
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

İSTANBUL TECHNICAL UNIVERSITY  INSTITUTE OF SCIENCE AND TECHNOLOGY 

M.Sc. Thesis  by 

Bilen ÖĞRETMEN, B.Sc. 

Department : Computer Engineering 

Programme: Computer Engineering 

OCTOBER 2007 

EFFECT OF RECONFIGURATION ON IP PACKET 
TRAFFIC IN WDM NETWORKS 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/62729201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

İSTANBUL TECHNICAL UNIVERSITY  INSTITUTE OF SCIENCE AND TECHNOLOGY 
 

M.Sc. Thesis  by 

Bilen Öğretmen, B.Sc. 
(504041503) 

Date of submission : 13 September 2007 

Date of defence examination: 18 October 2007 

Supervisor (Chairman): Assoc. Prof. Dr. Ayşegül GENÇATA YAYIMLI 

Members of the Examining Committee Prof.Dr. A. Emre HARMANCI 

Prof.Dr. Ercan Topuz 

 

OCTOBER 2007 
 

EFFECT OF RECONFIGURATION ON IP PACKET 

TRAFFIC IN WDM NETWORKS 



 
İSTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ 

WDM AĞLARINDA YENİDEN KONFİGÜRASYONUN IP 

PAKET TRAFİĞİNE ETKİSİ 

YÜKSEK LİSANS TEZİ 

Müh. Bilen ÖĞRETMEN 

(504041503) 

EKİM 2007 

Tezin Enstitüye Verildiği Tarih : 13 Eylül 2007 

Tezin Savunulduğu Tarih : 18 Ekim 2007 

Tez Danışmanı : Yrd. Doç. Dr. Ayşegül GENÇATA YAYIMLI 

Diğer Jüri Üyeleri Prof.Dr. A. Emre HARMANCI 

 Prof.Dr. Ercan TOPUZ 

  

  



 

 

 

iii

CONTENTS 

ABBREVIATIONS v 
LIST OF TABLES vi 
LIST OF FIGURES vii 
SUMMARY viii 
ÖZET ix 

1 INTRODUCTION 1 

2 OPTICAL WDM NETWORKS 4 
2.1 Wavelength Division Multiplexing 4 
2.2 Optical Network Hierarchy 5 

2.2.1 Access Networks 6 
2.2.2 Metro Optical Networks 6 

2.2.2.1 SONET/SDH 6 
2.2.2.2 ATM 6 
2.2.2.3 Gigabit Ethernet 7 
2.2.2.4 WDM in Metro Networks 7 

2.2.3 Wide Area (Long Haul) Optical Networks 7 
2.3 Optical Transmission Systems 8 

2.3.1 Optical Fiber 8 
2.3.1.1 Attenuation 10 
2.3.1.2 Dispersion 11 
2.3.1.3 Nonlinear Effects 12 

2.3.2 Optical Amplifiers 12 
2.3.3 Optical Transmitter and Receivers 13 
2.3.4 Wavelength Converters 14 
2.3.5 Optical Switches 14 

2.3.5.1 Opto-Mechanical Switches 17 
2.3.5.2 Electro-Optic Switches 18 
2.3.5.3 Acousto-Optic Switches 18 
2.3.5.4 Thermo-Optic Switches 19 
2.3.5.5 Magneto-Optic Switches 19 
2.3.5.6 Liquid Crystal Optical Switches 20 

2.4 Terminology of Optical Networks 20 
2.4.1 Lightpath 20 
2.4.2 Routing and Wavelength Assignment (RWA) 21 
2.4.3 Virtual Topology Design (VTD) 22 

2.5 Virtual Topology Reconfiguration (VTR) 23 
2.5.1 Survey of Reconfiguration Studies 24 

3 THE FRAMEWORK USED IN THE SIMULATIONS 32 
3.1 Internet Protocol 32 



 

 

 

iv

3.2 The Framework: Fishnet Project 34 
3.2.1 Fishnet Architecture 34 
3.2.2 Fishnet Classes 36 

3.3 Modifications over Fishnet 37 

4 PROPOSED RECONFIGURATION ALGORITHMS 44 
4.1 Virtual Topology Design Algorithm 44 

4.1.1 Greedy Logical Topology Design Algorithm (GLTDA) 44 
4.2 Virtual Topology Reconfiguration Algorithms 45 

4.2.1 Longest Lightpath First (LPF) 45 
4.2.2 Shortest Lightpath First (SPF) 46 
4.2.3 Minimal Disrupted Lightpath First (MDPF) 46 

4.2.3.1 Creation of Auxiliary Graph 47 
4.2.3.2 Reconfiguration Procedure 48 

4.2.4 Branch Exchange Sequences 48 
4.2.4.1 Matrix Formulation and Construction of Auxiliary Graph 49 

5 SIMULATION EXPERIMENTS 52 
5.1 Physical Topologies Used in Simulations 52 
5.2 Traffic Generation Pattern and IP Packet Structure 54 

5.2.1 Traffic Generation Pattern 54 
5.2.2 Generated IP Packets 54 

5.3 Numerical Results 56 

6 CONCLUSION 63 

REFERENCES 65 

BIOGRAPHY 69 
 



 

 

 

v

ABBREVIATIONS 

ARP   : Address Resolution Protocol 
ATM   : Asynchronous Transfer Mode 
EDFA   : Erbium-Doped Fiber Amplifier 
EGP   : External Gateway Protocol 
FDDI   : Fiber Distributed Data Interface 
GA   : Genetic Algorithm 
GMPLS  : Generalized MultiProtocol Label Switching 
ICMP   : Internet Control Message Protocol 
IGP   : Interior Gateway Protocol 
ILP   : Integer Linear Program 
IP   : Internet Protocol 
LAN   : Local Area Network 
LED   : Light Emitting Diode 
MAN   : Metropolitan Area Network 
MEMS  : Micro-Electro-Mechanical Systems 
MILP   : Mixed-Integer Linear Program 
MTU   : Maximum Transmission Unit 
OXC   : Optical Cross-Connect 
PMD   : Polarization Mode Dispersion 
PON   : Passive Optical Networks 
RWA    : Routing and Wavelength Assignment 
SDH   : Synchronous Digital Hierarchy 
SOA   : Semiconductor Optical Amplifier 
SONET  : Synchronous Optical Network 
TCP   : Transmission Control Protocol 
TTL   : Time To Live 
TDM   : Time Division Multiplexing 
UDP   : User Datagram Protocol 
VPN   : Virtual Private Network 
VTD    : Virtual Topology Design 
VTR   : Virtual Topology Reconfiguration 
WAN   : Wide Area Network 
WDM   : Wavelength Division Multiplexing 
 



 

 

 

vi

LIST OF TABLES 

                    PageNo 

Table 5.1 Packet Delays for 0.37 Gbps Total Traffic (No Reconfiguration)... 57 
Table 5.2  Packet Loss During Reconfiguration for 0.37 Gbps Total Traffic... 58 
Table 5.3  Packet Delays for 1.39 Gbps Total Traffic (No Reconfiguration)... 59 
Table 5.4  Packet Loss During Reconfiguration for 1.39 Gbps Total Traffic... 59 
Table 5.5  Packet Delays in NSFNET for 0.997 Gbps Total Traffic (No 

Reconfiguration)............................................................................... 60 
Table 5.6  Packet Loss in NSFNET During Reconfiguration for 0.997 Gbps 

Total Traffic..................................................................................... 60 
Table 5.7  Packet Delays in NSFNET for 2.16 Gbps Total Traffic (No 

Reconfiguration)............................................................................... 61 
Table 5.8  Packet Loss in NSFNET During Reconfiguration for 2.16 Gbps 

Total Traffic..................................................................................... 61 
 

 



 

 

 

vii

LIST OF FIGURES 

              Page No 

Figure 2.1 : Hierarchical View of Optical Networks (Access, Metro, and 
Longhaul)…………………………………………………………. 5

Figure 2.2 : Low Attenuation Regions of Optical Fiber……………………… 9
Figure 2.3 : Propagation of Light Through a Fiber Optic Cable……………... 10
Figure 2.4 : A Simple 2 × 2 Switch (Coupler)………………………………... 15
Figure 2.5 : A P × P Reconfigurable Wavelength-Routing Switch With M 

Wavelengths………………………………………………………. 16
Figure 2.6 : 3D MEMS Switch Fabric………………………………………... 18
Figure 2.7 : Mach-Zehnder Interferometer…………………………………… 19
Figure 2.8 : A Sample Virtual Topology Over NSFNET Physical Topology... 22
Figure 3.1 : A Sample Simulation File……………………………………….. 35
Figure 4.1 : Pseudocode of GLTDA………………………………………….. 45
Figure 4.2 : Old Lightpaths on the Physical Network………………………... 47
Figure 4.3 : New Lightpaths on the Physical Network……………………….. 47
Figure 4.4 : Auxiliary Graph for Figure 4.2 and Figure 4.3………………….. 48
Figure 4.5 : Pseudocode of MDPF…………………………………………… 49
Figure 4.6 : Initial Virtual Topology and Related Matrix……………………. 50
Figure 4.7 : Target Virtual Topology and Related Matrix…………………… 50
Figure 4.8 : Difference Matrix Derived from Figure 4.6 and Figure 4.7…….. 51
Figure 4.9 : Auxiliary Graph Derived from Difference Matrix in Figure 4.8... 51
Figure 5.1 : Physical Topology Used in Simulations………………………… 52
Figure 5.2 : NSFNET Topology Used in Simulations………………………... 53
Figure 5.3 : Packet Header…………………………………………………… 54
 

 

 



 

 

 

viii

EFFECT OF RECONFIGURATION ON IP PACKET TRAFFIC IN WDM 

NETWORKS 

SUMMARY 

Today, both the amount of people accessing communication networks and new 
communication applications which require high data transfer rates are exponentially 
increasing. Growing traffic demands triggered the design of optical communication 
networks which will be able to provide larger bandwidth utilization. Wavelength 
Division Multiplexing (WDM) was proposed to solve speed mismatch problem 
between electronics and optics by providing an efficient bandwidth utilization of 
fiber technology. WDM simply divides immense bandwidth of a single fiber into 
non-overlapping subchannels for concurrent transmission of optical signals. 

A lightpath, which can span multiple fiber links, provides communication channels 
over the underlying optical communication infrastructure. Lightpath establishment is 
performed by routing a lightpath through the physical topology and assigning an 
optimum wavelength from a set of available wavelengths. This procedure is called as 
Routing and Wavelength Assignment (RWA), which is a NP-complete problem, and 
divided into subproblems to derive feasible solutions. Virtual Topology Design 
(VTD), which both contains RWA and routing of traffic requests over virtual 
topology, means establishment of a set of lightpaths under a given traffic pattern. A 
change in traffic pattern may trigger reconfiguration decision. Virtual Topology 
Reconfiguration (VTR) contains determination of a new virtual topology and 
migration between the old and new virtual topologies. 

In this thesis, the effects of virtual topology reconfiguration on Internet Protocol (IP) 
packet traffic on IP over WDM networks were studied. For this purpose, an IP 
simulator which is unaware of lower level communication infrastructure was 
implemented based on Fishnet project. Various reconfiguration algorithms were 
implemented and tested on developed IP simulator. Packet delays/losses are 
investigated during reconfiguration procedure for performance comparison of 
implemented reconfiguration algorithms. 
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WDM AĞLARINDA YENİDEN KONFİGÜRASYONUN IP PAKET 

TRAFİĞİNE ETKİSİ 

ÖZET 

Günümüzde iletişim ağlarına erişen insan sayısı ve iletişim uygulamalarının ihtiyaç 
duyduğu band genişliği ihtiyacı hızla artmaya devam etmektedir. Artan trafik 
istekleri daha geniş band genişliği kullanımına olanak verebilen optik iletişim 
ağlarının tasarımını tetiklemektedir. WDM teknolojisi, fiber teknolojisine ait band 
genişliğini etkin bir biçimde kullanarak elektronik ve optik domen arasındaki hız 
farklılığı problemini çözmek için ortaya atılmıştır. WDM, tek bir fibere ait devasa 
band genişliğini birbiriyle örtüşmeyen alt kanallara bölerek optik işaretlerin eş 
zamanlı iletimini sağlayan bir teknik olarak tanımlanabilir. 

Bir veya daha fazla sayıda optik fiberi kapsayabilen bir ışıkyolu, alt katmanda yer 
alan optik altyapının üzerinde iletişim kanalları oluşturmaktadır. Işık yolu kurulumu, 
fiziksel topoloji üzerinde bir ışık yolunun yönlendirilmesi ve uygun dalgaboyları 
kümesinden bir dalgaboyunun seçilip ilgili ışıkyoluna atanmasıyla gerçekleştirilir. 
Polinom zamanlı ifade edilemeyen bu yöntem yönlendirme ve dalgaboyu atama 
(RWA) olarak adlandırılır ve uygulanabilir sonuçların elde edilebilmesi için alt 
problemlere bölünerek çözülür. RWA ve trafik isteklerinin oluşan sanal topoloji 
üzerinde yönlendirilmesini içeren sanal topoloji tasarımı, verilen bir trafik örneğine 
göre bir grup ışık yolunun seçilip kurulması olarak tanımlanabilir. Trafikte meydana 
gelecek bir değişiklik yeniden konfigürasyon kararının alınmasına neden olabilir. 
Sanal topoloji yeniden konfigürasyonu, hem yeni sanal topolojinin belirlenmesini 
hem de bu yeni topolojiye geçişi içermektedir. 

Bu tez çalışmasında IP/WDM ağlarda sanal topoloji yeniden konfigürasyonunun IP 
paket trafiği üzerindeki etkileri incelenmiştir. Bu amaçla, Fishnet projesini temel alan 
alt katmanda yer alan iletişim altyapısından habersiz olarak çalışan bir IP simülatörü 
geliştirilmiştir. Çalışma kapsamında, çeşitli yeniden kofigürasyon algoritmaları 
gerçeklenmiş ve geliştirilen IP simülatörü üzerinde test edilmiştir. Gerçeklenen sanal 
topoloji yeniden konfigürasyon algoritmalarına ait paket gecikmeleri/kayıpları 
incelenmiş ve algoritmaların birbirlerine göre başarımları karşılaştırılmıştır.
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1 INTRODUCTION 

Recent exponential growth in communication networks’ users and variety of 

bandwidth demanding applications triggered researchers to seek for new high 

capacity communication architectures and protocols. Today’s classical 

communication networks stand far away from being a solution to this capacity need 

because of their limited electronic processing speeds. Optical networks seem to be 

capable of meeting the requirements as a strong candidate for next generation 

network technology by their high speed, better network performance, functionality 

and lower cost. 

A single optical fiber provides almost a limitless bandwidth of 50 THz. Electronic 

processing speeds of computer networks are nearly one per thousand of this capacity. 

This leads to an opto-electronic speed mismatch problem between two layers. 

Wavelength Division Multiplexing (WDM) was proposed to solve speed mismatch 

problem by providing an efficient bandwidth utilization of fiber technology. WDM 

simply divides immense bandwidth of a single fiber into non-overlapping 

subchannels for concurrent transmission of optical signals. Each subchannel 

corresponds to a different wavelength that is used at the electronic speed of the end-

users. The end-stations thus can communicate using wavelength-level network 

interfaces. 

Physical layer technology of optical networks is built by the participation of several 

components such as; fiber, optical transceivers, amplifiers, wavelength converters, 

and switches. Fiber constitutes the transmission line over which the optical signal 

(laser) transmits. Optical transmitters and receivers placed in the nodes of the 

network produce optical signals from the electronic signals and reproduce the 

electronic signals from the optical signals respectively. Optical amplifiers are 

indented for use to regenerate the amplitude of optical signals up to a certain level in 

order to prevent from attenuation during transmission. Wavelength converters are 

placed in the nodes of optical networks and issued to alter the wavelength of an 
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optical signal with iλ  to a new one with jλ . Switches are also placed in the nodes. 

They facilitate routing schemes of the data transmitted through the optical network. 

Lightpaths constitute end to end optical communication channels between two nodes 

over the physical topology at an assigned wavelength. A lightpath from source to 

destination nodes may consist of several fiber lines and optical cross-connects. 

Routing a lightpath through the physical topology and assignment of an optimum 

wavelength from a set of available wavelengths is an important problem which is 

known as RWA (Routing and Wavelength Assignment) problem. RWA is a NP-

complete problem; therefore heuristic methods are commonly referenced in the 

solution of RWA problem. Usually, RWA is divided into subproblems of routing and 

wavelength assignment. With division of the problem into smaller pieces, two easier 

subproblems are derived to be solved and optimum subsolutions are searched from 

these subproblems. Virtual Topology Design (VTD) is the selection and 

establishment of a set of lightpaths under a given traffic pattern. VTD is also a NP-

Hard problem that includes both RWA and routing of traffic requests over newly 

established virtual topology. The virtual topology on which the current traffic 

requests have been routed possibly may have performance degradation when 

varieties in traffic pattern occur. At that time, a new virtual topology considering new 

traffic pattern must be established. Fortunately, there is an advantage of the optical 

networks that they are able to reconfigure their logical topology to adapt to changing 

traffic patterns. This is called Virtual Topology Reconfiguration (VTR) and by 

definition it contains the problem of VTD. VTR can also be divided into two 

subproblems of first as determination of new virtual topology and second as 

transition between old and new virtual topologies. 

In this thesis, main goal is to study the effect of virtual topology reconfiguration on 

IP packet traffic. For this purpose, an IP simulator which is unaware of lower level 

communication infrastructure was implemented. IP simulator would only create, 

manage and report transmission of packet traffic according to a given traffic pattern. 

Several virtual topology reconfiguration algorithms, which are working under 

previously developed IP framework, were implemented and their performance 

metrics were evaluated for detailed examination of packet delay or loss on IP layer. 
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This study will inform us about the effect of reconfiguration at user viewpoint. One 

additional aim of this thesis is to be able to compare and discuss the performance of 

various virtual topology reconfiguration algorithms based on the implemented IP 

framework. 

The content of the chapters of this thesis are as follows: 

• Chapter 2 explains the hierarchical structure of communication networks 

first. Then, gives a summary of optical networks by introducing WDM, fiber, 

transceivers, amplifiers, wavelength converters and switches as the 

underlying physical components. Basic terminology of optical networks such 

as lightpath, RWA, VTD, and VTR follows the topics above. The chapter 

concludes with an extensive literature survey about previous reconfiguration 

studies. 

• Chapter 3 first gives a brief information about Internet Protocol (IP) then 

introduces the network layer framework (Fishnet) used in the simulations. 

Chapter 3 concludes with description of modifications and additions on the 

simulation framework. 

• Chapter 4 introduces the virtual topology reconfiguration algorithms used in 

this study. First, virtual topology design algorithm (GLTDA) employed in 

virtual topology reconfiguration is described. Then, Longest Path First (LPF), 

Shortest Path First (SPF) and Minimal Disrupted Lightpath First (MDPF) 

algorithms are given. Also, an implemented Branch Exchange heuristic is 

introduced with construction of its auxiliary graphs and matrix formulations. 

• Chapter 5 demonstrates simulation environment and results. Physical 

topology used in simulations and its constraints are first stated. Second, 

traffic generation technique and generation of network layer packets of 

Discovery, Link State and Transport types are explained. Various simulation 

scenarios described and their numerical results are given in the end of this 

chapter. 

• Chapter 6 concludes thesis and gives directions for further research about the 

subject 
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2 OPTICAL WDM NETWORKS 

This chapter will first introduce Wavelength Division Multiplexing (WDM). Then, 

chapter will continue with today’s telecom network hierarchy. Access, metro, and 

long-haul networks corresponding to LANs, MANs and WANs respectively will be 

summarized. Overview of optical components such as fiber, signal amplifiers, lasers, 

receivers, wavelength converters and optical switches will be the next topic that 

follows. General terminology about optical networks such as lightpath, routing and 

wavelength assignment, virtual topology design and reconfiguration will be 

introduced. The chapter concludes with a literature survey about previous works on 

virtual topology reconfiguration. 

2.1 Wavelength Division Multiplexing 

The optical transport layer is capable of delivering multi-gigabit bandwidth with high 

reliability. The bandwidth available on a fiber is approximately 50 THz (terahertz). 

Increasing the transmission rates could not be adopted as the only means of 

increasing the network capacity. Transmission rates beyond a few tens of gigabits per 

second could not be sustained for longer distances for reasons of impairments due to 

amplifiers, dispersion, non-linear effects of fiber, and cross-talk. Hence, wavelength-

division multiplexing was introduced, which divided the available fiber bandwidth 

into multiple smaller bandwidth units called wavelengths. 

The WDM-based networking concept was derived from a vision of accessing a larger 

fraction of the approximately 50 THz theoretical information bandwidth of a single 

mode fiber. A natural approach to utilizing the fiber bandwidth efficiently is to 

partition the usable bandwidth into non-overlapping wavelength channels. Each 

wavelength, operating at several gigabits per second, is used at the electronic speed 

of the end-users. Many users can use such channels simultaneously to transmit and 

receive data at peak electronic rates, increasing the aggregate network capacity by 
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the number of such channels times the rate of each. Because each user is capable of 

transmitting data into and receiving data from more than one channel, the 

transmitters and receivers must be tunable to the different wavelengths in the fiber. 

Channel spacing itself is affected by several factors such as the channel bit rates, 

optical power budget, nonlinearities in the fiber, and the resolution of transmitters 

and receivers. A large number of wavelengths (>160) packed densely into the fiber 

with small channel spacing is called Dense Wavelength-Division Multiplexing 

(DWDM). An alternative WDM technology with a smaller number of wavelengths 

(<10), larger channel spacing, and much lower cost is termed as coarse WDM 

(CDWM) (Ilyas & Mouftah, 2003). 

2.2 Optical Network Hierarchy 

Today’s telecom network can be considered to consist of three sub-networks as 

illustrated in Figure 2.1 access, metropolitan, and long haul. The network topology 

for access can be a star, a bus, or a ring; for metro a ring; and for long haul a mesh. 

 

Figure 2.1: Hierarchical View of Optical Networks (Access, Metro, and Longhaul) 
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2.2.1 Access Networks 

Optical access networks cover the “first/last mile” in the geographical topology and 

usually extend from 3 to 10 km. Access networks connect the service provider 

central offices to businesses and residential subscribers. Subscribers demand high 

bandwidth, media-rich and low price solutions from access networks. Today, the 

bandwidth “bottleneck” has shifted to the first/last mile region, as growing end-user 

demands continue to drive traffic volumes. Various architectures were proposed to 

overcome this bottleneck problem such as Passive Optical Networks (PONs), 

Ethernet PON (EPON) and WDM PON. 

2.2.2 Metro Optical Networks 

Regional/metro area optical networks span geographical distances about 10 to 500 

km and bridge the gap between access and long-haul/backbone optical networks. 

Many technologies have been considered for metropolitan-area networks. The key 

requirement of these networks relates to the support for varying traffic types, both 

old and new. 

2.2.2.1 SONET/SDH 

SONET/SDH is one of the founding technologies used in MANs, this TDM-based 

approach has been used for both TDM-based circuit switched networks and most 

overlay networks. However, cost, scalability, and unresponsiveness to bursty IP 

traffic limit this technology. 

2.2.2.2 ATM 

Becoming an integral part of the networking infrastructure, ATM has revolutionized 

telecommunications. ATM provides a common transmission format for all protocols 

and traffic types for transmission over a SONET infrastructure. Although IP over 

SONET (POS) is preferred, ATM still has a strong hold on the metropolitan front. Its 

major advantages include high-speed line interfaces, efficient virtual circuit services, 

and traffic management. ATM also accommodates bursty data, voice, and video, 

making it the preferred choice for such applications. 
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2.2.2.3 Gigabit Ethernet 

Besides being less expensive, it provides the ability to support new applications and 

data types, and flexibility in network design. Moreover, it allows multiple vendors 

sourcing and provides interoperability. 

2.2.2.4 WDM in Metro Networks 

The demand for bandwidth created by new applications, such as e-commerce, 

packetized voice, and streaming multimedia, has created a bottleneck in the MAN. 

To some extent, WDM technology has helped to satisfy these demands, and Optical 

WDM Rings evolved from SONET/SDH concepts were introduced. 

2.2.3 Wide Area (Long Haul) Optical Networks 

Long haul optical networks locates at the top of the hierarchy and covers the largest 

geographical area up to 100s-1000s km. Long haul network nodes receive excessive 

traffic requests from Metro networks  and manage the provisioning of these requests 

among other backbone nodes. The first-generation optical networks that provided 

high-speed and long-haul transport were based on SONET/SDH. In such optical 

networks, the data packets are transported at high bit rate in the optical domain over 

long spans of fiber; however, circuit switching, traffic separation, routing, and 

protection functions are performed in electronic domain. This requires optical-to 

electrical and electrical-to-optical (O-E-O) conversions, and thus can handle a single 

or at the most a few wavelengths. As the bit-rates increased, traffic processing in 

long-haul transport and, at the intermediate nodes, became a complex, cumbersome, 

and expensive task. As a result, the optical networks then evolved into their second 

generation where several routing and switching functions are handled optically with 

electronic controls with the advent of WDM. 
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2.3 Optical Transmission Systems 

The success of optical WDM networks depends heavily on the available optical 

device technology. This chapter will present an introduction to some of the optical 

device issues in WDM networks. It discusses the basic principles of optical 

transmission in fiber, and reviews the current state of the art in optical device 

technology. 

The first step in the development of fiber optic transmission over meaningful 

distances was to find light sources that were sufficiently powerful and narrow. The 

light-emitting diode (LED) and the laser diode proved capable of meeting these 

requirements. Lasers went through several generations in the 1960s, culminating 

with the semiconductor lasers that are most widely used in fiber optics today. 

In general, there are three groups of optical components. 

• Active components: devices that are electrically powered, such as lasers, 

wavelength shifters, and modulators. 

• Passive components: devices that are not electrically powered and that do not 

generate light of their own, such as fibers, multiplexers, demultiplexers, 

couplers, isolators, attenuators, and circulators. 

• Optical modules: devices that are a collection of active and/or passive optical 

elements used to perform specific tasks. This group includes transceivers, 

erbium-doped amplifiers, optical switches, and optical add/drop multiplexers. 

2.3.1 Optical Fiber 

Fiber possesses many characteristics that make it an excellent physical medium for 

high speed networking. Figure 2.2 shows the two low-attenuation regions of optical 

fiber (Sivalingam & Subramaniam, 2002). Centered at approximately 1300 nm is a 

range of 200 nm in which attenuation is less than 0.5 dB per kilometer. The total 

bandwidth in this region is about 25 THz. Centered at 1550 nm is a region of similar 

size, with attenuation as low as 0.2 dB per kilometer. Combined, these two regions 

provide a theoretical upper bound of 50 THz of bandwidth. 
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The main requirement on optical fibers is to guide light waves with a minimum of 

attenuation (loss of signal). Optical fibers are composed of fine threads of glass in 

layers, called the core and cladding, in which light can be transmitted at about two-

thirds its speed in vacuum. The transmission of light in optical fiber is commonly 

explained using the principle of total internal reflection. 

Light is either reflected (it bounces back) or refracted (its angle is altered while 

passing through a different medium) depending on the angle of incidence (the angle 

at which light strikes the interface between an optically denser and optically thinner 

material). 

 

Figure 2.2: Low Attenuation Regions of Optical Fiber 

Total internal reflection happens when the following conditions are met: 

• Beams pass from a material of higher density to a material of lower density. 

The difference between the optical density of a given material and a vacuum 

is the material's refractive index. 

• The incident angle is less than the critical angle. The critical angle is the 

angle of incidence at which light stops being refracted and is instead totally 

reflected. 
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Figure 2.3: Propagation of Light Through a Fiber Optic Cable 

An optical fiber consists of two different types of very pure and solid glass (silica): 

the core and the cladding. These are mixed with specific elements, called dopants, to 

adjust their refractive indices. The difference between the refractive indices of the 

two materials causes most of the transmitted light to bounce off the cladding and stay 

within the core as in Figure 2.3. Two or more layers of protective coating around the 

cladding ensure that the glass can be kept without damage. 

Transmission of light in optical fiber presents several challenges that must be dealt 

with. These fall into the following three broad categories Agrawal (1997): 

• Attenuation: Decay of signal strength or loss of light power, as the signal 

propagates through the fiber. 

• Chromatic dispersion: spreading of light pulses as they travel down the fiber. 

• Nonlinear effects: cumulative effects from the interaction of light with the 

material through which it travels, resulting in changes in the lightwave and 

interactions between lightwaves. 

2.3.1.1 Attenuation 

Attenuation in optical fiber is caused by intrinsic factors, primarily scattering and 

absorption, and by extrinsic factors, including stress from the manufacturing process, 

the environment, and physical bending. The most common form of scattering, 

Rayleigh scattering, is caused by small variations in the density of glass as it cools. 
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Scattering affects short wavelengths more than long wavelengths and limits the use 

of wavelengths below 800 nm. 

Attenuation due to absorption is caused by a combination of factors, including the 

intrinsic properties of the material itself, the impurities in the glass, and any atomic 

defects in the glass. These impurities absorb the optical energy, causing the light to 

become dimmer. While Rayleigh scattering is important at shorter wavelengths, 

intrinsic absorption is an issue at longer wavelengths and increases dramatically 

above 1700 nm. Absorption due to water peaks introduced in the fiber manufacturing 

process, however, is being eliminated in some new fiber types. 

The primary factors affecting attenuation in optical fibers are the length of the fiber 

and the wavelength of the light. Attenuation in fiber is compensated primarily 

through the use of optical amplifiers. 

2.3.1.2 Dispersion 

Dispersion is the spreading of light pulses as they travel through optical fiber. 

Dispersion results in distortion of the signal, which limits the bandwidth of the fiber. 

Two general types of dispersion affect WDM systems. One of these effects, 

chromatic dispersion, is linear, while the other, Polarization Mode Dispersion 

(PMD), is nonlinear. 

Chromatic dispersion occurs because different wavelengths propagate at different 

speeds. In single-mode fiber, chromatic dispersion has two components, material 

dispersion and waveguide dispersion. Material dispersion occurs when wavelengths 

travel at different speeds through the material. A light source, no matter how narrow, 

emits several wavelengths within a range. When these wavelengths travel through a 

medium, each individual wavelength arrives at the far end at a different time. The 

second component of chromatic dispersion, waveguide dispersion, occurs because of 

the different refractive indices of the core and the cladding of fiber. Although 

chromatic dispersion is generally not an issue at speeds below 2.5 Gbps, it does 

increase with higher bit rates. 

Most single-mode fibers support two perpendicular polarization modes, vertical and 

horizontal. Because these polarization states are not maintained, there occurs an 
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interaction between the pulses that results is a smearing of the signal. PMD is 

generally not a problem at transmission rates below 10 Gbps. 

2.3.1.3 Nonlinear Effects 

In addition to PMD, there are other nonlinear effects. Because nonlinear effects tend 

to manifest themselves when optical power is very high, they become important in 

DWDM. Linear effects such as attenuation and dispersion can be compensated, but 

nonlinear effects accumulate. They are the fundamental limiting mechanisms to the 

amount of data that can be transmitted in optical fiber. The most important types of 

nonlinear effects are stimulated Brillouin scattering, stimulated Raman scattering, 

self-phase modulation, and four-wave mixing (Agrawal, 1997). In DWDM, four-

wave mixing is the most critical of these types. Four-wave mixing is caused by the 

nonlinear nature of the refractive index of the optical fiber. Nonlinear interactions 

among different DWDM channels create sidebands that can cause interchannel 

interference. Three frequencies interact to produce a fourth frequency, resulting in 

cross talk and signal-to-noise level degradation. Four-wave mixing cannot be filtered 

out, either optically or electrically, and increases with the length of the fiber. It also 

limits the channel capacity of a DWDM system. 

2.3.2 Optical Amplifiers 

Optical signals undergo degradation when traversing optical links due to dispersion, 

loss, cross talk, and nonlinearity associated with fiber and optical components. 

Optical amplifiers are systems that amplify signals in the optical domain as opposed 

to repeaters which amplify after conversion to the electrical domain. This type of 

amplification, called 1R (regeneration), does not perform reshaping or reclocking 

and thus provides total data transparency. A single amplifier can simultaneously 

amplify all wavelengths and consequently avoids the overhead of one amplifier per 

channel. Optical amplification uses the principle of stimulated emission as used in a 

laser. The three basic types of amplifiers are erbium-doped fiber amplifiers (EDFAs), 

semiconductor optical amplifiers (SOAs), and Raman amplifiers. The Erbium-Doped 

Fiber Amplifier (EDFA) is the most commonly deployed OA. 
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The key performance parameters of optical amplifiers are gain, gain flatness, noise 

level, and output power. The target parameters when selecting an EDFA, however, 

are low noise and flat gain. Gain should be flat because all signals must be amplified 

uniformly. Although the signal gain provided by the EDFA technology is inherently 

wavelength-dependent, it can be corrected with gain flattening filters. Such filters are 

often built into modern EDFAs. Low noise is a requirement because noise, along 

with the signal, is amplified. Because this effect is cumulative and cannot be filtered 

out, the signal-to-noise ratio is an ultimate limiting factor in the number of amplifiers 

that can be concatenated. This limits the length of a single fiber link. 

2.3.3 Optical Transmitter and Receivers 

Light emitters and light detectors are active devices at opposite ends of an optical 

transmission system. Light emitters, are transmit-side devices that convert electrical 

signals to light pulses. This conversion is accomplished by externally modulating a 

continuous wave of light based on the input signal, or by using a device that can 

generate modulated light directly. Light detectors perform the opposite function of 

light emitters. They are receive-side opto-electronic devices that convert light pulses 

into electrical signals. 

The light source used in the design of a system is an important consideration because 

it can be one of the most costly elements. Its characteristics are often a strong 

limiting factor in the final performance of the optical link. Light-emitting devices 

used in optical transmission must be compact, monochromatic, stable, and long 

lasting. Two general types of light-emitting devices are used in optical transmission: 

light-emitting diodes (LEDs) and laser diodes or semiconductor lasers. LEDs are 

relatively slow devices, suitable for use at speeds of less than 1 Gbps. Narrow 

spectrum tunable lasers are available, but their tuning range is limited to 

approximately 100–200 GHz. Wider spectrum tunable lasers, which will be 

important in dynamically switched optical networks, are under development. 

On the receive end, it is necessary to recover the signals transmitted on different 

wavelengths over the fiber. This is done using a device called the photodetector. As 

tunable transmitters, there are also tunable receivers available on the market. 
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2.3.4 Wavelength Converters 

Wavelength converters are devices that convert the incoming signal of a particular 

wavelength into a signal containing the same information but on a different 

wavelength. It is possible that an incoming call cannot be accepted in a portion of a 

network on a particular wavelength because that wavelength is already busy or 

because other components that work in this wavelength range are not available. In 

such situations, the data using the incoming wavelength can be switched onto an idle, 

available wavelength to accommodate the call. Wavelength conversion thus enables 

efficient spatial reuse of wavelength resources in the network, adding to the 

flexibility of multi-wavelength systems. 

2.3.5 Optical Switches 

Most current networks employ electronic processing and use the optical fiber only as 

a transmission medium. Switching and processing of data are performed by 

converting an optical signal back to its equivalent electronic form. Such a network 

relies on electronic switches. These switches provide a high degree of flexibility in 

terms of switching and routing functions; however, the speed of electronics is unable 

to match the high bandwidth of an optical fiber. Also, an electro-optic conversion at 

an intermediate node in the network introduces extra delay. These factors have 

motivated an attempt towards the development of all-optical networks in which 

optical switching components are able to switch high bandwidth optical data streams 

without electro-optic conversion. In a class of switching devices currently being 

developed, the control of the switching function is performed electronically with the 

optical stream being transparently routed from a given input of the switch to a given 

output. Such transparent switching allows for the switch to be independent of the 

data rate and format of the optical signals. 

The simplest optical switch is a fiber cross-connect element that routes optical 

signals from input ports to output ports. It can be considered as the building block of 

larger optical switches. 
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Figure 2.4: A Simple 2 × 2 Switch (Coupler) 

The basic cross-connect element in Figure 2.4 is the 2 × 2 crosspoint element. A 2 × 

2 crosspoint element switches optical signals from two input ports to two output 

ports and has two states: cross state and bar state. In the cross state, the signal from 

input port 1 is routed to output port 2, and the signal from input port 2 is routed to 

output port 1. In the bar state, the signal from input port 1 is routed to output port 1, 

and the signal from input port 2 is routed to output port 2. 

Optical switches can also be considered as wavelength routing devices. A 

wavelength routing device can route signals arriving at different input ports of the 

device to different output ports according to wavelengths of the signals. This 

accomplished by demultiplexing the different wavelengths from each input port and 

optionally switching each wavelength separately and then multiplexing wavelengths 

at each output ports. 

A wavelength routing device can be either non-reconfigurable or reconfigurable. A 

non-reconfigurable router contains no switching stage between demultiplexers and 

multiplexer. Thus, the routes for different incoming signals are fixed. A 

reconfigurable switch (also a reconfigurable wavelength routing device) in Figure 2.5 

has electronically controlled switches among demultiplexers and multiplexers. In 

Figure 2.5, the wavelength routing switch has P incoming and outgoing fibers. On 

each incoming fiber, there are M wavelength channels. The outputs of the 

demultiplexers are directed to an array of M PxP optical switches between the 

demultiplexer and the multiplexer stages. 
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Figure 2.5: A P × P Reconfigurable Wavelength-Routing Switch With M Wavelengths 

All signals on a given wavelength are directed to the same switch and then directed 

to multiplexers associated with the output ports. Finally, multiple WDM channels are 

multiplexed before directed to output ports.  

Research, development, and commercialization of photonic switches encompasses a 

variety of switching technologies, including opto-mechanical, electro-optic, acousto-

optic, thermal, micro-mechanical, liquid crystal, and semiconductor switch 

technologies (Mouftah & Elmirghani, 1998), (Hinton, 1993). 

In order to appreciate the relative merits and shortcomings of different switching 

technologies, it is important to understand the different metrics used to characterize 

the performance of a photonic switch fabric. With an ideal photonic switch, all the 

optical power applied at any input port can be completely transferred to any output 

port, that is, the switch has zero insertion loss. Also, the optical power does not leak 

from any input port to any other input port or any undesired output port, that is, it has 

infinite directivity and zero cross talk. In addition, switch connections can be 

reconfigured instantaneously, that is, the switching time is zero, and any new 

connection can be made without rearranging existing connections, that is, the switch 

is nonblocking. Unfortunately, no switch is ideal, and in practice characteristics of 

photonic switch elements summarized above affect their performance. 
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In the following several different switching technologies are introduced. Specifically, 

the basic principles of switching under different technologies are described and the 

intrinsic performance limitations and possible reliability concerns are discussed. 

2.3.5.1 Opto-Mechanical Switches 

This broad category of optical switching technology can be identified based on the 

use of motion to realize optical switching. They typically have very low loss, and 

extremely low cross talk. Switching speed of these switches vary from tens of 

milliseconds to hundreds of milliseconds. Opto-mechanical switches are the most 

commonly used optical switches today. 

The most popular opto-mechanical switches are based on Micro-Electro-Mechanical 

Systems (MEMS). MEM is a small device that has both electrical and mechanical 

components. It is fabricated using the tools of the semiconductor manufacturing 

industry: thin film deposition, photolithography, and selective etching. Frequently, 

MEMS devices involve the use of semiconductor materials, such as silicon wafers, as 

well. MEMS devices offer the possibility of reducing the size, cost, and switching 

time of optical switches, and the ability to manufacture large arrays and complex 

networks of switching elements.  

The switching element in a MEMS optical switch can be a moving fiber, or a moving 

optical component such as a mirror, lens, prism, or waveguide. The actuation 

principle for moving the switching element is typically electromagnetism, 

electrostatic attraction, or thermal expansion. One of the most popular forms of 

MEMS switches is based on arrays of tiny tilting mirrors, which are either two-

dimensional (2D) or three-dimensional (3D). 

With 3D arrays in Figure 2.6, the mirrors can be tilted in any direction. The arrays 

are typically arranged in pairs, facing each other and at an angle of 90 degrees to 

each other. Incoming light is directed onto a mirror in the first array that deflects it 

onto a predetermined mirror in the second array. This in turn deflects the light to the 

predetermined output port. The position of the mirrors has to be controlled very 

precisely, for example, to millionths of degrees. 
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Figure 2.6: 3D MEMS Switch Fabric 

2.3.5.2 Electro-Optic Switches 

Electro-optic switches are based on directional couplers. A 2 x 2 coupler consists of 

two input ports and two output ports, as shown in Figure 2.4. It takes a fraction of the 

power, α, from input 1 and places it on output 1. The remaining power, 1-α, is 

placed on output 2. Similarly, a fraction, 1-α of the power from input 2 is distributed 

to output 1 and the remaining power to output 2. A 2 x 2 coupler can be used as a 2 x 

2 switch by changing the coupling ratio α. In electro-optic switches, the coupling 

ratio is changed by changing the refractive index of the material in the coupling 

region. One commonly used material for this purpose is lithium niobate (LiNbO3). 

Switching is performed by applying the appropriate voltage to the electrodes. 

Electro-optic switches tend to be fast with switching times in the nanosecond range. 

Since the electro-optic effect is sensitive to polarization, electro-optic switches are 

inherently polarization sensitive, and tend to have relatively high loss. 

2.3.5.3 Acousto-Optic Switches 

In an acousto-optic device, a light beam interacts with traveling acoustic waves in a 

transparent material such as glass. Acoustic waves are generated with a transducer 

that converts electromagnetic signals into mechanical vibrations. The spatially 

periodic density variations in the material, corresponding to compressions and 
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rarefactions of the traveling acoustic wave, are accompanied by corresponding 

changes in the medium's index of refraction. These periodic refractive index 

variations diffract light. Sufficiently powerful acoustic waves can diffract most of the 

incident light and therefore deflect it from its incident direction, thus creating an 

optical switching device. Acousto-optic switches are wavelength dependent and are 

more suitable for wavelength selective switches. 

2.3.5.4 Thermo-Optic Switches 

These switches are based on Mach-Zehnder interferometers (Green, 1992), 

(Ramaswamy & Sivarajan, 2001). A Mach-Zehnder interferometer is constructed 

out of two directional couplers interconnected through two paths of differing lengths 

as shown in Figure 2.7. By varying the refractive index in one arm of the 

interferometer, the relative phase difference between two arms can be changed, 

resulting in switching an input signal from one input port to another. These switches 

are called thermo-optic switches because the change in the refractive index is 

thermally induced. Thermo-optic switches suffer from poor cross talk performance 

and are relatively slow in terms of switching speed. 

 

Figure 2.7: Mach-Zehnder Interferometer 

2.3.5.5 Magneto-Optic Switches 

The magneto-optic effect refers to a phenomenon in which an electromagnetic wave 

interacts with a magnetic field. The Faraday Effect is an important magneto-optic 

effect whereby the plane of polarization of an optical signal is rotated under the 

influence of a magnetic field. Magneto-optic switches use Faraday Effect to switch 

optical signal. These switches are typically characterized with low loss and slow 

switching speed. They are somewhat wavelength dependent. 
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2.3.5.6 Liquid Crystal Optical Switches 

A liquid crystal is a phase between solid and liquid. Liquid crystal-based optical 

switches also utilize polarization diversity and polarization rotation to achieve optical 

switching. Switches of this type are typically quite wavelength dependent, since the 

amount of polarization rotation depends on wavelength. Liquid crystal polarization 

rotation is also intrinsically temperature dependent. Switching speed is relatively 

slow, usually between 10–30 ms range, since the switching mechanism requires 

reorientation of rather large molecules. 

2.4 Terminology of Optical Networks 

This section introduces basic terminology about wide area optical networks, such as 

lightpath, routing and wavelength assignment, virtual topology design and 

reconfiguration. 

2.4.1 Lightpath 

Wide area optical networks are composed of nodes that employ optical cross-

connects (OXCs) and WDM channels called lightpaths that are established between 

node pairs. A lightpath is an optical channel between two nodes. The traffic on a 

lightpath does not get converted into electronic format at any intermediate node it 

passes and is routed as an optical signal throughout the physical topology. Each 

intermediate node provides a wavelength routing optical bypass capability with the 

help of its installed OXC to support lightpath. With wavelength continuity constraint, 

the lightpath becomes a sequence of physical links forming a path from source to 

destination, along with a single wavelength. Lightpaths logically connects two 

distinct nodes even if they are not directly connected in the physical topology. 

Traffic demands among nodes can be provisioned by using the established lightpaths. 

A lightpath consumes a transmitter at its start node, a receiver at its end node and one 

available wavelength at each physical link it spans. Since transceivers on nodes and 

number of wavelengths on physical links are limited, only a limited number of 

lightpath can be set up over a physical topology.  
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2.4.2 Routing and Wavelength Assignment (RWA) 

Once a set of lightpaths is determined, routing of each lightpath and assignment of 

wavelength to each is required. This is a resource reservation issue called as routing 

and wavelength assignment problem. In RWA problem, a set of lightpaths that need 

to be setup on the network and a constraint on the number of wavelengths is given. 

The goal is to identify the routes over which the lightpaths should be established and 

determine wavelengths which should be assigned to these lightpaths. Lightpaths are 

said to be blocked when they could not set up due to constraints on routes and 

wavelengths. RWA is an optimization problem which tries to minimize this blocking 

probability. 

A lightpath may have one or more wavelengths through all fiber links it spans. The 

lightpath is said to satisfy the wavelength continuity constraint if it operates on the 

same wavelength. Two lightpaths that passes over a common fiber should not be 

assigned the same wavelength. If a switching node is equipped with a wavelength 

converter, this removes the wavelength continuity constraint and enables a lightpath 

switching among various wavelengths on its route. 

The RWA problem can be classified either static or dynamic according to the nature 

of the incoming connection requests. In static lightpath establishment, the set of 

connection request are known prior to design and the goal is to set up all connections 

while minimizing the network’s resources. On the other hand, a lightpath 

establishment is triggered with an incoming connection request and released after 

some amount of time in dynamic lightpath establishment. Static RWA can be 

formulated as an integer linear program (ILP) whose objective is to minimize the 

number of lightpaths passing through a fiber link. Since the lightpath requests and 

physical topology are known previously, the problem is called offline RWA. The 

general problem is NP-complete, this make it intractable to solve for large networks. 

Therefore, RWA is divided into subproblems and each subproblem is solved 

independent of others. RWA problem is divided into two subproblems of routing and 

wavelength assignment each. Once the routing subproblem is solved for a connection 

request, a wavelength assignment routine (can be reduced to graph coloring) is 

applied to derive the optimal solution. In dynamic RWA problem, linear program is 
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not applicable. Thus, heuristic methods are proposed to solve previously defined 

subproblems. Fixed routing, fixed alternate routing, adaptive routing are the basic 

routing heuristics used for the solution of routing subproblem. Random, first-fit, least 

used, most used, min product, least loaded heuristics are applied for wavelength 

assignment subproblem. 

2.4.3 Virtual Topology Design (VTD) 

A lightpath constructs single-hop communication channel between two arbitrary 

nodes in a physical topology. Since a physical topology has limited number of 

wavelengths, it may be impossible to establish lightpaths between all node pairs. 

This makes multihopping unavoidable between some nodes. Virtual topology can be 

defined as a set of lightpaths that carry traffic in optical domain using optical circuit 

switching and packet forwarding among lightpaths is performed in electronic domain 

by using electronic packet switching. Figure 2.8 shows a possible virtual topology 

explaining the concepts summarized above over a physical topology. 

 

Figure 2.8: A Sample Virtual Topology Over NSFNET Physical Topology 

VTD can be thought as an optimization problem whose constraints are; 

• Number of transceivers and wavelengths 

And possible objectives are; 

• Maximization of packet traffic 

• Balancing the lightpath loads 

• Minimization of network resource utilization 
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• Minimization of average packet delay 

Since the objective functions mentioned above are nonlinear and simpler versions of 

this problem was shown to be NP-hard, mostly heuristic approaches for the solution 

of VTD problem is proposed. Virtual topology design problem can be decomposed 

into four subproblems. These subproblems are as follows; 

a. Topology Subproblem: Determine the virtual topology over physical 

topology. (set of lightpaths in terms of source and destination nodes) 

b. Lightpath Routing Subproblem: Determine the physical links that each 

lightpath spans, this is called routing of the lightpaths over the physical 

topology 

c. Wavelength Assignment Subproblem: Assign a wavelength to each lightpath 

in the virtual topology so that no violation of wavelength restrictions occurs 

for each physical link. 

d. Traffic Routing Subproblem: Route packet traffic between source and 

destination nodes over the virtual topology obtained. 

Solving the subproblems in sequence and combining the solutions may not construct 

the optimal solution for whole VTD, but it is certain to obtain the sub-optimal 

solutions of the decomposed VTD problem. 

2.5 Virtual Topology Reconfiguration (VTR) 

As stated in 2.4.3 logical topology design is the selection and establishment of a set 

of lightpaths in an optical network according to a traffic pattern. Most of time, traffic 

patterns of upper layers may vary and the current logical topology may become 

inefficient to realize traffic demands of upper layers. Fortunately, there is an 

advantage of the optical networks that they are able to reconfigure their logical 

topology to adapt to changing traffic patterns. This flexibility is one of the major 

advantages of optical networks over classical electronic networks. The 

reconfiguration process moves the current logical topology to a new one by tearing 

down and establishing existing and new lightpaths, respectively. The impact of 

reconfiguration should be carefully considered since packet delays or loses may 
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occur during this process. As a principal, a fast reconfiguration algorithm should 

achieve smallest reconstruction on virtual topology with lowest degradation to 

performance. 

Virtual topology reconfiguration is another NP-hard problem as previously stated 

problems in this study. Therefore, there is a tendency to divide VTR problem into 

smaller subproblems and use heuristics for solutions. There exist two subproblems in 

reconfiguration; 

a. Design the new virtual topology by considering the new traffic pattern 

b. Transform from the current virtual topology to the new one with minimal 

disruption to continuous traffic pattern. 

The transformation described in b can be either sudden by destroying all existing 

lightpaths and establishing all lightpaths in the new virtual topology or step-by-step 

by making small changes over the existing virtual topology to reach target virtual 

topology. There is often a trade-off in reconfiguration algorithms between the 

optimality of new virtual topology and the amount of disruption during 

reconfiguration transition.  

2.5.1 Survey of Reconfiguration Studies 

Selected studies about virtual topology reconfiguration are summarized in this title. 

VTR is composed of recursively complex problems which were stated in previous 

paragraphs such as VTD and RWA. Reconfiguration studies available in literature 

still have open problems such as how to reconfigure and when to reconfigure the 

optical network. Some of open problems arise because of the recursive subproblems, 

while the others are introduced by the concept of reconfiguration itself. Next of this 

chapter is devoted to brief summaries of studies performed about virtual topology 

reconfiguration. 

Labourdette et al. (1994) considers the reconfiguration transition problem by 

introducing an approach where the network reaches some target connectivity graph 

through a sequence of intermediate connection graphs, so that two successive graphs 

differ by a single "branch-exchange" operation. The proposed scheme provides a 

minimally disruptive effect on traffic such that only two links are disrupted with a 
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single transition at any time. Three polynomial time algorithms that search for 

shortest sequences of branch exchange operations are given in order to minimize the 

overall reconfiguration time. Rouskas & Ammar (1995) presented the 

reconfiguration phase as a Markovian Decision Process and developed heuristics to 

obtain good reconfiguration policies in terms of packet loss during reconfiguration. 

Bala et al. (1996) proposed a method for reconfiguration of a WDM optical network 

to adapt to changing traffic pattern at the ATM layer. Changing traffic patterns 

resulted in the requirement for changing ATM network topologies that are known 

before reconfiguration take place. Assuming that the ATM switches access the 

WDM layer, the proposed method sized the ATM switches and assigned 

wavelengths between pairs of ports at the switches so as to support the required 

ATM network topologies in a hitless manner. Also, bounds on the number of 

wavelengths need to support the introduced reconfiguration scheme were proposed in 

this study. 

Kim et al. (1999) proposed a heuristic algorithm to minimize the number of OXCs 

required reconfiguring the logical topologies of WDM networks. From the results of 

several experiments, authors found that not all nodes require OXCs and the number 

of OXCs depends on the similarity between logical topologies. In Narula-Tam & 

Modiano (2000), iterative reconfiguration algorithms for load balancing of 

lightpaths were developed and analyzed. Main purposes of the algorithms are to 

minimize the maximum link load while tracking the rapid changes in traffic pattern. 

At each iteration, proposed algorithms make only small changes to the network 

topology and this leads to minimal disruption to the network. The performance of the 

algorithms were analyzed under several dynamic traffic scenarios and also shown 

that large reconfiguration gains are achievable with limited number of wavelengths. 

Banerjee & Mukherjee (2000) introduced a reconfiguration procedure which 

searches through all possible optimal virtual topologies in order to obtain a solution 

which shares the maximum number of lightpaths with the previous virtual topology 

for a changed traffic matrix. This solution to the reconfiguration problem generates a 

virtual topology which minimizes the amount of switch retunings that need to be 

performed in order to adapt the virtual topology to the new traffic pattern. 
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In Ramamurthy & Ramakrishnan (2000), proposed reconfiguration algorithm 

includes trade-offs between the amount of reconfiguration necessary and average 

packet delay. The reconfiguration algorithm in this study is independent of the virtual 

topology design algorithm that used. This gives resilience for using different virtual 

topology design algorithms with the proposed reconfiguration scheme. The number 

of reconfiguration steps was used as a useful metric in this study. On the other hand, 

this paper did not deal with the problem of detecting the need for reconfiguration, i.e. 

when to trigger reconfiguration. Narula-Tam et al. (2000) state that WDM networks 

will allow multiple virtual topologies to be dynamically established on a given 

physical topology. Authors determine the number of wavelengths required to support 

all possible virtual topologies on a bidirectional ring physical topology. First, they 

determined wavelength requirements for networks using shortest path routing, then 

by presenting a novel adaptive lightpath routing and wavelength assignment strategy 

they reduced network wavelength requirements. They also showed that this reduced 

wavelength requirement is optimal. These results were first derived for the single 

port per node case and then extended to networks with multiple ports per node. 

Baldine & Rouskas (2001) analyzes the issues arising in the reconfiguration phase 

of broadcast optical networks. Authors developed and compared reconfiguration 

policies to determine when to reconfigure the network and presented an approach to 

carry out the network transition by describing a class of strategies that determine how 

to retune the optical transceivers. The problem whose objectives were identified as 

the degree of load balancing and the number of retunings were formulated as a 

Markovian Desicion Process. Consequently, they developed a system which enables 

the selection of rewards and costs that can be used to achieve the desired balance 

among various performance criteria. The results obtained from this study are 

applicable to networks of large size. 

In Alfouzan & Jayasumana (2001) a reconfiguration algorithm was proposed both 

in order to balance the traffic loads among wavelength channels and minimize the 

number of retunings. The proposed algorithm was proved to have significant 

advantage over the existing reconfiguration schemes in the paper. Qin et al. (2002) 

described an algorithm based on simulated annealing for solving the joint logical 

topology design and routing problem for WDM optical networks with the objective 



 

 

 

27

of minimizing the maximum utilization of any link. Authors' main contribution is to 

introduce a novel mechanism to accelerate the running speed of the simulated 

annealing algorithm. Liu et al. (2002) presented three “one-hop traffic 

maximization”-oriented heuristic algorithms for lightpath topology design, and one 

heuristic algorithm for reconfiguration migration. These algorithms aim at 

guaranteed connectivity and take full advantage of available physical resources to 

accommodate maximum future growth of traffic demands. Furthermore, the 

algorithms aim at operational issues such as supporting ongoing services. To verify 

the performance of the presented reconfiguration algorithms, authors have conducted 

a simulation study. The simulation results showed that the reconfiguration algorithms 

provide higher network throughput and reduced average hop distance over the fixed 

topology. Based on the framework and the developed algorithms, authors have set up 

an IP over WDM network testbed and developed a traffic engineering system 

prototype based on the GMPLS framework leveraging on WDM network 

reconfigurability. 

Yang & Ramamurthy (2002) proposed an analytical model to study the impact of 

virtual topology reconfiguration on optical networks. The introduced model 

identified and analyzed the impact factors from both the data and control planes 

independent of any specific VTR algorithm or policy. This allows the carriers choose 

a VTR algorithm or policy according to the real time network situations. A uniform 

cost model was derived from these factors, and provided a practical and precise 

criterion for carries to compare different VTR algorithms to decide for triggering 

VTR operations. Zheng et al. (2004) studied the virtual topology design and 

reconfiguration problem of VPN over all-optical WDM networks. VPN requires a set 

of lightpaths to be established over physical WDM topology to meet the traffic 

demands and also needs a dynamic reconfiguration of lightpaths with its changing 

traffic characteristics. First, the integer linear program formulation of the problem 

was presented with minimizing the multiobjectives such as average propagation 

delay over a lightpath, maximum link load, and reconfiguration cost. The purpose 

was to improve the performance and meet the service requirements of VPNs. Since 

the given formulation was NP hard to solve, a genetic algorithm based method was 

proposed to obtain the optimal solutions. For a tractable solution, the proposed 
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algorithm was divided into two independent stages: route computing and path 

routing. This algorithm provided optimal solutions in its earlier stages. In Stosic & 

Spasenovski (2003), a practical model for reconfiguration of virtual topology in 

SDH/WDM networks was presented. The model minimizes the difference between 

initial and reconfigured network. Furthermore, under these conditions it minimizes 

the average hop distance of routed traffic. 

Gençata & Mukherjee (2003) proposes an adaptation mechanism to follow the 

changes in traffic without a priori knowledge of the future traffic pattern. By this 

aspect this work differs from others which redesign the virtual topology according to 

an expected traffic pattern. The main idea of this study is based on the continuous 

measurement of traffic loads on each lightpaths in order to adapt the underlying 

optical connectivity. This adaptation mechanism includes adding or deleting one or 

more lightpath at a time. Some parameters are introduced to evaluate the utilization 

of lightpaths and trigger an adaptation step. Sreenath & Murthy (2002) proposed 

four heuristic algorithms for online reconfiguration of WDM optical networks. The 

performance of these heuristic algorithms was compared in terms of objective 

function value of reconfigured topology, number of changes made in the existing 

topology to get the reconfigured topology, and the time required to compute the 

changes in the existing topology. Mohan et al. (2003) presents a reconfiguration 

algorithm which is based on the concept of splitting and merging existing lightpaths 

to reduce the virtual topology reconfiguration cost in WDM optical ring networks. 

The objective of the proposed algorithm is to design a new virtual topology so as to 

minimize the number of changes that need to be made in the current virtual topology 

while keeping the network congestion as small as possible. Algorithm in this study, 

allows only a few lightpath changes at each step of the reconfiguration procedure. 

Lee et al. (2003) formulated the optimal reconfiguration policy as a multi-stage 

decision-making problem to maximize the expected reward and cost function over an 

infinite horizon. To counter the continual approximation problem brought by 

heuristic approach, they take the traffic prediction into consideration. They further 

propose a new heuristic reconfiguration scheme to realize the optimal 

reconfiguration policy based on predicted traffic. Simulation results showed that 

proposed scheme overtakes the reconfiguration strategy considering traffic without 
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prediction. Golab & Boutaba (2004) concerns the problem of automatically 

updating the configuration of an optical network to accommodate changes in traffic 

demand, which entails making a reconfiguration policy decision, selecting a new 

configuration, and migrating from the current to the new configuration. Existing 

solutions were classified according to their algorithmic properties, and compared on 

the basis of performance, computational cost, and flexibility. Prathombutr et al. 

(2004) proposed a model for a series of reconfigurations in wavelength-routed 

optical network. The model contains two tasks: a reconfiguration process and a 

policy. The reconfiguration process generates the Pareto front or a set of 

nondominated solutions that determines two competitive objectives in the 

reconfiguration problem simultaneously by using the concept of Pareto Optimal. The 

policy picks one of the solutions in the Pareto front that generates the optimal 

outcome by using the concept of Markov Decision Process. 

Xu et al. (2004) presented a new simulated annealing algorithm to resolve the logical 

topology reconfiguration problem in IP over WDM networks. From performance 

comparisons, they have shown that with the new SA algorithm, ideal solution can be 

found especially for a bigger size network. Also by introducing the threshold on 

congestion, the optimal congestion requirement and operation complexity can be 

balanced by tuning this threshold to a feasible value. For an effective solution 

discovery, a two-stage SA algorithm was developed for multiple objectives 

optimization. Koçak et al. (2004) proposed a heuristic in this paper deletes 

unnecessary loaded lightpaths and adds lightpaths to decrease the load in the other 

lightpaths. By this way, traffic weighted average distance of the network and the 

maximally loaded lightpath's load can be decreased; load balancing can be achieved. 

Zhang et al. (2005) introduces several heuristic algorithms that move the current 

logical topology efficiently to the given target logical topology in large-scale 

wavelength-routed optical networks. In the proposed algorithms, the performance 

improvement/degradation of data transmission caused by a new lightpath is 

considered as benefit for establishing the new lightpath. The proposed algorithms 

construct the new logical topology starting from a lightpath with the largest benefit to 

the user traffic. 
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In Gillani et al. (2005), a new approach of adaptive reconfiguration under dynamic 

traffic conditions for long haul networks was proposed. Two auxiliary heuristic 

algorithms were introduced to support the proposed reconfiguration approach. One of 

them makes the decision making for network reconfiguration while the second is 

given to derive the new logical topology from the previous one by lightpath additions 

or deletions. The performance evaluation of the proposed algorithm was tested and 

its advantages were shown. Sumathi & Vanathi (2005) presented a virtual topology 

reconfiguration heuristic to minimize the congestion in the network thereby 

balancing the network load for various percentage of traffic change. Bhandari & 

Park (2005) modeled the reconfiguration problem of mesh optical networks as 

MILP, where authors tried to minimize network disruption and hop length. They 

minimized network disruption by minimizing the transceiver retuning needed at each 

optical node. Then they proposed a heuristic algorithm which tries to minimize 

network disruption and then minimize hop length whenever possible. 

Yeh et al. (2005) studied the virtual topology reconfiguration problem in the 

networks using MG-OXC architecture. Authors assumed that the future traffic 

pattern was known a priori and reconfigured the original topology, without 

dramatically changing the current virtual topology, to the new one that was suitable 

for the new traffic pattern. They proposed a heuristic algorithm to solve the problem 

by constructing an auxiliary graph to help determining the addition, deletion, or 

keeping of the virtual links. Sinha & Murthy (2005) proposed a framework for the 

reconfiguration in the network according to the changes in the traffic. It collects the 

traffic changes in the network and reconfigures the network depending on the current 

reconfiguration policy, and also updates the reconfiguration policy whenever 

required. The framework uses an algorithm for sequential prediction of future traffic 

sequences. Prediction of traffic sequences and the cost incurred in re determining the 

reconfiguration policy were quantified from an information theoretic point of view. 

Simulation results demonstrated the effectiveness of the proposed framework 

compared with the fully predictable scheme and totally unpredictable scheme. Saad 

& Luo (2005) addressed the problem of selecting the new virtual topology that, upon 

changing traffic patterns, maximizes the carried traffic of connections, while 

guaranteeing that ongoing connections are not disrupted. A heuristic reconfiguration 
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algorithm that is based on partitioning the traffic demands, so as to maintain 

wavelength loads as balanced as possible, followed by solving a sequence of single-

wavelength subproblems was also introduced. 

Takagi et al. (2006) proposes several heuristic algorithms that reconfigure logical 

topologies in wide-area wavelength routed optical networks. Reconfiguration 

algorithms attempt to control the disruption to the network as small as possible 

during the reconfiguration process. For this purpose, a lightpath is taken as the 

minimum reconfiguration unit. The results showed that very simple algorithms 

provide very small computational complexity but poor performance and an efficient 

algorithm provides reasonable computational complexity with very good 

performance. More complex algorithms may improve performance somewhat further 

but have unrealistically large computational complexity. In Din (2007), virtual 

topology configuration transition problem (WVTCTP) which minimizes the average 

weighted hop distance was studied. Since the WVTCTP is NP-hard, a genetic 

algorithm (GA) was proposed to solve it. Simulated results showed that the proposed 

GA can get better performance than heuristics, simulated annealing, and iterative 

improving methods. Tak et al. (2007) proposes a reconfiguration approach adapting 

multiobjective optimization in WDM optical networks. The reconfiguration problem 

in WDM optical networks requires a process of multi-objective optimization because 

the objective of reconfiguration considers the network performance and the network 

cost simultaneously. Number of lightpath routing changes is exploited for the 

measurement of network cost. The proposed reconfiguration technique considers a 

reconfiguration process and a reconfiguration policy. The reconfiguration process 

finds a set of non-dominated solutions and the reconfiguration policy picks a solution 

from the set of non-dominated solutions. 
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3 THE FRAMEWORK USED IN THE SIMULATIONS 

The goal of this thesis is to study the effects of reconfiguration in optical domain to 

the upper layers carrying network traffic. In order to perform this study, an IP 

simulation environment that operates ignorant of the underlying topology was 

developed. Main function of this IP layer will be producing and transmitting IP 

packets according to the incoming traffic connection requests regardless of lower 

level physical architecture. This chapter first gives a brief summary of Internet 

Protocol then describes Fishnet based framework which will be used in the 

simulations of implemented reconfiguration algorithms. Then, modifications over the 

framework will be presented. 

3.1 Internet Protocol 

The Internet Protocol (IP) is a data-oriented protocol used for communicating data 

across a packet-switched network. IP is a network layer protocol in the internet 

protocol suite and is encapsulated in a data link layer protocol (e.g., Ethernet). As a 

lower layer protocol, IP provides the service of communicable unique global 

addressing amongst computers. 

Data from an upper layer protocol is encapsulated inside one or more 

packets/datagrams. No circuit setup is needed before a host tries to send packets to a 

host it has previously not communicated with, thus IP is a connectionless protocol. 

This is quite unlike Public Switched Telephone Networks that require the setup of a 

circuit before a phone call may go through (a connection-oriented protocol). 

Because of the abstraction provided by encapsulation, IP can be used over a 

heterogeneous network (i.e., a network connecting two computers can be any mix of 

Ethernet, ATM, FDDI, Wi-fi, token ring, etc.) and it makes no difference to the 

upper layer protocols. Each data link layer can (and does) have its own method of 

addressing (or possibly the complete lack of it), with a corresponding need to resolve 
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IP addresses to data link addresses. This address resolution is handled by the Address 

Resolution Protocol (ARP). 

IP provides an unreliable service (i.e., best effort delivery). This means that the 

network makes no guarantees about the packet and none, some, or all of the 

following may apply: 

• data corruption 

• out of order (packet A may be sent before packet B, but B can arrive before 

A) 

• duplicate arrival 

• lost or dropped/discarded 

In terms of reliability the only thing IP does is ensure the IP packet's header is error-

free through the use of a checksum. This has the side-effect of discarding packets 

with bad headers, and with no required notification to either source or destination by 

sending an ICMP message. To address any of these reliability issues, an upper layer 

protocol must handle it. For example, to ensure in-order delivery the upper layer may 

have to cache data until it can be passed up in order. If the upper layer protocol does 

not control its own size, and sends the IP layer too much data, IP is forced to 

fragment the original datagram into smaller fragments for transmission. IP provides 

re-ordering of any fragments that arrive out of order by using the fragmentation flags 

and offset. TCP is a good example of a protocol that will adjust its segment size to be 

smaller than the MTU. User Datagram Protocol (UDP) and Internet Control Message 

Protocol (ICMP) are examples of protocols that disregard MTU size thus forcing IP 

to fragment oversized datagrams. The primary reason for the lack of reliability is to 

reduce the complexity of routers. 

Perhaps the most complex aspects of IP are IP addressing and routing. Addressing 

refers to how end hosts become assigned IP addresses and how subnetworks of IP 

host addresses are divided and grouped together. IP routing is performed by all hosts, 

but most importantly by internetwork routers, which typically use either interior 

gateway protocols (IGPs) or external gateway protocols (EGPs) to help make IP 

datagram forwarding decisions across IP connected networks. 
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3.2 The Framework: Fishnet Project 

Fishnet is a software project developed at the University of Washington for teaching 

the core principles of network protocol design and implementation. The current 

version is written primarily in Java, with supporting scripts in Perl and Ruby. The 

implementation was changed from Ruby to Java since; Java has the advantage of 

being strongly typed and very well documented. The set of instructions for installing, 

compiling, and running Fishnet for the first time can be found at (Gribble, 2005). 

3.2.1 Fishnet Architecture 

The Fishnet infrastructure is an environment for the development of network 

protocol stacks. Conceptually, each node represents a computer having its own 

network stack. Pairs of nodes are connected to each other by links; each link has a 

latency, bandwidth, and loss rate. 

There are about two different models for implementing a network stack: the process-

per-protocol model and the process-per-message model. Fishnet uses yet a third 

model: an event-driven architecture, in which your code must completely process 

each packet before it can deal with the next one. This means there is no need to 

worry about concurrent processing of multiple packets. To deliver packets, the 

Fishnet infrastructure must be able to call your code using upcalls. To make this 

possible, your code will need to implement methods for functions such as receiving a 

packet or receiving keyboard input, and register callbacks with the infrastructure so 

that it knows what method to call when certain other events occur. 

Fishnet performs simulation by reading a simulation file. A sample simulation file is 

given in Figure 3.1. Simulation file commands are case sensitive. Special attention 

must be paid on the spaces. Commands are parsed by using the spaces as delimiters 

thus it is very important to put spaces where required. Also putting consecutive 

spaces will cause the command to be incorrect. 

The topology file is line-oriented (one command per line). Nodes (e.g., a, b) are 

referred to by their Fishnet Address (0…254). Fishnet supports up to 255 nodes. 

Command between [] means optional while <> means “type” specified inside <>. 
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Figure 3.1: A Sample Simulation File 

Comments:  

[// | #] <comment>: any line starting with // or # is ignored 

Define an edge:  

edge a b [lossRate <double>] [delay <long>] [bw <int>]: this creates an edge 

between a and b, with the specified loss rate, delay (in milliseconds), and bw (in 

KB/s), or changes the specifics for an existing link, defaults are  0 lossRate, 1 msec 

delay, and 10Kb/s bw 

Putting delays into simulation: 

time [+ ]x: any subsequent command is delayed until simulation/real has reached x 

(or now + x, if + is used), in milliseconds from start. If + is used there must be a 

space between + and x. 

Removal of a node or an edge: 

fail a [b]:  this removes node a (if b is not specified) or an edge (if it is) 

Restarting a node or an edge: 

restart a [b]: this restarts a node or edge. Previous information about the node/edge is 

preserved 
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Send message between nodes: 

a b <msg>: a delivers text <msg> to node b 

Printing text: 

echo text: prints the text 

Stop simulation: 

exit:  cleanly stop the simulation run 

3.2.2 Fishnet Classes 

Fishnet project has many classes to carry out the transmission of IP packets. Most 

important of them are listed in the following. 

• Node: Implements the protocol stack for a single Fishnet node. It uses 

methods defined in the Manager abstract class to talk to the simulated 

network. 

• Manager: The abstract class that provides Node with an interface for 

communicating with the network and setting timers. 

• Simulator: Manages a simulation. All nodes are instantiated and simulation is 

controlled by this class. 

• Packet: Defines headers for a packet sent across the network. It provides 

methods to pack and unpack itself which is also known as marshalling and 

unmarshalling respectively. 

• LinkState: Defines the headers for a link state advertisement. 

• Protocol: Defines the protocols recognized by Fishnet. 

• Callback: Provides a mechanism for registering callbacks in Java. 

• Utility: Provides some useful general-purpose functions. In particular, there 

are two methods that convert Strings to byte arrays, and vice versa, using 

ASCII encoding. 
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3.3 Modifications over Fishnet 

All modifications over Fishnet were performed without violating its event-driven 

simulation structure. Added functions are implemented in a way that they can easily 

be added to existing event queue and can be invoked when the timestamp assigned 

each of them equals to the current time. Physical topology construction, virtual 

topology construction, virtual topology reconfiguration, traffic generation, packet 

sending, packet receiving, and parsing of simulation file are among the most 

important events used throughout the simulation cycle.    

Fishnet nodes are not capable of routing a connection request through network. The 

main contribution added to Fishnet is link state routing capability Tanenbaum 

(2002) used in IP layer. A node must implement link state routing to construct a 

routing table, and use this routing table to forward packets towards their destination. 

A link-state protocol generally involves four steps: 

• Neighbor discovery: When a router is booted its first task is to learn who its 

neighbors are. It accomplishes this goal by sending a special PING packet on 

each point to point line. The router on the other end is expected to receive this 

PING packet and build a link state packet containing all neighbors’ info. 

• Link State Flooding:  The trickiest part of the algorithm is distributing the 

link state packets reliably. The fundamental idea is to use flooding 

periodically to distribute the link state packets. To keep the flood in check, 

each packet contains a sequence number that is incremented for each new 

packet sent. Routes keep track of all the (source router, sequence) pairs they 

see. When a new link state packet comes in, it is checked against the list of 

packets already seen. If it is new, it is forwarded on all lines. If it is a 

duplicate, it is discarded. If a packet with sequence number lower than the 

highest one seen so far arrives, it is rejected as being obsolete since the router 

has more recent data. 

• Shortest-path calculation: Once a router has accumulated a full set of link 

state packets, it can construct the entire subnet graph because every link is 

represented. Now Dijkstra's algorithm can be run locally on each node to 
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construct the shortest path to all possible destinations. The results of this 

algorithm can be installed in the routing tables. For a subnet with n router, 

each of which has k neighbors, the memory required to store the input data is 

proportional to kn. For large subnets, this can be a problem. 

• Forwarding: Now the fishnet node should forward packets using the next-hop 

neighbors in calculated routing table. The exception is packets that have the 

broadcast address as their destination (e.g., link state packets); these should 

continue to be flooded. Note, then, that when your node receives a packet, it 

may perform one of three actions: (1) if the packet is destined for the node, it 

will "deliver" the packet locally; (2) if the packet is destined for another node, 

it will "route" the packet; (3) if the packet is destined for the broadcast 

address, it will both deliver packet locally, and continue flooding the packet, 

subject to the TTL and duplicate-avoiding constraints. 

As seen in Figure 3.1, basic Fishnet supports traffic requests based on individual 

packet transmission. In this study, traffic requests are not given in packet by packet. 

Instead, a more general and applicable method for traffic requests will be used in 

simulations. Average traffic rates between network nodes are represented as a traffic 

matrix. The packet traffic is created by a packet traffic generator considering traffic 

matrix. For this purpose, a Poisson Traffic generator is implemented and added to 

Fishnet code. “traffic” command was defined to generate Poisson traffic among the 

nodes of the virtual topology. The basic usage of traffic command is given as 

follows, 

traffic traffic_file time : the traffic matrix given in “traffic_file” is applied to virtual 

topology for “time” milliseconds. 

To show the ability of reconfiguration, the topology over which Fishnet operates is 

divided to physical and virtual topologies. Undermost layer (named physical 

topology layer) is equipped with optical switches as nodes and high capacity fiber 

links as edges. A rearrangeable virtual topology layer is placed over the top of the 

underlying physical topology layer. The rearrangement of the upper virtual topology 

layer is performed with the help of optical switches at nodes and wavelengths at fiber 

links among the nodes. Virtual topology design and reconfiguration algorithms are 
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added to Fishnet to derive the appropriate virtual topology over which the IP packet 

traffic will be routed. For this purpose, a new command named “vt” for generation 

and reconfiguration of a virtual topology is added to the project. The basic usage of 

vt command is; 

vt traffic_file: determine the new virtual topology according to the traffic matrix 

given in “traffic_file”. 

Modification over Fishnet was performed by implementing and updating/adding the 

following classes. 

• AuxArc: Represents the edges of auxiliary graph constructed in Branch-

Exchange algorithm proposed in section 4.2.4 

• AuxEdge: Contains the edge information that shows conflict relations of old 

and new lightpaths in MDPF algorithm given in section 4.2.3 

• AuxGraph: Represents the auxiliary graph employed in Branch-Exchange 

algorithm. AuxGraph has methods that perform construction and validation 

of matrices used by BE and a Dijsktra implementation which is used to find 

maximum number of vertex disjoint cycles in the auxiliary graph. 

• AuxNode: Represents node structure used in Auxiliary graph employed in BE 

algorithm. 

• CommandsParser: This is the base class of SimulationCommandsParser class 

and contains methods for parsing simulation file. CommandsParser class is 

available in basic Fishnet architecture. Modifications on parse of edge 

command for generation of optical layer, parse of traffic and vt commands 

are implemented as methods in this base class and its subclass 

SimulationCommandsParser together. 

• Dijkstra: This class is used by each node in the network for evaluation of 

routing tables. It performs calculation of shortest paths (by using delays) to 

all other nodes in the network and construction of routing tables. 
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• ForwardPkt: Contains information such as source address, sequence number, 

protocol and time of forwarding of a packet for monitoring the status of a 

control or data packet during its transmission across the network. 

• LightpathRoute: Contains information about an established lightpath such as 

wavelength, transceivers and route. This class is used to store the status of a 

lightpath and represents each lightpath of a virtual topology. 

• MDPF: Implements MDPF algorithm given in section 4.2.3. MDPF has 

methods that deals with construction of auxiliary graph, removes old and new 

conflicting lightpaths, adds conflict relations to the auxiliary graph, and 

performs reconfiguration transition by constructing each new lightpath 

periodically. 

• NextPacket: Holds the necessary parameters for generation of new packets 

and mainly used by TrafficGenerator class. NextPacket class has parameters 

such as source, destination, time, size, inter arrival time, and mean traffic 

rates for packet generation. 

• Node: This class is already in Fishnet project but many new methods are 

added in this study. Various methods for packet generation, timeout detection 

of control packets, management of physical topology (use, free and check 

availability of optical resources), neighbor discovery, routing table 

construction, routing table lookup, packet receipt, and packet send are 

implemented and added. Furthermore, important data members such as active 

neighbors, forwarded control packet’s list, link state tables, routing tables, 

physical resources (transceiver, wavelengths) and performance evaluation 

parameters are added to Node class. 

• Packet: Defines packet header and payload structure. It has source, 

destination, TTL, protocol identifier, sequence number, and payload fields as 

data members. Packet class has methods for integrity check, packing 

(serialization) and unpacking (deserialization) of generated packets. 

• PhysicalEdgeOptions: Contains wavelengths and cost of each optical fiber as 

data members. PhysicalEdgeOptions has methods that determine whether 
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there are available wavelengths on related fiber and reserve them if they are 

available. 

• PhysicalEgde: Represents optical fiber in the optical layer of the simulation 

environment. The node pair which the fiber spans, a Boolean parameter for 

status of fiber and an instance of PhysicalEdgeOptions type for properties of 

fiber are the data members of PhysicalEgde class. It has methods for setting 

fiber options, getting source and destination node pairs and querying whether 

a specified fiber link is alive or not. 

• PhysicalTopology: This is a singleton class which represents the physical 

topology of optical WDM network. It contains a list of PhysicalEgde 

instances as data member. There are methods for constructing a new physical 

edge, resource reservation for establishment of a new lightpath, resource 

deallocation of physical topology, shortest path lightpath establishment, and 

virtual topology design algorithm expressed in section 4.1.1. 

• SimulationCommandsParser: This class is available in basic Fishnet and used 

as a command parser for simulator. A parser method for vt command, and a 

reconfiguration policy selector method are the most important contributions 

embedded to SimulationCommandsParser class. Also, simulation is 

terminated by a method implemented in this class. CommandsParser class is 

the base class of this class. 

• Simulator: This class is already available in Fishnet. Main event handling 

mechanism of the simulation is performed by this class. Several 

modifications and additions are performed on the basic Simulator class. 

Generation of packet traffic for all nodes in the virtual topology, sending 

packets to a specified node, removal of control packets after a timeout period, 

reconfiguration transition routine for BE algorithm, and termination of 

simulation and calculation of performance parameters such as delay and 

packet loss are performed by the methods implemented in this class 

• SpfLpf: Implements LPF and SPF algorithms expressed in sections 4.2.1 and 

4.2.2 respectively. SpfLpf has methods for finding lightpaths which spans 

minimum and maximum number of physical hops, determination of 
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conflicting lightpaths, reconfiguration transition for LPF, and reconfiguration 

transition for SPF algorithms. 

• StaticValues: Various different simulation parameters such as number of 

transceivers, wavelengths, lightpath capacity, mean packet size, MTU, 

control packet’s timeout value, neighborhood discovery period, traffic 

generation parameters, and reconfiguration transition step interval are 

introduced in this class. 

• TrafficGenerator: This class contains a Poisson arrival packet generator 

implementation and used to generate packet traffic during simulations in this 

study. Each packet is created one by one in a manner that current packet’s 

information will be used in generation of the next packet. 

• TrafficMatrix: Implements traffic matrix generation according to a traffic 

pattern given in section 5.2.1. TrafficMatrix class has methods for generation 

of random traffic matrices and rearrangement of traffic requests of the 

elements in generated traffic matrices. 

• VirtualEdge: Represents the virtual edge (lightpath) of the virtual topology 

over the physical topology layer. It has nodes between which the lightpath is 

established, a Boolean value indicating whether it is alive or not, an instance 

of type VirtualEdgeOptions for properties of lightpath and a time value which 

stores info of when the next packet can be put onto the lightpath. VirtualEdge 

has methods such as querying whether a given node pair constitutes a 

ligthpath, a lightpath is alive or not, and scheduling packet transmission by 

considering delay, loss rate, and bandwidth of lightpath. 

• VirtualEdgeOptions: Contains loss rate, delay, and bandwidth parameters of a 

lightpath of type VirtualEdge as data members and their getter/setter 

methods. An instance of type VirtualEdgeOptions is available in class 

VirtualEdge. 

• VirtualTopology: This is a singleton class which represents the virtual 

topology established over the physical topology. As data member, it contains 

a list of VirtualEdge instances representing the lightpaths constituting the 
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virtual topology. There are various methods available for 

establishment/destruction of a new lightpath, getting a live lightpath between 

a given node pair, querying whether a specified lighpath is alive or not. 
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4 PROPOSED RECONFIGURATION ALGORITHMS 

In this chapter, implemented virtual topology reconfiguration algorithms are 

described in detail. First, the virtual topology design algorithm used in the 

simulations is explained. Then, various reconfiguration techniques applied in this 

study are detailed. 

4.1 Virtual Topology Design Algorithm 

4.1.1 Greedy Logical Topology Design Algorithm (GLTDA) 

This algorithm attempts to establish multiple parallel lightpaths between node pairs 

that exchange large amounts of traffic. Pseudocode of GLTDA is given in Figure 4.1. 

The following notation is used in GLTDA algorithm. 

s source node 

d destination node 

tij average traffic from source i to destination  j in traffic matrix T 

tmax
sd maximum amount of traffic in traffic matrix T 

δs
O number of transmitters at source node s 

δd
I number of receivers at destination node d 

Where update of tsd in Step S3 of Figure 4.1 is replaced with tsd = tsd – C. C is 

capacity of a lightpath which is used to decrement the offered traffic tsd after a 

lightpath has been established in the virtual topology.  

This heuristic approach allows us to solve large problem instances of the virtual 

topology design problem since solution of the exact problem formulation is NP-

Hard.  
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Figure 4.1: Pseudocode of GLTDA 

4.2 Virtual Topology Reconfiguration Algorithms 

Virtual topology reconfiguration algorithms implemented in this study are given in 

detail in this section. There are two important issues involved in the reconfiguration 

of a network logical topology. One issue how to determine the target logical 

topology corresponding to the current logical topology and traffic matrix while the 

second one is how to determine a reconfiguration transition sequence shifting the 

current logical topology to the new one. In this study, the focus is on the latter 

problem and several reconfiguration algorithms that perform reconfiguration 

transition were implemented and their performance comparisons were evaluated. 

4.2.1 Longest Lightpath First (LPF) 

The LPF algorithm in Takagi et al. (2006) constructs the new lightpaths starting 

with the longest one and continues with shorter one according to the number of hops 

of the lightpaths in the physical topology. The reconfiguration sequence can be easily 

determined by sorting the lightpaths of the new logical topology, since the 

reconfiguration procedure depends only on the path hops in the physical topology. 

The longer a new lightpath is, the more it has the possibility of conflict with old 

lightpaths. 



 

 

 

46

At each stage of reconfiguration transition, only a new lightpath is established and 

conflicting old lightpaths are removed from logical topology. The procedure 

continues until new logical topology is reached. 

The conflicts among the old and new lightpaths may arise from using same 

transmitters at source node, receivers at destination and wavelengths through the path 

from source to destination nodes. 

4.2.2 Shortest Lightpath First (SPF) 

SPF algorithm in Takagi et al. (2006) works oppositely to LPF in the sense that SPF 

first constructs the shortest lightpath in the new logical topology according to the 

number of hops in the physical topology. This algorithm seems more efficient than 

LPF, since a lightpath with fewer hops in the physical topology may result in the less 

probability of conflict with the lightpaths of the old logical topology. 

4.2.3 Minimal Disrupted Lightpath First (MDPF) 

In contrast to LPF and SPF, MDPF in Takagi et al. (2006) algorithm calculates the 

effect of establishing each new lightpath and attemps to find out the optimal 

establishment sequence for the new lightpaths in order to minimize network 

disruption. An auxiliary graph, which represents the conflict relations between the 

new and old logical topologies, is introduced in implementation of MDPF. At each 

stage of the algorithm, a new lightpath which has minimum number of conflict 

relations with the old lightpaths is established. 

The following notation is used in the MDPF algortihm. 

li  ith new lightpath 

S set of the new lightpaths in conflict relation with the old ones 

l'
i ith old lightpath 

S’ set of the old lightpaths in conflict relation with the new ones 

C(li) cost for setting up a new lightpath 

d(v) degree of vertex v 

N(v) neighborhood of vertex v 
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4.2.3.1 Creation of Auxiliary Graph 

For the representation of conflicting new and old lightpaths, an undirected bipartite 

graph Ga(Va , Ea) where Va and Ea denote the sets of vertices and edges, respectively, 

is introduced. The vertices denote the new and old lightpaths that have conflict 

relations and the edges denote the specific conflict relations between the conflicting 

new and old lightpaths. Conflicts of wavelength, transmitter, and receiver may be 

considered as conflict relationship. 

 

Figure 4.2: Old Lightpaths on the Physical Network 

Figure 4.2 and Figure 4.3 show an example of conflicting new and old lightpaths on 

a physical topology. The conflict relations between the new and old lightpaths due to 

wavelength, transmitter and receiver are indicate by W, T, and R on edges, 

respectively on the auxiliary graph illustrated in Figure 4.4. 

 

Figure 4.3: New Lightpaths on the Physical Network 
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Figure 4.4: Auxiliary Graph for Figure 4.2 and Figure 4.3 

4.2.3.2 Reconfiguration Procedure 

In order to realize MDPF, the auxiliary graph introduced in the previous subsection 

is employed. At each stage of the algorithm, a set up cost is calculated for each new 

lightpath according to its degree in the auxiliary graph. Then, the lightpath with the 

least setup cost is selected and established. After that the auxiliary graph is updated. 

This procedure continues until the set of conflicting lightpaths is empty. Pseudocode 

of MDPF is represented in Figure 4.5. 

4.2.4 Branch Exchange Sequences 

Brach Exchange method proposed in Labourdette et al. (1994) shifts the old logical 

topology to the new one. Authors consider an approach where the network reaches 

some target connectivity graph through a sequence of intermediate graphs such that 

two successive graphs differ by a single branch exchange operation. 

An auxiliary graph model is proposed to determine the minimum optimal number of 

branch exchange sequences for migration from old to new logical topologies. 

Authors stated that the size of decomposition of the auxiliary graph into vertex 

disjoint cycles equal the size of a sequence of BE operations that reconfigure 

network from an initial virtual topology to a target one. 
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Figure 4.5: Pseudocode of MDPF 

Algorithm 0, which is a greedy algorithm and removes a cycle at each iteration, is 

implemented in this study. This is done by picking any vertex in the first stage of the 

auxiliary graph, and searching for a vertex disjoint shortest cycle uniquely from that 

vertex. The length of a cycle is assumed as the number of arcs it has. 

4.2.4.1 Matrix Formulation and Construction of Auxiliary Graph 

The topology of an N-node network can be represented as NxN matrix, M, where Mij 

is the number of directed arcs from node i to node j, a non-negative integer. 

Let M1 be the matrix representing the network before reconfiguration, and let M2 

represent the target network. Example initial and target virtual topologies and related 

matrices are given in Figure 4.6 and Figure 4.7 respectively. 
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Figure 4.6: Initial Virtual Topology and Related Matrix 

 

Figure 4.7: Target Virtual Topology and Related Matrix 

A difference matrix D = M2 – M1, is defined such that emphasizing the links which 

must be inserted or removed to effect the reconfiguration. Links to be inserted and 

deleted are represented as positive and negative entries in D respectively. An 

example of difference matrix calculated from the connectivity matrices in Figure 4.6 

and Figure 4.7 is given in Figure 4.8. 

Given D, create node labeled +1 or -1 for each entry of value +1 or -1. For entries in 

D of value +k create k nodes each labeled with +1, and for entries –k, create k nodes 

each labeled with -1. Position all such nodes in the plane as the entries are positioned 

in D, and associate with each node the corresponding ij indices of D. Connect -1 

nodes to +1 in the same row, and connect +1 nodes to -1 nodes in the same column. 
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In Figure 4.9, an auxiliary graph derived from difference matrix in Figure 4.8 is 

given. 

 

Figure 4.8: Difference Matrix Derived from Figure 4.6 and Figure 4.7 

 

 

Figure 4.9: Auxiliary Graph Derived from Difference Matrix in Figure 4.8 
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5 SIMULATION EXPERIMENTS 

In this chapter, simulation results for various metrics from implemented 

reconfiguration algorithms given in previous section are presented. First, physical 

topology and its constraints used in the simulations are detailed. Then, traffic 

generation pattern and IP packet structure described. After that, simulation metrics 

used in simulation experiments are explained. Then, performed simulation 

experiments are given and finally chapter concludes with the results obtained from 

these simulation experiments. 

5.1 Physical Topologies Used in Simulations 

Physical topology with 10 nodes and 21 edges presented in Figure 5.1 and NSFNET-

like network with 16 nodes and 25 edges shown in Figure 5.2 are used during 

simulation experiments. 

 

Figure 5.1: Physical Topology Used in Simulations 
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Figure 5.2: NSFNET Topology Used in Simulations 

Each node is equipped with optical switches and each edge supports multiple 

wavelengths to enable optical communication. Furthermore, each node also assumed 

to have packet routers to support network layer communication, i.e. IP packet 

communication. The nodes of the network are assumed to be incapable of 

wavelength conversion. It is also assumed that each node in the network has same 

number of transceivers varying between 2 and 8. Each optical fiber is divided up to 8 

wavelengths channel. 

Virtual topology generated from Figure 5.1 and Figure 5.2 also has some restrictions 

that need to be clarified. At the time when the virtual topology is constructed, nodes 

of the virtual topology have no information about each others. Each node is capable 

of sending discovery packets to its neighbors to learn about them. Each discovery 

packet received by the neighbor node is sent back to the sender node. Sender node 

calculates the RTT time and accepts the half of this duration as the mean delay to its 

neighbor. This procedure is called as Neighborhood Discovery. After completion of 

Neighborhood Discovery, each node creates link state packets which contains 

information (neighbor identifier and delay) about its neighbors and broadcasts them 

to network. Each node receiving a link state packet broadcasts it also, therefore all 

nodes in the network learns every others’ neighborhood information. After that, by 

each node a shortest path algorithm is employed to calculate the shortest path to 
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every other node in the network and results are stored in routing tables. The whole 

procedure repeated for certain periods to inform nodes about dynamically changing 

network connectivity. 

5.2 Traffic Generation Pattern and IP Packet Structure 

This section explains generation of IP packet traffic with a given data rate and gives 

information about the structure of the generated IP packets used in the simulations. 

5.2.1 Traffic Generation Pattern 

Traffic matrices are randomly generated according to the method presented in 

Banerjee & Mukherjee (2000). In this model, a certain fraction F of the traffic is 

uniformly distributed over [0, C/a] while the remaining traffic is uniformly 

distributed over [0, CY/a]. C, a and Y denote lightpath channel capacity, an arbitrary 

integer greater or equal to 1, and the average ration of traffic intensities between 

node pairs with high traffic values and node pairs with low traffic values 

respectively. 

5.2.2 Generated IP Packets 

Packet arrivals are modeled by using Poisson process. Mean packet size for Poisson 

process is selected as 1000 bytes. Maximum packet size is selected as 1500 bytes 

while 14 bytes of it constitute header information. Packet header has various fields 

that contain important information about the security and integrity of whole packet. 

Destination, source addresses, TTL (Time To Live), Protocol Identifier, Packet 

length, Sequence Number are the subfields of the packet header. Packet header fields 

and their size in packet header are shown in Figure 5.3. 

 

Figure 5.3: Packet Header 

Brief description of the packet header fields are presented in the following 

Destination: Destination node address to which this packet will be sent 
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Source: Source packet from which this packet originated 

TTL: This field is set by the sender of the packet, and reduced by every host on the 

route to its destination to avoid a situation in which an undeliverable packet keeps 

circulating on network 

Protocol: Identifies the type of this packet. A packet may be Discovery, Link State 

or Transport Packet 

Packet Length: The total length of this packet. 

Sequence Number: This field is set by source router and incremented for each 

packet produced. Sequence number enables other routers keep track of all the (source 

router, sequence) pairs they received to avoid duplicate transmission of packets. 

Also, each packet has a payload subfield which contains actual data to be transmitted 

through the network 

There are three important packet types used in the simulations. 

Discovery packet: This type of packet is used by a node in order to learn about its 

neighbors. In addition to its header, it contains “Discovery” string as payload to point 

out that it is a discovery packet. When discovery packet is received by a neighbor 

node, it is immediately sent back to the source node from which that packet is 

originated. Discovery packets are generated periodically for acquisition of 

neighborhood information. 

Link State Packet: This packet contains all neighborhood information of a node. 

Each node in network generates these types of packets and broadcast them. Like 

Discovery packets this type of packets are also created periodically in this simulation 

study. 

Transport Packet: Discovery and Link State packets are control packets that 

provide stable operation of the network. Transport packets contain actual data that 

need to be transmitted in their payload field. In this study, payload field of a 

Transport packet can carry between 64 and 1486 bytes of data. 
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5.3 Numerical Results 

Packet loss and delay are used as the main simulation metrics in simulations. Packet 

loss is calculated as the ratio of dropped total packets and generated total packets. 

Discovery and Link State packets are not considered in calculation of packet loss 

parameter.  

Packet delay is calculated as the average duration of transmission of a single bit in 

seconds/Gbit. A packet has to reach its destination node successfully in order to be 

included in evaluation of packet delay parameter. Each packet’s transmission time is 

divided by packet’s size and summed up; obtained total sum is divided to total 

number of the successfully transmitted packets. Resulting value is denominated as 

packet delay. 

First, the situation in which the traffic changes but the initial virtual topology 

remains the same was observed. This situation was called as “no reconfiguration” 

scenario and packet delay was used as the main performance comparison criteria in 

this scenario. Second scenario was named as “reconfiguration” that packet losses 

were inspected during reconfiguration time before the neighborhood discovery and 

routing table stabilization occurs. These experiments described above were applied to 

both of physical topologies described in section 5.1 under various different traffic 

conditions. Different traffic matrices with the same amount of total traffic were 

derived by interchanging the whole matrix elements randomly. The results presented 

in this chapter are the average values obtained from 10 simulation runs. 

An initial traffic matrix with 0.37 Gbps total traffic was applied to 10 node topology 

given in Figure 5.1 for examination of no reconfiguration scenario. Traffic matrix 

which is called “initial traffic matrix” was generated according to the method given 

in section 5.2.1 with parameters selected as C = 10 Gbps, Y = 5, F = 0.8 and a = 

1920. Traffic matrix derived by interchanging elements of initial traffic matrix was 

named as “second traffic matrix”. According to the scenario, a new virtual topology 

is established according to the initial traffic matrix. After 5 seconds, packet traffic 

was produced for 100 milliseconds with respect to the first/second traffic matrix. 
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Then, simulation was terminated at time 6 seconds. Table 5.1 shows packet delays in 

seconds/Gbit versus number of transceivers in the case of no reconfiguration.  

Table 5.1: Packet Delays for 0.37 Gbps Total Traffic (No Reconfiguration) 

Number of Transceivers seconds/Gbit 

x 10-3 2 4 6 8 

Initial Traffic Matrix 145 96 71 57 

Second Traffic Matrix 168 118 83 64 

Each optical fiber is assumed to have 8 wavelength channels. The row tagged with 

“Second Traffic Matrix” shows increased packet delays due to avoidance of 

reconfiguration. There is an increase in packet delay for all number of transceivers 

which leads to degradation in performance and makes reconfiguration inevitable. 

One additional note on Table 5.1 is that with increase of transceivers the amounts of 

delays reduce since more lightpaths can be established with larger number of 

transceivers. An increase in the number of lightpaths leads to a decrease in delay 

values since the total bandwidth of network increases. 

To observe what happens during reconfiguration and compare performance of 

various reconfiguration algorithms following scenario was simulated. A new virtual 

topology is established according to the initial traffic matrix in Table 5.1. After 5 

seconds, packet traffic was produced for 100 milliseconds with respect to the second 

traffic matrix in Table 5.1 and virtual topology reconfiguration according to second 

traffic matrix is launched at the same time. After 1 second, simulation was 

terminated at time 6 seconds. In this simulation it is assumed that 8 wavelengths are 

available and neighborhood discovery and reconfiguration transition periods are 

selected as 1 second and 1 millisecond respectively. Packet loss during 

reconfiguration transition was calculated for various reconfiguration algorithms and 

results were shown in Table 5.2. Instant reconfiguration means all reconfiguration 

transition takes place instantly in a single step. The packet loss in Table 5.2 occurs 

due to inconsistency between the new virtual topology and routing tables at the 

nodes, since routing tables are still not updated when reconfiguration occurs. 
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Table 5.2: Packet Loss During Reconfiguration for 0.37 Gbps Total Traffic 

Number of Transceivers 
Packet Loss (%) 

2 4 6 

Instant Reconfiguration 62,98 31,28 6,55 

LPF 61,98 36,04 15,30 

SPF 60,31 30,59 14,46 

MDPF 58,34 26,62 11,85 

Branch Exchange 61,58 30,43 6,03 

Reconfiguration algorithms are especially successful at lower number of system 

resources due to limited number of established lightpaths. MDPF has the lowest 

packet loss with 2 and 4 transceivers. Simple heuristics of SPF and LPF has close 

packet loss values and their performance is lower than MDPF. LPF and SPF have 

shown an unstable performance during simulations. In this case, SPF is 

inconsiderably better than LPF in all cases since it selects shorter new lightpaths that 

have lower probability to have conflict relation with old lightpaths and LPF has the 

worst performance for all number of transceivers. But, in some simulations which 

will be given further in this study, performance of SPF and LPF varies. Branch 

Exchange algorithm has similar results with SPF and LPF at lower resource 

utilizations. Its performance increases with the increase of transceivers in the system 

and becomes closer to instant reconfiguration at higher number of transceivers. For 

all algorithms, packet loss tends to decrease with an increase in the number of 

transceivers since more lightpaths can be established with increasing number of 

transceivers. 

Another initial traffic matrix with denser total traffic of 1,39Gbps was applied to 10 

node physical topology given in Figure 5.1. The traffic generation parameters 

selected as C = 10 Gbps, Y = 5, F = 0.8 and a = 480 which leads to four times denser 

traffic than the previous simulation experiment. Packet delays for various numbers of 
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transceivers are shown in Table 5.3. Each fiber is assumed to have 8 wavelength 

channels. 

Table 5.3: Packet Delays for 1.39 Gbps Total Traffic (No Reconfiguration) 

Number of Transceivers seconds/Gbit 

x 10-3 2 4 6 8 

Initial Traffic Matrix 169 102 77 58 

Second Traffic Matrix 220 136 87 69 

Table 5.3 has higher delay values compared with Table 5.1, since the total amount of 

traffic applied to physical topology increased. Packet losses of reconfiguration 

scenario for the same traffic matrices used in Table 5.3 is presented in Table 5.4. In 

Table 5.4, it is assumed that 8 wavelengths are available, neighborhood discovery 

and reconfiguration transition periods are selected as 1 second and 1 millisecond 

respectively. 

Table 5.4: Packet Loss During Reconfiguration for 1.39 Gbps Total Traffic 

Number of Transceivers 
Packet Loss (%) 

2 4 6 

Instant Reconfiguration 79,88 31,58 5,28 

LPF 79,04 38,82 16,77 

SPF 77,56 35,28 14,64 

MDPF 74,06 24,45 10,05 

Branch Exchange 77,69 30,18 5,39 

NSFNET topology represented in Figure 5.2 was also used in delay and packet loss 

simulations. Results for two different pairs of traffic matrices for NSFNET topology 

will be given in this chapter. Number of wavelengths was selected as 8, 

reconfiguration transition period as 1 millisecond, and neighborhood discovery as 1 
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second. Table 5.5 and Table 5.6 represents packet delay and packet loss 

measurements respectively with traffic generation parameters selected as C = 10 

Gbps, Y = 5, F = 0.8 and a = 1920. 

Table 5.5: Packet Delays in NSFNET for 0.997 Gbps Total Traffic (No Reconfiguration) 

Number of Transceivers seconds/Gbit 

x 10-3 2 4 6 8 

Initial Traffic Matrix 175 122 108 100 

Second Traffic Matrix 212 156 138 133 

As it can be seen in Table 5.6, Branch Exchange algorithm has no results for 4 and 6 

transceivers. BE algorithm assumes that the transceivers of nodes must be fully 

utilized. Thus, BE can not be operable in situations that violate this condition. But 

virtual topology design algorithm used in this study does not guarantee full 

utilization of network resources for all number of resources. In Table 5.6, full 

utilization of transceivers was achieved for 2 transceivers. On the other hand, 

utilization of all transceivers was not achieved for larger number of transceivers such 

as 4 and 6. Therefore, no results are obtained for 4 and 6 transceivers. 

Table 5.6: Packet Loss in NSFNET During Reconfiguration for 0.997 Gbps Total Traffic 

Number of Transceivers 
Packet Loss (%) 

2 4 6 

Instant Reconfiguration 88,18 62,44 40,83 

LPF 84,40 65,43 52,08 

SPF 85,21 58,48 49,97 

MDPF 80,58 54,58 37,45 

Branch Exchange 84,71 - - 
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A more intensive traffic with parameters of C = 10 Gbps, Y = 5, F = 0.8 and a = 960 

was also applied to NSFNET topology. Table 5.7 and Table 5.8 show the results of 

packet delays and packet losses in “no reconfiguration” and “reconfiguration” 

scenarios respectively. Table 5.7 has higher packet delays for same number of 

transceivers  compared to delays in Table 5.5, since it was exposed to a nearly two 

times larger amount of traffic than the traffic in Table 5.5. 

Table 5.7: Packet Delays in NSFNET for 2.16 Gbps Total Traffic (No Reconfiguration) 

Number of Transceivers seconds/Gbit 

x 10-3 2 4 6 8 

Initial Traffic Matrix 204 125 111 103 

Second Traffic Matrix 240 158 133 131 

Observations derived from Table 5.1 and Table 5.2 are also valid for Table 5.7 and 

Table 5.8. Additionally, BE algorithm has lower practicability according to the other 

algorithms implemented in this study since it needs full utilization of transceivers for 

its applicability. 

Table 5.8: Packet Loss in NSFNET During Reconfiguration for 2.16 Gbps Total Traffic 

Number of Transceivers 
Packet Loss (%) 

2 4 6 

Instant Reconfiguration 84,39 61,08 34,66 

LPF 80,76 62,73 46,81 

SPF 79,85 58,08 41,85 

MDPF 78,03 52,82 32,40 

Branch Exchange 81,01 - - 

Reconfiguration techniques investigated in this study can be analyzed according to 

the number of reconfiguration steps that they require. Instant reconfiguration 
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performs whole reconfiguration transition in one single step. Each of LPF, SPF and 

MDPF algorithms establishes a new lightpath at each reconfiguration stage while BE 

algorithm can establish multiple lighpaths in a single reconfiguration transition 

period. Thus, BE algorithm can terminate quickly than LPF, SPF and MDPF 

algorithms. 
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6 CONCLUSION 

Reconfigurability of optical WDM networks provides them an adaptable 

infrastructure for dynamically varying traffic characteristics of today’s bandwidth 

hungry communications applications. Although optical networks seem to be the most 

powerful candidates to meet today’s bandwidth requirements, there still exists 

absence of intelligent and efficient mechanisms for integration of optical WDM 

networks with upper layers. IP-WDM integration and management of IP traffic over 

optical networks appears to be an important problem that needs to be solved. 

The effects of virtual topology reconfiguration on Internet Protocol (IP) packet traffic 

in IP over WDM networks were studied in this thesis in order to understand the 

relations and problems between IP and WDM layers. For this purpose, an IP 

simulator which is unaware of lower level communication infrastructure was 

implemented based on Fishnet project. Fishnet project was customized to simulate 

the functionalities of a network layer protocol that supports creation and transmission 

of communication packets with respect to a given traffic pattern over an underlying 

optical WDM network. It is possible to have packet delay/loss during reconfiguration 

process in an optical network, since old lightpaths are destroyed and new lightpath 

are established in virtual topology reconfiguration. There are lots of algorithms 

proposed for reconfiguration of optical network in the literature that each of them 

considers different performance metrics. An extensive literature survey was 

performed and various reconfiguration algorithms such as SPF, LPF, MDPF, and BE 

were implemented and their performance comparisons were evaluated by means of 

packet delays/losses on developed framework. Among the studied algorithms, MDPF 

seems to have the best packet loss performance. On the other hand BE algorithm 

needs least number of reconfiguration transition steps, but is not always applicable 

due to its dependency on fully utilization of transceivers. LPF and SPF are simple 

heuristics an included in this study just for comparison of performance with other 

algorithms. 
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Various reconfiguration algorithms implemented in this thesis will inform us about 

the effect of reconfiguration at user viewpoint such as packet delays/losses. One 

additional aim of this thesis is to be able to compare and discuss the performance of 

various virtual topology reconfiguration algorithms on the implemented IP 

framework. This thesis can be extended to derive more performance metrics for 

observation of network performance and development of automated mechanisms for 

intelligent management of optical WDM networks by using implemented two 

layered simulation framework. 
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