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FEATURE SELECTION USING DIFFERENT MUTUAL INFORMATION
ESTIMATION METHODS

SUMMARY

As high dimensional data, such as microarray data become available, fast and
accurate feature selection methods have gained more importance. The aim of
feature selection is both increasing classi�cation performance and providing ease
of understanding of data by keeping its de�nition simple.

One of the most widely used metrics in feature selection is mutual information.
Estimating mutual information accurately contributes to quality of selected
features. This study focuses on the role of mutual information estimation in
feature selection and aims the following:

1. to give a comparison of mutual information estimation methods based on
binning, KNN (K Nearest Neighbor) (Fix & Hodges, 1951) and KDE (Kernel
Density Estimation) (Rosenblatt 1956),

2. to measure performance of these mutual information estimation methods on
two feature selection methods: relevance based mutual information �lter
and min-redundancy-max-relevance (mRMR) (Peng 2005) feature selection
method

3. to improve the performance of these methods through subset selection or by
combination.

The results of this study show that although performance of simple relevance
based feature selection improves with more sophisticated mutual information
estimation methods such as KNN based and KDE based, mRMR do not bene�t
from this improvement.

Furthermore, it is shown that neither instance subset selection nor linear
combination of these methods yield to improvements in the performance of the
classi�cation in microarray data.
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FARKLI KARŞILIKLI BİLGİ KESTİRİM YÖNTEMLERİ KULLANARAK
ÖZNİTELİK SEÇİMİ

ÖZET

Mikrodizi verisi gibi oldukça fazla öznitelik içeren verinin eri³ilebilir olmas� ile
birlikte, h�zl� ve do§ru öznitelik seçim yöntemlerinin önemi artm�³t�r. Öznitelik
seçimi uygulamas�ndaki amaç, s�n��and�rma ba³ar�m�n� artt�rmak oldu§u kadar,
ayn� zamanda veriyi daha basit ³ekilde tan�mlayarak anla³�l�r k�lmakt�r.

Öznitelik seçiminde kullan�lan ölçü birimlerinin ba³�nda kar³�l�kl� bilgi
gelmektedir. Kar³�l�kl� bilginin do§ru bir ³ekilde kestirilmesi seçilen özniteliklerin
kalitesini artt�rmaktad�r. Bu çal�³ma öznitelik seçiminde kar³�l�kl� bilginin
kestiriminin etkisi üzerinde yo§unla³arak, ³unlar� hede�er:

• bölmeleme, KNN (K en yak�n kom³u) (Fix & Hodges, 1951) ve KDE'ye
(çekirdek yo§unluk kestirimi) (Rosenblatt 1956) dayanan kar³�l�kl� bilgi
kestirim yöntemlerinin kar³�la³t�rmas�n� yapmak,

• bu kar³�l�kl� bilgi kestirim yöntemlerinin iki öznitelik seçme yöntemi
üzerindeki ba³ar�m�n� ölçmek: ilgi tabanl� kar³�l�kl� bilgi �ltresi ve
minimum-bolluk-maksimum-ilgi (mRMR) (Peng 2005) öznitelik seçme
yöntemi.

• yine bu yöntemlerin ba³ar�m�n� altküme seçimi veya birle³tirme ile artt�rmak.

Bu çal�³man�n sonuçlar�, KNN tabanl� ve KDE tabanl� yöntemler gibi daha
karma³�k kar³�l�kl� bilgi kestirim yöntemlerinin, sadece ilgi tabanl� basit öznitelik
seçme i³leminin ba³ar�m�n� artt�rmas�na ra§men, mRMR' �n bu yöntemlerden
yararlanamad�§�n� göstermi³tir.

Ayr�ca, ne altküme seçme yönteminin ne de kar³�l�kl� bilgi kestirim yöntemlerinin
lineer olarak birle³tirilmesinin mikrodizi verisinin s�n��and�rmas�nda,
s�n��and�rma ba³ar�m�n� artt�rmad�§� gösterilmi³tir.
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1. INTRODUCTION

Amount of data used in computational tasks is growing day by day. Many

applications in machine learning domain have to deal with huge amount of

data. Notable application areas vary from market basket analysis to Geographic

Information Systems, and from Bioinformatics to Web Recommendation

Engines;but they all su�er from high computational costs.

One of the recent technologies contributed to that data boom is microarrays.

DNA microarrays allow monitoring of thousands of gene expression levels in

a single experiment [1]. These gene expressions are used in classi�cation of

tumor tissues. Although microarrays enabled examining tissues in great depth

through gene expression levels, the sample size is often limited. A side e�ect of

this high dimensionality of microarray gene expression data is the reduction in

interpretability.

Feature selection is a common dimensionality reduction approach when the

computational costs are infeasibly high. This approach also helps us understand

the underlyings of the data (e.g. identifying genes responsible for a certain type

of cancer) in bioinformatics.

Feature selection methods are divided into two groups: �lters and wrappers. First

determines the usefulness of a feature according to the intrinsic characteristics

of data while the second lets a classi�er decide which features are better.

In classi�cation tasks, �lter methods are known to be faster and are easily

implemented but wrapper methods perform better due to their strong bonds

with a classi�er [2, 3].

Filter methods usually need a metric to determine the relation between features.

Mutual information is one of the most common among these metrics.

One of the most recently developed �lter feature selection methods is

minimum-redundancy-maximum-relevance (mRMR) [4] feature selection. This

1



method relies heavily on mutual information and is explained in detail in Section

3.4.

This study focuses on the following subjects :

1. Comparison of di�erent mutual information estimation methods.

2. Possible improvements on the performance of the mutual information

estimators through combination and instance subset selection.

3. Role of mutual information estimation method in mRMR feature selection

performance.

This thesis is organized as follows:

• Second chapter provides information about recently developed mutual

information estimation methods.

• Third chapter provides information about feature selection methods and

especially minimum-redundancy-maximum-relevance (mRMR).

• Fourth chapter contains experimental results for mutual information

estimators on arti�cial data and considers possible improvements.

• Fifth chapter summarizes the previous work on feature selection for microarray

data and contains the experiment results for feature selection using di�erent

mutual information estimators and mRMR.

• Sixth chapter concludes the �ndings from this work and discusses future

improvements.
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2. MUTUAL INFORMATION

Mutual information is a commonly used metric for capturing dependence

information between variables. Mutual information [5], [6] for the bivariate

random variables (X, Y) is de�ned as follows:

I(X ,Y ) =
∫∫

pXY (x,y) log
(

pXY (x,y)
pX(x)pY (y)

)
dxdy (2.1)

In the Equation 2.1, pXY (x,y) is the joint probability density function and pX(x)

and pY (y) are the marginal probability distribution functions. The base of the

logarithm de�nes the unit of measurement.

The mutual information is often preferred to other dependence metrics as it

captures both linear and nonlinear dependencies and the mutual information

between two variables converges to zero if and only if these two variables are

independent.

Mutual information has the following properties:

• It is nonnegative: I(X ,Y )≥ 0.

• It is symmetric: I(X ,Y ) = I(Y,X).

• It is additive for independent variables: if PXYWZ(x,y,w,z) = PXY (x,y)PWZ(w,z)

then I(X ,W : Y,Z) = I(X : Y )+ I(W : Z).

2.1 Mutual Information Estimation

In real world applications, mutual information cannot be determined exactly

since the distributions of the random variables are not known. It can only be

estimated from a �nite amount of data gathered. Steuer et al. [7] compared

di�erent algorithms to estimate mutual information and discussed the e�ects of

�nite size data.

3



In this section, three mutual information estimators namely binning based, KNN

based and KDE based, are introduced.

2.1.1 Binning Based Estimator

Since the distributions of the random variables cannot be determined most of the

time in real world examples, a common practice is to partition the data into �nite

size bins and compute mutual information in the discrete domain. In order to

compute the probabilities, data points falling into each bin is counted. Equation

2.2 shows the computation of mutual information for discrete variables.

Ibinned(X ,Y ) = ∑
i j

pxy(i, j) log
(

pxy(i, j)
px(i)py( j)

)
(2.2)

This method is known to overestimate the information shared between two

uniform random variables [7]. Another drawback of binning based estimator

is its sensitivity to the selection of the origin and the bin size [8]. It is improved

by changing the bin sizes according to the distribution of data [9]. The adaptive

binning method [9] determines the bin sizes so that every bin has equal number

of instances.

2.1.2 KNN Based Estimator

Another way to estimate MI is to use the relation between MI and entropy. MI

may be estimated by estimating the entropy measures H(X), H(Y ) and H(X ,Y )

separately and then using Equation 2.3.

I(X ,Y ) = H(X)+H(Y )−H(X ,Y ) (2.3)

A common de�nition for the entropy is done by Shannon:

H(X) =−
∫

px(x) log px(x)dx (2.4)

While there is extensive literature on the estimators for the Shannon entropy,

these estimators have never been used for estimating MI before their work

according to Kraskov et al. [10].
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For a univariate random variable, entropy may be estimated based on the

distances between instances using Equation 2.5 if the instances can be ordered

and the di�erence between the instances vanishes going to in�nity. While this is

a good approximator, it is not generalized to higher dimensions.

H(X)≈ 1
N−1

N−1

∑
i=1

log(xi+1− xi)+ψ(1)−ψ(N) (2.5)

In Equation 2.5, ψ(x) is the digamma function which satis�es the following

equations. C is the Euler-Mascheroni constant.

ψ(x) = Γ(x)−1dΓ(x)/dx

ψ(x+1) = ψ(x)+1/x

ψ(1) =−C

C = 0.5772156 . . . (2.6)

Kraskov et al. [10] generalized this approximation by de�ning a distance measure

in higher dimensional space. In order to rank instances on the spaces X , Y and

Z = (X ,Y ), a previously de�ned metric di j = ||zi− z j|| is rede�ned as follows:

||z− z′||= max{||x− x′||, ||y− y′||} (2.7)

Using this maximum norm, εx(i)/2 (or εy(i)/2) is de�ned as the projection of the

distance from zi to its kth neighbour on the x (or y) space. Given this distance,

nx(i) (or ny(i)) is de�ned as the number of instances who is closer than εx(i) (or

εy(i)). Equation 2.8 shows the formal de�nition.

nx(i) = |{zi′|‖xi− xi′‖ ≤ εx(i)}| (2.8)

And the mutual information estimator is de�ned as follows:

I(X ,Y ) = ψ(k)−〈ψ(nx +1)+ψ(ny +1)〉+ψ(N) (2.9)

5



KNN (K nearest neighbor) [11] based mutual information estimator is considered

the best choice among KDE, KNN and Edgeworth [12] estimators for very short

data (50 - 100 data points) with low noise and short data (100 - 1000 data points)

in general [13].

One drawback of this estimator is that there seems to be no systematic way of

determining optimum k value. Still, this parameter can be optimized by cross

validation. Kraskov et al. [10] suggested to set k a value between 2 and 4, and

avoid using large values for k as it increases the systematic error.

2.1.3 Kernel Density Estimation (KDE) based estimator

Kernel Density Estimation (KDE) [14] is a nonparametric method for estimating

probability densities. The probability density estimator is de�ned by Equation

2.10.

f̂ (x) =
1

nh

n

∑
i=1

K
(

x−Xi

h

)
(2.10)

In Equation (2.10, K is a kernel function that satis�es Equation 2.11, h is the

kernel width. One of the most commonly used kernel functions is gaussian kernel.

∫
∞

−∞

K(x)dx = 1 (2.11)

In parametric density estimation, data is assumed to be drawn from a known

parametric family of distributions, like normal distribution, and the parameters

for that distribution is estimated. For example, if the data is assumed to be drawn

from a normal distribution, the parameters to be estimated are mean (µ) and the

variance (σ2). As a nonparametric density estimator, KDE lets the data express

itself. The density estimation is constructed with the contribution of bumps at

each data point. Kernel function determines the shape of these bumps.

Silverman [8] illustrated that KDE has some advantages over histograms:

• Histograms basically have two parameters: origin and bin width. The choice

of origin changes the performance of the estimator. Using KDE, we overcome

the problem of selecting an origin.

6



• Histograms have a �xed shape for bins. With the help of kernel function,

shape of bumps may be adjusted.

Mutual information may be estimated using Kernel Density Estimation by

estimating the probability densities in Equation 2.1 separately [15].

2.2 Evaluation of a MI Estimator

Performance of MI estimators introduced in this section is measured by di�erent

criterias according to the type of data. Since the exact MI value for the arti�cially

generated data is known, systematic error, standard deviation and mean square

error for that type of data are reported. On the other hand, the exact distribution

for the microarray data is not known. For this reason, the performance of MI

estimator is measured by the quality of the features selected by the feature

selection method using that MI estimator. The quality of selected features are

determined by the classi�cation error on the dataset using these features.

Here are the de�nitions of systematic error, standard deviation (STD) and mean

square error (MSE):

Systematic Error or bias of an estimator is the consistent di�erence between the

estimations and the actual value of the estimated attribute. This type of error

has both a direction and a magnitude.

Standard Deviation measures how much the estimated value varies around the

actual value.

Mean Square Error measures how much the estimator di�ers from the actual

value. MSE is always positive and has only magnitude.

7
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3. FEATURE SELECTION

Feature selection is the task of �nding a subset of features that represents the

data most informatively. Once that kind of a subset is found, machine learning

applications like classi�cation can be run faster and without accuracy loss.

One can attempt to �nd an optimum subset of features using a brute force

approach by trying every possible subset of features. However, this approach takes

exponential time and is not feasible in many real world applications. Two example

application areas where feature selection is vital are microarray classi�cation and

text categorization. A typical gene expression pro�le can have a varying number

of features from 6000 to 60000. In text categorization domain, feature selection is

used to reduce the vocabulary size from hundreds of thousands of words to 15000

[16].

Another bene�t of feature selection is to determine what underlies in the data.

For example, selecting a small number of relevant genes, apart from reducing

computational cost of the classi�cation task, underlines important genes so that

results are biologically interpretable.

With so many bene�ts, many feature selection methods have been developed

through the years [4, 17, 18, 19, 20, 21]. Basicallly, these methods are divided

into two categories: �lters and wrappers.

In this chapter, basic properties of �lters and wrappers are discussed and

then mutual information �lter and the mRMR feature selection method [4] is

introduced.

3.1 Filter Methods

Filter methods select features based on the intrinsic characteristics of data. For

each feature, a score is computed using a prede�ned metric. This may be a
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one-pass process or may consist of several repetitions for some pairs or subsets of

features. In the end, low scoring features are removed from feature set [21].

Filter methods are known to be fast and easy to implement. Both univariate [17]

methods that deal with feature pairs only and multivariate methods [22, 23, 24],

that deal with a subset of features exist. One disadvantage of �lter methods is

that, as they are independent from the classi�er, they cannot exploit the unique

advantages of classi�ers in the feature selection phase.

Widely used �lter methods are information gain [17], mutual information [18],

Relief-F [19], FCBF [20] and mRMR [4].

3.2 Wrapper Methods

Wrapper methods employ a classi�er to decide on the best features. The score

for one feature or a group of features is determined by the performance of these

features when these features are fed into a speci�c classi�er. Thus, every classi�er

selects a possibly di�erent subset of features.

Wrapper methods are computationally expensive thus, in most of the studies in

the �eld of DNA microarrays, �lter methods are used [19].

3.3 Mutual Information Filter

Filter methods need a metric to measure the dependency within the data itself.

Mutual information is a commonly used metric to measure both linear and

nonlinear dependencies. Most trivial way to employ mutual information as a

�lter type feature selection method is to measure the MI between each feature

and the class label individually, to sort these features according to their MI

values and then to take a certain number of top features (features that has most

information about the class label). This approach is called mutual information

�lter throughout this work.

3.4 Minimum-Redundancy-Maximum-Relevance (mRMR)
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mRMR is a recently developed �lter feature selection method introducing a new

criteria, called minimum-redundancy-maximum-relevance [4]. Before introducing

the mRMR, terms maximum dependency, maximum relevance and minimum

redundancy will be properly de�ned.

3.4.1 Maximum Dependency

The trivial approach for �lter methods of feature selection is to select the best

subset according to its similarity(dependency) to class label. This approach

is called maximum dependency. In order to compute the dependency among

variables, a dependency metric has to be de�ned. We will use the mutual

information metric, which is discussed in Chapter 2. Equation 2.1 may be

generalized to a subset of features and the class label as follows:

I(Sm,c) =
∫∫

p(Sm,c) log
(

p(Sm,c)
p(Sm)p(c)

)
dSmdc

=
∫∫

p(Sm−1,xm,c) log
(

p(Sm−1,xm,c)
p(Sm−1,xm)p(c)

)
dSm−1dxmdc

=
∫
· · ·
∫

p(x1, · · · ,xm,c) log
(

p(x1, · · · ,xm,c)
p(x1, · · · ,xm)p(c)

)
dx1 · · ·dxmdc.(3.1)

In this equation Sm refers to a subset of variables with m variables and c refers

to the class label. The idea is to �nd the most informative subset of features

about the class label. Even though the de�nition is quite simple, computation of

mutual information for a particular subset is not easy because of the di�erenity

of making multivariate density estimations in a high dimensional space. There is

often a lack of necessary number of samples, especially in bioinformatics.

3.4.2 Maximum Relevance

As an alternative, the maximum relevance approach approximates the

dependency among features using a series of bivariate calculations and de�ned as

follows:

D(S,c) =
1
|S| ∑xi∈S

I(xi,c) (3.2)

11



By approximating dependence between a subset of variables and the class label

to the average dependence value for this subset, maximum relevance approach

overcomes the computational cost.

3.4.3 Combining Max-Relevance and Min-Redundancy

mRMR, goes one step further by considering the redundancy among the chosen

features. Selected subset by the maximum relevance criteria considers the most

informative genes among the full subset. But these features may be highly

correlated and therefore classi�er may bene�t little by using them all together.

Therefore, highly similar features should be eliminated from the subset. The same

metric used in measuring dependency between features and class label, may be

utilized to measure the dependency between features. By this way, features with

no or little use together with the previously selected subset may be eliminated at

each iteration. Redundancy between two variables are de�ned in Equation 3.3.

R(S) =
1

|S|2 ∑
xi,x j∈S

I(xi,x j) (3.3)

Using the de�nitions of maximum relevance and minimum redundancy, mRMR

de�nes the term to be optimized in feature selection as follows:

maxΦ1(D,R),Φ1 = D−R (3.4)

maxΦ2(D,R),Φ2 = D/R (3.5)

These two metrics de�ned in Equations 3.4 and 3.5, �rst one optimizing the

di�erence and the second optimizing the ratio, are referred as MID and MIQ

throughout this text.

Trying to optimize one of these functions (MID and MIQ), mRMR starts by

selecting the most relevant feature as the subset S. Iteratively, most useful (most

relevant feature having minimum redundancy among the set S) feature will be

added to S. mRMR algorithm is shown in Algorithm 1.
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Algorithm 1 mRMR algorithm

Sselected ← argmax(I(s,c)),s ∈ Sm
Sle f t ← Sm/Sselected
while n < 50 do

if method = MID then
f ← argmax(I(s,c)−R(s∪Sselected)),s ∈ Sle f t

else
f ← argmax(I(s,c)/R(s∪Sselected)),s ∈ Sle f t

end if
Sselected ← Sselected ∪ f
Sle f t ← Sle f t/ f

end while
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4. EVALUATION OF MI ESTIMATORS

In this chapter, performance of binning based, KNN based and KDE based mutual

information estimators are evaluated on arti�cial data and possible improvements

for these methods are proposed.

4.1 Performance of MI Estimators on Artificial Data

In order to determine the performance of MI estimators, arti�cial data in the

form of uniform and Gaussian distribution are generated. This arti�cial data

is used to determine the optimum values for the method parameters like k for

K-nearest-neighbor estimator and bandwidth for KDE.

4.1.1 Uniform Distribution

In these experiments, 300 samples are drawn from a uniform distribution. Mutual

information is estimated for this arti�cial dataset using binning estimator with

two di�erent discretization methods, KNN based estimator and KDE based

estimator. The experiment is repeated 300 times.

For the �rst binning estimator, data is partitioned into 10 bins. For the second

method, data is partitioned into 3 bins using the discretization method in [25].

Equation 4.1 gives the details about the discretization method. In Equation 4.1,

µ and σ represents the mean and the standard deviation respectively. KNN

parameter K is set to 6 (default in implementation by Kraskov et al. [10]). KDE

bandwidth is set to 0.1.

x≤ µ−σ/2 ⇒ x′ =−1

x≥ µ +σ/2 ⇒ x′ = 1

Otherwise ⇒ x′ = 0 (4.1)
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Figure 4.1: Histograms of estimated MI for two features with uniform distribution.
Since the two features are independent, actual mutual information is zero.

Figure 4.1 shows the results for these experiments. Experiments on uniform

arti�cial data shows that the mean estimated mutual information for 300 runs are

0.15, 0.06, 0, 0.03 for the estimators based on binning with 10 bins, binning with

3 bins, KNN (K=6, default value for reference implementation) and KDE (kernel

bandwidth=0.1) respectively. Since the two variables are independent, the actual

mutual information is 0. While the mean value for KNN based estimator is very

close to the actual MI value it fails to satisfy the rule that mutual information

should always be positive. Note that the MI is overestimated by 0.15 using

binning based estimator with 10 bins which is in agreement with Steuer et al.'s

work [7]. Also note that Figures 4.1a and 4.1b show that discretization e�ects

MI estimations.
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Figure 4.2: Estimated MI (a) and standard deviations for estimated MI (b) for two
features with uniform distribution.



Binning (3 bins) estimator in Figure 4.1b shows very close performance to that

of KNN (K=6) estimator and this estimator is also very good in terms of its

variance.

4.1.2 Gaussian Distribution

In these experiments N number of samples are drawn from a gaussian distribution

with a mean of 0 and a covariance of r = {0,0.3,0.6,0.9} and mutual information

is estimated for this set using binning based, KNN based (K = 1..5,10) and

KDE based estimators. Bandwidth parameter for KDE estimator is calculated

using Equation 4.2, optimal gaussian kernel bandwidth from Silverman [8], for 2

dimensions.

h =

{
4

(d +2)

}1/(d+4)

n−1/(d+4) (4.2)

Kraskov et al. [10] showed that systematic error (Estimated MI - Actual MI)

for KNN based estimator scales with N−1/2 for N ≈ 103 and predicted that the

true behaviour is probably ∼ 1/N. Experiment results shown in Figures 4.3 and

4.4, are similar, however, number of samples for a microarray datasets is much

less than 103. KDE based estimator is superiour to binning for r = {0,0.3} in

terms of systematic error and worse for the rest. Another interesting point is

that, while KNN based method underestimates the MI most of the time, other

methods' behaviour vary with the variance.

Kraskov et al. [10] also showed that the systematic error tends to zero as N→ ∞

for KNN based MI estimator which means that KNN based estimator is unbiased

if enough data points are acquired. From Figures 4.3 and 4.4, it is seen that

this behaviour is unique to KNN based estimator. While the bias of KDE

based estimator decreases with increasing number of samples, it does not vanish.

Although increasing the sample size beyond 1000 may help, we are not interested

in that scale. Binning based estimator does not even bene�t from the increasing

sample size.

As seen from Figure B.2a, KDE and binning based estimators are the best in terms

of standard deviations and the standard deviation decreases with the increasing
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k. Statistical error for KDE and Binning estimators are smaller compared to

the KNN based estimator for K < 10. Since standard deviations for di�erent

covariance values were almost the same, only results with covariance 0.9 is

reported.
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Figure 4.3: Systematic error of MI estimators for two gaussian random variables with
zero mean and covariance 0 (a) and 0.3 (b).
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Figure 4.4: Systematic error of MI estimators for two gaussian random variables with
zero mean and covariance 0.6 (a) and 0.9 (b).

One way to determine the performance of MI estimators on the estimation of

relevance between a continuous variable (feature) and a discrete class label is to

discretize the second variable so that the second variable is analogous to class

labels.

Using this approach, two gaussians with zero mean and r = 0,0.3,0.6,0.9

covariance are generated. Second variable is discretized using 0 as a threshold.

MI is estimated using KNN based estimator for K = 1,2,3,4,5,10 and binning

based estimator.
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Figure B.1 shows that the performance of KNN based estimator decreases

signi�cantly if the second variable is discretized. For this reason, this estimator

may not be the suitable for measuring the relevance between a feature and class

label. While the experiments are carried out with r = 0,0.3,0.6,0.9, only results

with r = 0,0.9 are reported for simplicity. With the second variable discretized,

KNN based estimator changed its behaviour and is still biased when the number

of samples are large enough. Also note that the bias is increasing with increasing

covariance.

Figure B.2b shows the statistical error for the MI estimation between a continuous

and a discrete variable. Comparing Figures B.2a and B.2b, statistical error

decreased when the second variable is discretized. But the systematic error is

so large that KNN based estimator should not be considered robust.

Systematic errors are useful to evaluate the estimators for being biased or

unbiased, and gives the direction of the error like the estimator is consistently

underestimating or overestimating. To rank estimators based on their

performance on gaussian data, a scalar quantity, mean square error may be used.

Mean square error determines the quality of the estimation based on the variance

and unbiasedness of the estimation.

Figures 4.5 and 4.6 shows the mean square errors for all MI estimators. The

performance of the MI estimators are reported as follows according to their mean

square errors:

• 1NN gives the worst performance in almost all cases.

• KDE and binning based methods may be preferred for low covariance

values. Performance di�erence between KDE and binning based methods are

neglectable for small covariance values.

• Increasing k value for KNN based method decreases performance on high

covariance values.

• Although Kraskov et al. [10] suggested using a value between 2-4 for k, slightly

higher k values may be preferred.
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Figure 4.5: MI estimation mean square errors (MSE) with zero mean and covariance
0 and 0.3.
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Figure 4.6: MI estimation mean square errors (MSE) with zero mean and covariance
0.6 and 0.9.
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Figure 4.7: Systematic errors for combined MI estimators with zero mean and
covariance 0 and 0.3.

4.2 Possible Improvements

In this section, performance of mutual information estimators are tried to improve

through combination and instance subset selection.

4.2.1 Combination of MI Estimators

One of the possible ways to improve estimator performance is to combine

estimators.

KNN based MI estimators for K = 1, 2, 3, 4, 5, 10 and binning estimator are

linearly combined. Combined estimator is tested on a di�erent set of instances

taken from a zero mean gaussian random variable distribution. Combination

coe�cients are determined using the least square solution for Ax = b and ridge

regression separately. Ridge regression parameter lambda is selected with a search

in the domain λ = 10x,x ∈ [−5,5].
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Figure 4.8: Standard deviations for combined MI estimators.

Using the results obtained on gaussian random variables, linear combination of

KNN based estimators are tried to be constructed. The following equation is

solved using values for di�erent number of samples.


1 kr1,0 kr2,0 kr3,0 kr4,0 kr5,0 kr10,0
1 kr1,0.3 kr2,0.3 kr3,0.3 kr4,0.3 kr5,0.3 kr10,0.3
1 kr1,0.6 kr2,0.6 kr3,0.6 kr4,0.6 kr5,0.6 kr10,0.6
1 kr1,0.9 kr2,0.9 kr3,0.9 kr4,0.9 kr5,0.9 kr10,0.9





a0
a1
a2
a3
a4
a5
a6


=


mi0

mi0.3
mi0.6
mi0.9

 (4.3)

In Equation 4.3, mir is the actual value of mutual information calculated from

the equation for mutual information between two gaussian random variables

with zero mean and variance r. krk,r variables represents the estimated mutual

information between two gaussian distributed random variables with zero mean

and r covariance. a vector is the calculated coe�cients for a certain number of

samples.

With this curve �tting approach, coe�cients are calculated for number of samples

N = {20,60,100,1000,10000}. In a second approach, the second variable is

discretized to make an analogy to the estimation of mutual information between

a feature and the discrete class label. Same experiments are repeated with the

addition of binning estimator.
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Performance of the combined estimators are tested on microarray data and

reported in Chapter 5.

4.2.2 Instance Subset Selection

Another possible way to improve estimator performance is through subset

selection. Unlike traditional subset selection, here we select a subset of instances

instead of features. This approach reminds the bagging [26] technique, it di�ers

only by selecting the instances without replacement. Breiman et al. [26] showed

that bagging increased the performance of decision trees in classi�cation tasks.

We believe, the MI estimator constructed by instance subset selection should be

more robust to outliers.

Figures 4.9 and 4.10 show the results for two of the �ve experiments with

100 instances drawn from two gaussian random variables. Errorbars show the

standard deviation for 300 subsets selected without replacement. Estimated MI

value for the whole dataset is represented with a cross at N = 100. Results

show that there is not a clear order in the estimated MI values for KNN based

estimators, and the instance subset selection is not bene�cial as the estimated mi

value using the whole dataset is closer to the actual value than average estimated

value for the subsets.
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Figure 4.9: Subset selection - Experiment 1
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Figure 4.10: Subset selection - Experiment 2
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5. FEATURE SELECTION IN MICROARRAY DATA

Feature selection techniques have been used in gene selection before. Ding et al.

[27] have used mRMR on most widely used microarray datasets and compared

their algorithm with feature selection based solely on mutual information as

a baseline. Their work shows that MID and MIQ performs better than their

continuous relatives FCD and FCQ. Some other deductions from their work can

be summarized as

• In all cases, discretization performed better than the continuous variables.

• In all cases, MIQ method gives more informative genes than mutual

information feature selection alone.

• For discrete data, MIQ features outperform MID features with mRMR

5.1 Microarray Data Feature Selection With Different MI Estimators

mRMR feature selection, by default, utilizes binning for mutual information

estimation. As stated in Chapter 2 this method is improved by adaptive

partitioning. Many other mutual information estimation methods have been

developed recently.

In this chapter, experiments for mRMR with mutual information estimators other

than binning are reported.

Statistics for datasets used in experiments and their reference works are shown

in Table 5.1.

MI estimators' performances are evaluated mostly on Gaussians in this work.

Because the evaluation is based on Gaussians, microarray data is checked to see

if the features to be worked on are really Gaussians using one of the commonly

used normality tests, Kolmogorov-Smirnov. According to the K-S test results

displayed in Table 5.2, features that has a normal distribution are low in numbers.
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Table 5.1: Dataset statistics and reference works

Name Reference # Instances # Features # Classes
colon [28] 62 2000 2
nci [29] 61 5245 8

prostate [30] 102 6034 2

Considering MI estimation methods performance depends on the covariance

between variables, covariance between features of microarray datasets are

calculated to have an idea of which MI estimation method to use. Figure 5.1 shows

the histograms for the covariances between features in microarray datasets. Most

of the feature pairs have low covariance values. Binning, KDE and KNN based

estimator with slightly higher k values are considered as best choices according

to the mean square errors shown in Figure 4.5.

Table 5.2: Dataset statistics - number of features passing Kolmogorov-Smirnov
normality test

Name Features Instances Normal Features Normal And Relevant Features
colon 2001 62 8 1
nci 5245 61 78 0

prostate 6034 102 2998 0

5.1.1 Mutual Information Filter

One of the simplest ways for employing mutual information for feature selection

is sorting the features by their relevance (similarity to the class label) and using

top features for classi�cation.

In these experiments, features are sorted by their relevance values, and top 50

features are collected according to each mutual information estimator. Table 5.3

shows the total number of features selected by 31 di�erent Mutual information

estimators (Binning, KNN k = 1:15, KNN with discrete features and k = 1:15).

For each selected feature, Leave one out cross-validation error (LOOCV) is

calculated. Naive Bayes, KNN with K = 5 and LIBSVM are used as classi�ers.

In order to determine the role of discretization in mutual information estimation,

feature selection and classi�cation phases are separated. Gene expression levels
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Figure 5.1: Histograms of covariance values for features in microarray datasets.



are discretized into three bins as [25] before feature selection and classi�cation.

We report both results on the original and discretized data.

Because we use the whole dataset in feature selection phase, these results are

known to be biased as [31] reported.

Table 5.3: Number of features selected

Dataset Features Selected
colon 284
nci 418

prostate 306

Figure A.1 - A.4 shows the estimated MI values and LOOCV errors for the top

features of Colon [28] and NCI [29] datasets.

It is seen that performance of the KNN based estimator is sensitive to the (change

in) the parameter k. While small k values (2-4) are suggested by [10], some

features having high error rates seems to be receiving high relevance values on

Colon dataset. As far as we know, there is no systematic way to determine the

optimal value for k.

Figure A.5 - A.6 shows the e�ect of discretization on the feature selection (Mutual

information estimation) phase.

Mutual information �lter method is a feature selection method based solely

on mutual information as a metric. Features are sorted by their relevance

(dependency / similarity to the class label) and mutual information is used for

all dependency measurements.

While being simple, results in this section show that MI �lter is e�ective. Tables

5.4, 5.5 and 5.6 shows the experiment results with 50 genes.

Table 5.4: MI filter results - Colon dataset

NB KNN SVM
Method LOOCV Err Features LOOCV Err Features LOOCV Err Features
Binning 5 8 5 31 5 3

3NN 5 4 5 27 5 17
6NN 5 49 5 6 4 6
9NN 5 15 6 4 6 4
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Table 5.5: MI filter results - NCI dataset

NB KNN SVM
Method LOOCV Err Features LOOCV Err Features LOOCV Err Features
Binning 19 24 13 27 20 35

3NN 20 25 14 28 22 46
6NN 18 20 17 14 16 28
9NN 22 9 20 29 20 36

Table 5.6: MI filter results - Prostate dataset

NB KNN SVM
Method LOOCV Err Features LOOCV Err Features LOOCV Err Features
Binning 6 3 5 8 6 3

3NN 5 3 5 4 6 3
6NN 5 4 5 4 6 4
9NN 6 7 5 22 6 6

These results show that KNN based estimator performs better than binning in

almost all experiments. But the question of how to select the optimum k value

still holds.

5.1.2 MI Filter By Combining KNN and Binning Based Estimators

In order to improve the performance of MI Filtering, a combined estimator is

designed by calculating the coe�cients for KNN and binning based estimators

using the approach in Section 4.2.1.

. With this estimator, relevance between features and the class label is estimated

and top 50 features are taken for each dataset. For each dataset, coe�cients

from similar number of samples are used. Lowest LOOCV errors for a the given

number of features are reported on Tables 5.7 , 5.8 and 5.9. The results show that

linear combination with curve �tting approach does not increase the performance

since base estimators are winners for all the experiments.

5.1.3 mRMR

Improvement on the performance of mutual information �lter is encouraging. For

this reason, these estimation methods are substituted for binning in the mRMR

algorithm. Figures 5.2,5.3 and 5.4 shows results on Colon, NCI and Prostate

datasets.
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Table 5.7: MI filter results with combined MI estimators - Colon dataset

NB KNN SVM
Method LOOCV Err Feat LOOCV Err Feat LOOCV Err Feat

mrmr_comb_krbase_disc 10 11 14 31 8 13
mrmr_comb_krbinbase_disc 5 5 5 39 5 10

mrmr_comb_krbase_cont 6 5 6 4 6 4
mrmr_comb_krbinbase_cont 5 13 5 41 6 14

Binning 5 8 6 3 5 3
3NN 5 4 6 3 5 17
6NN 6 7 5 6 4 6
9NN 5 15 6 4 6 4

Table 5.8: MI filter results with combined MI estimators - Prostate dataset

NB KNN SVM
Method LOOCV Err Feat LOOCV Err Feat LOOCV Err Feat

mrmr_comb_krbase_disc 42 20 26 50 26 20
mrmr_comb_krbinbase_disc 16 13 10 17 8 15

mrmr_comb_krbase_cont 8 6 7 9 6 20
mrmr_comb_krbinbase_cont 12 31 8 28 8 31

Binning 6 3 5 8 6 3
3NN 5 3 5 4 6 3
6NN 5 4 5 4 6 4
9NN 6 7 6 6 6 6

Table 5.9: MI filter results with combined MI estimators - NCI dataset

NB KNN SVM
Method LOOCV Err Feat LOOCV Err Feat LOOCV Err Feat

mrmr_comb_krbase_disc 25 48 17 49 23 26
mrmr_comb_krbinbase_disc 20 30 15 36 21 47

mrmr_comb_krbase_cont 21 13 16 33 21 8
mrmr_comb_krbinbase_cont 20 29 14 23 22 6

Binning 20 15 18 15 24 17
3NN 24 19 19 11 23 11
6NN 18 20 17 14 19 13
9NN 22 9 22 7 21 8
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Experiment results show that mRMR do not bene�t from the more accurate

estimation of mutual information the same way as the mutual information �lter

does.

Table 5.10: mRMR results - Colon dataset

NB KNN SVM
Method LOOCV Err Feat LOOCV Err Feat LOOCV Err Feat

Binning – MID 5 4 4 3 5 13
Binning – MIQ 4 8 5 6 5 8

Binning – HARM 7 2 6 2 5 5
3NN - MID 4 46 5 21 5 22
6NN - MID 5 3 5 9 5 22
9NN - MID 5 9 5 12 6 8
KDE - MID 5 7 5 19 5 19

Table 5.11: mRMR results - NCI dataset

NB KNN SVM
Method LOOCV Err Feat LOOCV Err Feat LOOCV Err Feat

Binning – MID 13 16 13 48 16 15
Binning – MIQ 8 24 8 27 10 27

Binning – HARM 35 3 33 7 32 3
3NN – MID 18 43 13 47 15 45
6NN – MID 16 25 15 12 16 14
9NN – MID 19 14 15 28 18 26
KDE – MID 16 12 16 23 24 6

Table 5.12: mRMR results - Prostate dataset

NB KNN SVM
Method LOOCV Err Feat LOOCV Err Feat LOOCV Err Feat

Binning – MID 4 8 4 12 4 12
Binning – MIQ 4 16 4 9 4 20

Binning – HARM 7 5 8 5 6 5
3NN – MID 5 6 4 16 6 7
6NN – MID 4 7 5 16 4 9
9NN – MID 4 5 4 13 5 5
KDE – MID 4 3 4 4 4 3
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6. CONCLUSION AND FUTURE WORK

In this study, performance of recently developed mutual information estimation

methods namely KNN based [10] and KDE based [15], when used in feature

selection are compared with binning(histogram) based mutual information

estimator.

The most basic feature selection method based on mutual information, MI

�ltering, bene�ts from the more accurate estimation of MI by these methods

but mRMR [4] performance does not increase. This either comes from the fact

that mRMR is robust to the mutual information estimator used, or the MI

estimation between the class label and features is not completely compatible

with our model based on gaussian distributions. Since discretization is shown to

reduce the performance of MI estimators, �rst case gets stronger.

Subset selection and combination techniques are tried to boost the performance

of estimators. Both ridge regression and least square curve �tting approaches

failed to improve the performance of estimators on arti�cial data. One possible

reason for that behaviour is the correlation between the combined estimators,

especially KNN based estimators with di�erent K values.

Taking this work one step further, one may try using other MI estimation methods

for feature selection either one by one or in combination. Recent work on MI

estimation includes MLMI [32], LSMI [33], Edgeworth [12].

Another possible extension is the change in the combination scheme for mRMR.

While selecting features using mRMR, MI is used to estimate the relevance and

redundancy values for (feature subset-class label) pairs and feature subsets. After

estimating these values, Equations 3.4 and 3.5 are used to rank the features.

As an alternative combination scheme to the di�erence and ratio, results with
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harmonic mean are reported. Adaptive or weighted combination schemes [34]

may be considered to improve mRMR performance.
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APPENDIX A
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Figure A.1: Binning based estimator vs KNN based estimator (k = 1:5) - Colon
Dataset
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Figure A.2: Binning based estimator vs KNN based estimator (k = 6:10) - Colon
Dataset
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Figure A.3: Binning based estimator vs KNN based estimator (k = 1:5) - NCI Dataset
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Figure A.4: Binning based estimator vs KNN based estimator (k = 6:10) - NCI Dataset
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Figure A.5: KNN based estimator with continuous features vs discrete features (k =
1:3) - Colon Dataset
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Figure A.6: KNN based estimator with continuous features vs discrete features (k =
4:6) - Colon Dataset
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APPENDIX B
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Figure B.1: Systematic error values for two gaussian (continuous-discretized) random
variables with covariance 0 and 0.9.
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Figure B.2: Standard deviations for two gaussian random variables with zero mean
and covariance 0.9 with and without discretization.
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