodic function accordingly. A preliminary design has been made for the kick
action. The parameters however are not optimum and need to be optimized. The
purpose of the kick action is to shoot the ball as far and as straight as possible. The
available Kkick action has a range of 3 meters. In order to analyze the kick behaviour
easier, the action has been separated into four phases.
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- Expansion Phase: In which the kicking leg is raised above the ground
without relocating the Center of Mass (COM). At the same time the
support leg is moved such that the torso makes an inclination outwards
while the ankle makes an inward inclination in order to compensate the

absense of the kicking leg on the ground.

- Preparation Phase: In which the kicking leg is moved backward in order
to achieve energy for the kicking phase. The support leg continues the

action it performed in the previous phase.

- Execution Phase: In which the kicking leg actually performs the kick and
moves towards the ball. In this phase the support leg makes a reverse

inclination comapring to the first two phases.

- Worap-around Phase: In which the legs are returned to their initial position

which is the standing position.

The motion of each joint is considered to be pandulum around a certain offset with
an amplitude, special to each joint and each phase. This is mathematically presented

in the following equation:

f@®) =C+ T, Asin(i 2t + ) (5.1)

Where C is the offset of the joint, N is the number of frequencies, A; is the
amplitude, T the period, t the time for each phase and finally @; is the phase shift.
One can think of equation (5.1) as a function of multiple frequencies and decompose
it using Partial Fourier Transform (PFS) into it’s components. Each component
represents a joint. An example of a joint’s motion equation in a certain moment can
then achieved by using the set of equations in (5.2) applied to the respective joints.
There is an oscillation equation for each joint and it includes the joints in right and
left legs. In most of robot motion models however, one leg is considered to be the
support leg and the other leg, the swinging leg. In non-periodic motions (including
the kick action which is the motion of ineterst in this thesis) the optimum value of the
left leg joints and corresponding right leg joints are considered separately. What we
are trying to find is the optimum value for A; ;,,C; 12, @1 12 and T in equation set

(5.2) with which the robot kicks best. It also has to be mentioned thaht only
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execution pahse has been considered for optimization. The parameters of the
oscillators of other kick phases are considered to be fixed.

. (2mt . (2mt
firnigni(t) = C; + Aq sin (T + ®1> frrhign1(t) = C, + Ay sin (T + ®2>

. [2mt . (2mt
firhignz2(t) = C3 + Az sin (T + ®3> frrhign2(t) = C4 + Ay sin (T + 04+ 7T>

fiknee(t) = Cs + Agsin (% + Qs) frinee(t) = Co + Ag sin (% + @6 + ”) (5.2)

. (2mt . (2mt
frankie1(t) = C; + Ay sin (T + ®7> frankie1(t) = Cg + Agsin <T + 0g + ”)

. (2wt . (2mt
frankie2(t) = Cy + Agsin <T + ®9> frankie2(t) = Cio + Aqp sin <T + ®1o>

. (2mt . (2mt
fiuip(t) = Ci1 + Aqqsin (T + 911) fruip(t) = Ci2 + Aqpsin (T + ®12>

However there is a parameter which has a global effect on the motion
performance. In order to send the new angles calculated in equation (5.2) to the
servos, the following equation has been used:

Speed * (BTarget - BCurrent) (5.3)

Where 6 is the angular value of the joint. Here, the Speed value is global in the sense
that it is considered to be a constant for all the phases. However the Thigh,, Ankle,
and knee joints of the kicking leg have their own angular speed values. In other
words, the Speed, together with the angular speed of the the Thigh,, Ankle, and
knee joints of the kicking leg are also subjected to optimization. To achieve the
maximum kick range, one has to raise the ball above the ground right before kicking
in order to reduce the friction between the ball and the ground. To do this the ankle
of the robot has to pitch upwards in a very specific moment in the execution phase
(here by ankle we refer to Ankle; which is a pitch joint). This is why we have
considered this specific time as a parameter subjected to optimization. This
parameter is symbolized by w . S0 in general, we want to achieve the optimum
value of the following variables in order to perform an optimum Kkick:

- A, 1,: The amplitudes of the oscillators of the kicking leg.

- C; 1, The offsets of the oscillators of the kicking leg.
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- @112 The phase shift of the oscillators of the kicking leg.
- T: The motion period.

- Speed: Consists of four angular speed variables. One for the general
angular speed of the joints during all the kick phases. And three angular
speed variables for Thigh,, Ankle; and knee joints of the kicking leg at

the execution phase.

- w: The time at which the Ankle,of the kicking leg raises in order to lift

the ball and reduce the friction in the execution phase.

5.1.2.3 Designing the fitness function

The fitness function is rather simple. What we expect from the kick action is to kick
the ball as far as it can and as straight as possible without falling down. So literally

the fitness function can be calculated as:

f=— i (5.4)

max(D) 180

Where max (D) is the maximum ball distance within 4.25 seconds after starting the
kick action and a is the angle of the ball with respect to the robot at the end of each
evaluation. Each parameter in the above equation is normalized with respect to its
maximum achievable value. A penalty value of 0.2 has been considered and added to
the fitness value if the robot falls during the evaluation of the individuals.

5.2 Compared Algorithms
5.2.1 Comprehensive learning particle swarm optimization algorithm

5.2.1.1 Comprehensive learning particle swarm optimization, an introduction
CLPSO was introduced by Acan[2]. The algorithm employs externally implemented

global (shared) and particle-based (local) memories and a colonization approach

similar to artificial immune system algorithms is considered. At any iteration,
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particle-based memories keep a number of previously best performing personal
positions for each particle and the global memory keeps a number of globally best
positions found so far. A set of velocities is computed for each particle using each of
the personal best positions within its local memory and a number of randomly
selected positions from the global memory. This way, a colony of new positions is
obtained for each particle and the one with the best fitness is selected and put within
the new swarm. Global and local memories are also updated using the solutions

within each colony.

5.2.1.2 Advantages and disadvantages

Given enough evaluation counts as the maximum number of evaluation that the
algorithm can actually perform, CLPSO is an algorithm with good optimization
quality. However according to [13] The algorithm suffers from few drawbacks.
Randomness has been considered to fill and update the local memory. As a result, the
algorithm sometimes replaces a better solution with a worse and may divert from a
globally good solution to a worse solution and hence the best fitness does not show a
monotonicaly decreasing descent. This restarting from a worse solution also causes
the algorithm to require more iterations comparing with CBCW-PSO. One other
problem is that this method is based on reinjection of the best particle among the
individuals inside the colony into the population. This reduces the convergence speed
since the algorithm needs individuals (in the memories) which enables it to move in
the direction of the global minimum. Finding this kind of individuals is time
consuming and in fact it is all the optimization task is about. Finally, CLPSO, in it’s
initialization phase only performs the original PSO to fill its local and external
memories with “promising” individuals [2]. Not only this takes time but also the
“prmising” constraint sometimes causes the algorithm to perform many iterations on
the function using only original PSO. As a result, when there is a maximum number
of evaluations constraint, sometimes the algorithm reaches that maximum evaluation

counts even without actually getting out of the initialization phase.
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5.2.2 Covariance matrix adaptation evolutionary strategies

5.2.2.1 Covariance matrix adaptation evolutionary strategies, an introduction

CMA-ES stands for Covariance Matrix Adaptation Evolutionary Strategy. The
CMA-ES is a stochastic method for real-parameter (continuous domain) optimization
of non-linear, non-convex functions. As mentioned in the introduction approximating
the second derivative or Hessian information of the function under optimization, one
can infer the rate of descent and construct a Taylor polynomial. This polynomial
could then be used as a contour map. This is the basic idea behind Newton’s method
in function optimization where the inverse of the Hessian matrix is the solution of the
system. CMA-ES in it’s purest form tries to estimate the inverse of the Hessian
matrix through covariance matrix adaptation. In the CMA Evolution Strategy, a
population of new search points (individuals, offspring) is generated by sampling a
multivariate normal distribution. The basic equation for sampling the search points,

for generation number g = 0,1, 2, ..., reads:
x0T am@ 4 6@ (0,c9) fork=1,..,1 (5.5)

N(0,€9) is a multivariate normal distribution with zero mean and covariance

matrix @), x9*D € R is the k-th offspring from generation g + 1. m@ € R" is
the mean value of the search distribution at generation g. 09 € R , is the overall
standard deviation or step size, at generation g. C(9) € R™*" is the covariance matrix
at generation g. C(9 is the covariance matrix of the search distribution. 1 > 2 is the
population size (sample size or number of offsprings). At each iteration, new
offsprings are being produced according to the following parameter update in
equations (5.6) and (5.7):

m@+h) « m@ + G(Zsel> where (Zsel> = Z?:l WiZj.x (5.6)

Where z; = ]V}(O,C(g)) and z;.; means the first best A individuals achieved from

equation (5.1). Also:

24



1
C(g+1) « (1 - Ccov)c(g) + Ceov —J(Zsel>(zsel>T (5-7)

A
Zi=1 wj

Here c.op = 2/nz. C.op 1S the learning rate of the algorithm. Iterating the steps

(producing new offsprings using equation (5.5) and then updating the mean and
covariance matrix according to equations (5.6) and (5.7)) will result in adaptation of
the covariance matrix into the inverse of the Hessian matrix. Various stopping
conditions could be considered for the algorithm of which few are Stopping when

maximum iteration counts reached or when the algorithm is experiencing stagnation.
5.2.2.2 Advantages and disadvantages

CMA-ES is a very strong algorithm with state-of-the-art converging speed and
optimization quality. As shown in the section 5.3.3 the algorithm outperforms both
CBCW-PSO and CLPSO for many of the benchmark functions. But accroding to the
“No Free Lunch Theorem”, there is no algorithm that optimizes all the functions.
Every algorithm has it’s own weaknesses. According to [10], [11] and [12], though
CMA-ES is a very strong algorithms in terms of convergence speed and optimization
quality, it sometimes suffers from some drawbacks. As an example, CMA-ES
experiences difficulties to solve the problems in which the atractor volume of the
global optimum is small and an overall topology pointing to the global optimum is
missing. This is mainly a concern when the function under optimization is non-
separable. In [12] it has been shown that, in multi-funnel functions, where local
optima can not be interpreted as perturbations to an underlying convex (unimodal)
topology, the performance of the CMA-ES algorithm decreases. An example of a
multi-funnel function is shown in Figure 5.2. As shown in the Figure 5.2, the
function contains two funnels where the gray ridge seprates funnel 1 (left) from
funnel 2 (right). Funnel 1 consists of global minimum as well as multiple local
minima. Also several local minima are spread across the funnel 2. Funnel 2 is a
broad funnel and any heuristic can be trapped in funnel 2. This topology is

considered to be a hard one for optimization algorithms.
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Figure 5.2 : Adapted from [11], a 2D multi-funnel function.
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6. TEST AND COMPARISONS

6.1 Experimental Settings

As mentioned earlier, two rounds of experiments has been conducted. The
experimental setting for both round of settings are identical unless otherwise is
stated.

Each experiment consists of 50 runs. In the first round of experiments, the maximum
number of evaluation counts is set to 40000 for both algorithms (CBCW-PSO and
CLPSO). In the second round of experiments however, Since the number of
evaluations in CMA-ES algorithm is not fixed and the stopping criteria of CL PSO
and CBCW-PSO algorithms is to reach a certain evaluation count, we first conducted
the tests using CMA-ES and measured the number of evaluation in each experiment
for 50 runs and then set the maximum number of evaluations in CLPSO and CBCW-
PSO algorithms to the maximum number of evaluations in CMA-ES algorithm for

the corresponding experiment.

Since the environment under which the robot performance is evaluated is noisy, we
also consider the effect of noise on benchmark functions to have an idea about the
effect of noise (both uniform and Gaussian) on the robot experiments.  This is why
three separate experiments has been considered for each algorithm-benchmark
function pair: (1) when the fitness value of the function has no noise (2) when the
fitness value of the function has uniform noise and (3) when the function is

considered to have Gaussian noise in fitness value.
The size of the external memory for best and worst global positions is 2 and 4

respectively. This is according to [13] where the best results are achieved. Also the

sizes of local and external memories in CLPSO is set to 4 and 5 respectively, since
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the best results for this algorithm in the literature have been achieved using these
settings. The swarm size in all the experiments is constant and set to be equal to 30
which is the dimension of the functions. The algorithm settings for which the
experiments have been done are as follows: A8 = 107>, ¢ =10"°, lower bound =
0.95, upper bound = 0.99 The upper and lower bound of 0 as well as Af are
randomized with a small number, €. The value of € has been chosen to be smaller
than the value of A to prevent 6 from exceeding its boundaries. Choosing a small
value for € also makes sure that 0’s value maintains a smooth and slow motion
between its boundaries as if AO where not randomized. The value for A0 is chosen
such that it shows a decrement rate close to that of [2] for the sake of comparison.
The upper bound value is used as suggested in several publications and its validity
has been verified in our experiments. The lower bound, however, is experimentally

tuned to the value with which the best results are achieved.

Each experiment on the robot consists of 5 runs and has the following settings.
Before each evaluation, the robot is beamed at the center of the field (coordinates
X=0,Y=0) and the head’s roll joint ‘hel’ in Figure 5.1, is set to O degrees and the
head’s pitch joint, ‘he2’ is set to the inverse (negative) value of the ball’s vertical
angle. This way, after the initialization the robot has a guaranteed visual of the ball.
The time for each evaluation for all the algorithms is equal and is set to 11 seconds.
After this initiation phase, there is one second waiting to make sure that everything is
loaded and the robot will start the simulation normally without extreme system load.
At this moment the simulator enters the kick-off phase where the robot will be able
to move the joints. All the mentioned procedures has a duration of 2.5 seconds. This
is where the robot starts to perform the kick action and it enters the Execution phase
in the 3rd second of the game. No matter if the kick action is successful (the robot’s
leg hits the ball) or not, the robot’s head is fixed on the ball during the experiment.
The purpose is to determine a good quality fitness value, based on the distance of the
ball to the robot. It has to be mentioned that if the robot falls (no matter if it sees the
ball after falling or not), the last distance value, recorded when the robot was
standing will be considered by the fitness evaluation.This is necessary due to the fact
that if the robot falls backward, it still may be able to see the ball, however in this

case, the distance between the robot and the ball will increase proportional to the
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length of the robot (57.5 cm). This, in turn, will decrese the fitness value of equation
(5.4), and the algorithm(s) may converge in favour of the individuals which result in
falling of the robot backward. This is certainly not desirable. The same rule is
accounted for the ball angle with respect to the robot, say, the last ball angle value
for which the robot had a stable kinematic state (a no-fall state) is considered for the
fitness evaluation. The stop criteria is set to maximum evaluation counts which is set
to be 8000. The test platform is an 8 core (3.2 GHz) system running on Ubuntu 10.04
with 4 GB RAM.

6.2 Analysis of Parameter Settings

The value of the probability p has a direct effect on the convergence speed of the
algorithm. The lower this value is, the more the algorithm switches to equations (4.4)
or (4.5). This adds an extra amount to the velocity of the particle in the direction of
the global best position. But there is a trade-off. Frequently using the extra velocity
for a long time, results in convergence in a wrong direction. This is due to the fact
that local optimum may be scattered and far from each other but at a relatively equal
distance with respect to the particle. This is why an amount above 0.5 has been
considered for the probability. However, our experiments show that setting the
probability p proportional to 1-8, increases the convergence speed, since, binding the
p to the value of 0, which is a randomized value, provides more diversification.
Replacing the linearly decreasing inertia in equation (4.5) with 6 , which is subject to
multiple restarts, also shows to be a very influencing factor on convergence speed.
This is the methodology of choice in our experiments.

One can easily show through experiments that eliminating one the parameters
introduced in CBCW-PSO decreases the performance of the algorithm. This is to say
that if we reject using the coefficient C and instead employ only the inertia restart, or
vice versa the performance will decrease. Though one can replave the probability p
to a constant positive less than 1 instead of changing it dynamically with the
complement value of inertia. For some functions it does not affect the performance

but for some other functions it will dramatically decrease the performance. Also
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lower and upper bounds have a huge effect on the performance and thus cannot be

eliminated.

6.3 Experimental Results on Benchmark Functions

A preliminary set of experiments has been conducted on CBCW-PSO and CLPSO on
some of the benchmark functions in [6],[7] and [8]. The benchmark functions along
with some of their properties are shown in Table 5.1. The goal is to compare the
convergence speed of CBCW-PSO and that of CLPSO. The results are shown in
Table 6.1. As can be seen in the table, CBCW-PSO outperforms CLPSO in terms of
solution quality. The results of the employed t-test show the cases where CBCW-
PSO is statistically significant than CLPSO. In the last column, S+ means that
CBCW-PSO is statistically significant comparing to CLPSO and S means that none
of the two methods are statistically significant. However, considering the
convergence speed as a criteria, the minimum evaluation count in which each
algorithm finds the optima (first-hit) is also measured in the experiments. The results
are shown in Table 6.2. Again here S+ means that CBCW-PSO is statistically
significant than CLPSO and S means that none of the two methods are statistically
significant. Achieving the satisfactory results in the preliminary experiments, we ran
another round of tests and included CMA-ES algorithm in comparisons. In this new
round of comparative tests, as shown in Table 5.2, special attention has been paid to

more complicated benchmark functions .

Table 6.1 : Perliminary experimental results

Functions | Dim CLPSO CBCW-PSO t-test
Min Max Avg Min Max Avg
L&) 30 0 0 0 0 0 0 S
£ 30 0 0 0 0 0 0 S
f3(%) 30 0 0 0 0 0 0 S
L) 30 0 0 0 0 0 0 S
JAE)) 30 0 0 0 0 0 0 S
fe (%) 30 0 0 0 0 0 0 S
&) 30 0 0 0 0 0 0 S
fo(®) 30 0.033 7.93 3.899 0.001 4.001 0.911 S+
fo(®) 30 | -12451 | -11622 | -121075 | -125695 | -12332 | -12438 S+
fio (€3] 30 48.915 237.94 173.8 0 1.989 0.994 S+
f11 (%) 30 0 0.11 0.042 0 0.041 0.012 S+
f1, () 30 | 22209 5.22 3.318 0 0 0 St
fi3 (€3] 30 2.7555 7.19 5.922 0 157 0.15 S+
fra(X) 2 | -1.0316 | -1.0316 | -1.0316 | -1.0316 | -1.0316 | -1.0316 S
fis(®) 2 0398 | 0.398 0.398 0.308 0398 | 0398 S
fie(®) 2 0 0 0 0 0 0 S
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They are more complicated in the sense that they are highly multi-modal, highly
multi-funnel and hybrid. In Table 6.3, the minimum, average and the value of
standard deviation, obtained over 50 runs of CMA-ES, CLPSO and CBCW-PSO are
given. Outcomes with a difference less than or equal to 10~> with respect to the

known global optima, is considered as the value of the global optima.

Tabhle 6.2 : First Hit

Functions CLPSO CBCW-PSO t-test
f1(3) 122820 15255 S+
fo (%) 165900 31419 S+
f5(%) 299880 122265 S+
fa(X) 1199400 77832 S+
1< (%) 100920 2340 S+
fe(X) 122280 7605 S+
17 (%) 247860 33582 S+
fa(X) - -
fo(X) - 1109850 S+
fio(X) - 1076010 S+
fi1(X) 1094340 963669 S
JAG) - 57153 S+
fiz(X) - 646980 S+
JAE) 3180 531 S+
fis(X) 2700 489 S+
JE) 2120 775 S+

The dimension of each function is set to 30 for all the experiments. Better results are
shown in bold in the table. An ANOVA test at a significance level of 0.95 has been
performed to test for the statistical significance of the differences. In the last column,
Sceew Means that CBCW PSO results are statistically significant than the results of
the other algorithms and S, means that the CLPSO algorithm performs better than
others and finally S;;,4 means that CMA-ES offers better solutions. The details of
the ANOVA analysis can be found in Figures A.1, A.2 and A.3 in the Appendices.
Also multi column comparison results for all the experiments can be found in
Figures A.4, A5 and A.6 in the Appendices. These figures, show those algorithms

which are statistically significant from the others.
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Table 6.3 : Comparative results

2 0
2 2 < 2
Functions ; 3 > 2
3 © o >
o
Min u o Min u o Min u [
£ @) 1799 | -176 110 | -1448 | -138 5185 | 180 | 79 | 0001 | Spps
fe(D) 192 | -1190 | 009 | 1191 | -118 0053 | -118 | -118 | 0.068 | Sopcw
® £ 2911 | 2540 | 254 | -3165 | -297 130 | 311 | 289 | 2708 | Spua
(2]
= fio(®) 2603 | -1747 | 483 | 22476 | -148 3536 | 813 | 298 | 2518 | Seus
p £ (X 1131 1189 | 33 | 11808 | 1288 | 3308 | 938 | 1037 | 404 | Seya
z fi2(3) 1253 | 1197 | 278 | -12076 | -110 917 | 128 | 126 | 015 | Spua
£, 2882 | -287.0 | 044 | 28718 | -286 027 | 286 | 285 | 019 | Sppew
£, (X 2454 | 4142 | 1111 | 24073 | 4124 | 1830 | 1562 | 1707 | 931 | Spua
(%) -178.9 1705 | 2433 | -169.91 | -106 2464 | 178 | 118 I
@ fe(X) 1190 | -1187 | 008 | -1189 | -118 007 | 118 | 118 | 007 | Sepew
2] -
S fo(X) 2826 | 2342 | 3756 | 2887 | 256 | 2L.89 | -279 | 131 | 3344 | s,
c f10( 270.9 | 1628 | 60.67 | -1676 | -60.1 4345 | 310 | 114 | 3197 | Sppew
S f11 (%) 1137 1218 3.96 128.9 134.2 2.05 1311 135.4 140 | Scpew
= s
= f12(X) 1247 | 1172 | 482 | 3201 | 3907 | 4958 | 127 | 118 | 688 | Spya
f1.(0) 2871 | 2863 | 0.31 | -2866 | -285 027 | 286 | 285 | 0.15 | Sppcw
£, (X 2506 | 4759 | 1616 | 3823 | 5624 | 1053 | 317.3 | 3689 | 17.75 | Spys
£ 1789 | -1699 | 180 | -163.1 117 3225 | A78 | A788 | 0.026 | Seya
@ fe(@) 21189 | -1187 | 0.084 | -1188 -118 0.05 118 | -1186 | 0.07 | Spew
S fo(X) 2672 | 2091 | 3348 | -267.46 | -203 3914 | -115 | 8615 | 164 | Sppow
z 5
- fio(®) 2481 | -137.9 | 6862 | -85. -2.29 4606 | 997 | 6572 | 1645 | Sppew
g £, 1133 1219 | 388 | 1292 | 1348 162 | 1323 | 1354 | 137 | Sepew
2 f13(®) A247 | 4159 | 470 | 701 5181 | 9853 | 114 | 1097 | 158 | Sppew
© f1a(X) 2866 | 2860 | 029 | -2865 -285 021 -286 2857 | 014 | Scpew
£,(3) 2354 | 4582 | 1604 | 3649 | 5474 | 1622 | 3765 | 4l4d | 176 | Seua
Table 6.3 shows that, for non-noisy function CMA-ES has a better performance

comparing with CBCW-PSO and CLPSO. However functions, fg and f;, are

exceptions. In case of function fg since the optimum value is in the boundary and

CBCW-PSO, due to its smart boundary control, has a good ability to find the optima

at the boundaries, it outperforms the other two algorithms. However it also implies

that CBCW-PSO performs well when the basin of attraction is small. As of f,,, the

Schaffer’s function, there are multiple local optima in the form of circles and the

global optima lies in the center circle in the function. Figure 6.1 shows the function

in a 2D demonstration.

32




Schaffer Function in 2D

Figure 6.1 : A demonstration of Schaffer’s function in 3D

Here the inertia restart strategy as well as linear decrement of the inertia value, helps
the CBCW-PSO to escape from local optima and avoids the premature convergence.
At the same time the structure of the function could be considered a plus for the
employed external memory policy since subsequent (neighboring) local maxima and
minima are much more probable and hence the value of the C variable in equations
(4.3), (4.4) and (4.5) maintains a constant value close to 1 which at the same time
increases the step size and forces the particles to go one step higher in the function’s
circle levels. This helps the algorithm in the sense that it prevents the particles from

getting trapped inside many local optima in the function.
The results are also presented in graphical form in Figure 6.2. Please note that if

there is a missing algorithm in the figures, it means that the values produced by that
algorithm is so high that plotting it may avoid investigating the details of the other
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Figure 6.2 : The evolution of the best fitness, averaged over 50 runs for each function
for non-noisy fitness values. (a)f;. (b)fs. (C)fo. (d)fi0-(€) fi1- (F) fis-

(9) fia- (M) fi7
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Figure 6.2 (continued): The evolution of the best fitness, averaged over 50 runs for
each function for non-noisy fitness values. (a)f;. (b)fs.

©fo. [ fi0- (€) fi1- () fiz- (@) fia- (D) fi7

algorithms. A missing CLPSO plot in Figure 6.2 (f) is an example. In such cases
Table 6.3 could be considered. Again in Table 6.1 as well as in Figure 6.3, one can
see that CBWC-PSO outprtforms the other two algorithms in functions f5, fio, fi1
and f;, when there is a Uniform Noise added to the fitness value. The function f;, is
more or less similar to functions fg and f;, in the sense that the number of local
optima is very large, and that they are regularly spread over the function space.
Again, the inertia restart strategy as well as the new velocity update helps the
CBCW-PSO to escape from those local optima. The regular spread of local optima
across the search space has the obvious advantage that they produce almost
subsequent worst and best neighborhoods which results in a continuous boost in the
value of the variable C in equations (4.3), (4.4) and (4.5) and this forces the particles
to check for new and better neighborhoods (if any). This is similar to the case of
function f;, in the previous discussion. In general, this yields that, whenever the
basin of attraction has a small size or there is an overal topology, pointing towards
the global optimum, our algorithm performs well. As discussed earlier, the reason for
this is the way the C value in equations (4.3), (4.4) and (4.5) is boosted in such

topologies.
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Figure 6.3 (continued): The evolution of the best fitness, averaged over 50 runs for
each function for fitness values with uniform noise.
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Finally Figure 6.4 and the last 8 rows of Table 6.1 show the experiment results for
results in
favour of CBCW-PSO are partially due to the fact that the original PSO and the

the case when Gaussian noise is added to the fitness value. The better

descendants of this algorithm are noise resistant. It’s easy to see that the performance
difference between CBCW-PSO and CLPSO are preserved when the noise type is
changed. In case of the CMA-ES algorithm, however, setting the NOISE option in
CMA-ES algorithm to ON, ends up in worse results for noisy functions and, Setting
the same option to OFF for the same noisy function, ends up in fitness values close to
that of the first 8 rows of Table 6.1 (this is to say that the results will be similar to
the case where there is no noise in the fitness value). However, in addition to
discussing the effect of the noise and it’s type on the performance of each algorithm,
our goal here is also to show that for some functions, no matter if CMA-ES treats the
function as a noisy function or not, and if there actually is noise or not, there are
cases where CBCW-PSO outperforms the CMA-ES. f;, is an example that emerges
from these experiments. As stated earlier in section 5.2.2.2, it has been shown in
literature that, in multi-funnel functions, where local optima can not be interpreted as
perturbations to an underlying convex (unimodal) topology, the performance of the

CMA-ES algorithm decreases. This is why we believe that, in fact in case of noisy or
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multi-funnel functions, the main advantage of our algorithm is it’s independence
from the underlying global topology and the use of intuitive coefficient which allows
it to simply escape local optima towards  better coordinates in the search space. A
question may rise about the performance of the CLPSO algorithm in multi-funnle
and/or noisy functions. The main reason why CLPSO fails to converge to the global
optimum in these functions is it’s time consuming initialization phase. Observations
during the experiemnts (as well as the graphical representations in Figures 6.2, 6.3
and 6.4) show that the CLPSO algorithm consumes a lot of time in the initialization
phase and due to its random substitution policy in external memories, it also may
reset to a worse fitness value as global best (the various peaks that are observable in

many graphics, representing CLPSO’s performance).

for fitness wvalues with Gaussian Noise. (a)f;. (b)fs. (C)fs. (d)f;
(€) fi1- () fiz- (9) fia- () f17
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Figure 6.4 : The evolution of the best fitness, averaged over 50 runs for each function
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Figure 6.4 (continued): The evolution of the best fitness, averaged over 50 runs for
each function for fitness values with Gaussian Noise.
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6.4 Experimental Results on The Robot

Finally, Figure 6.5 and Table 6.4 show the experimental results on the robot kick
action. As can be seen, CBCW-PSO outperforms the other two algorithms. From this
experiment, one can conclude in many ways about the robot’s kick search space.
Earlier, during the experiments on benchmark functions, we saw that small basin of
attraction, missing overall topology in the search space and multi-funnelty in the
function under optimization may all be the reasons for an inferior performance In

CMA-ES and a superior performance in CBCW-PSO. However, also the
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performance of CLPSO helps us to provide an explanation about the reason why,
CBCW-PSO outperforms CMA-ES. The resulting fitness evolution is similar to that
of fi,,interms of the order with which each algorithm performs better and also the
way the best fitness value decsends. The resulting kick action has a range of nearly 6
meters. The ball does not deviate from the x axis of robot’s torso as desired. The
described kick action has been utilized in RoboCup competitions at Istanbul, 2011
and the robot was able to kick a goal score using the designed kick action. An
ANOVA analysis also has been made on the outcomes of the three algorithms in
which can be seen in Figure A.4 in the Appendices (Appendix A.l). Figure 6.6

shows the resulting kick in Simspark simulator.

Table 6.4 : Comparative results of the robot experiment
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Figure 6.5 : Best fitness evolution of the robot experiment
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(1st half) BeforeKick0ff t=0.00 ° <Right> 0

Figure 6.6 : The resulting kick action
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7. CONCLUSIONS

In this thesis, we have proposed a new and novel PSO, based on external memory for
Optimization problems. The algorithm has been subjected to comparative
experiments on well-known benchmark functions as well as an optimization problem
defined on the robot action (kick action). We showed that the proposed algorithm
outperforms a recent improvement of PSO, namely CLPSO in the benchmark
function experiments. Also in some cases, the proposed algorithm outperforms the
CMA-ES algorithm. It has been explicitly shown that our new algorithm outperforms
the other two algorithm in terms of convergence speed and the solution quality for
the cases where the function under optimization is either noisy, multi-funnel, has
small basin of attraction or does not have a global topology. Also the algorithm
performs very well for the robot case where an optimum set of parameters are being
sought for the kick action.Future work will include an adaptation strategy with which
the algorithm tunes it’s parameter according to the function it optimizes. These
parameters include the sizes of the external memories and lower and upper band
values in the algorithm.
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Figure A.1: The ANOVA Test results for various benchmark functions with noisy
fitness value (Gaussian noise type).
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Figure A.4 : The ANOVA Test results for various benchmark functions with noisy
fitness value (Gaussian noise type).
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ANOWVA Test results for function :F14 (With Uniform Noise)

CBCW-PSO | —&— 1

CLPSO — B

CMAES —e— 1

L L L . L L L L
-286.4 -286.3 -2862 -286.1 -286 -2859 -2858 -2857 -2856 -2855
2 groups have means significantly different from CBCW-PSO

ANOVA Test results for function :F17 (With Uniform Noise)
CBCW-PSO —e— E
CLPSO —e— A
CMAES — B
L . L . L
300 350 400 450 500 550 600
2 groups have means significantly different from CBCW-PSO

Figure A.5 : The ANOVA Test results for various benchmark functions with noisy
fitness value (Uniform noise type).
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Figure A.6 : The ANOVA Test results for various benchmark functions with

non-noisy fitness value.
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Figure A.7 : The ANOVA Test results for the robot kick function.
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ANOWA Test results for kick function
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Figure A.8 : The ANOVA Test results for the robot kick function.
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