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MÜZİĞİN VE KULLANICILARIN FARKLI NİTELİKLERİNE GÖRE MELEZ  

MÜZİK TAVSİYE SİSTEMİ 

ÖZET 

Günümüzde müzik insanların hayatının önemli bir parçası haline gelmiştir. Müzik 
çalarlar giderek yaygınlaşmaktadır ve müzik tabanlı uygulamalar içeren birçok cihaz 
vardır. Cep telefonu bu cihazlardan birisidir. Arayan kişiye ulaşılıncaya kadar zil sesi 
dinlemek yerine seçilmiş bir şarkıyı dinlemek, çağrı anında telefonun zil sesi yerine 
müzik parçaları ile çalması, her geçen gün daha fazla kişi tarafından tercih edilen 
uygulamalardan sadece ikisidir. Müziğin bu kadar yaygın olduğu bir ortamda müzik 
tercihleri de önem kazanmaktadır. Günümüzde müzik tavsiye sistemleri kişilerin geçmiş 
tercihlerine bakarak ve onlara ait başka bilgileri kullanarak müzik tavsiyesinde 
bulunabilecek metodlar üzerinde çalışmaktadırlar. Gerek ticari, gerek akademik anlamda 
kullanılan birçok müzik tavsiye sistemine İnternet üzerinden de ulaşılabilmektedir.  

 

Bu tezde, Zil-Dönüş-Tonu Sistemi ile ya da kişilerin bir miktar şarkı içinden çeşitli 
şarkılar seçtikleri herhangi bir system ile birlikte çalışabilecek bir müzik tavsiye sistemi 
üzerinde çalıştık. Bu sistem müzik parçalarını tempo, tını gibi temel özelliklerle temsil 
eder ve onları bu gösterimdeki uzaklık metriğine gore gruplar. Bir kullanıcıya geçmişte 
dinlediği şarkılara bakarak bundan sonra dinlemek isteyebileceği şarkıları tavsiye 
etmeye çalışır. Bunu yaparken, benzer zaman dilimleri içerisinde başka insanların 
dinledikleri şarkıları dikkate alır. Müzik parçaları arasındaki benzerliğe de parçaların 
benzerliği ve onların yorumcularının benzerliğine göre karar verir. Bunları dikkate 
alarak kullanıcıları  geçmişteki seçimlerinin benzerliğine göre gruplar. Son olarak bu 
şarkı ve kullanıcı demetlerini kullanarak kişiye seçmesi muhtemel olan müzik 
parçalarını tavsiye etmeye çalışır. Bu çalışmada müzik parçalarını tavsiye etmek için 6 
adet değişik metod kullanılmıştır.   

 

a) İlk önce, kullanıcıların dinledikleri müzik parçaları arasındaki uzaklıklar hesaplanır. 
Sonra dinlenilen müzik parçalarına en küçük ortalam uzaklıkta olan müzik parçaları 
tavsiye edilir. (Euclid/Cosine Distance Based Music recommendation) 

b) Bir kullanıcının dinlediği müzik parçalarının özellikleri, entropi ve popülarite 
kullanılarak müzik parçaları tavsiye edilir. (Content Based Recommendation Using 
Entropy and Popularity Metrics) 

c) Sistemdeki bütün müzik parçaları yakın zaman diliminde dinlenilenler ve uzak zaman 
diliminde dinlenilenler diye 2 önemli gruba ayrılırlar ve bu gruplardan belli sayılarda 
şarkı seçilerek müzik parçaları tavsiye edilir. (STA) 



 ix

d) Sistemdeki bütün müzik parçaları değişik niteliklerine (tını, tempo, perdesel 
özellikler) göre demetlenir. Her kullanıcının değişik niteliklere verdiği önem, 
kullanıcının daha önceden dinlediği parçalara göre belirlenir ve her niteliğe ait öbekten 
farklı sayıda müzik parçası tavsiye eden bir yöntem uygulanır. (Simple Adaptive Method, 
Adaptive Recommendation Method) 

e) Kullanıcılar benzer tercihlerde bulunan diğer kullanıcılarla demetlenir ve bu duruma 
göre popülarite, entropi gibi metrikler de kullanılarak müzik parçası tavsiye edilir.  
(Learning Approach on an Adaptive Music Recommendation System with Popularity 
Data and Using User Grouping) 

Bütün bu yöntemleri destekleyerek çalışan müzik tavsiye sistemine bir kullanıcı arayüzü 
de yazılmıştır. Bu çalışmanın testlerinde bir cep telefonu operatörü için çeşitli müzik 
içerikli uygulamalar üreten bir firmanın veri kümesi kullanılmıştır. Aynı veri kümesi 
üzerinde geliştirilen farklı algoritmalar denenmiş ve performansları kıyaslanmıştır. 
Yapılan test sonuçlarına göre, sadece müzik parçalarının benzerliğinin  kullanılması 
ile %2-5 oranında başarılı öneriler yapılabiliyor iken,  kullanıcının önem verdiği müzik 
özellikleri değerlendirilerek %5-%10, popülarite ve benzer müzik zevki olan 
kullanıcıların hesaba katılması ile %75 başarı oranı ile öneride bulunma imkanı vardır. 
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A HYBRID MUSIC RECOMMENDATION SYSTEM BASED ON DIFFERENT 
FEATURES OF THE MUSIC AND USERS 

SUMMARY 

Today, music has become an important part of the people’s lives. Music players are 
widely used and there are many tools with music content integrated in some of their 
applications. Cellular phone is one such tool. When calling someone, hearing the 
Colored-Ring–Back–Tone which is a selected song, instead of the Ring-Back-Tone or 
hearing a song when the phone rings instead of the classical ring tone are just two of the 
applications which are chosen by more and more people. When music is widely used, 
music choices become quite important. Music recommendation systems study methods 
of recommending music to users based on their past music selections and other 
information about the users. There is academic and commercial music recommendation 
system available on the internet. 

In this thesis, we study a music recommendation system that can be used within the 
Ring-Back-Tone system or any system where a user chooses some songs among a 
number of choices.  Our system represents musical pieces with basic audio features such 
as beat and timbre and groups them according to a distance metric in this representation. 
By observing the past choices of a user, it tries to recommend songs that could be chosen 
by that user. While doing this, it takes into account the songs listened by other users in 
similar time periods. It uses the similarity among music pieces and their singers to 
decide on the similarity between music pieces. By using these similarities, it produces 
groups (clusters) of people who made similar choices in the past.  Finally, by using song 
and user clusters, it tries to recommend audio files that are likely to be selected by a user.  

We study 6 different methods to recommend music pieces: 

a) First, distances between music pieces listened by users are calculated. Then the music 
pieces whose average distance to the songs already listened by the user are 
recommended. (Euclid/Cosine Distance Based Music recommendation) 

b) Musical pieces are recommended by using the features of the music pieces listened by 
the users, entropy and popularity. (Content Based Recommendation Using Entropy and 
Popularity Metrics) 

c) All the music pieces in the system are divided into two important groups; the ones are 
listened in the short period and the ones listened in the long term period. Musical pieces 
are recommended by selecting a specified number of music pieces from these two 
groups. (STA) 

d) All the music pieces in the system are clustered based on different features (timbre, 
beat, and pitch). The importance of the features is specified based on the musical pieces 



 xi

listened by the users in the past, and different number of music pieces from each cluster 
of each feature are recommended. (Simple Adaptive Method, Adaptive 
Recommendation Method) 

e) Users are clustered with the other users who have similar preferences and musical 
pieces are recommended via using some metrics such as popularity, entropy. (Learning 
Approach on an Adaptive Music recommendation System with Popularity Data and 
Using User Grouping) 

A graphical user interface is created for the music recommendation system which 
supports all the above mentioned methods. In this study, a user session dataset provided 
by a company that produces musical content applications for a cellular phone company 
is used. Different algorithms are used with this dataset, and their performances are 
compared. According to test results; while using only the similarity of music pieces  it is 
possible to recommend with %2-5 success rate, by using the features important to a 
particular user, it is possible to recommend with %5-10 success rate. By using popularity 
and user clustering the recommendation success ratio increases to %75. 
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1 INTRODUCTION 

Widespread use of mp3 players, cell-phones and availability of music on these devices 

according to user demands increased the need for more accurate music information 

retrieval (MIR) systems. Music recommendation is one of the subtasks of MIR systems 

and it involves finding music that suits a personal taste [1]. Audioscrobbler1, iRate2, 

MusicStrands3, and inDiscover4 are some of the music recommendation systems today 

[2]. Usually music recommendation systems follow a collaborative filtering or a content-

based (CB) approach. Collaborative filtering (CF) is the approach used in Amazon [3], a 

new item is rated by some users and the item is recommended to other users based on the 

rating of the previous users [4, 5]. The disadvantages of the collaborative approach is 

that when a new item arrives, it has to be rated by someone in order to be used for the 

other users; recommendations tend to be usually by the same artist and may not be so 

interesting. In the content-based approach, based on some form of distance between the 

items already rated by the user and a new item, the item is recommended or not [2, 6, 7, 

8]. In order to compute similarities between music pieces different approaches have been 

suggested. In this work, we use extraction of musical features. We are only aware of two 

studies [9, 10] that combine collaborative and content based methods for music 

recommendation.  In [9] a Bayesian network is used to include both rating and content 

data for the recommendation and the hybrid approach is shown to produce better 

recommendations than using collaborative or content-based approach alone.  [10] Also 

use a hybrid approach, where they evaluate CB, CF and STA (Statistical) methods and 

their combinations. Since we will compare our work to that of [10], we give more details 

                                                 
1 www.audioscrobbler.com 
2 irate.sourceforge.net 
3 www.musicstrands.com 
4 www.indiscover.net 
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about their work here. In CB approach, first all the songs are clustered, then each cluster 

is given a weight based on whether a song the user listened before is in the cluster or not. 

The number of songs recommended from each cluster is chosen proportional to the 

weight of the cluster. The disadvantage of the CB based approach is the fact that the user 

is recommended songs only from the clusters s/he has listened to before. In CF approach, 

not only the clusters which have contributed to the songs the user listened to, but also 

clusters that contributed to other users are taken into account. Of course there could be 

clusters which contain songs not listened enough by anybody and those will be ignored. 

In STA approach, all the songs are divided into two groups, short term and long term. A 

certain number of songs are selected from the long term list and the remaining ones are 

selected from the short term list. STA behaves similar to the popularity in 

recommendation systems. Since [10] found out that CB was the least successful among 

the methods he experimented with, we concentrated on CF and STA. We implemented 

the CF approach as described in   [10] and for STA, we used the time frame immediately 

1, 3, 7, 15, 30 days before the time of the recommendation. We think this makes STA 

take better advantage of popular songs around the time of the recommendation. 

Although [10] recommends using 50% from among the popular songs and 50% from 

among the others, we also experimented with different ratios.  

The rest of the thesis is organized as follows. In section 2, we review basic musical 

terms and existing commercial and non-commercial music recommendation systems and 

the algorithms and metrics that they use. Ringo, inDisvover.net, CDNow.com are some 

of these systems. In this section, major algorithms are also mentioned in detail such as 

content based approach, statistical approach and hybrid method. In Section 3, we 

introduce the dataset we used and the features we extracted from songs. We also give 

information on some clustering methods which are used for clustering of both songs and 

users. In Section 4, we introduce the metrics used in the recommendation systems that 

we consider in this thesis:  Singer similarity, cluster similarity, popularity factor, entropy 

and user grouping. Also in this section, we introduce the recommendation methods we 

use: Euclid/Cosine Distance Based Recommendation, Content Based Recommendation 

Using Entropy and Popularity Metrics, Statistical Approach, Simple Adaptive Method, 

Adaptive Method, Learning Approach on an Adaptive Music recommendation System 
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with popularity data using user grouping. Related test results are included in Section 4. 

In Section 5 the implementation environment and the graphical user interface of the 

music recommendation system is explained. In section 6, conclusion of all these studies 

and also the future work are included. 
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2. LITERATURE SURVEY 

This section contains basic musical terms, the detailed survey of both commercial and 

non-commercial music recommendation systems and related algorithms. 

2.1 Musical Terms 

Rhythm, melody, harmony, timbre, instruments, dynamics, tempo and meter, which are 

often called the basic elements of music, are the essential aspects of a musical piece. 

While music theory describes various pieces of music in terms of their similarities and 

differences in these musical terms, music is also usually grouped into genres based on 

similarities in all or most elements [20]. The musical term definitions here are mostly 

gathered from [20], [21], [22], and [23].  

Rhythm: The placement of the sounds in time is the rhythm of a music piece. Most 

rhythm terms concern more familiar types of music with a steady beat.  

Melody:  Melody of a music piece is the string of notes that sounds most important.  

Harmony: Harmony refers to the procedure by which chords of music are constructed 

and the system by which one chord follows another chord in time. A chord may be 

defined as a combination of three or more different tones conceived as a related unit and 

sounding at the same moment in time.  

Timbre: is a common synonym for tone Color which should be defined as “the 

characteristics of an instrument's sound, or a combination of instrumental sounds”". 

Instruments: The musical instrument used could give an idea on the genre of the music, 

for example, piano or violin is often used in classical music. 

Dynamics: The term for gradations of amplitude (louds and softs) in music is dynamics.  

Dynamic levels are a natural indicator for emotional mood.  

Meter: Meter is counted with Arabic numbers. Count one is known as the downbeat. 

Two patterns of two-beat meter (duple meter) are counted 1-2 | 1-2 (the "|" mark 

separates one group of two and the "_" mark represents an accent of loudness or length). 

Three patterns of three-beat meter (triple meter) are counted 1-2-3 | 1-2-3 | 1-2-3 | 1-2-3. 
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Four patterns of four-beat meter (quadruple meter) are counted 1-2-3 4 | 1-2-3-4 | 1-2-3-

4 | 1-2-3-4. Five patterns of five-beat meter (quintuple meter) are counted 1-2-3-4-5 | 1-

2-3-4-5 | 1-2-3-4-5 | 1-2-3-4-5 | 1-2-3-4-5. Patterns may be created in this manner with 

any number of numbers limited only by practical considerations.  

Tempo: Tempo (an Italian word) identifies the rate of speed of the beat of music and is 

measured by the number of beats per minute. There is a machine known by the term 

metronome which emits a steady short "click" or flash that may be adjusted to various 

rates of speed (tempi), thereby indicating at what speed (how fast or slow) a composition 

should proceed.  A beat may be slow or fast. "Romantic" songs tend to have a medium 

tempo, while dance music may range from slow to fast tempo. March music reflects a 

comfortable marching pace -- about 120 beats per minute. Faster tempi (plural of tempo) 

are more energizing while slower tempi are more soothing.  

2.2 Music recommendation Systems 

2.2.1 Ringo 

The following information and sample screen views about Ringo are mostly gathered 

from [13]. 

Ringo uses Social Information Filtering to recommend files to people. It is different 

from content based filtering from aspect of needing to have users to rate music files on 

which they will be recommended in the future. 

After having an account in Ringo (one can join by e-mailing Ringo@media.mit.edu),the 

system requires the person to fill up a music list by rating each song. After rating these 

items Ringo gets to know about the person. The more rating is done, the better the 

system knows and makes better recommendations to this person. Any person can add 

albums to the Ringo database.  

This system is created by Upendra Shardanand and his team at MIT. Originally, RİNGO 

had only 575 artists in its database. Then it increased to more than 3000 artists and 9000 

albums. 

Some sample views from Ringo are as follows: 



 6

 
  Figure 2.1: A Page From Ringo`s World Wide Web Interface [13] 
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   Figure 2.2: Part of One Person’s Survey [13] 

 

 

 

   Figure 2.3: Ringo`s Scale For Rating Music [13] 
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   Figure 2.4: One of Ringo’s Suggestions [13] 
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2.2.2 CDNOW.com 

The following information and sample screen views of CDNow.com system are mostly 

gathered from [14]. 

CDNOW.com is one of the music recommendation systems created by Amazon and it 

gives recommendations based on users’ previous ratings. 

When a new user, becomes a member of this site, the system requires that s/he rates 

some songs. With these ratings, the system stores every shopping record in its database. 

The system also has shopping records of other people. Using all of these data, the system 

gives some recommendations from the ‘new release’ or the ‘coming soon’ or the current 

files. If the user wants, s/he has the opportunity to improve his/her recommendations by 

rating more and more items. 
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Some sample screen views from this system are as follows: 

 
  Figure 2.5: A Rating Page from CDNow.com [14] 

 

The rating categories are as follows: 

• Not rated 

• I hate it 

• I do not like it 

• It is OK 

• I like it 

• I love it 

After these ratings the user can get his/her recommendations. Again and again s/he has the 

opportunity to improve his/her recommendations. 
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2.2.3 InDiscover 

 The following information and sample screen views about inDiscover system are mostly 

taken from [15]. 

InDiscover aims to provide high quality context-sensitive sets of recommendations based on 

explicit rating-based Collaborative filtering. InDiscover is database-driven and leverages 

techniques from multidimensional databases (OLAP). 

InDiscover uses Collaborative filtering techniques and a rule engine to generate a list of 

recommended songs in the form of a play list. By taking into account the way a user has 

rated other songs, and how others have rated songs, inDiscover is able to predict how much 

the user would like songs the user has not rated. By applying rules to these predictions, the 

system outputs a list of recommendations that it thinks the user will like.  

The following scenario is described for the new user: 

• Once s/he registers, s/he will be able have songs recommended to her/him based on 

her/his mood, location, and basic tastes in music.  

• By rating songs in the multiple categories, the system will be able to determine what 

user likes and recommend him/her songs and compose them into a play list which the 

user can download.  

• The more songs the user rates, the better the system will be able to determine his/her 

tastes and recommendations will become more accurate.  

Some sample screen views are as follows: 

 
  Figure 2.6: A Rating Page from inDiscover’s system [15] 
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  Figure 2.7: Some Sample Recommendations from the System [15] 

2.3   Algorithms Used For Recommendation Systems 

2.3.1 Content Based Method 

Based on content based filtering approach, the purpose of the CB method is to 

recommend the music objects that belong to the music groups the user is recently 

interested in. Here, the music group candidates for future recommendation are based 

only on the history of that user. The CB method is applied in [10] as follows: The whole 

history is kept in a database. This information consists of which user chooses which 

audio file and when. In order to decide on recommendations for the user, that user’s past 

audio groups are extracted. For instance: 

Audio file -1: music group -2, 

Audio file -2: music group -5 

… 

In order to compute the weight of a music group, the number of audio files listened in 

that group divided by the total number of audio files is used.   The following formula 

(2.1) taken from [10] which calculates weight values of music groups: 
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where TWj is the weight of transaction Tj 
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Just multiplying the calculated GWi value by the number audio files to be recommended, 
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where N is the number of music objects in the recommendation list  

          GWi is the weight of the target group 

          M is the total number of music groups in MRS 

The recommendation system [16] also uses Content Based method, but only partially. 

 

2.3.2 Collaborative Filtering 

 (CF) is the method of making predictions about the interests of a user. While doing this 

it uses two kind of information: 

a) The information about that user, 
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b) The information about the other users. 

CF method claims that users who have similar past choices will probably have similar 

future choices,too. For this reason,the systems with CF method stores both two above 

mentioned information. By using them, it tries to build an artificial logic in order to 

decide the future behavior of a user who will have predictions about his/her choices.. 

To get information about people on their tastes can be done in many ways:The easist one 

is just to trace the people and store their choices. Another way can be just send them a 

simple rating list and ask them to rate those items. By looking at those ratings , an 

artificial logic behind the system can produce some predictions about the future 

behaviour. 

 

There are commercial sites that implement collaborative filtering systems. For example: 

• Amazon [3] 

• Barnes and Noble 1 

• Findory.com 2  

• half.ebay.com  3 

• Hollywood Video 4 

• Last.fm – music 5 

• Loomia - web service 6 

• Musicmatch 7 

                                                 
1 http://www.barnesandnoble.com/ 
2 http://findory.com/ 
3 http://www.half.ebay.com/ 
4 www.hollywoodvideo.com 
5 http://www.last.fm/ 
6 http://loomia.com/ 
7 http://www.musicmatch.com/ 
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• Netflix 1 

• StoryCode - books 2 

2.3.3 STA 

STA is one of the methods used in [10]. In [10] two different hot music groups are 

defined: the long-term hot music group: the music group containing the most music 

objects in the access histories of all users; the short-term hot music group: the music 

group containing the most music objects in the latest five transactions in the access 

histories of all users. These lists are, in some sense popular song lists that show what 

audio files are listened by others in which frequency.  

 

2.3.4 Hybrid Recommendation Systems 

Hybrid recommendation systems use a combination of the three mentioned 

recommendation methods.  For example in [9] rating and cluster similarity are used. [9] 

also uses Content based and Collaborative filtering as recommendation algorithms. 

 

 

 

 

 

 

 

                                                 
1 http://www.netflix.com/ 
2 http://www.storycode.com/ 
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3 MUSIC RECOMMENDATION DATA AND CLUSTERING 

3.1 Dataset 

3.1.1 Dataset Overview 

The dataset we use in this study is obtained from Argela Technologies [24]. It is a real 

dataset obtained using Colored-ring-back-tone (CRBT) product of this company. The 

CRBT is a service which makes it possible to listen to the music before connecting to the 

other party [25]. The dataset contains which users requested which songs for their CRBT 

services. There is really no user rating in the dataset. If a user selects a song, we assume 

that s/he rates that song favorably.  

The dataset consists of music categories shown in Table 3.1. 

Table 3.1: Category List in the Dataset 

Category Id Category Name 

4 Popular songs 

5 Unforgettable 

7 Requested 

104 Foreign 

105 Fantasy/Arabesque 

106 Sports Team March 

108 Series – Movie 

109 Turkish Art Music/Turkish Folk Music 

110 Classical Music 

111 March 
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222 Turkish Pop 

223 Rock / Rap 

230 Free 

330 Tarkan 

337 Fun 

373 Name Specialized 

412 Love Songs 

Under these categories related singers and their songs are available. 

Number of distinct records in the dataset is 1 356 456, which means in about 2 

years, this system is used 1 356 456 times. The number of distinct users who 

used this system is 760 345. 

The dataset contains answers to the following questions: 

• What are the categories? 

• What are the songs below these categories? 

• Which songs are bought by a specific user? When this user bought these 

songs? 

• How many numbers of melodies bought? 

• How many numbers of melodies bought today? 

• How many numbers of melodies bought last week, per day? 

• What are the top 10 melodies bought? 

• What are the top 10 melodies bought today? 

• What are the top 10 melodies bought yesterday? 

• What are the top 10 melodies bought last week? 

• Who are the active users? 

• Who are the inactive users? 
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3.1.2 Feature Extraction  

We obtain features of each of the songs listened by the users at this step. Later 

we use the distances/similarities between these features to produce groups or 

user groups.  

3.1.2.1 Dataset Format Conversion 

In this part, these files, in MP3 format, are converted into WAV format by [26]. 

This conversion is done since wav is a format which stores uncompressed digital 

sound while MP3 stores compressed sound. 

 
Figure 3.1: Figure of the User Interface of MP3-Wav Decoder [26] 
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3.1.2.2 Marsyas Feature Extraction: 

By using Marsyas (Music Analysis Retrieval and Synthesis for Audio Signals) 

program [30] which is written and made freely available be George Tzanetakis, 

the audio features of the files in WAV format are easily extracted. The following 

command is used for feature extraction:  

./extract GENRE [fileName1] [fileName2] 

fileName1: The name of the file which contains the list of the audio files whose 

features will be extracted       

  

fileName2: The name of the file that will contain the extracted features for all the 

audio files 

Table 3.2 shows features of a sample file: 

Table 3.2: Feature List of an Audio File 

File Name AliyeDiziMuzigi.wav 

Feature-1(Beat) 0.0434309 

Feature-2(Beat) 0.0352177 

Feature-3(Beat) 0.81089 

Feature-4(Beat) 224 

Feature-5(Beat) 42 

Feature-6(Beat) 52.7025 

Feature-7(Stft) 42.2281 

Feature-8(Stft) 48.4173 

Feature-9(Stft) 289.867 

Feature-10(Stft) 26.1476 

Feature-11(Stft) 41.5248 

Feature-12(Stft) 205.9 
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Feature-13(Stft) 64.4612 

Feature-14(Stft) 0.0131437 

Feature-15(Stft) -42.7093 

Feature-16(Mfcc) 5.40386 

Feature-17(Mfcc) -1.27607 

Feature-18(Mfcc) 1.41948 

Feature-19(Mfcc) -0.690552 

Feature-20(Mfcc) 5.65494 

Feature-21(Mfcc) 0.493887 

Feature-22(Mfcc) 0.315312 

Feature-23(Mfcc) 0.235454 

Feature-24(Mfcc) 0.140227 

Feature-25(Mfcc) 131.932 

Feature-26(Mpitch) 49 

Feature-27(Mpitch) 4 

Feature-28(Mpitch) 87288 

Feature-29(Mpitch) 7 

Feature-30(Mpitch) -1 

   

In Table 3.2,  

• the first 6 ones the BEAT features, 

• the next 9 ones STFT features, 

• the next 10 ones MFCC features, 

• the next 5 ones MPITCH FEATURES. 

A total of 30 features are extracted from each file. 
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Before the features are used in subsequent steps, they are normalized using z-

score normalization, i.e. from each feature the sample mean for that feature is 

subtracted and the result is divided by the sample standard deviation for the 

feature.  

3.1.2.3 Last Form of Dataset User Profile File 

After the feature extraction, music pieces can now be used in the music 

recommendation system. By matching the file names and the features the user 

profile files are prepared. A user profile file contains the following: 

• User id,   

• Audio file name , 

• Start date of the usage of that file(Number of days since1/1/1970) , 

• End date of the usage of that file(Number of days since 1/1/1970) , 

• Time elapsed(# OF DAYS), 

• Extracted features[1-30]  

 

Contents of an example user-profile file are shown below: 

USER ID         : 905054101180, 

FILE NAME         : Tarkan-Shhh, 

START DATE (# OF DAYS SINCE 1/1/1970): 13066,              

END DATE (# OF DAYS SINCE 1/1/1970)    : 13248,      

TIME ELAPSED (# OF DAYS)     : 182,  

FEATURES [1-30]        :  0.0581167, 0.0426348, 

0.733607,   50,         145,        148.305,    77.3342,    195.177,    247.831,    

90.8758,    144.773,    1583.94,    22390.9,    1437.48,    0.0697602, -43.2702,   

4.73296,    -1.07003,   1.83471,    0.0712359, 5.96749,    0.482293,   0.477396,   

0.213573,   0.14816,    255.645,    20,         11.6125,    11,         3 
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Each user listens to a certain number of songs during the dataset collection 

timeframe. We thought that the length of a session known for a user could make 

a difference on the recommendation success on the next song, the more songs a 

user has listened to, the more we know about him and hence can make a good 

recommendation for him. For this reason, we grouped the users according to the 

number of songs that they have listened to. This resulted in the following user 

profile files:  

• User-profile file-3 (the users who listen 3 music files throughout the test 

period) 

• User-profile file-4 (the users who listen 4 music files throughout the test 

period) 

• User-profile file-5 (the users who listen 5 music files throughout the test 

period) 

…. 

• User-profile file-135 (the users who listen 135 music files throughout the 

test period)  

 The following user profile files are also prepared:   

• User-profile file-more_than_3 (the users who listen at least 3 music files 

throughout the test period) 

• User-profile file-more_than_4 (the users who listen at least 4 music files 

throughout the test period) 

• User-profile file-more_than_5 (the users who listen at least 5 music files 

throughout the test period) 

… 

• User-profile file-more_than_135 (the users who listen at least 135 music 

files throughout the test period) 
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3.2 Clustering and Related Algorithms 

The following information about clustering and related algorithms is mostly 

gathered from [29]. 

3.2.1 Clustering  

The simplest definition of clustering could be “making groups of objects based 

on what they have in common from the aspect of a specific point”.  

 3.2.2 CLUTO Clustering Software  

In order to perform grouping of songs and users we used the freely available 

Cluto software by George Karypis [12]. The CLUTO software is distributed as a 

single file that contains binary distributions for Linux, Sun, OSX, and MS 

Windows platforms. 

Cluto allows a number of clustering methods (input using the –clmethod option). 

Please see the CLUTO manual for more details:  

Rb :( repeated bisections): In this method, the desired k-way clustering solution 

is computed by performing a sequence of k − 1 repeated bisections.  

Rib: In this method the desired k-way clustering solution is computed in a 

fashion similar to the repeated-bisecting method but at the end, the overall 

solution is globally optimized.  

Direct: In this method, the desired k-way clustering solution is computed by 

simultaneously finding all k clusters.  

Agglo: In this method, the desired k-way clustering solution is computed using 

the agglomerative paradigm whose goal is to locally optimize (minimize or 

maximize) a particular clustering criterion function (which is selected using the -

crfun parameter).  

Graph: In this method, the desired k-way clustering solution is computed by first 

modeling the objects using a nearest-neighbor graph (each object becomes a 
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vertex, and each object is connected to its most similar other objects), and then 

splitting the graph into k-clusters using a min-cut graph partitioning algorithm.  

Bagglo: In this method, the desired k-way clustering solution is computed in a 

fashion similar to the agglo method; however, the agglomeration process is 

biased by a partitional clustering solution that is initially computed on the 

dataset.  

Using –sim option, it is possible to use different similarity measures between the 

points to be clustered. There are three different readily available similarity 

metrics: 

Cos: (default) The similarity between objects is computed using the cosine 

function.  

Corr: The similarity between objects is computed using the correlation 

coefficient. 

Dist: The similarity between objects is computed to be inversely proportional to 

the Euclidean distance between the objects.  

 

3.2.3 Clustering Music Pieces in the Dataset 

The following CLUTO commands are used to cluster the music files:  

vcluster.exe  

-clmethod=graph  

-sim=corr  

-clustfile=clustersGraphCorr_mpitch_stft_beat_10.txt 

features_mpitch_stft_beat.txt 10  

The last number shows the number of clusters. We experimented with 10, 20 and 

30 clusters in general. 

Different sets of MARSYAS features are used as inputs to the clustering 

algorithm:  
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BEAT 

STFT 

MFCC 

MPITCH 

BEAT & STFT 

BEAT & MFCC 

… 

BEAT & STFT & MFCC 

BEAT & STFT & MPITCH 

…. 

An example clustering output using all features is shown in Table 3.3:  

Table 3.3: Example Clustering Output of an Audio File 

FileId   Filename 

Cluster 

Id 

1 SadikKaran-BakGidersemDonmem.wav 20 

2 AnneSarkilari.AjdaPekkan-AglamaAnne.wav  12 

3 AnneSarkilari.BEN_ANNEMI_ISTERIM.wav 18 

4 AnneSarkilari.Kibariye-Annem.wav 12 

5 AskSarkilari.KenanDogulu-AskimAskim.wav  16 

6 AskSarkilari.Kirac-OlurYa.wav 11 

7 AskSarkilari.SezenAksu_HERSEYI_YAK.wav 1 

8 AskSarkilari.SezenAksu-IkiliDelilik.wav  10 
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9 AskSarkilari.Tarkan-AyrilikZor.wav 2 

10 AskSarkilari.Yalin-Kucucugum.wav 4 

11 diziFilm.erkinkoray-hababamsinifi.wav  11 

12 

diziFilm.KiracAliyeDiziMuzigi-

BirGunBeniOzlersenEger.wav  10 

13 diziFilm.Kirac-AliyeDiziMuzigi.wav  11 

14 diziFilm.Kirac-BirIstanbulmasali.wav  11 

15 EnBegenilenler.GeceYolculari-SeninleBirDakika.wav 19 

16 EnBegenilenler.handeyener-askinatesi.wav 6 

17 EnBegenilenler.ismailYkBombabomba.com.wav  18 

18 EnBegenilenler.KenanDogulu-BasHarfiBen.wav  9 

19 EnBegenilenler.MFO-Sarilaleler.wav  16 

20 EnBegenilenler.Pink-WhoKnew.wav  16 

21 FanteziArabesk.Alisan.Alisan-KalbimEllerinde.wav  10 

22 FanteziArabesk.Alisan.Alisan-OlayBitmistir.wav 2 

23 FanteziArabesk.Alisan.Alisan-YalanOldu.wav  19 

24 

FanteziArabesk.EbruGundes.EbruGundes-

BenSecilmemSecerim.wav 7 

25 

FanteziArabesk.EbruGundes.EbruGundes-

Cingenem.wav 14 

26 FanteziArabesk.EbruGundes.EbruGundes- 20 
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DonNeOlur.wav 

27 

FanteziArabesk.EbruGundes.EbruGundes-

HatalarimdanBirisin.wav  10 
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4 METRICS AND METHODS USED IN THE PROPOSED SYSTEM 

4.1 Metrics Used In the Proposed System 

4.1.1 Song Clustering  

All of the audio files based on all possible feature combinations are given to CLUTO as 
an input file and all the related output files are gathered. So for an audio file all possible 
feature combination clustering ids become available for the recommendation system 
studies below.  

For the following audio file :( Total number of clusters at each time is 20) 

Table 4.1: Clustering Results of an Audio File 

File Name …/Destiny'sChild-LoseMyBreath.wav 

Clustering id STFT features based 2 

Clustering id BEAT features based 3 

Clustering id MFCC features based  4 

Clustering id MPITCH features based  6 

Clustering id ALL features based  11 

Clustering id STFT & MFCC features based  12 

Clustering id STFT & MPITCH features based  19 

Other possible feature combinations… … 

 

4.1.2 Singer Similarity 

The dataset, explained in the Section 3, contains 17 main categories. Under these 

categories, there are songs, and their related singers. For instance, these are the three 

audio files from this study’s dataset. 
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[1]…Foreign/ElvisPresley-It'sNowOrNever.wav 

[2]…Foreign/ElvisPresley-LoveMeTender.wav 

[3]…Foreign/Eminem-LikeToySoldiers.wav 

To find the similarity score between two audio files is very easy: 

For instance: 

File [1] and [2] has 2 scores, 1 from the similarity of the category of Foreign and the 

other is the similarity of the singer, 

While file [2] and [3] has 1 score from the similarity of the category of Foreign. 

4.1.3 Popularity 

Popularity means “what do others listen, what do they prefer?”. Popularity is a very 
important metric, which increases the success ratio of the results. The reason for the 
increase in success ratio is, if an item is popular it means most people listen to it, which 
means if the system recommends it it will be a successful recommendation.  

Based on days the user session data are available, a matrix which shows the number of 

times a song is requested on a day is created as follows: 

Table 4.2:  Number of Times Each Song is Listened on a Day (Popularity Matrix) 

Date 

Total 

Count 

File-1 

Count  

File-2 

Count 

File-3 

Count … File 730 

01.01.2006 100 3 5 1  6 

02.01.2006 120 80 23 1  1 

03.01.2006 80 7 34 34  2 

04.01.2006 180 56 45 4  3 

05.01.2006 167 1 2 11  14 

06.01.2006 200 14 2 3  15 
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The matrix has the following information: 

On a specific day: How many times a file is preferred? 

On that specific day: How many times all files are preferred in totally? 

So, when it comes to calculate a rating ratio, popularity factor of an audio file on a 
specific day: 

For instance, for the file-1, on 01.01.2006; 

≡
100

3  0.03 

 

For instance, for the file-2, on 01.01.2006; 

≡
100

5  0.05 

4.1.4 User Grouping 

User grouping is mainly used in Learning–Recommendation system Method, which is 
explained further in this section. 

User grouping factor attempts to find similar users who preferred similar audio files. In 
order to do this, a distance metric between sessions is defined as follows: 

 

d(sessioni,sessionj) = 1
Ni * Nj

d(sessioni(ii),sessionj( jj))
jj=1

Nj

∑
ii=1

Ni

∑    (4.1) 

 

where iN  is the number of the songs in the first session, 

 jN   is the number of the songs in the second session, 

 sessioni (ii):the thii   audio file in the first session, 

 sessionj (jj):the thjj  th audio file in the first session. 
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And the distance between two songs x and y are computed as the distance between their 

MARSYAS features: 

 

d(x,y) = 1
| x |

x[i]− y[i]( )2

i=1

|x|

∑         (4.2) 

 

where x is the first audio file, 

 y is the second audio file, 

 x[i]: thi  MARSYAS feature of the first audio file, 

 y[i]: thi  MARSYAS feature of the second audio file. 

 

After these calculations, the following matrix which shows distances between users 
(actually user sessions) is produced: 

 

Table 4.3: Matrix of Distances between Users 

 User-1 User-2 User-3 … User-n 

User-1 0 0.012 0.0001 .. 0.0078 

User-2 0.012 0 0.008 .. 0.00001 

User-3 0.0001 0.008 0 .. 0.00002 

… .. .. .. 0 .. 

User-n 0.0078 0.00001 0.00002 … 0 
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When this matrix is input to CLUTO, similar to grouping of songs, a grouping of users is 
produced. These groups will be called user clusters. 

4.2 Methods Used In the Proposed System 

In this section, we present the recommendation methods that we experiment with in the 
following section.  

The main framework of our recommendation system is shown in the following figure:  

Music Object

Feature Extracter

DataBase

Recommendation Module

Content Based Method with 
entropy metric

Simple Adaptive 
Recommendation Method

STA Method

Interface

Users

Music Objects User Profiles

Music Groups Popularity 
Info

Normal Content Based 
Recommendation Method

Euclid/Cosine Distance 
Recommendation Method

Content Based Method with 
popularity metric

Adaptive Recommendation 
Method

Learning  Recommendation 
Method

 
 

Figure 4.1: General Form of our Music Recommendation System 
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4.2.1 Euclidean/Cosine Distance Based Recommendation: 

The first recommendation system we study is a very simple one and it works like a 
nearest neighbor classifier [31]. 

After all the audio files in the dataset, which is mentioned in section 3, is converted into 
wav format; their BEAT, STFT, MFCC, MPITCH features are extracted via MARSYAS 
[28]. After these operations have been performed, every audio file has its own 30 
features. The following table shows 2 different audio files and their corresponding 
Marsyas features. 

Table 4.4: Marsyas Features of Two Different Audio Files 

File Name Classical-Beethoven-

9thsymphony.wav

Classical-Piano-

Concerto.wav 
Feature -1 0.0315373 0.113804 

Feature -2 0.0291096 0.0573399 

Feature -3 0.923022 0.503847 

Feature -4 258 234 

Feature -5 246 156 

Feature -6 491.438 537.107 

Feature -7 117.435 107.125 

Feature -8 249.581 249.4 

Feature -9 235.037 213.197 

Feature -10 217.245 196.161 

Feature -11 291.317 341.968 

Feature -12 27.7762 238.225 

Feature -13 15279.1 18557.3 

Feature -14 4259.77 4123.06 

Feature -15 0.0220842 0.0216745 

Feature -16 -53.7041 -57.6657 

Feature -17 5.48251 4.69975 

Feature -18 1.01455 1.39223 
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Feature -19 0.770429 1.10165 

Feature -20 0.617137 0.986999 

Feature -21 2.53691 2.61319 

Feature -22 0.407667 0.391915 

Feature -23 0.163391 0.0990582 

Feature -24 0.0667999 0.0419988 

Feature -25 0.0454699 0.0400316 

Feature -26 79.7333 60.1302 

Feature -27 20 20 

Feature -28 4.66491 2.12872 

Feature -29 10 10 

Feature -30 -1 -1 

 

In the dataset, there are a total of 11398, 1215 and 518 user sessions of length 5, 10 and 
15 respectively. Due to time limitations, 2000 (session length=5), 1000 (session 
length=10) and 500 (session length=15) users are used in the experiments. Every user in 
the session length of 5 file has 5 audio songs listened in a specific time period. The 
following is a general form of a user’s session file: 

UserSession1 = [piece1, t1], [piece2, t2], [piece3, t3], [piece4, t4], [piece5, t5] 

UserSession2 = [piece6, t6], [piece7, t7], [piece8, t8], [piece9, t9], [piece10, t10] 

UserSession3 = [piece11, t11], [piece12, t12], [piece13, t13], [piece14, t14], [piece15, 

t15] 

We separate our data randomly into 90% train and 10% test set.  

Inputs:         outputs 

Train: 

[piece1, t1], [piece2, t2], [piece3, t3], [piece4, t4], t5  piece5  

[piece6, t6], [piece7, t7], [piece8, t8], [piece9, t9], t10  piece10 
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Every user in this session info file has this general formula on their past audio file 

choices. In order to guess what the user listened at time of t(5) or t(10),the following 

calculations are done: First ,the Euclid/Cosine distance between the first user’s first song 

and the second user’s first song, second song, third song, fourth song and the fifth song. 

The same is done for the first user’s second and third and the fourth songs. After that, an 

average value is obtained by simply taking the average of these calculated values. 

User-1   User-2      

T (p): audio file-1         T (a): audio file-1  

T (q): audio file-2 T (b): audio file-2 

T (t): audio file-3 T(c): audio file-3  

T(x): audio file-4 T (d): audio file-4  

------------------- 

T(y): audio file-5 T (e): audio file-5 

 

We compute distance between two lists of songs as follows in the Equation 4.1: 

Distance between two songs x and y are computed as the distance between their 

MARSYAS features as in the Equation 4.2: 

If the song predicted is within the first k (1, 2, 5, 10…etc.) returned from the 

recommendation system, then we assume a successful recommendation.  

We partition the training data again into 90% train and 10% validation set. We choose 

the value of parameters that result in the minimum error on the validation set.  

We report errors based on the existence of the output song within the top 1, 2, 5, 10 of 

the songs recommended by the system. The system recommends the songs those have 

minimum distance errors.   

After performing these calculations on all of the users in the session legth-5, 10, 15 files, 

the following results are obtained for an example test scenario: 
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 Table 4.5: Error Distances between the Correct Song and the Recommended One 

Session’s last audio file Session 

Distance to 

the 

recommended 

audio file 

Recommended audio file Error 

between the 

correct audio 

file and the 

recommended 

one 

Ibrahim Tatlises-Bileydim 173855.3 Hadise-Stir Me Up 555.9671 

Ozlem Tekin-Cinayet 175573.4 Hadise-Stir Me Up 359.2185 

Sebnem Ferah-Can Kiriklari 180033.7 Hadise-Stir Me Up 638.1646 

Seksendort-Affet 180223.8 Hadise-Stir Me Up 1464.851 

Yildiz Tilbe-Ummadigin Anda 181397 Hadise-Stir Me Up 1974.331 

Kenan Dogulu-Askim Askim 186240.7 Hadise-Stir Me Up 748.0977 

Edip Akbayram-Hasretinle Yandi 190108.3 Hadise-Stir Me Up 448.2439 

Gokhan Ozen-Kalbim Seninle 190156.4 Hadise-Stir Me Up 523.581 

Metin Arolat-Ruhum Seninle 191724 Hadise-Stir Me Up 540.8978 

Hadise-Stir Me Up 193144.2 Hadise-Stir Me Up 0 

---------------------------------------------------------------- 

Ibrahim Tatlises-Bir Kulunu Cok 143234.4 Kibariye-Yak Butun Fotograflari 2194.842 

Gokhan Ozen-Kalbim Seninle 145132.3 Kibariye-Yak Butun Fotograflari 320.9787 

Sibel Can-Yalnizlar Treni 147106.4 Kibariye-Yak Butun Fotograflari 517.8491 

Seksendort-Olurum Hasretinle 148399.3 Kibariye-Yak Butun Fotograflari 1383.517 

Yildiz Tilbe-Ummadigin Anda 149157 Kibariye-Yak Butun Fotograflari 1234.01 

Yalin-Yagmur 149597.3 Kibariye-Yak Butun Fotograflari 1562.437 

Irem-Hayal Et Sevgilim 149680.7 Kibariye-Yak Butun Fotograflari 1880.389 

Ferhat Gocer-Don Diyemedim 150785.3 Kibariye-Yak Butun Fotograflari 385.0924 

Kargo-Sonbahar 151180.5 Kibariye-Yak Butun Fotograflari 521.8391 

Irem-Beyaz yalan 153790.2 Kibariye-Yak Butun Fotograflari 756.6326 

---------------------------------------------------------------- 
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4.2.2 Content Based Recommendation Using Entropy and Popularity Metrics:  

This method based on the [10] content based recommendation algorithm, which is 
mentioned in section 2. [10] used MIDI files, whereas our recommendation system is 
based on audio files. In addition, we consider the fact that every user may give different 
importance to certain aspects of songs, such as melody, tempo etc. We try to find the 
most important aspect for a certain user based on an entropy measure and recommend to 
him based on that aspect. 

First of all, all user sessions (we used length of 5, 10, 15 user sessions in our tests) are 
clustered in CLUTO based on 

BEAT (6 features) only, 

STFT (9 features) only, 

MFCC (10 features) only, 

MPITCH (5 features) only, 

All features, 

BEAT & STFT features, 

BEAT & MFCC features, 

BEAT & MPITCH features, 

STFT & MFCC features, 

STFT & MPITCH features, 

… 

BEAT &STFT & MFCC features, 

BEAT &STFT & MPITCH features, 

… 

and all other possible feature combinations. 
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A session file with these above possible features are prepared. For each feature file the 
user session is given to CLUTO program to be clustered. An example result could be: 

 

Table 4.6: Clustering Results 

 

so
ng

-1
 

so
ng

-2
 

so
ng

-3
 

so
ng

-4
 

Cluster no based on BEAT features only 1 2 3 6 

Cluster no based on STFT features only  3 4 6 1 

Cluster no based on MFCC features only  4 5 2 1 

Cluster no based on MPITCH features only  8 9 10 5 

Cluster no based on BEAT & STFT features 2 4 6 7 

Cluster no based on BEAT & MFCC 

features  1 4 6 8 

Cluster no based on all features  5 6 8 10 

Cluster no based on BEAT & MFCC & 

MPITCH features  2 5 7 9 

Other feature combinations…     
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Then for every feature combination, entropy values are calculated for that user session: 

For entropy calculation the following formula is used: 

       

ii
C
i ppS log1∑ =−=          (4.3) 

 

In this formula, C=20 is the number of song clusters for a certain MARSYAS feature 

combination (which corresponds to a row in table 4.6), pi shows the number of songs 

that fell in cluster i in a certain session divided by the session length (total number of 

songs in the session). If the entropy is high for a feature set, it means the songs of the 

session are distributes all around the place and hence user’s songs can not be grouped 

successfully based on that metric. We should choose the feature set that results in the 

minimum entropy for each specific user.   

Table 4.7: Clustering Results with Entropy Values 

 

so
ng

-1
 

so
ng

-2
 

so
ng

-3
 

So
ng

--
4 

En
tro

py
 

va
lu

e 
Cluster no based on 

BEAT features only 1 2 3 6 A 

Cluster no based on STFT 

features only  3 4 6 1 B 

Cluster no based on 

MFCC features only  4 5 2 1 C 

Cluster no based on 

MPITCH features only  8 9 10 5 D 

Cluster no based on 

BEAT & STFT features 2 4 6 7 E 
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Cluster no based on 

BEAT &MFCC features 

only  1 4 6 8 F 

Cluster no based on all 

features  5 6 8 10 G 

Cluster no based on 

BEAT & MFCC & 

MPITCH features only  2 5 7 9 H 

Other feature 

combinations…     . 

 

Then the feature combination for the user is selected whose entropy value is min among 

the others. This means that, a user’s only the features are used in the following CB 

recommendation algorithm that has the min entropy value. 

In order to get advantage of the popularity metric, we recommend a certain portion of 

the songs using this method and we fill up the remaining songs based on the popular 

songs at the time of the recommendation.  

Table 4.8 shows the success of recommendation for varying ratio of recommendations 

from the popular songs. A recommendation is successful if the Ni’th song is among the 

recommended songs. As expected, as the percentage of popular songs increase, 

recommendation success increases. 
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Table 4.8: Success Results for Content Based Recommendation 

Se
ss

io
n 

Le
ng

th
 

#S
on

gs
 

#U
se

rs
 

%
Po

pu
la

r 

%
C

la
ss

ic
al

 C
B

%
Su

cc
es

s 

5 20 2000 20 80 21 

5 20 2000 40 60 30 

5 20 2000 60 40 40 

5 20 2000 80 20 44 

10 20 1000 20 80 22 

10 20 1000 40 60 32 

10 20 1000 60 40 41 

10 20 1000 80 20 46 

15 20 500 20 80 22 

15 20 500 40 60 33 

15 20 500 60 40 44 

15 20 500 80 20 50 

 

4.2.3 STA 

We perform the STA [10] method (it is mentioned in section 2), similar to [10]: 

Short Term Recommended: The songs which are preferred in the last 3 months. (3 

month is an example value; it depends on the dataset distribution.).In the tests; 

Short term rate: shows the ratio how many songs are selected from short term songs list 
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Long term rate: shows the ratio how many songs are selected from long term songs list 

The followings are the test results: 

Table 4.9: Test Results of STA Method 

Experiment 

ID 

Total 

Recommendation 

Number 

Short Term 

Recommended 

Rate 

Long Term 

Recommended 

Rate 

Number 

of users 

Length 

Of 

Session 

Number Of 

Correct 

Recommended 

Users 

1 20 0.5 0.5 100 10 27 

2 20 0.75 0.25 100 10 29 

3 20 0.8 0.2 100 10 29 

4 20 0.9 0.1 100 10 28 

5 20 1 0 100 10 20 

6 20 0 1 100 10 22 

7 20 0.5 0.5 338 10 128 

8 20 0.75 0.25 338 10 95 

9 20 0.8 0.2 338 10 94 

10 20 0.9 0.1 338 10 90 

11 20 1 0 338 10 67 

12 20 0 1 338 10 35 

13 25 0.75 0.25 338 10 144 

14 30 0.75 0.25 338 10 145 

15 10 0.75 0.25 338 10 44 

16 5 0.75 0.25 338 10 25 



 43

17 35 0.75 0.25 338 10 135 

18 40 0.75 0.25 338 10 133 

19 50 0.75 0.25 338 10 153 

20 75 0.75 0.25 338 10 189 

21 100 0.75 0.25 338 10 220 

22 150 0.75 0.25 338 10 269 

23 200 0.75 0.25 338 10 312 

24 20 0.75 0.25 37 10 9 

 

4.2.4 Simple Adaptive Recommendation:  

In this method we use all three components (cluster similarity, singer similarity and the 
popularity metrics, mentioned in section 4.1) and learn the percentage values (percentage 
of songs to recommend from each of the three clusterings) for each component. We do 
the learning as follows:  

For instance the user has 10 songs in his/her session; we skip the last song (because we 
want to find it at the end of this recommendation) and produce possible permutations 
with the remaining 9 songs as follows: 

 

Song-1,song-2,song-3,song-4,song-5,song-6,song-7,song-8 ,? 

Song-2, song-3, song-4, song-5, song-6, song-7, song-8,? 

Song-3, song-4, song-5, song-6, song-7, song-8, ? 

Song-4, song-5, song-6, song-7, song-8, ? 

Song-1, song-3, song-4, song-5, song-6, song-7, song-8, ? 

Song-2, song-4, song-6, song-7, song-8,? 

…. 
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Then, in order to find the last missing song, every time only the following methods are 
used: 

• Only Content based with entropy factor, 

• Only singer similarity, 

• Only popularity factor. 

While the algorithm is running the method that finds the correct result gets a point. 
Simply the method which has the maximum points is used  in order to find the last song 
( th10  song) and the other methods are given 0 percentage.  

 

The results of this recommendation scheme are shown in Table 4.10. As seen in the 

table; the percentage of success for Simple Fair Recommendation is a lot higher than the 

Content Based Recommendation. Simple Fair recommendation test results are in the 

Table 4.10. 
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Table 4.10: Test Results of Simple Adaptive Recommendation Method 

Experiment 

Id Session Length 

Cluster 

Number 

Recommendation 

Number 

Number 

of users 

#correct 

File 

#correct 

singer 

#correct 

cluster 

#Correct 

Singer&Cluster 

1 15 20 5 338 79(%23.3) 28 73 0 

2 15 20 10 338 106 50 114 1 

3 15 20 20 338 150 85 167 6 

4 15 20 30 338 185 100 188 7 

5 15 20 40 338 206 106 197 14 

6 15 20 50 338 221 111 203 16 

7 15 20 60 338 234 116 205 16 

8 15 20 70 338 242 118 206 16 

9 15 20 80 338 249 118 207 16 

10 15 20 90 338 263 119 207 16 

11 15 20 100 338 267 121 208 16 

12 15 20 150 338 290 126 213 18 

13 15 20 200 338 307 131 214 18 
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14 15 20 250 338 318 136 215 19 

15 15 20 300 338 323 136 218 19 

16 15 20 350 338 327 137 219 19 

17 15 20 400 338 330 137 219 19 

18 15 20 450 338 331 137 219 19 

19 15 20 550 338 335 137 219 20 

20 15 20 650 338 336 137 219 20 

21 15 20 700 338 337 137 219 20 

22 15 10 5 37 10 3 11 0 

23 15 10 10 37 10 6 18 0 

24 15 10 20 37 12 10 22 0 

25 15 10 40 37 14 11 27 3 

26 15 10 80 37 18 14 28 4 

27 15 10 150 37 24 17 28 4 

28 15 10 300 37     

29 15 10 5 610 164 68 97 1 
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30 15 10 10 610 220 106 177 1 

31 15 10 20 610 299 168 243 3 

32 15 10 40 610 398 210 299 7 

33 15 10 80 610 498 225 318 12 

34 15 10 150 610 560 243 325 14 

35 15 10 300 610 597 253 326 15 

36 15 10 20 337 140 85 127 7 

37 15 30 20 337 146 90 82 7 

38 15 40 20 337 144 90 48 5 

39 15 60 20 337 142 89 29 1 

40 15 80 20 337 148 91 27 1 

41 15 100 20 337 147 91 24 4 

42 15 20 20 338 150 79 160 2 

43 15 20 20 338 136 79 63 6 

44 15 20 20 338 135 77 160 2 

45 15 20 20 338 134 74 156 1 
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46 15 20 20 338 121 94 169 2 

47 15 20 20 338 117 91 163 4 
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4.2.5 Adaptive Recommendation: 

In this recommendation scheme, we choose psc NNN ,, from among a certain number 
(1000) of different possible values. These values are calculated by an auto-generated 
program in the computer. As we did in the previous recommendation algorithm, for each 

user, we evaluate each psc NNN ,, combination’s score based on how well they can 
predict each remaining song permutation. We choose the combination that gives the best 
success rate.  

For instance, if the user has 10 songs in his/her session, we skip the last song and 
produce all possible recommendation combinations as follows: 

  

Song-1,song-2,song-3,song-4,song-5,song-6,song-7,song-8 ,? 

Song-2, song-3, song-4, song-5, song-6, song-7, song-8 ,? 

Song-3, song-4, song-5, song-6, song-7, song-8, ? 

Song-4, song-5, song-6, song-7, song-8, ? 

Song-1, song-3, song-4, song-5, song-6, song-7, song-8, ? 

Song-2, song-4, song-6, song-7, song-8,? 

…. 

Then, in order to find the last missing song, in every time the following methods are 

used: 

• Content based with entropy factor, 

• Singer similarity, 

• Popularity factor. 

Every time the following auto-generated weight numbers are used: 

{0, 0.1, 0.99} 

{0 ,0.2, 0.98} 

{0, 0.3, 0.97}  
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… 

{0.50, 0.25, 0.25} 

… 

{0.75, 0.1, 0.15} 

 … 

… 

… 

The first auto-generated number is: cluster similarity weight ratio 

The second auto-generated number is: cluster similarity weight ratio 

The first auto-generated number is: cluster similarity weight ratio 

In total, the weight ratio combination is used which gets more accurate recommendations. 

The results for the adaptive recommendation method are shown in Table 4.11. 

Table 4.12 contains a comparison between simple adaptive recommendation method and 
adaptive recommendation method. According to this table, the success ratio of Adaptive 
recommendation seems to be smaller than that of simple Adaptive Recommendation. We 
think that this is due to the fact that Simple Adaptive Recommendation uses a 
component (like singer for example) and ignores the other two (like content and 
popularity for example) when it makes its decision. Whereas, Adaptive 
Recommendation is able to evaluate contributions from all components at the same time. 
Another reason may be that there are too many possibilities in adaptive recommendation 
and the recommendation system may be overfitting the training data. [31]. 
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Table 4.11: Test Results of Adaptive Recommendation Method 

Experiment Id 

Session Length 

Cluster 

Number 

Recommendation 

Number 

Number 

of users 

#correct 

File 

#correct 

singer 

#Correct 

Singer& 

Cluster 

1 5(4) 20 20 608 395 395 15 

2 10(9) 20 20 303 190 106 90 

3 15(14) 20 20 518 362 362 4 

 

 

Table 4.12: A Comparison between Simple Adaptive Recommendation and Adaptive 
Recommendation 

Session 

Length 

%RecomSuccess 

 Simple Adaptive 

Recommendation 

%RecomSuccess   

Adaptive 

Recommendation 

5 70 65 

10 71 63 

15 73 70 

 

 

4.2.6 Learning Approach on an Adaptive Music recommendation System with 

Popularity Data and Using User Grouping 

This recommendation method follows the learning of the popularity, singer and content 

cluster weights, however in addition the user groups are also produced and taken into 
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consideration. The recommendation method, recommends songs adaptively to each user 

based on the following criteria: 

• Popularity metric, 

• Singer similarity, 

• Content Based Method with entropy metric, 

• User grouping factor. 

The percentage values are calculated adaptively. The following part explains how the 

user grouping mechanism works: 

This method divides the time period that covers all the user session data into the 

following parts: 

 t-cluster, 

 t-train, 

 t-recommendation. 

The songs that were listened to by a certain user in each of these time frames are 

processed separately as explained below:  

t-cluster: 

In this time-scope users in the system are clustered based on what they listened all 

through this time period. Clustering is done via CLUTO. (ClMethod: GRAPH, 

similarity: CORR). 

Every song in the dataset (we have approximately 730 songs) has its own   

 Beat (6) 

 Stft (9) 

 Mfcc (10) 

 Mpitch (5) 

 …  
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All (30) features after MARSYAS feature extraction operation, which is mentioned in 

section 3. Based on these features every user session in this time-scope is sent to our 

clustering mechanism. This mechanism observes all possible feature (BEAT, STFT, 

MFCC, MPITCH, MPITCH&STFT, etc) combinations and extracts their related 

clustering results. Based on these results a simple Shannon entropy calculation is 

performed based on each clustering results. The minimum entropy leads us to the 

features we need to use for this user. This is the same scenario that we used in Content 

Based approach with entropy metric, mentioned in section 2. 

After this clustering, users with their history (history lengths are like: 2-song-history, 3-

song-history.4-song-history) are assigned to one of the following user-feature-specific-

clusters: 

User-group based on BEAT features (Approximately 20 clusters) 

User-group based on STFT features (Approximately 20 clusters) 

User-group based on MFCC features (Approximately 20 clusters) 

User-group based on MPITCH features (Approximately 20 clusters) 

User-group based on ALL features (Approximately 20 clusters) 
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Figure 4.2: User Grouping Based On Marsyas Features 

 

t-train:  

In this time period the centroids of the above mentioned groups are calculated (based on 

taking the averages of the related features). Throughout this time period, any user (who 

reaches the system before t-cluster time or who is the new arrival) is attempted to be 

inserted into a group. For instance; 

a) if the user is not new for the system  

S/he is inserted into his/her own group, but the centroid of the user group is re-calculated. 

b) If the user is one of the new arrivals 

S/he is attempted to be inserted into a group based on the Euclidean distance calculation. 

The user will be send into the group with the minimum distance value between the 

centroid of the group and his/her song features. 

The system applies the same operation for any coming user in this time period. So 

through this period the centroid values of these groups are re-calculated. 
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t-recommendation: 

Here the system performs its recommendation operations based on the following logic: 

Any coming user to the system will be recommended with the recommendation lists 

which are reported by the user groups. 

Every user group (BEAT, STSFT, MFCC, and MPITCH) prepares a recommendation 

list based on the coming user’s features and its own inner group’s song-features. The 

important question to be anwered is which group will send how many songs. The answer 

is actually based on the following idea: At the beginning every group will send equal 

number of songs (for instance 5 songs). In the first step groups will send their 

recommendation lists. After that the system will compare the lists and looks for the 

actual song and based on the correctness it gives a success point to each group. 

Succesfull groups will send the more songs at the next steps while unsuccessful groups 

will send the same number of songs with the previous step. The algorithm goes on in the 

following logic.1  

This procedure mentioned here, is used only for a portion of recommendation songs. The 

others will be recommended with again based on popularity, singer similarity. 

The weight values of the factors (grouping users mentioned in this section, content based 

approach with entropy factor mentioned in the above part of this section, popularity 

mentioned in section 4.1,singer similarity mentioned in section 4.1) will be decided as 

follows: 

Grouping users and content based approach with entropy factor: %20 

Singer similarity: %5 

Popularity: %75 

Which gives more correct results? 

                                                 
1 This specific cluster learning idea is based on a discussion with Sule Gunduz Oguducu, 
whom we thank for her contribution. 
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The success ratio is shown in the following table:  

Table 4.13: Test Results of Learning Approach 

Session 

Length 

Number of 

recommendations 

Number 

of total 

files 

Success 

Found% 

5 20 2000 78 

10 20 1000 80 

15 20 500 81 

 

4.2.7. Summary of Experimental Results 

 
The following table shows a summary of the above mentioned music recommendation 
methods: 
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Table 4.14: Comparison of all Methods Proposed in this Hybrid System 

Music Recommendation Method Success Ratio 

Euclid/Cosine Distance Based 
Recommendation 

%1-%5 

Content Based Recommendation Using 
Entropy and  Popularity Metrics 

%21-%50 

STA %7-%43 

Adaptive Recommendation Method %65-%70 

Simple Adaptive Recommendation Method %70-%73 

Learning Approach %78-%81 

 

According to Table 4-14, Euclid/Cosine Distance Based Recommendation method 

produces results with %1-%5 success ratios. This method works based on only 

calculated distance values and tries to find the minimum one. Since these results are not 

sufficient, it is a good idea to look for what other people listen to in short-term and long-

term time periods. This mechanism is embedded in STA method and it gives %7-%43 

success ratios. In STA, there is no special effort to trace what that user listened at past 

who actually will have recommendations from the system. So using popularity and 

entropy metrics which means combining CB method with STA method and using 

entropy factor increase the recommendation success ratio to %21-%50. But, still 

something which is very important is missing: making all these things adaptively. 

Adaptive recommendation and simple recommendation methods recommend based on 

an artificial logic which is produced by only that user specifically. For every user the 

system produces new rules dynamically. Table 4.14 shows that adaptivity increases 

recommendation success ratio to %65-73. And contributing user grouping factor with 

learning mechanism also increases success ratio to %78-%81. 
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5 IMPLEMENTATION OF THE SYSTEM  

We implemented all the recommendation systems mentioned above. In this section, we 
give the implementation details.  

5.1 Implementation Environment:  

After extracting marsyas features of the audio files, data needs to be arranged. Also since 

the dataset contains more than 50 user session files with the total of approximately 

1,300,000 distinct users. For these purposes it is hard to use this data without some 

helper functions .To extract needed information the following helper functions are 

implemented: 

 

• Create user-session info with the session lengths of …(5,10,15,20,25,30,…135) 

• Create user-session info with the session lengths of  more 

than…(5,10,15,20,25,30,…135) 

• Add these fields to the user-session info files : 

 The user-id, 

 The audio file name is selected, 

 The time that file is selected, 

 Maryas features of that audio file. 

• Extract all marsyas features of the file with the id … (1, 2, 6, 8, 12, 

78,123,600…) 

• Extract stft marsyas features of the file with the id … (1, 2, 6, 8, 12, 

78,123,600…) 
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• Extract mfcc marsyas features of the file with the id … (1, 2, 6, 8, 12, 

78,123,600…) 

• Extract beat marsyas features of the file with the id … (1, 2, 6, 8, 12, 

78,123,600…) 

• Extract mpitch marsyas features of the file with the id (1, 2, 6, 8, 12, 

78,123,600…) 

• Extract stft&beat marsyas features of the file with the id (1, 2, 6, 8, 12, 

78,123,600…) 

• Extract … marsyas features of the file with the id … (1, 2, 6, 8, 12, 

78,123,600…) 

• Normalize feature values. 

• Create an input matrix for clustering for the user session… 

• Arrange the output matrix after clustering as an input file for mat lab source code. 

• Extract short term song list. 

• Extract long term song list. 

• Create a matrix which shows on which date how many times which song is 

chosen. 

• Create a matrix as an input file for cluto to cluster users. 

• Arrange user groups file. 

These are the main helper functions which are implemented as separate classes in C# 

(Visual Studio .Net). 

Then the main algorithms for each method are implemented in Matlab (Matlab Version 

6.5 Release 13).In Matlab the following functions are created: 
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• Function for calculate Euclid distance between user sessions. 

• Function for calculate Cosine distance between user sessions. 

• Function for calculate the distance between songs based on their marsyas features. 

• Function for recommending songs based on the minimum distance. 

• Function for recommending based on content based approach. 

• Function for recommending based on statistical approach. 

• Function for creating auto-generated weight values for adaptive methods 

• Function for recommending based on simple adaptive approach. 

• Function for recommending based on adaptive approach. 

• Function for recommending based on learning approach. 

• Functions for finding error rate/success rate for each implemented method. 

5.2 Graphical User Interface of the proposed Music recommendation System  

The following graphical interface is prepared in order to use the recommendation system 

methods created&improved in this thesis. The following fields exist: 

• Session file name 

• Method for recommendation algorithm 

• Number of clusters 

• Number of recommendation songs 

These parametric values, of course can be improved. 

The followings are some sample screen views from the interface: 
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Figure 5.1: Music recommendation System-GUI-1 
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Figure 5.2: Music recommendation System-GUI-2 
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Figure 5.3: Music recommendation System-GUI-3 
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Figure 5.4: Music recommendation System-GUI-4 
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Figure 5.5: Music recommendation System-GUI-5 
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Figure 5.6: Music recommendation System-GUI-6 

 

 

After entering all the parametric values, and just entering the ‘Get 

Recommendation Results’ button ,the algorithm runs, and whenever it finishes the ‘Click 

Here To Open the Results Excel File’ link is activated. Just clicking the link, the 

corresponding excel file is opened, or it can be loaded into the list which is located just 

above the link in the screen. 
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Figure 5.7: Example Output File from Music recommendation System-GUI 
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6. CONCLUSION AND FUTURE WORK 

In this thesis, different music recommendation systems are implemented and tested. 

The effect of varying the degree of recommendation from each of the different groupings 

(song clustering, popularity, singer similarity, user grouping) are examined.  First 

Content Based method is studied with the entropy approach which contains only song 

clustering approach. This adaptive content based approach resulted in better results 

compared to normal content based method. Then STA (Statistical Approach) which is 

another formulation of popularity is considered.  STA considers audio files from short-

term and long-term time period. Then new methods of the combination of these metrics 

are created. One of them is called Simple Adaptive Recommendation method, which 

contains singer similarity, popularity and song clustering metrics. The Adaptive 

Recommendation Method contains these metrics, too. But the calculation criterion is 

slightly different from the one in Simple Adaptive Recommendation. The test results 

show that the percentage of success for Simple Adaptive Recommendation is a lot higher 

than the Content Based Recommendation and also slightly more than Adaptive 

Recommendation method. 

Then user grouping factor is introduced and with the history of the users, what they 

listened in the past, users are grouped. Then the same tests are repeated. The results 

show that user grouping factor increases the success ratio to about %75 which is a very 

good result for a music recommendation system. 

Experimentation with other data sets and improvement of the learning mechanism in the 

user grouping method are the possible future study directions. 
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