

İSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Gulshat KULZHABAYEVA

Department : COMPUTER ENGINEERING

Programme: COMPUTER ENGINEERING

JUNE 2007

EVOLUTIONARY ALGORITHMS IN DYNAMIC

ENVIRONMENTS:

MANAGING CHANGES WITHIN GENERATIONS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/62729193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

İSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Gulshat KULZHABAYEVA

Department : Computer Engineering

Programme: Computer Engineering

JUNE 2007

EVOLUTIONARY ALGORITHMS IN DYNAMIC

ENVIRONMENTS:

MANAGING CHANGES WITHIN GENERATIONS

 iii

ACKNOWLEDGEMENTS

I would like to deeply thank Asst. Prof. Dr. Şima Uyar, for refereeing this work. I am

grateful to her providing me with useful and helpful advises by sparing a lot of her

time and patience. Without her care and consideration, this thesis would likely not

have matured.

My thanks to Dr. Juergen Branke, for his guidance during my work with his great

experience and vision in this area.

Also, I would like to thank my friends, Murat Mehmet and Zeliha Görmez for their

help and efforts to give motivation to accomplish the thesis.

My sincere thanks to my husband, Askhat and my son, AmirAli. This work is the

result of their great support, encouragement, help and love. My great thanks to my

family for their prayers and encouragement, especially my parents, Nurbala and

Baltabay, who got me to and through all my life.

MAY 2007 Gulshat KULZHABAYEVA

 iv

CONTENTS

ABBREVIATIONS vi
TABLE LIST vii
FIGURE LIST viii
SUMMARY x
ÖZET xi

1 INTRODUCTION 1

2 BACKGROUND INFORMATION 3
2.1 History 3

2.2 Major Considerations of Using EAs 3

2.3 Application Areas of EAs 4

2.4 A Brief Overview of EAs’ Mechanisms 4

2.4.1 Main Components of EAs 6

2.4.1.1 Representation 6

2.4.1.2 Initialization 6

2.4.1.3 Fitness Evaluation 7

2.4.1.4 Reproduction 7

2.4.1.5 Variation Operators 8

2.4.1.5.1 Recombination 8

2.4.1.5.2 Mutation 9

2.4.1.6 Reinsertion 10

2.4.1.7 Duplicate-Elimination 10

2.4.1.8 Termination Condition 10

3 DYNAMIC ENVIRONMENTS 11
3.1 Noise 11

3.2 Robustness 11

3.3 Fitness Approximation 12

3.4 Time Varying Fitness Function 12

3.5 Criteria for Dynamic Environments 13

3.6 Approaches in EAs 14

3.6.1 Restart 14

3.6.2 Generate Diversity After a Change 14

3.6.3 Maintain Diversity Throughout The Run 15

3.6.4 Memory-Based approaches 16

3.6.5 Multipopulation approaches 16

3.6.5.1 Self Organizing Scouts 16

3.6.5.2 Shifting Balance GA 16

3.6.5.3 Multinational GA 17

3.6.5.4 Sentinels 17

3.7 Suitable Benchmark Problems 17

 v

3.8 Measuring Performance 18

3.8.1 Online Performance 18

3.8.2 Offline Performance 18

3.8.3 Offline Error 18

3.8.4 Best Fitness Performance 18

3.9 Theories on EAs 19

4 EXPERIMENTS 22
4.1 Used Tools 22

4.1.1 Bit-Matching Problem 22

4.1.2 Single Knapsack Problem 22

4.1.3 Generational Reproduction Method 24

4.1.4 Time for Change of Environment 24

4.2 Experiment on Bit-Matching Problem 25

4.2.1 Details of Experiment 25

4.2.2 Results of Experiment w.r.t. Offline Error Performance 26

4.2.3 Results of Experiment w.r.t. Best Fitness 32

4.2.4 Tests Performed According to Results of Experiment on Bit-Matching

Problem 38

4.3 Experiment on Single Knapsack Problem 43

4.3.1 Details of Experiment 43

4.3.2 Results of Experiment 44

4.3.3 Tests Performed According to Results of Experiment on Single Knapsack

Problem 50

4.4 Further Experiments 53

4.4.1 Appropriateness of Periods 53

4.4.2 Additional Experiments on 2nd Method 55

4.4.3 Experiments on higher severity of environmental changes 57

4.4.4 Experiments on more environmental changes 59

5 CONCLUSION 61

REFERENCES 62

AUTOBIOGRAPHY 66

 vi

ABBREVIATIONS

CPU : Central Process Unit

BMP : Bit-Matching Problem

EA : Evolutionary Algorithm

GA : Genetic Algorithm

GR : Generational Reproduction Method

MKP : Multidimensional Knapsack Problem

SKP : Single Knapsack Problem

SSR : Steady State Reproduction Method

TDGA : Thermo Dynamic Genetic Algorithm

 vii

TABLE LIST

 Page

Table 4.1 : BMP with Offline Error..28

Table 4.2 : Intervals of Methods at z Evaluations w.r.t. Offline Error Performance 30

Table 4.3 : BMP with Best Fitness ...34

Table 4.4 : Intervals of Methods at z Evaluations ...36

Table 4.5 : SKP with Best Fitness ..46

Table 4.6 : Intervals of Methods at z Evaluations ...48

Table 4.7 : Various Offsets on Method II ...56

Table 4.8 : The Diversity of Population in Method II ...56

Table 4.9 : Comparing ordering performance according to severity in BMP...........57

Table 4.10 : Comparing Ordering Performance According to Severity in SKP58

Table 4.11 : BMP with Environment Severity of 0.4 ..58

Table 4.12 : SKP with Environment Severity of 0.1 ...58

Table 4.13 : Comparing Ordering Performance According to Frequent Change in

BMP ...59

Table 4.14 : Comparing Ordering Performance According to Frequent Change in

SKP ..60

Table 4.15 : Bit Matching Problem with 20 changes...60

Table 4.16 : Simple Knapsack Problem with 20 changes..60

 viii

FIGURE LIST

 Page

Figure 2.1 : The scheme of an Evolutionary Algorithm in a Pseudo-code Fashion....5

Figure 2.2 : The scheme of an Evolutionary Algorithm in a Diagram5

Figure 2.3 : One Point Crossover ...9

Figure 2.4 : Binary mutation ..9

Figure 3.1 : Illustrative example for situation in EAs before and after change19

Figure 3.2 : Illustrative example for selection according to 1
st
 statement20

Figure 3.3 : Illustrative example for selection according to 2
nd

 statement20

Figure 4.1 : Methods for Period 3 on BMP w.r.t. Offline Error Performance..........29

Figure 4.2 : Methods for Period 10 on BMP w.r.t. Offline Error Performance29

Figure 4.3 : Methods for Period 25 on BMP w.r.t. Offline Error Performance30

Figure 4.4 : Intervals for Period 3 on BMP w.r.t. Offline Error Performance..........31

Figure 4.5 : Intervals for Period 10 on BMP w.r.t. Offline Error Performance31

Figure 4.6 : Intervals for Period 25 on BMP w.r.t. Offline Error Performance32

Figure 4.7 : Methods for Period 3 on BMP w.r.t. Best Fitness Performance35

Figure 4.8 : Methods for Period 10 on BMP w.r.t. Best Fitness Performance35

Figure 4.9 : Methods for Period 25 on BMP w.r.t. Best Fitness Performance36

Figure 4.10 : Intervals for Period 3 on BMP w.r.t. Best Fitness Performance37

Figure 4.11 : Intervals for Period 10 on BMP w.r.t. Best Fitness Performance........37

Figure 4.12: Intervals for Period 25 on BMP w.r.t. Best Fitness Performance........38

Figure 4.13 : Illustration of Test 1..39

Figure 4.14 : Illustration of Test 2..40

Figure 4.15 : Illustration of Test 3..41

Figure 4.16 : Illustration of Test 4..42

Figure 4.17 : Illustration of Test 5..43

Figure 4.18: Methods for Period 3 on SKP w.r.t. Best Fitness Performance...........47

Figure 4.19 : Methods for Period 10 on SKP w.r.t. Best Fitness Performance.........47

Figure 4.20 : Methods for Period 25 on SKP w.r.t. Best Fitness Performance.........48

Figure 4.21 : Intervals for Period 3 on SKP w.r.t. Best Fitness Performance...........49

 ix

Figure 4.22 : Intervals for Period 10 on SKP w.r.t. Best Fitness Performance.........49

Figure 4.23 : Intervals for Period 25 on SKP w.r.t. Best Fitness Performance.........50

Figure 4.24 : BMP Best Finess without change ..54

Figure 4.25 : SKP Best Fitness without change ..54

 x

EVOLUTIONARY ALGORITHMS IN DYNAMIC ENVIRONMENTS:
MANAGING CHANGES WITHIN GENERATIONS

SUMMARY

Evolutionary algorithms (EAs), based on natural evolutionary theory, are

computational methods for static and dynamic problems. Since EAs are naturally

inspired, they seem to be more suitable to be applied to dynamic optimization

problems. In order to apply EAs to the continuously changing real world problems,

changes have to be analyzed in a detailed way. According to the type of change and

problem instance, if method of managing changes can be predicted it will improve

ability of problem solving of EAs.

In nature changes are not happening in an organized way, although almost all

researchers’ approach to dynamic changing environment was in that way, thus

assuming that changes are happening between generations

The main goal of the thesis is to examine and show the ability of methods on

changing environments within generations by empirical way. The methods are:

- Use the changed fitness function for all subsequent individuals, but keep the

evaluations of the offspring already evaluated

- Temporarily reduce the population size. The generation is terminated, and the

offspring generated so far serve as basis to generate the next.

- Re-evaluate all offspring already generated; ignore the change and continue

to work with the old fitness function to the end of that generation

- Ignore the change and continue to work with the old fitness function until all

offspring of that generation have been evaluated.

As a result, in real world problems where changes happen at any time, as in design of

EAs within generation, knowing the ability of above methods will help us in

organizing more effective EAs which are not time consuming as well as resources.

 xi

DİNAMİK ORTAMLARDA EVRİMSEL ALGORİTMALAR:
NESİLİÇİ DEĞİŞİMİN YÖNETİMİ

ÖZET

Evrimsel Algoritmalar, evrim teorisinin kavramına dayalı olarak statik ve dinamik

problemleri çözmek adına geliştirilmiş hesaplama yöntemleridir. Evrimsel

Algoritmaların doğadan esinlenen yapısı itibarı ile günümüzdeki değişken

problemlere en çok uyum sağlayan algoritmalardır.

Dinamik problemlere Evrimsel algoritmalar ile çözüm bulabilmek için değişen

ortamın ve değişimin çok detaylı analiz edilmesi gerekmektedir. Yani ortam

değiştikten sonra değişim çeşidine ve probleme bağlı olarak en uygun yol

seçildiğinde Evrimsel Algoritmaların daha etkin bir şekilde çözüm bulunması

sağlanabilir. Günümüzdeki gerçek problemlerde var olan değişimin rastgele olmasına

rağmen, bu alandaki çalışmaların hemen hepsi değişimlerin sistematik bir şekilde,

yani nesiller arası gerçekleştiğini varsayılarak yapılmıştır. Bu varsayım yeterli olmuş

olsa da geliştirilmesi ve araştırılması gereken bir konu olarak karşımıza çıkmaktadır.

Bu tezin asıl amacı ortamın nesil içi değiştiğini varsayarak, aşağıdaki yöntemlerden

hangisinin daha etkin bir yol olduğunu deneysel sonuçlarla kanıtlamak. Bunlar:

- Ortam değiştikten sonra neslin geri kalanını yeni ortama göre hesaplamak ve

yeni bireyleri eski bireylerle değerlendirmek

- Ortam değiştikten sonra neslin yaşamını durdurmak ve bir sonraki nesli eski

nesilden türeterek devam etmek

- Ortam değiştikten sonra neslin şimdiye kadar hesaplanan bireylerini tekrar

yeni ortamda değerlendirmek

- Ortam değiştikten sonra neslin geri kalan bireylerini eski ortama göre

hesaplamaya devam etmek ve değişen ortamı bir sonraki nesle uygulamak

Yukarıda sıralanan yöntemlerin hangisinin daha etkin bir yol olduğunun bilinmesi

gerçek problemler üzerinde, yani değişimin neslin ortasında olduğu durumlarda daha

etkin çalışan, zamandan ve kaynaktan tasarruf eden uygun Evrimsel Algoritma

geliştirmemize yardımcı olacaktır.

1 INTRODUCTION

Since many optimization problems are dynamic and change over time, a suitable

optimization algorithm has to be ready to act on these changes by repeatedly

adapting the solution to the changed environment. Since Evolutionary Algorithms

(EAs) are naturally inspired, they are suitable to be applied to dynamic optimization

problems.

In nature, changes do not occur in an organized way, although almost all researchers’

approach to dynamic changing environment has been in that way. In order to know

how to deal with the problem after a change occurs in a quickly changing

environment, we have to examine these changes as they occur in nature, i.e are

stochastic. Thus it is equivalent to having changes within generations in EAs’ design.

In order to clarify, it is known that EAs are iterative algorithms, so in each

“generation”, a number of new solutions are generated, evaluated, and inserted into

the population. So far previous works on all publications on EAs for dynamic

optimization problems assume that the environment changes between generations.

Although this assumption is convenient, Branke and Wang consider it as an

oversimplification, because of the case that generally the environment is independent

of the EA, and thus can change at any time, i.e. also within a generation [3].

When change happens within generation, the question is whether to reevaluate the

individuals generated before the change in the same generation or continue to

calculate the fitness of the rest of the individuals according to the new environment.

Therefore to have an idea where to direct the search after change has happened we

have to examine the different changes also with different approaches within a

generation. In order to perform an empirical work on above stated idea, the following

proposal was made by Branke in [9]:

- Use the changed fitness function for all subsequent individuals, but keep the

evaluations of the offspring already evaluated

 2

- Temporarily reduce the population size. The generation is terminated, and the

offspring generated so far serve as basis to generate the next.

- Re-evaluate all offspring already generated; ignore the change and continue

to work with the old fitness function to the end of that generation

- Ignore the change and continue to work with the old fitness function until all

offspring of that generation have been evaluated.

The main goal of the thesis is to compare the above four methods in changing

environments. It is believed to be of help to us in organizing our actions when

designing a suitable EA for a problem in changing environments.

The structure of the thesis is as follows:

Chapter 2 gives introductory information about EAs and their main considerations,

application areas as well as their mechanisms. Chapter 3 is mainly about dynamic

EAs and criteria on their design. Also some approaches used in EAs for dynamic

environments are explained briefly. Chapter 4 is about experiments and tools used in

the thesis. Chapter 5 gives the conclusions obtained after the experiments in the

thesis.

 3

2 BACKGROUND INFORMATION

2.1 History

The idea of Evolutionary Algorithms is borrowed from nature by imitating the

natural process of evolution. An ultimate goal of the algorithm is to reach the

optimum decision in a complex problem. As is known, during evolution the most

adapted individuals survive. This leads to the fact that the fitness of a population

increases, allowing it to survive under changing condition.

Since the mid 1960s, a few tools are invented which are inspired by the Darwinian

evolution theory such as: evolutionary programming, genetic programming,

evolution strategies, and genetic algorithms. All of them can be combined under the

term of “Evolutionary Algorithms”. On the first look they can be perceived the same

algorithm because of their similar names, but indeed these names carry quite distinct

meanings to the scientists deeply involved in this area of research. In short, all tools’

basic principle parts are the same such as:

o Working on a population of individuals, each of which is a solution to the

problem.

o Having an iterative, stochastic search process which is based on the goodness

or badness of individuals.

o Undergoing selection, reproduction and replacement, in one generation [8]

2.2 Major Considerations of Using EAs

Successful encoding solutions of a given problem can make Evolutionary Algorithms

useful to nearly everyone. Thus an effective EA representation and meaningful

fitness evaluation are the keys of the success in EA applications. EA applications are

used when traditional ways fail. Failure can be connected with one of the following

reasons: rough dependence of optimized criterion on selected parameters; too big

number of parameters; impossibility to calculate derivatives on parameters. Thus

difference of Eas from traditional methods can be considered as searching from one

 4

population of solutions to another, rather than from individual to individual; using

only objective function information, not derivatives; using probabilistic, not

deterministic transition rules [13].

Moreover, the approach of the EA can be beneficial in that it can handle arbitrary

kinds of constraints and objectives. All constraints and objectives can be handled as

weighted components of the fitness evaluation [see Section 2.4.1.3.], making it easy

to adapt the EA to the particular requirements of possible problems.

2.3 Application Areas of EAs

EAs have been used for problem-solving and for modelling. Moreover, EAs are

applied to many scientific, engineering problems, in business and entertainment,

including:

Optimization

Automatic Programming

Machine and robot learning

Economic models

Immune system models

Ecological models

Population genetics models

Interactions between evolution and learning

Models of social systems [10]

2.4 A Brief Overview of EAs’ Mechanisms

From biology we know, that any organism can be presented by the phenotype which

actually defines the object in the real world, and a genotype which contains the

information about an object. Thus each gene, that is an element of the information of

a genotype, has the reflection in a phenotype. Thus, for the decision of problems it is

necessary to present each attribute of object in the suitable form of genetic algorithm

in order to be able to apply evolutionary operators on them and solve problem in a

desired way [See Section 2.4.1.1].

 5

All further functioning of mechanisms of EAs is made at a level of a genotype and

this causes its wide application in the most different tasks. Each chromosome which

is usually called individual presents a solution to a problem. There should be

satisfactorily many solutions in a search space in order to find the optimum. For that

reason there is a population formed by individuals as in nature. Each individual is

weighted with its fitness value which is definitely its adapting measurement

according environment. Moreover, some better individuals, selected with respect to

their fitness values, after evolutionary operators such as selection, recombination and

mutation are applied, can pass into the next generation as an offspring generation.

Evolutionary operators and fitness values are explained further.

The scheme of an Evolutionary Algorithm which is used in the thesis is given in

Figure 2.1 in a pseudo-code fashion; Figure 2.2 shows a diagram.

BEGIN

 INITIALISE population with random candidate solutions;

 REPEAT UNTIL (TERMINATION CONDITION is satisfied)

 EVALUATE each candidate;

 SELECT parents;

 RECOMBINE pairs of parents;

 MUTATE the resulting offspring;

 CHECK FOR DUPLICATE the offspring

END.

Figure 2.1 : The scheme of an Evolutionary Algorithm in a Pseudo-code Fashion

Figure 2.2 : The scheme of an Evolutionary Algorithm in a Diagram

 6

2.4.1 Main Components of EAs

In order to design a particular EA some of the main components should be

considered and the most important components are:

o Representation (definition of individuals)

o Evaluation function (or fitness function)

o Reproduction (selection mechanism)

o Variation operators, recombination and mutation

o Reinsertion operators

o Duplicate-elimination operators

o Termination

2.4.1.1 Representation

As mentioned above in order to apply EAs to a problem in an effective way,

representation of solutions is important. Chromosomes are basic concepts of EAs and

they consist of genes, as in nature. Therefore in order to computerize EAs we have to

represent each gene usually identified as an allele.

Although binary representation form is widely used, representation for each problem

can vary depending on its requirements when solving real world problems on using

EAs.

The most common representations are:

- Binary representation, where allele Є{0, 1}

- Real-valued representation, where allele Є R

- Integer representations, where allele Є Z

2.4.1.2 Initialization

The first population is commonly formed by randomly generated individuals. Here

each of the genes in each chromosome is generated randomly according to the

representation. For example, assuming representation is binary, an unbiased coin is

tossed for each gene. If it turns up heads the gene’s value is 0 and if it is tails the

value of gene is 1. In this manner, all chromosomes in the first population are

generated. However in some cases a Case-Based initialization is used [1].

 7

2.4.1.3 Fitness Evaluation

Evolution is a process of adaptation and as mentioned above the chromosome is a

coded decision and there is a value of function of suitability which corresponds to

each chromosome thus to each alternative decision. The main goal is to reach the

best chromosomes according to their suitability.

Therefore EAs work not with one chromosome, but instead they work with a

population of chromosomes. It makes search for an effective decision start at once

from several points of a search space. At each iteration of EAs, there is a switching

of an old population to a new generation. Thus some chromosomes pass from an old

population to the new when others die by leaving the population. Thus, it is provided

that, according to the principle of Darwin, the chromosome having a better value of

suitability has more chances "to survive", i.e. to pass to next generation.

For example, let us assume that our problem is maximization of adaptation to the

environment. So there has to be one chromosome representing the environment and

let’s have 3 individuals with length of 6 and our representation is also binary

representation such as:

 Environment chromosome ����010101

 1st Individual ����100100 Fitness Value of 1st Individual is 3

 2nd Individual ����101000 Fitness Value of 1st Individual is 1

 3rd Individual ����101001 Fitness Value of 1st Individual is 2

As expected here we have used a bit matching fitness calculation, thus fitness value

is the number of genes of individual that matches with the genes of environment

chromosome.

Each problem has its own fitness landscape defined by the fitness function over the

search space. So the structure of fitness landscape varies from problem to problem.

2.4.1.4 Reproduction

EA is an iterative process in which individuals all over are selected for crossing and

then crossed. After crossing, a new generation is formed from the offspring and all

begins all over again. Strategy of selection is a main and one of the most important

components of EAs and it defines "worthy" individuals for crossing according to

their fitness value. Below the most widespread strategies are considered such as [21]:

 8

Rank selection: Each individual in the population is assigned a numerical rank based

on fitness, and selection is based on this ranking rather than absolute difference in

fitness.

Roulette-wheel selection: Individuals according to their fitness are replaced on a

circular diagram and roulette is rotated. The individual from the sector where roulette

stops is chosen out for selection. Mathematically, selection probabilities of

individuals are proportional equivalent to their fitness value compared to the fitness

values of their competitors.

Scaling selection: As the average fitness of the population increases, the strength of

the selective pressure also increases and the fitness function becomes more

discriminating.

Tournament selection[11]: Selected t individuals from a population containing N

individuals, and the best one among t individuals enters the group called mating

group in which individuals are used for reproduction. This operation repeats N times.

The size of the group of the individuals selected for tournament is often equal to 2. In

this case tournament size is defined according to t, selected individuals for

tournament. Permutation Selection, used in this thesis, is a kind of a tournament

selection where all individuals in the population are paired according to a randomly

generated permutation, so it is a pairing of set of individuals where each pair appears

exactly once.

2.4.1.5 Variation Operators

Variation operators are necessary to apply principles of heredity and variability to a

population used in EAs. Thus described operators are not necessarily applied to all

crossed individuals which brings an additional element of uncertainty to the search

process for the optimum. In this case, uncertainty does not mean a negative factor,

and can be defined as “a degree of freedom" of EAs [20]. There are two types of

variation methods such as: recombination and mutation.

2.4.1.5.1 Recombination

The recombination, also named as crossover, is the basic genetic operator making the

exchange of genetic material between individuals, called parents in order to

reproduce offspring. Recombination is a stochastic operator, thus the choice of what

parts of each parent are combined depends on random drawings. Thus the random

 9

number defines a point inside of a chromosome in which both chromosomes

(parents) exchange that part of chromosomes. This point is called a crossover point

or cut-point. There are many variants of crossover which vary in the number of cut-

points such as: One-point, two points and uniform crossover [19]. The situation

mentioned above is illustrated in Figure 2.3.

Figure 2.3 : One Point Crossover

2.4.1.5.2 Mutation

The mutation operator is necessary to drive a population away from a local

extremum. Moreover, it promotes protection against premature convergence and loss

of important notions. Most genetic algorithm research has used mutation as a tool for

recovering desirable genes that have been accidentally deleted from population [13].

These are obtained by inverting casually chosen bits in a chromosome, as shown on

Figure 1.4. Note that although for simple string encoded EAs, low mutation rates are

sufficient, it is known that an efficient way of coping with low coverage is to use

higher mutation rates [12].

Figure 2.4 : Binary mutation

 10

2.4.1.6 Reinsertion

There are some reinsertion approaches applied by researchers for different purposes.

Thus purposes can be compensating size of population between generations.

Sometimes algorithms produce more or less offspring from the parents than the

population size. Therefore elimination of extra individuals or addition of new ones is

needed in order to keep population size constant. In addition to these, some

algorithms such as Random Immigrants [16] use this operator for “preserving the

diversity” by reinserting new randomly generated individuals into the population.

Moreover, elitist principle can be applied by reinsertion method. The essence of this

principle is that the best parental individuals join the new generation. Their count can

be 1 and more. However carefully designed application of this principle is needed

because of the following reason: while it prevents losing the good intermediate

solution, the algorithm can get stuck in a local optimum.

2.4.1.7 Duplicate-Elimination

The main goal of this operator is to prevent duplication of individuals. Some

algorithms use this operator in order to preserve diversity but it has an additional

cost, therefore should be considered well before using. Moreover, continual usage

will slow down the algorithm and can be time consuming for real world problems.

2.4.1.8 Termination Condition

The loop of a genetic algorithm proceeds until the pre determined condition of its

termination is reached. For example, if the problem has a known optimal fitness

level, if one or several individuals’ fitness values reach this desired optimum, this

can be used as a termination condition. Stochastic iterative characteristic of EAs

usually make algorithms work forever because it can not guarantee to reach the

optimum level of fitness value. Therefore there are commonly used methods to stop

the algorithm such as: the maximum allowed CPU time is elapsed; the total number

of fitness evaluations reaches a given limit; for a given period of time the fitness

improvement remains under pre-determined value; the population diversity drops

under a given threshold [2].

 11

3 DYNAMIC ENVIRONMENTS

Since the EAs are inspired from nature where continuous changes are indispensable,

dynamic real world problems are attempted to solve by using suitable dynamic EAs.

However, the decision of solving dynamic real world problems requires us to

consider many uncertainties. So the sources of uncertainty are:

- Noise

- Robustness

- Fitness Approximation

- Time Varying fitness function

3.1 Noise

Due to the sensory measurement errors or randomized simulations, fitness

evaluations are subjected to noise. When conditions change within the environment,

fitness of a solution can change abruptly or gradually. If each fitness is evaluated in a

finite period of time, the fitness of other solutions can change while one solution is

being evaluated. This unpredictable change causes to uncertainty in the current

fitness of the solutions [14].

3.2 Robustness

The design variables can change after the optimal solution has been determined.

Therefore, despite of slightly change in design variables a common requirement is

that a solution should still work satisfactorily. Such solutions are called robust

solutions [3]. Robustness and Noise looks like as if the approach of EAs to them is

the same, but they have a difference, since noise acts on the fitness function while

robustness is due to perturbances in the design variables. To clarify, when noise

affects appear it cannot guarantee the same value for the same individual in

consecutive evaluations. However, in robustness even though the fitness function is

the same, solution can change after optimization.

 12

3.3 Fitness Approximation

Fitness approximations are used usually when the fitness function is too expensive to

evaluate or when an analytical fitness function is not available. It is the case when

fitness functions generated from collected data or from simulations are used.

3.4 Time Varying Fitness Function

In the general case of an open system, fitness function is not a time invariant

function, since it is controlled by an evolutionary mechanism. The fitness function is

in this case a measure of the goodness of the response of the system to environment

events. As in the real life examples, which is a quiet dynamic environment where

everything is in flux. Interest rates change, the weather conditions vary everyday,

exchange rates are different each day, etc. So as in EAs given individual may change

its fitness as time goes on and the environment changes. Optimal solutions at a given

time can become bad solution.

Change in the environment occurs through:

- change in the objective function

- change in the constraints

- change in the problem instance

Above stated matters usually causes optimum to change and forces adaptation of the

old solution. There are possible approaches such as

- Treat as a new solution after change and the problem with it is that change

may not be detected immediately or new solution may not be too different

from the old one so starting as if a new solution may be too time consuming.

- The optimization continuously adapts to the change

Although there are a lot of meta-heuristic search methods which are used with

dynamic environments, EAs seem to be a suitable candidate because they have been

inspired from natural evolution where there is a continuous adaptation process.

However, then the main problem with standard EAs while handling dynamic

Environments as an optimizer, are that EAs eventually converge to an optimum and

thereby loose their diversity. Keeping diversity in a population is necessary for

efficiently exploring the search space and their ability to adapt to a change in the

environment when change occurs[7].

 13

As mentioned about changes, ignoring the noise that effects the fitness function,

there are different dynamic environments which require different optimization

approaches. Therefore all criteria of changes in dynamic environments should be

known in order to characterize that one algorithm is better than the other to apply for

a problem. In works [4] and [5], dynamic environments are grouped with respect to

some criteria given below.

3.5 Criteria for Dynamic Environments

Frequency of change defines the average number of generations (EA time) passed

for one environment. Frequent changes make it harder to find the optimum than

infrequent changes, because fast adaptation to the environment after a change is more

difficult in case of frequent changes. Some algorithms’ performance can get better

than others as the EA time passes. Therefore, frequency of change will be one of the

most important criteria of which algorithm to choose.

Severity of change accounts for the magnitude of changes by comparing the

landscape before and after the change. This is also an important criterion in choosing

or designing the algorithms. If change severity is low, EAs’ first population after

change is not so different from the last population before change.

Predictability of change defines if the next change can be predicted. In some

dynamic problems, it is quite possible that environment changes follow a

recognizable pattern. If this is the case, EA evolves accordingly and will be ready for

the next change. Predictability divided roughly into three classes in [6]: 1) highly or

completely predictable changes such as translatory and cyclic movements induced by

analytic coordinate transformations, 2) completely unpredictable changes such as

those depending on realizations of random variables and 3) chaotic changes. Also in

above stated research interdependencies between severity, change frequency and

predictability of the changes are analyzed and their experiments carried out that the

main influence is severity. For more information refer to [6], [7].

Cycle length / accuracy defines the average EA time to encounter a previously seen

environment or close to that environment and the similarity between these

environments respectively.

 14

3.6 Approaches in EAs

As stated above EAs are more suitable as an optimizer in dynamic environments,

therefore it is time to have a look at its approaches in it. These approaches’ aim is

have better solution. These approaches are

- Restart

- Generate diversity after a change

- Maintain diversity through the run

- Memory based approaches

- Multipopulation approaches

3.6.1 Restart

Population is re-initialized randomly after a change and no information is transferred

from the previous instance. This method is not recommended in most cases because

it is useless if the new solution is close to the old. Some individuals may be

transferred to the new population. The amount of information transferred is

important, thus if it is too much may lead to convergence, also too little may slow

down the search. So knowledge base of individuals that perform well are kept,

indexed with a measure of their environment. When change occurs, population is

initialized using individuals that have performed well under similar conditions. In

order to perform this kind of task it must be possible to measure environment

similarities.

3.6.2 Generate Diversity After a Change

As stated above, one of the problems with standard EAs was losing the diversity

while searching for an optimum in the environment. Also we know that in EAs the

mutation operator is for generating new different individuals throughout the run.

Usually mutation rate is small in order to not spread away from the optimum.

Therefore adapting mutation rate explicitly after change can help as to spread out the

individuals to find the new optimum. As a result of experiments it is seen that higher

mutation rate helps the converged population to spread out and search. However

method of adaptation of mutation rate can be grouped in two groups, depending on

its application on individuals throughout the run, such as:

 15

- (triggered) Hypermutation as proposed by Cobb [29] whenever change occurs

in the environment, mutation rate is increased drastically for some number of

generations.

- Variable local search is variant of Hypermutation method, has been suggested

by Vavak et al. [30] after change occurs, range of mutation is increased

slowly. If population fitness does not improve, the range of the local search is

extended by increasing the mutation rate more till the population fitness

improves. Experiments done show that this method performs best with very

small changes.

3.6.3 Maintain Diversity Throughout The Run

There are several works done on maintaining diversity through the run as stated in

[5]:

Random immigrants was introduced by Grefenstette [16] where in every generation

population is partly replaced by random new individuals. Thus this preserves

diversity in population through the process.

Sharing/crowding an effect of genotypic and phenotypic sharing on the EA’s ability

to track moving optima was examined by Andersen [18]. This method tries to spread

out the population over multiple peaks, it should keep the diversity. Experiments

done related to this method concluded that the sharing method remarkably enhances

the EA’s ability to find optima in slowly changing environments.

Thermodynamical genetic algorithm (TDGA) which was proposed by Mori et al. [31]

is to control diversity in the population explicitly through a measure named "free

energy". For a minimization problem, this term is calculated as F=<E>-TH where

<E> is the average population fitness TH is the measure of diversity in the

population. New population selected from the parents and offspring one by one based

on trying to minimize F <t. T is a temperature parameter set to change the

importance of diversity over time.

As a result of examining overall the studies on maintaining diversity through the run

the optimization process results of tests performed show: If change has low severity

triggered hypermutation performs better, however in cases of higher severity

changes, random immigrants perform better.

 16

3.6.4 Memory-Based approaches

EA is supplied with memory to remember useful information from past generations.

It is quite useful when the optimum returns to previous locations. There are two main

groups of providing memory: implicit memory and explicit memory approaches. For

more information refer to [5].

3.6.5 Multipopulation approaches

In the multipopulation approach, the main idea is dividing the population into sub-

populations which are searching for peaks in their own space at the same time. The

goal of different subpopulations is maintaining information about promising regions

of the search space. There are some example approaches such as:

- self-organizing scouts

- a multinational GA

- shifting balance GA

- sentinels

3.6.5.1 Self Organizing Scouts

The main idea is when x peaks are found, the population is split into x small fractions

called the "scout population" which watches over the peak and the rest of the

population called the "base population" spreads out and continues search for new

peaks overtime. When a watched peak moves, scout population follow peak by

demanding reinforcement from base population. In order to supply the request of

reinforcement for scout population when population size is limited, individuals are

redistributed to sub-populations where they are most needed. Thus unpromising

regions may be abandoned by reporting successful results. For more information

refer to [5].

3.6.5.2 Shifting Balance GA

The main aim is to increase exploratory power. Population is divided into a core and

a number of small colony populations. The core population exploits the best optimum

found, and the colony populations are forced to search in other parts of landscape. If

a colony gets close to the core population, it is driven away using a distance measure

at intervals. It shows good performance only with small changes in the environment.

 17

3.6.5.3 Multinational GA

The main idea is grouping of individuals based on hill-valley detection procedure for

two points in the search space. Defining borders of the subpopulation requires many

extra fitness evaluations to detect valleys. Results reported on two peak

environments are shown to be better than sharing method.

3.6.5.4 Sentinels

Sentinels are population members distributed uniformly on the search space where

they are treated as regular members used for selection and crossover. They are never

replaced when the population converges around a peak and the environment changes,

other sentinels are selected for reproduction. Main aim is to have a uniform

distribution of individuals on the search space. There are many successful methods

existing in literature and successful results are reported.

3.7 Suitable Benchmark Problems

Branke stated in his work [5] that optimization in dynamic environments seems to

require two fundamental capabilities:

- Tracking of a solution that changes slightly

- Jumping from an old solution to a quite distant new optimum that appeared

elsewhere.

Thus it should be possible to vary many of the environmental variables such as peak

heights, peak shapes, peak locations. It should also provide benchmarking for binary

and real valued encodings while it should be possible to vary change dynamics,

change frequency and change severity, it should be simple to implement, it should be

simple to analyze and it should allow conjectures to real world problems. The

Moving Peaks Benchmark introduced by Branke in [27,28] tries to provide the

above aspects. There are several kinds of commonly used Benchmark problems such

as:

- Dynamic Multiple Knapsack Problem

- Dynamic Bit-Matching Problem (will be introduced in [Section 4.1.1])

- Dynamic Simple Knapsack Problem (will be introduced in [Section 4.1.2])

 18

3.8 Measuring Performance

There are some criteria taken for account by many researchers while evaluating the

results of algorithms in changing environments, such as intuitive meaning,

straightforward methods for statistical significance testing of comparative results,

and measurement of performance over a sufficiently large exposure to landscape

dynamics

Some of the mostly used performance measures for dynamic environments are online

performance, offline performance, offline error and best fitness values.

3.8.1 Online Performance

Online Performance at EA time T is defined as the average fitness of all evaluations

over entire run and every evaluation requires testing the real world.

3.8.2 Offline Performance

Offline performance at EA time is defined as the average fitness of all best

individuals found so far and optimization is done in a simulated environment and

only best solutions are transferred to real world

For non-stationary environments, offline performance should only consider

individuals evaluated since the last change. Also offline performance requires that

the changes are detected or known.

3.8.3 Offline Error

 Offline Error at EA time T is defined as the average of current errors, i.e. the

difference between the current optimum and the current best fitness, over the entire

run. This performance is applicable only if the researchers know the optima of all

environments encountered.

{ }tt eeee ,...,,max 1

'

+
= ττ

 is the last step at which change occurred (3.1)

 ∑
=

=
T

t

te
T 1

'* 1
ε (3.2)

3.8.4 Best Fitness Performance

Best Fitness Performance at EA time is defined as the set of best fitness values found

in each environment encountered up to that time.

Where *ε is the offline error

performance and T is the number of

evaluations considered.

 19

3.9 Theories on EAs

Most of the work done on dynamic environments was of practical nature, however in

the recent time, researchers try to look at the problem from a theoretical point of

view. To summarize there are some approaches done overall:

A first approach can be found in [23], where equations for the transition probabilities

of a (1+1) EA on the dynamic bit matching problem was stated.

Droste [24] looks at the first hitting time (the expected time to hit the optimum for

the first time) for a (1+1) evolution strategy on the dynamic bit matching problem.

The polynomial , where exactly 1 bit is changed with a given probability

defined by p.

A formula predicting the tracking distance of the population from the target is

derived by Arnold and Beyer [26]

Finally Branke and Wang [3] also consider the dynamic bit matching problem, and

analytically compare different strategies to deal with an environmental change within

generation based on similar methods, as in [23]. In their work firstly, two

reproduction methods of (1,2) and (1+1) on an Environment Changing between

Generations are compared and results are derived which are supported by some

empirical tests. As a conclusion derived from the results, it is seen that it would be

beneficial to use (1,2) at the beginning then switch to (1+1) at the end of run. As for

work on environmental change within generations, they have compared two

statements such as:

- Evaluating two individuals with the respective current fitness function

- Delaying the change and use the old fitness function for the second individual

As an illustration of above statements refer to the Figure below:

Figure 3.1 : Illustrative example for situation in EAs before and after change

)
log

(
n

n
Op ∈

 20

If algorithm will behave according to the first statement individual x1will be selected:

Figure 3.2 : Illustrative Example for Selection According to 1
st
 Statement

On the other hand, according to second statement x2 will be selected, where it has a

less fitness value in new environment:

Figure 3.3 : Illustrative Example for Selection According to 2
nd

 Statement

An empirical test with (1,2) reproduction scheme on bit-matching problem was done.

The conclusion derived from the result was that according to the severity of the

problem, one or the other can be preferred. Thus, for instance if the severity of the

environment change is stated as d, ordering from best to worst approaches according

to the research results can be summarized in the following way:

d=1 with new individual is best, d=1 with old fitness is next, d=2 with old fitness is

in third place, d=2 with new fitness following them, d=3 with old fitness is next

before last and d=3 with new fitness is the last in performance.

Above stated theory served an inspiration and basis to our thesis. In order to have

any idea where to direct the search after change has happened within generation we

have to examine the following approaches proposed by Branke in [9]:

 21

1. Use the changed fitness function for all subsequent individuals, but keep the

evaluations of the offspring already evaluated

2. Temporarily reduce the population size. The generation is terminated, and the

offspring generated so far serve as basis to generate the next.

3. Re-evaluate all offspring already generated; ignore the change and continue

to work with the old fitness function to the end of that generation

4. Ignore the change and continue to work with the old fitness function until all

offspring of that generation have been evaluated.

Thus the consecutive section is about the experiments performed in order to compare

the four methods stated above.

 22

4 EXPERIMENTS

4.1 Used Tools

Experiments on two benchmarks are performed. While one of them compares four

methods on the Bit-Matching Problem (BMP), a unimodal problem, the other

compares them on the Single Knapsack Problem (SKP). For both of the experiments

the Generational Reproduction Method of EAs is used.

4.1.1 Bit-Matching Problem

In the BMP, the environment is defined as a string and the fitness of each individual

is calculated as the sum of the bits matching the environment string. Environment

change is applied on the string with a predefined rate by complementing some of the

bits. For example if severity of change is 0.05, at least randomly selected 5 bits in

string the are complemented.

4.1.2 Single Knapsack Problem

The Single Knapsack Problem (SKP) is defined as:

Maximize∑
∈

…=
Jj

jj xP J1,j here w* (4.1)

subject to

is)it if 1 included,not is item if 0 to(equal VariableDecision : x

 item,j ofprofit :P

 , itemj ofn consumptio resource : w

 capacity, : C

 , J1,j here w*

 j

th

 j

th

 j

…=≤∑
∈Jj

jj Cxw

In the SKP, the environment consists of profits, weights and capacity. Also its usage

as a penalty based Single Knapsack Problem, where each individual’s fitness is

defined as

Penalty(x)-f F ii = (4.3)

 (4.2)

 23

0)(=xpenalty if x is feasible,

0)(>xpenalty if x is unfeasible (4.4)

where f and Penalty is defined as follows [32]:

 nJJjiwherexPf ij

Jj

ji ,....1,,)*(=∈=∑
∈

 () { }IiixCV
w

P
Penalty ∈






 +

=),(max*
1

min

max

 { } nJJjPP j ,...,1,maxmax =∈=

{ } nJJjww j ,...,1,minmin =∈=











−= ∑

∈Jj

jj cxwixCV *,0max),((4.5)

Where 0>jw , maxp is the maximum profit, minw is the minimum resource

consumption,),(ixCV is the maximum constraint violation, n is the number of

items and
ijx is the j

th
gene of i

th
 individual in the EA population.

The initial knapsack instances is generated by using David Pisinger's knapsack

generator codes in [33]. The generated sample knapsack has 100 items and profits

and weights take on values between 0 and 1000. The profit and weight values are

highly correlated. The original knapsack generated by the generator had a very low

tightness ratio so the capacity value was manually changed in order to have a

tightness ratio of 0.75, which makes the initial problem fairly easy.

Following values are used in running the knapsack instance generator given in

“generator.c” [33]:

c=generator.c, n=100, r=1000, type=3, i=1, S=1000, where

C : name of the generator’s code

N : number of items

R : range of coefficients

Type : 1=uncorrelated, 2=weakly correlated, 3=strongly correlated, 4=inverse

strongly correlated, 5=almost strongly correlated, 6=subset-sum,

7=even-odd subset-sum, 8=even-odd knapsack, 9=uncorrelated similar

weights, 11=Avis subset-sum, 12=Avis knapsack, 13=collapsing KP,

14=bounded strongly corr, 15=No small weights

 24

I : instance no

S : number of tests in series (typically 1000)

Change of the environment in the SKP, is achieved through changing the profits,

weights and capacity according to predefined Upper and Lower bound. The dynamic

multi-dimensional knapsack problem generation method given in [22] is modified to

be applied to the SKP, as explained below. The initial values for the environment are

defined at the beginning of the run according to the formula:

Lower bound of pj=pj*(0.8) for each profit

Upper bound of pj=pj*(1.2)

Lower bound of wj=wj*(0.8) for each weight

Upper bound of wj=wj*(1.2)

Lower bound of c=c*(0.8) for capacity

Upper bound of c=c*(1.2) (4.6)

At each change instance, each of the profits, weights and capacities are changed

according to the following statement:

pj=pj*(1+N(0,0.05))

wj=wj*(1+N(0,0.05))

c=c*(1+N(0,0.05)) (4.7)

where N(0,0.05) is the random number from the Gaussian distribution with mean=0,

and standard deviation=0.05

For more information related to penalty based fitness calculation and towards the

analysis of Multiple Knapsack Problem refer to [22]

4.1.3 Generational Reproduction Method

The offspring of the individuals selected from each generation become the entire

next generation. No individuals are retained between generations.

4.1.4 Time for Change of Environment

In our experiment, three kinds of periods are tested for change over the entire run, i.e.

the beginning, in the middle, and at the early end of the run. To clarify, if time of

 25

change is defined by x, the value of x for the change at the beginning of run is 3,

x=10 for medium change, and x=25 for the change at the end of run.

Moreover, different stages in the generation are defined as an offset, which shows at

which individual’s evaluation the environment has been changed. In our experiments

this value is defined as 50, in order to have the environment changed at the middle of

generation where 100 individuals exist in the population.

To sum up, for example if x=3, and offset=50 with a population which has size of

100, change happens at (x * population_size + offset) = 350th evaluation.

In our experiments, basically, four methods in previously stated proposal are

compared. The main goal of the experiment is to see how to manage when change

happens within a generation. First we have compared four methods with x=3,x=10

and x=25. The main aim is to see how the methods manage change which happens at

early stage, at the medium stage and at the end. The results are shown in plots as well

as in tables.

In order to compare four methods in equal time period giving them an equal chance

for recovering, values of offline error at Z evaluations after change are compared,

where Z is defined as Z=z*population_size, (in our work z=3).

In each case, 1000 runs are performed and the average of these runs are plotted. Also

standard error, which is equal to [(Standard Deviation)/(sqrt (number of runs))] is

calculated in order to look at intervals of calculated standard error and see

differences in a numerical way.

4.2 Experiment on Bit-Matching Problem

4.2.1 Details of Experiment

Representation: Binary representation

Fitness Evaluation: Fitness evaluated according to Bit-Matching Problem

Selection: Permutational Selection

Crossover: Uniform crossover of rate 0.8

Mutation: Mutation rate of 0.01 is applied

Duplicate-Elimination: For each randomly generated individual at the beginning of

population, same individuals are not allowed, as well as for offspring.

 26

Elitizm: Elitist individual of previous generation which are different from currently

generated offspring are allowed to join them.

Change Severity: Environment change of 0.1 severity means at most randomly

selected 10 bits are flipped when change happens.

Performance Measurement: Offline Error, Best Fitness

4.2.2 Results of Experiment w.r.t. Offline Error Performance

Table 4.1 shows offline errors at Z evaluations after change as well as the offline

errors at 4000
th

 evaluations. Moreover Table 4.1 shows the Standard Error at Z

evaluations after change and calculated intervals according to Standard Error is given

in Table 4.2. As mentioned above, in order to compare four methods by giving to

them equal time to recover after change, we have to look at their offline errors at Z

evaluations after change. The important point here is that the offline error is

calculated in two different ways such as: 1) it is calculated only after the change has

happened in order to see the difference of the methods significantly 2) it is calculated

from the beginning in order to see the overall performance of the methods.

Thus, in 1
st
 type of calculation ordering of the methods from best to worst according

to the values of each method at Z evaluations after change is as follows:

for period 3: 2, 1, 4, 3

for period 10: 2, 1, 4, 3

for period 25: 2, 4, 3, 1

In 2
nd

 type of calculation ordering of the methods from best to worst according to the

values of each method Z evaluations after change is as follows:

for period 3 : 2, 1, 4, 3

for period 10 : 1, 2, 3, 4

for period 25 : 1, 3, 2, 4

1st Method: Unexpected good performance of 1
st
 Method where fitness values

according to old environment compete with the fitness values according to new

environment could be because the changes are not very severe and the landscape is

unimodal. Possibly even though the fitness values of the individuals change, ordering

of individuals could be staying more or less the same. In order to support this idea

pair wise ordering of individuals according to their fitness before and after the

change can be examined. Refer to Test 1 performed in Section 4.2.4.

 27

2nd Method: Although performance of method 2 is best in first calculation type, it

decreases in overall period with larger period of change. It can be explained possibly

as there is more time for the EA, it gets more converged around a local optimum.

Then not having enough time with decreased size of the population, there is not

sufficient diversity to find optimum. In order to support this idea Test 2, where

average hamming distance of reduced population is calculated at different periods of

change time in order to have a look at diversity in periods, has been performed in

Section 4.2.4.

3rd Method: The bad performance of method 3 in smaller periods or in quick change

could be because of the fact that it spends some of its time for reevaluating and has

less time for trying to find the new optimum. This idea is supported by the increasing

performance with respect to increasing period. For example, for the period of 25,

method 3 also gets better because at this moment it also gets some time to look for

the new optimum. Moreover from Table 4.2 and illustrated graphs shown on Figure

4.4, Figure 4.5 and Figure 4.6 it can be said that 1
st
 and 3

rd
 Methods’ behaviors are

similar.

4th Method: Performance of the 4
th

 Method is better than 3
rd

 Method in the 1
st
 type

of evaluation. Indeed it seems to be better than the 3
rd

 Method because of the method

of calculation of offline error. In the 4
th

 Method after change has happens, offline

error is calculated according to the new environment while algorithm itself continues

with the old environment by ignoring the change. This idea can be shown by

comparing methods according to their Best Fitness Performance [Section 4.2.3]. In

the 2
nd

 type of calculation where overall offline error is calculated 4
th

 Method is the

worst. Possible reasons can be that it ignores the change and in its time given to

converge, it continues to converge around the wrong peak. Thus since even more

diversity is lost, it takes longer to move to the new peak. In order to support this idea

Test 3 is performed in Section 4.2.4.

Figure 4.1, Figure 4.2 and Figure 4.3 illustrate the performance w.r.t. Offline Errors

after change.

2
8

T
able 4.1 : B

M
P

 w
ith

 O
fflin

e E
rro

r

B
it M

atch
in

g
 P

ro
b
lem

O
fflin

e E
rro

r P
erfo

rm
an

ce

M
eth

o
d

s
I

II
III

IV

P
erio

d
s F

o
r

C
h
an

g
e

3

10

25

3

10

25

3

10

25

3

10

25

C
h
an

g
e

H
ap

p
en

ed
 at

G
iv

en
 F

itn
ess

E
v
alu

atio
n

350

1050

2550

350

1050

2550

350

1050

2550

400

1100

2600

C
h
an

g
e T

im
e +

Z

650

1350

2850

650

1350

2850

650

1350

2850

650

1350

2850

V
alu

e at Z
th

E
v

alu
atio

n
 after

ch
an

g
e

31.202

22.008

11.614

30.308

21.202

11.216

31.967

22.220

11.604

31.374

22.097

11.553

V
alu

e at 4
0

0
0

th

E
v
alu

atio
n

10.703

8.639

7.838

10.557

8.477

7.547

11.078

8.720

7.721

10.809

8.702

7.757

S
td

. E
rro

r o
f

1
0
0
0

 R
u
n
s at

4
0
0

0
th

ev
alu

atio
n

s

0.0243

0.0294

0.0264

0.0589

0.0291

0.0286

0.0257

0.0289

0.0279

0.0252

0.0266

0.0269

S
td

. E
rro

r o
f

1
0
0
0
 R

u
n

s at Z
th

ev
alu

atio
n
s after

ch
an

g
e

0.0507

0.0496

0.0361

0.0283

0.0583

0.0363

0.0581

0.0544

0.0358

0.0492

0.0490

0.0347

O
rd

erin
g

acco
rd

in
g
 to

v
alu

e at Z
th

ev
alu

atio
n
s after

ch
an

g
e

2
2

4
1

1
1

4
4

3
3

3
2

 29

Figure 4.1 : Methods for Period 3 on BMP w.r.t. Offline Error Performance

Figure 4.2 : Methods for Period 10 on BMP w.r.t. Offline Error Performance

 30

Figure 4.3 : Methods for Period 25 on BMP w.r.t. Offline Error Performance

Table 4.2 : Intervals of Methods at z Evaluations w.r.t. Offline Error Performance

 For period 3 For period 10 For period 25

Method 2 [30.280;30.336] [21.144;21.260] [11.180;11.252]

Method 1 [31.151;31.252] [21.958;22.048] [11.578;11.650]

Method 4 [31.325;31.423] [22.048;22.146] [11.518;11.587]

Method 3 [31.990;32.025] [22.166;22.274] [11.568;11.640]

 31

Figure 4.4 : Intervals for Period 3 on BMP w.r.t. Offline Error Performance

Figure 4.5 : Intervals for Period 10 on BMP w.r.t. Offline Error Performance

 32

Figure 4.6 : Intervals for Period 25 on BMP w.r.t. Offline Error Performance

4.2.3 Results of Experiment w.r.t. Best Fitness

Table 4.3 shows Best Fitness overall at Z evaluations after change as well as the Best

Fitness at 4000
th

 evaluations. As in above experiment, the Standard Error at Z

evaluations after change is given in Table 4.3 and calculated intervals according to

Standard Error is given in Table 4.4.

Ordering of the methods from best to worst according to the values of each method

on Z evaluations after change is as follows:

for period 3 : 2, 1, 4, 3

for period 10 : 1, 2, 3, 4

for period 25 : 1, 3, 2, 4

Here the ordering is same as the offline error calculated overall. It means that

performance of methods overall is same with the first experiment where offline error

is calculated.

1
st
 Method: As in the previous experiment, we have seen that after change although

1
st
 Method’s performance is slightly decreasing it is still best according to other

methods.

 33

2
nd

 Method: In this experiment, it is significantly seen that 2
nd

 Method’s performance

is decreasing with larger periods of change time. We can also say that 2
nd

 Method’s

decreasing performance is much bigger than the 1
st
 Method’s.

3
rd

 Method: The result clearly shows that 3
rd

 Method is having better performance

with increasing period of change time. Moreover this experiment have been

performed again with BMP but this time w.r.t. Best Fitness Performance in order to

show the related performance of 3
rd

 and 4
th

 Methods. As a result we can see that 4
th

Method is in fact worse than 3
rd

 Method, actually it is the worst one.

Figure 4.1, Figure 4.2 and Figure 4.3 illustrate the performance w.r.t. Best Fitness

overall. In graphs it is important that 4
th

 Method taking the change of environment

into account after a half generation passed.

3
4

T
able 4.3 : B

M
P

 w
ith

 B
est F

itn
ess

B
it M

atch
in

g
 P

ro
b
lem

B
est F

itn
ess P

erfo
rm

an
ce

M
eth

o
d

I
II

III
IV

P
erio

d
s F

o
r

C
h
an

g
e

3

10

25

3

10

25

3

10

25

3

10

25

C
h
an

g
e

H
ap

p
en

ed
 at

G
iv

en
 F

itn
ess

E
v
alu

atio
n

350

1050

2550

350

1050

2550

350

1050

2550

400

1100

2600

C
h
an

g
e T

im
e +

Z

650

1350

2850

650

1350

2850

650

1350

2850

650

1350

2850

V
alu

e at Z
th

E
v

alu
atio

n
 after

ch
an

g
e

72.238

81.401

95.268

72.603

80.923

89.963

71.404

80.921

95.154

72.038

80.539

89.714

V
alu

e at 4
0

0
0

th

E
v
alu

atio
n

99.707

99.286

96.477

99.700

99.293

96.334

99.637

99.300

96.483

99.676

99.291

96.198

S
td

. E
rro

r o
f

1
0
0
0

 R
u
n
s at

4
0
0

0
th

ev
alu

atio
n

s

0.0151

0.0185

0.0298

0.0148

0.0192

0.0319

0.0154

0.0189

0.0302

0.0154

0.0187

0.0312

S
td

. E
rro

r o
f

1
0
0
0
 R

u
n

s at Z
th

ev
alu

atio
n
s after

ch
an

g
e

0.0672

0.0559

0.0384

0.0659

0.0626

0.0381

0.0619

0.0556

0.0391

0.0635

0.0573

0.0383
O

rd
erin

g

acco
rd

in
g
 to

v
alu

e at Z
th

ev
alu

atio
n
s after

ch
an

g
e

2
1

1
1

2
3

4
3

2
3

4
4

 35

Figure 4-7 : Methods for Period 3 on BMP w.r.t. Best Fitness Performance

Figure 4.8 : Methods for Period 10 on BMP w.r.t. Best Fitness Performance

 36

Figure 4.9 : Methods for Period 25 on BMP w.r.t. Best Fitness Performance

Table 4.4 : Intervals of Methods at z Evaluations

For period 3 For period 10 For period 25

Method 2 [72.564;72.696] [80.860;80.986] [89.925;90.001]

Method 1 [72.171;72.305] [81.345;81.457] [95.230;95.306]

Method 4 [71.975;72.102] [80.482;80.596] [89.676;89.752]

Method 3 [71.342;71.466] [80.865;80.977] [95.115;95.193]

 37

Figure 4.10 : Intervals for Period 3 on BMP w.r.t. Best Fitness Performance

Figure 4.11 : Intervals for Period 10 on BMP w.r.t. Best Fitness Performance

 38

Figure 4.12 : Intervals for Period 25 on BMP w.r.t. Best Fitness Performance

4.2.4 Tests Performed According to Results of Experiment on Bit-Matching

Problem

Test 1: The aim of this test is to detect the severity of change or in other words to

have a look at the similarity of environments before and after the change.

- All individuals in the population (half with old fitness, half with new

fitness) at the generation where change has happened are ordered - it is the

first string

- First half of population was re-evaluated according to the new environment

and all individuals in the population are ordered-it is the second string. As an

ordering algorithm Bubble Sort Algorithm has been used in order to not

change the related order of individuals with the same fitness value.

- Pair wise "better" relationships between all individual pairs in both strings are

compared. The number of differences (worst case is n*(n-1)/2 where n is the

number of individuals. It is equal to 4990 in our experiment) is calculated.

 39

Illustration of Test 1is as follows, where xi, i є{1…6} is for individuals and current

time is defined as t so that fitness function at the current time is defined as ft, the time

after change has happened is defined as t+1, also fitness function at that time is

defined as ft+1.

Figure 4.13 : Illustration of Test 1

Results:

for period 3: 715.7 different out of 4990

for period 10: 1067.0 different out of 4990

for period 25: 1560.5 different out of 4990

As it can be seen that similarity of environments before and after the change is

decreasing as the period of change time is increasing. Therefore this result has

proved our assumption about 1
st
 Method. Thus, as the period of change time is

decreasing, the poopulation has time to converge and for that reason severity of

change is larger than in small periods. Similarly in small periods of change time, the

population is distributed and is not huddled around the optimum, change severity is

small and orderings of individuals do not change roughly.

 40

Test 2: The aim of this test is to explain the claim of the experiments as to why the

2
nd

 Method looses its performance with the increasing period of change time by

calculating the average hamming distances of the half population before change.

Illustration of Test 2 is as follows, where where xi, i є{1…6} is for individuals:

Figure 4.14 : Illustration of Test 2

Results:

for period 3: 23.309

for period 10: 18.060

for period 25: 8.282

As seen in the results above, the average hamming distance of the half population

before change is decreasing as the period for change time is increasing. Therefore,

the result supports the assumption about 2
nd

 Method. Thus 2
nd

 Method has worse

performance the increasing period of change time because of the decreasing diversity

of the population.

Test 3: The aim of the test is to show that 4
th

 Method is losing its diversity by

continuing to converge around the wrong peak. In order to show this, average

hamming distance of the half population, which is AVR1, before change is

calculated and compared with the average hamming distance of all the population in

that generation which is AVR2.

Illustration of Test 3 is as follows, where xi, i є{1…6} is for individuals and current

time is defined as t so that fitness function at the current time is defined as ft. Since

Test 3 is applied for 4
th

 Method, fitness function is same after change until the end of

current generation:

 41

Figure 4.15 : Illustration of Test 3

Results:

for period 3: AVR1=22.829; AVR2= 23.308

for period 10: AVR1=17.713; AVR2= 18.101

for period 25: AVR1=8.165; AVR2= 8.342

It can be seen from the results that the diversity of population before change and the

diversity of population after change are nearly same. To say in a different way their

difference is decreasing as the period of change is increasing. Thus it supports the

idea about 4
th

 Method that since it ignores the change, in its time given to converge it

continues to converge around the wrong peak. Thus even more diversity is lost, it

takes longer to move to the new peak.

Test 4: The aim of the test is to show that 1
st
 Method have larger diversity than in 4

th

Method. To do this:

a) keep the old fitness values in the current generation (Method 4), look at the

diversity in next generation

b) use new fitness values after the change (Method 1), look at diversity in next

generation. It is expected that the diversity in 4
th

 Method is getting smaller as

period of change is increasing.

Illustration of Test 4 is as follows, where where xi, i є{1…6} is for individuals and

current time is defined as t so that fitness function at the current time is defined as ft,

the time after change has happened is defined as t+1, also fitness function at that time

is defined as ft+1. M4 and M1 are stated for 4
th

 and 1
st
 Methods.

 42

Figure 4.16 : Illustration of Test 4

Results:

a) Avr. Diversity of M1: period 3 =22.157; period 10 =16.911; period 25 =

8.066

b) Avr. Diversity of M4: period 3 =22.607 ; period 10 =17.294; period 25 =

7.863

It is shown that in smaller periods, there are ignorable small differences between

diversity of populations in 4
th

 Method and 1
st
 Method, and the diversity of population

in 4
th

 Method is getting smaller as time passes.

Test 5: The aim of the test is to compare diversity of population in 2
nd

 Method (M2)

and 4
th

 Method (M4) in next generation just after change.

a) In M4 look at the diversity in next generation just after change

b) In M2 look at the diversity in next generation just after change

Illustration of Test 5 is as follows, where xi, i є{1…6} is for individuals and current

time is defined as t so that fitness function at the current time is defined as ft, the time

 43

after change has happened is defined as t+1, also fitness function at that time is

defined as ft+1. M4 and M2 are stated for 4
th

 and 2
nd

 Methods.:

Figure 4.17 : Illustration of Test 5

Results:

a) Avr. Diversity of M2: period 3 = 23.309; period 10 = 18.060; period 25 =

8.282

b) Avr. Diversity of M4: period 3 =22.607 ; period 10 =17.294; period 25 =

7.863

4.3 Experiment on Single Knapsack Problem

4.3.1 Details of Experiment

Representation: Binary representation

Fitness Evaluation: Fitness evaluated according to Single Knapsack problem

Selection: Permutational Selection

Crossover: Uniform crossover of rate 0.8

Mutation: Mutation rate of 0.01 is applied

 44

Duplicate-Elimination: For each randomly generated individual at the beginning of

population, same individuals are not allowed, as well as for offspring.

Elitizm: Elitist individual of previous generation which are different from currently

generated offspring are aloowed to join them.

Change Severity: Severity of Environment is changed according to randomly

generated numbers from Gaussian distribution with mean=0, and standard

deviation=0.05.

Performance Measurement: Best Fitness Performance

4.3.2 Results of Experiment

Table 4.5 shows Best Fitness overall at Z evaluations after change as well as the Best

Fitness at 4000
th

 evaluations. As in above experiments, the Standard Error at Z

evaluations after change is given in Table 4.3 and the calculated intervals according

to Standard Error is given in Table 4.4. As it is can be read from intervals’

illustrations, in Figure 4.16, 1
st
 and 2

nd
 Method has same performance at period of 3.

In figure 4.17 it can be seen that differences between Methods’ performances are

increasing. Also in Figure 4.17 and Figure 4.18, it can be seen that 2
nd

 Method and

4
th

 Method are same as period of change time is increasing. Here the performance of

2
nd

 Method became worse than in BMP.

Ordering of the methods from best to worst according to the values of each method

on Z evaluations after change is as following:

for period 3 : 2, 1, 4, 3

for period 10 : 1, 3, 2, 4

for period 25 : 1, 3, 2, 4

One important issue to note is that if change has happened in an early stage,

independently from the problem, ordering according to their performance is same in

all experiments. Thus it is in a way that 2
nd

 Method is best, than 1
st

Method is next,

after that 4
th

 Method is at third place and the 3
rd

 Method is the last.

1st Method: Performance of 1
st
 Method is better than in BMP. It can be seen in

Figure 4.10 and in Figure 4.16. To clarify, the intervals of 1
st
 Method and 2

nd
 Method

do not intersect in BMP, while in SKP they fall down in same interval. To look at the

pair wise ordering of individuals according to their fitness before and after change

can clarify the situation. Refer to Test 1 performed in Section 4.3.3.

 45

2
nd

 Method: 2
nd

 Method has better performance in BMP relatively than in SKP. This

idea can be supported by the work in [32]. In this work feasible SKP space is defined

as an area which is surrounded by the boundary of feasibility. The penalty method

causes individuals trying to move towards the border. Individuals outside the border

are unfeasible individuals. It is possible that individuals which are close to

converging before the change may become unfeasible after the change because the

feasible space relocates and the individuals may fall outside the boundary. For this

reason, 2
nd

 Method can have its performance decreasing in SKP. Why its

performance is same as 4
th

 Method’s performance can be shown by Test 5 in Section

4.3.3 by calculating the diversity of them in the next generation just after change.

3
rd

 Method: It performs better with larger periods because of the reason stated in the

experiment done on BMP. Thus the bad performance of method 3 in smaller periods

or in quick change could be because of the fact that it spends some of its time for

reevaluating and has less time for trying to find the new optimum. With increasing

change periods, the performance of the 3
rd

 Method also increases since it has some

more time to converge.

4
th

 Method: 4
th

 Method is the worst. Possible reasons as in other experiments can be

that since it ignores the change, in its time given to converge it continues to converge

around the wrong peak. Thus it is worse than the 3
rd

 Method where it also losies time

by reevaluating half of the population according to the new environment, because it

loses time as well as diversity by continuing to converge to the wrong direction.

4
6

T
ab

le 4.5 : S
K

P
 w

ith
 B

est F
itn

ess

S
im

p
le K

n
ap

sack
 P

ro
b
lem

B
est F

itn
ess

M
eth

o
d

I

II
III

IV

P
erio

d
s

3

1
0

2
5

3

1
0

2
5

3

1
0

2
5

3

1
0

2

5

O
v
erall B

est

fitn
ess b

efo
re

ch
an

g
e

40465.180

43151.707

43452.746

40295.383

43149.867

43453.266

40292.938

43155.449

43456.008

40821.547

43177.785

43461.316

F
itn

ess ju
st after

ch
an

g
e

23779.584

-452502.125

-466997.875

7910.250

-498276.000

-538392.563

24554.998

-536500.375

-557693.438

12386.626

-451686.969

-516873.094

O
v
erall B

est

F
itn

ess at z

ev
alu

atio
n

42520.1

43915.65

44092.21

42520.24

43284.63

43440.54

42160.12

43883.97

44090.6

42380.9

43248.543

43405.230

O
rd

er

2

1

1

1

3

3

4

2

2

3

4

4

S
tan

d
ard

 E
rro

r

at z

42.64

39.76

39.33

49.24

62.36

62.49

37.07

39.05

38.13

48.11

62.15

62.33

O
v
erall B

est

F
itn

ess at 4
0
0
0

ev
alu

atio
n

43996.836

44333.137

44330.227

43933.941

43910.090

43781.406

43986.555

44330.391

44328.906

43927.42

43912.97

43783.44

O
rd

er

1

1

1

3

4

4

2

2

2

4

3

3

S
tan

d
ard

 E
rro

r

at 4
0
0

0

62.37

48.86

45.56

65.10

65.73

65.66

61.66

48.65

45.13

65.52

65.59

65.89

 47

Figure 4.18 : Methods for Period 3 on SKP w.r.t. Best Fitness Performance

Figure 4.19 : Methods for Period 10 on SKP w.r.t. Best Fitness Performance

 48

Figure 4.20 : Methods for Period 25 on SKP w.r.t. Best Fitness Performance

Table 4.6 : Intervals of Methods at z Evaluations

 For period 3 For period 10 For period 25

Method 1 [42477.6;42562.7] [43876.1;43955.4] [44052.9;44131.5]

Method 3 [42123.1;42197.2] [43844.9;43923.0] [44052.5;44128.7]

Method 2 [42470.9;42569.5] [43222.3;43347.1] [43378.1;43503.0]

Method 4 [42332.8;42429.0] [43186.4;43310.7] [43342.9;43467.6]

 49

Figure 4-21 : Intervals for Period 3 on SKP w.r.t. Best Fitness Performance

Figure 4-22 : Intervals for Period 10 on SKP w.r.t. Best Fitness Performance

 50

Figure 4.23 : Intervals for Period 25 on SKP w.r.t. Best Fitness Performance

4.3.3 Tests Performed According to Results of Experiment on Single
Knapsack Problem

Test 1: The aim of test is to show the reason of 1
st
 Method having better performance

than in BMP [Figure 4.13].

- All individuals in the population (half with old fitness, half with new

fitness) at the generation where change has happened are ordered-it is the first

string

- First half of population is re-evaluated according to the new environment and

all individuals in the population (all with new fitness) are ordered-it is the

second string

- Pair wise "better" relationships between all individual pairs in both strings are

compared. The number of differences (worst case is n*(n-1)/2 where n is the

no of individuals) are calculated.

Results:

for period 3: 96.7 differences out of 4990

for period 10: 680.60 differences out of 4990

 51

for period 25: 751.6 differences out of 4990

As a result, it is shown that similarity between populations before and after the

change is much smaller than in BMP. Thus it explains the relatively better

performance of 1
st
 Method in SKP.

Test 2: The aim of the test is to have a look at diversity of the reduced population

after the change according to different periods and explain the behavior of having a

worse performance than in BMP. In order to show it, as it was explained before, the

average hamming distance of the half population before the change is calculated for

different periods of change time [Figure 4.14].

Results:

for period 3: 23.287

for period 10: 19.629

for period 25: 18.351

Although the diversity of the population is much larger than in the experiment on

BMP, it is not sufficient to find the optimum, since SKP is a multimodal problem

which is harder that the BMP.

Test 3: The aim of the test is to explain the poor performance of 4
th

 Method. In order

to do that the average hamming distance of the half population, which is AVR1,

before change is calculated and compared to the average hamming distance of the

whole population in that generation which is defined as AVR2 [Figure 4.15].

Results:

for period 3: AVR1=22.841; AVR2= 23.328

for period 10: AVR1=19.280; AVR2= 19.675

for period 25: AVR1=17.662; AVR2= 18.024

Results show as in Test 2, although the diversity of population is much larger than in

BMP, it is not enough to converge.

Test 4: The aim of the test is to show the reason of the significant difference

between 1
st

Method which is the best in SKP and 4
th

 Method which is the worst in

SKP. In the BMP experiment, Test 4 has shown that although M1< M4, because of

 52

the methods interpretation M1 has better performance. It is expected in SKP that

M1>M4. In order to show this[Figure 4.16]:

a) keep the old fitness values in the current generation (M4), look at the

diversity in next generation

b) use new fitness values after the change (M1), look at diversity in next

generation.

Results:

a) Avr. Diversity of M1: period 3=22.028; period 10 = 19.416; period 25 =

18.267

b) Avr. Diversity of M4: period 3=22.028; period 10 = 19.260; period 25 =

17.909

As expected M1>M4, thus supports the idea stated above.

Test 5: The aim of the test is to have a look at similar performance of 2
nd

 Method

with 4
th

 Method. In experiment on BMP, 2
nd

 Method has much better performance

than 4
th

 Method and in Test 5 in Section 4.2.4 it was shown that the diversity of

population in 2
nd

 Method is larger than in 4
th

 Method. In SKP because of their nearly

same performance it is expected that M2<M4 or M2=M4 [Figure 4.17].

a) In M4 look at the diversity of population in next generation just after change

b) In M2 look at the diversity of population in next generation just after change

Results:

a) Avr. Diversity of M2: period 3 = 21.313; period 10 = 18.858; period 25 =

17.767

b) Avr. Diversity of M4: period 3 = 22.028; period 10 = 19.260; period 25 =

17.909

Results have shown that M2<M4 and it explains their similar performance in SKP.

The results obtained from the experiments can be summarized as below:

- If changes happen in the early stage of the run, independently of the problem, 2
nd

Method can be a variant for managing changes within a generation in designing a

suitable algorithm.

 53

- If change with a small severity has happened, i.e. environments before and after the

change are similar, 1
st
 Method can be preferred as a variant for 3

rd
 Method, where

application is costly if changes happen frequently.

- On the other hand, looking at the results for the 4
th

 Method, it can be said that it is

not a suitable way to ignore the changes in a generation. Thus ignoring the current

change affects performance by converging late because of continuing converging

around the wrong peak.

Therefore now we know that assuming changes to occur only between generations

can lead us to unsuitable, late converging populations. The reason is if change has

happened almost within a generation, this interpretation becomes the same as the 4
th

Method and we see that it is the worst way of managing changes within generations.

4.4 Further Experiments

4.4.1 Appropriateness of Periods

Defining of periods of change time is analyzed by plotting the best fitness graph of

BMP and SKP without any change. As a result, it is seen that defining periods of

change time as 3, 10 and 25 is quite meaningful according to the plot. Graphs are

given below in Figure 4.24 and 4.25, where the averages of the best fitness at each

evaluation over 1000 runs are plotted.

It is seen that period 3 in Figure 4.24 with the early stage of overall run. The entire

run can be divided into two parts where at first part tangent of a curve is bigger than

the one in the second part. Thus the period 10 is in the middle of the first part, that it

is appropriate to observe the run in the middle of the progress of performance. It can

be seen that the period 25 is near towards the early end of the run.

 54

Figure 4.24 : BMP Best Fitness without Change

Figure 4.25 : SKP Best Fitness without Change

 55

It is seen that period 3 in Figure 4.2, which visualizes the SKP performance in 4000

evaluations over the 1000 runs, coincides with the middle stage of the converging

progress. It is observed that the period 10 and period 25 are in the nearly similar

stage of converging progress. Thus, it is explanation for the similarity in results

relevant to periods 10 and 25.

4.4.2 Additional Experiments on 2nd Method

The results of experiments on BMP have shown that 2
nd

 Method’s performance is

relatively good. Also remember that the offset for change was 50 where change

happened at 50
th

 individuals’ evaluation and it account for the middle of population.

Here we have tested 2
nd

 Method with offsets of 10 and 25. It means that environment

has changed at 10
th

 and 25
th

 individuals’ evaluation. Therefore the results are given

in Table 4.7.

It can be seen that in the 2
nd

 Method, performance of the method at offset 10 is worse

than the performance of it at offset 25. Also performance of the method at offset 25

is worse than the performance of it at offset 50. Ordering, according to the value at Z

evaluations after change, is the same in experiments with offset 25 and offset 50.

However it is seen that the performance is of the 2
nd

 Method in experiment with

offset 10 is the relatively worst.

In order to look at diversity of population at different offsets in 2
nd

 Method, Test 2

[Figure 4.14] is reapplied. Results are given in Table 4.8. It can be said that results

are in an expected way that diversity of the least population where change happens at

offset 10, is considerably least. Also, the diversity of population at offset 25 is much

near the value of diversity of population at offset 50.

In summary, the decreasing performance of 2
nd

 Method with offset 10 is clearly

explained by the decreasing diversity of population.

 56

Table 4.7 : Various Offsets on Method II

Bit Matching Problem

Best Fitness Performance

Method II

 Offset 10 Offset 25 Offset 50

Periods For

Change
3 10 25 3 10 25 3 10 25

Change

Happened at

Given Fitness

Evaluation 3
1
0

1
0
1

0

2
5
1

0

3
2
5

1
0
2

5

2
5
2

5

3
5

0

1
0

5
0

2
5

5
0

Change Time + Z

6
1
0

1
3
1
0

2
8
1
0

6
2
5

1
3
2
5

2
8
2
5

6
5
0

1
3
5
0

2
8
5
0

Value at Z
th

Evaluation after

change 7
2

.4
7

7

8
0

.6
7

8
9

.8
1

9

7
2

.5
0

8

8
0

.9
6

4

8
9

.8
2

7

7
2

.6
0

3

8
0

.9
2

3

8
9

.9
6

3

Value at 4000th

Evaluation

9
9

.6
1
9

9
9

.2
5
1

9
6

.1
6
7

9
9

.6
8
8

9
9

.2
7
9

9
6

.3
0
7

9
9

.7
0
0

9
9

.2
9
3

9
6

.3
3
4

Std. Error of 1000

Runs at 4000
th

evaluations 0
.0

1
6
1

0
.0

2
1
2

0
.0

3
3
0

0
.0

1
4
9

0
.0

2
1
2

0
.0

3
2
4

0
.0

1
4
8

0
.0

1
9
2

0
.0

3
1
9

Std. Error of 1000

Runs at Z
th

evaluations after

change 0
.0

7
4

4

0
.0

6
4

7

0
.0

4
1

8

0
.0

7
0

4

0
.0

6
2

4

0
.0

3
9

3

0
.0

6
5

9

0
.0

6
2

6

0
.0

3
8

1

Ordering

according to

value at Zth

evaluations after

change

1 3 4 1 2 3 1 2 3

Table 4.8 : The Diversity of Population in Method II

 Offsets

Periods

50 10 25

3 23.309 21.225 22.826

10 18.060 16.657 17.658

25 8.282 7.622 7.996

 57

4.4.3 Experiments on higher severity of environmental changes

In experiments done so far, severity of environment changes was not high and it is

concluded in unexpected good performance of 1
st
 Method. Here we have increased

the severity of environmental changes in BMP up to 0.4 from 0.1, and in SKP up to

0.1 from 0.05. Results are given in Table 4.11. In order to compare the performance

of methods following tables 4.9 and 4.10 are formed where old and new

performances according to ordering of the methods are shown separated by (/).

The compared results of BMP are shown in Table 4.9. It can be seen that

performance of 4
th

 Method remained the same, that it has still the worst performance.

As it is expected, performance of 1
st
 Method is getting worse, but still better than 2

nd

and 4
th

 Methods. Performance of 3
rd

 Method is getting better with large periods. The

reason can be that at an early stage of run it looses time, but towards the end it can

settle the deficiency. Performance of 2
nd

 Method is getting much worse than before.

Therefore as a summary, if change in environment is severe, we have to use the 3
rd

Method, however if time is not available for reevaluation, the 1
st
 Method can be

preferred by compromising the performance.

Table 4.9 : Comparing Ordering Performance According to Severity in BMP

 Period 3 Period 10 Period 25

Method 1 2/1 1/2 1/2

Method 2 1/4 2/3 3/3

Method 3 4/2 3/1 2/1

Method 4 3/3 4/4 4/4

The compared results of SKP are shown in Table 4.9. Here it can be seen that the 1
st

Method has a bit decreasing performance, while the 3
rd

 Method has an increasing

performance. The 2
nd

 and the 4
th

 Methods’ performances are the same as before. The

important issue is that in spite of slight differences, performances of all methods are

remaining the same. The reason for that is in period 10 and 25 SKP has almost

similar converging performance [Figure 4.25].

 58

Table 4.10: Comparing Ordering Performance According to Severity in SKP

 Period 3 Period 10 Period 25

Method 1 2/1 1/1 1/2

Method 2 1/2 3/3 3/3

Method 3 4/3 2/2 2/1

Method 4 3/4 4/4 4/4

Table 4.11 : BMP with Environment Severity of 0.4

Bit Matching Problem

Best Fitness Performance

Method I II III IV

Periods For

Change
3 10 25 3 10 25 3 10 25 3 10

2

5

Change

Happened at

Given Fitness

Evaluation 3
5
0

1
0
5

0

2
5
5

0

3
5
0

1
0
5

0

2
5
5

0

3
5
0

1
0
5

0

2
5
5

0

4
0
0

1
1
0

0

2
6
0

0

Change Time +

Z

 6
5

0

1
3

5
0

2
8

5
0

6
5

0

1
3

5
0

2
8

5
0

6
5

0

1
3

5
0

2
8

5
0

6
5

0

1
3

5
0

2
8

5
0

Value at Z
th

Evaluation after

change 6
8
.8

7
9
.7

9
5
.1

4

6
6
.4

1

6
7
.3

5

6
5
.7

6

6
8
.0

8

7
9
.8

6

9
5
.1

7

6
6
.7

1

6
6
.3

6
5
.7

4

Order 1 2 2 4 3 3 2 1 1 3 4 4

Table 4.12 : SKP with Environment Severity of 0.1

Simple Knapsack Problem

Best Fitness

Method I II III IV

Periods 3 10 25 3 10 25 3 10 25 3 10 25

Change

Happened at

Given Fitness

Evaluation 3
5
0

1
0
5
0

2
5
5
0

3
5
0

1
0
5
0

2
5
5
0

3
5
0

1
0
5
0

2
5
5
0

4
0
0

1
1
0
0

2
6
0
0

Overall Best

fitness before

change

4
0
2
8

0
.0

3
1

 4
3
1
4

9
.0

9
0

 4
3
4
5

0
.9

8
0

 4
0
3
5

2
.8

5
2

 4
3
1
4

6
.0

7
0

 4
3
4
8

1
.5

3
9

 4
0
3
0

5
.1

8
0

 4
3
1
4

8
.7

3
8

 4
3
4
6

4
.0

3
1

 4
0
7
3

7
.4

2
2

 4
3
1
6

8
.8

7
9

 4
3
4
8

4
.9

6
9

Standard

Error at z

2
0
4

.3
2

1
9
5

.2
5

2
0
0

.8
3

2
5
3

.8
9

3
5
8

.0
4

3
5
7

.9
6

1
7
0

.9
8

1
9
2

.5
8

1
9
9

.2
4

2
4
9

.6
4

3
5
1

.5
7

5
5
1

.0
6

Order
1 1 2 2 3 3 3 2 1 4 4 4

 59

4.4.4 Experiments on more environmental changes

Up to now the methods are experienced on the basis of one change in environment.

Here the behaviors of methods are analyzed according to the 20 changes in the

overall run. To clarify, in these experiments period 3 means change happens

frequently at every 3 generations passed. Value of the best fitness at Z
th

 evaluations

after last change is compared in all methods. Results are given in Table 4.15 and

4.16. In order to compare ordering performances of methods according to

environment with one change and environment with 20 changes Table 4.13 and

Table 4.14 separately for BMP and SKP are formed.

By looking at results it can be said that the 1
st
 Method has a good performance. Since

the 3
rd

 Method has considerably better performance than others, performance of the

1
st
 Method seems getting worse. However, it has a good performance. While

performance of the 2
nd

 Method is getting worse, performance of the 4
th

 Method is

remaining the same, thus the worst.

In summary, in situations where changes are frequent and if time is available for

reevaluation we can continue with the 3
rd

 Method after changes. In a limited time

conditions 1
st
 Method can be preferred.

Table 4.13 : Comparing Ordering Performance According to Frequent Change in

BMP

 Period 3 Period 10 Period 25

Method 1 2/1 1/2 1/2

Method 2 1/2 2/3 3/3

Method 3 4/4 3/1 2/1

Method 4 3/3 4/4 4/4

As for results shown in Table 4.14, it can be said that the 1
st
 Method has the best

performance. The 3
rd

 Method has poor performance. The reason can be because of

the time consuming reevaluation feature of 3
rd

 Method and special structure of SKP.

The 2
nd

 Method has relatively the same performance. Due to the worsening of

performance of the 3
rd

 Method, performance of 2
nd

 Method seems getting better.

Performance of the 4
th

 Method is still the worst one.

In summary, dependent on the problem, if changes are frequent and severity of

change is not high 1
st
 Method can suit best.

 60

Table 4.14 : Comparing Ordering Performance According to Frequent Change in

SKP

 Period 3 Period 10 Period 25

Method 1 2/1 1/1 1/1

Method 2 1/4 3/2 3/2

Method 3 4/2 2/3 2/3

Method 4 3/3 4/4 4/4

Table 4.15 : Bit Matching Problem with 20 changes

Bit Matching Problem 20 change

Best Fitness Performance

Method I II III IV

Periods 3 10 25 3 10 25 3 10 25 3 10 25

1
st
 Change

Happened at

Given Fitness

Evaluation 3
5

0

1
0

5
0

2
5

5
0

3
5

0

1
0

5
0

2
5

5
0

3
5

0

1
0

5
0

2
5

5
0

4
0

0

1
1

0
0

2
6

0
0

Value at Zth

Evaluation after

change

7
7
.0

8

8
8
.5

9

9
8
.2

6

7
6
.8

3

8
5
.0

6

9
0
.6

7

7
4
.8

1

8
9
.1

4

9
8
.5

9

7
6
.4

4

8
4
.6

2

9
0
.3

Std. Error of

1000 Runs at Z
th

evaluations after

change 0
.1

8
1
8

0
.1

5
7
7

0
.0

8
4
8

0
.2

3
0
1

0
.1

6
3
8

0
.0

7
7
9

0
.2

0
5
3

0
.1

4
5
0

0
.0

7
5
3

0
.2

1
0
0

0
.1

6
1
9

0
.0

7
5
9

Order 1 2 2 2 3 3 4 1 1 3 4 4

Table 4.16 : Simple Knapsack Problem with 20 changes

Simple Knapsack Problem 20 change

Best Fitness

Method I II III IV

Periods 3 10 25 3 10 25 3 10 25 3 10 25

Overall Best

Fitness at z

evaluation 4
6
4
4

1
.6

1

4
8
0
2

3
.4

1

4
8

4
4
0
.6

4
5
5
4

3
.0

7

4
6
5
5

9
.3

1

4
7
4
0

4
.2

9

4
5
9
2

3
.0

8

4
6
6
9

8
.7

3

4
7
1
2

2
.2

6

4
5
7
9

1
.8

4

4
6
4
5

6
.4

1

4
7
0
0

6
.7

8

Standard

Error at z 9
7

0
.1

8

9
1

6
.6

5

8
9

9
.6

2

9
8

0
.7

3

1
0
4
3
.2

8

9
2
1
.7

0
1

1
2

7
5
.9

1
3
4

8
.4

1
7

1
2
9
4
.2

1

9
8
1
.4

6
5

1
0
4
9
.4

2

0
2
8

.0

Order 1 1 1 4 2 2 2 3 3 3 4 4

 61

5 CONCLUSION

EAs are known as heuristic algorithms inspired from nature and for that reason they

are suitable to the real world dynamic problems. It is known that in nature changes

are happening in a stochastic manner. This has to be taken into account in the EAs

design. However, almost all researches performed in this area, assumed that changes

are happening between generations. Although this was a convenient assumption, it

needs to be examined in a detailed way.

Thus, the aim of this thesis is to compare four methods of managing changes within

generations and to do some empirical works on those methods.

Experiments have been performed on the Bit Matching and the Single Knapsack

Problems where the former is a unimodal and the latter is a multimodal problem. The

results derived according to empirical works provided interesting insights which can

be used in design of more suitable algorithms according to the nature of the change.

Thus, the results obtained from the experiments can be summarized as:

- If change with a small severity has happened, the 1
st
 Method can be preferred as a

variant for 3
rd

 Method, where application is costly if changes happen frequently.

- On the other hand if period of change is in an early stage of the run, the 2
nd

 Method

can also be a variant for managing changes within a generation.

- In addition, the 4
th

 Method is not a suitable way since it ignores the changes until

the end of the generation in which they occur.

As a future work, real world problems can be analyzed where the severity is high and

changes happen at different stages of the generation. Since this work is in progress,

further results can enhance designing more suitable algorithms for real world

problems where changes are happening in a stochastic manner.

 62

REFERENCES

[1] Grefenstette,J.J and Ramsey, C.L., 1993. Case-Based Initialization of Genetic

Algorithms. Proc. Fifth Intl. Conf. (ICGA93), San Mateo: Morgan

Kaufmann, 84-91.

[2] Eiben, A.E. and Smith, J.E., 2003. Introduction to Evolutionary Computing,

Berlin: Springer.

[3] Branke, J. and Wang, W. 2002. Theoretical Analysis Of Simple Evolution

Strategies In Quickly Changing Environments. Technical Report 423,

Institut AIFB, Karlsruhe, Germany.

[4] Branke, J., 2002. Evolutionary Optimization in Dynamic Environments, Kluwer

Academic.

[5] Branke, J., and Schmeck, H., 2002 Designing Evolutionary Algorithms for

Dynamic Optimization Problems. Springer-Verlag, Heidelberg, 239-

262.

[6] Richter, H., 2005. A Study of Dynamic Severity in Chaotic Fitness Landscapes.

IEEE, 5, 2824-2831, http://ieeexplore.ieee.org/servlet/opac?punumber

=10417

[7] Jin, Y. and Branke, J., 2005. Evolutionary Optimization in Uncertain

Environments - A Survey. IEEE Transactions on Evolutionary

Computation, 9(3), 303-312.

[8] Heitkoetter, J. and Beasley, D. eds. 2001. The Hitch-Hiker's Guide to

Evolutionary Computation: A list of Frequently Asked Questions

(FAQ), comp.ai.genetic. Available via anonymous FTP from

rtfm.mit.edu/pub/usenet/news.answers/ai-faq/genetic. (18.07.2007)

[9] Branke, J. 2007. Personal communication, Karlsruhe University, Germany.

 63

[10] Solomkina, J. Issledovaniye Primenimosti Geneticheskih Algoritmov Dlya

Optimizacii Neyrosetevyh Sistem, M.Sc. Thesis,

www.doc.ic.ac.uk/~nd/surprise_96/ journal /vol4/tcw2/report.html

[11] Miller, B. L. and D. E. Goldberg. 1996. Genetic algorithms, tournament

selection, and the effects of noise. Complex Syst., 9,193-212.

[12] Smith, A.E. and Tate, D.M., Expected allele coverage and the Role of

Mutation in Genetic Algorithms, The Fifth International Conference

on Genetic Algorithms, University of Illinois, 31-37.

[13] Goldberg 1989. Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley Professional. New York.

[14] Phillip D. 2001. Stroud Kalman-extended Genetic Algorithm for Search in

Nonstationary Environments with Noisy Fitness Evaluations.

Evolutionary Computation, IEEE Transactions, 5 (1), 66-77.

[15] Holland, J.H., 1973. Genetic Algorithms and the optimal allocation of trials.

SICOMP, 2 (2), 88-105.

[16] Grefenstette, J.J., 1992. Genetic Algorithms for changing environments, In

R.Maenner and B.Manderick, Eds: Proceedings of Parallel Problem

Solving From Nature (PPSN-2), Elsevier, Brussels, 137-144.

[17] Schwefel, H.P., 1995. Evolution and Optimum Seeking. Wiley, New York.

[18] Andersen, H., 1991. An investigation into Genetic Algorithms, And The

Relationship Between Speciation And The Tracking Of Optima In

Dynamic Functions. Honours Thesis, Queensland University of

Technology, Brisbane.

[19] Syswerda, Gilbert, 1989. "Uniform Crossover in Genetic Algorithms." Morgan

Kaufmann Publishers Inc., San Francisco.

[20] Stephens, C. R. and Waelbroeck H., 1997. Effective Degrees Of Freedom In

Genetic Algorithms And The Block Hypothesis. ICGA, Morgan-

Kaufmann Publishers Inc., 34-41.

[21] Blickle, T. and Thiele,L. 1995. A Comparison of Selection Schemes used in

Genetic Algorithm, Computer Engineering and Communication

 64

Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), 2

Edition.

[22] Salihoğlu, E., Uyar, S., Branke, J. 2005. Towards an Analysis of Dynamic

Environments. MSc Thesis, ITU, Institute of Science and Technology.

[23] Stanhope, S.A. and J.M. Daida, 1999. (1+1) Genetic Algorithm Fitness

Dynamics in a Changing Environment, in CEC-99: Proceedings of the

1999 Congress on Evolutionary Computation, Piscataway: IEEE

Press., 3, 1851-1858.

[24] Droste, S., 2002. Analysis of the (1+1) EA For Dynamically Changing One

Max-Variant, LS Informatik 2, Dortmund Univ., 55-60.

[26] Arnold, D.V. and Beyer, H.G., 2000. Efficiency and Mutation Strength

Adaptation of the (µ/ µi, λ)- ES in a Noisy Environment, in M.

Schoenauer, K. Deb, G. Rudolph, et al., editors, Parallel Problem

Solving from Nature - PPSN VI, Sixth Int'l Conf., Paris, France

September 18-20, 2000, Proc., Springer, Berlin. 39-48.

[27] Branke, J., 1999. Evolutionary Algorithms For Dynamic Optimization

Problems-A Survey. Technical Report 387, Institute AIFB, University

of Karlsruhe, February.

[28] Branke, J., 1999. Memory enhanced evolutionary algorithms for changing

optimization problems. In Congress on Evolutionary Computation.

CEC99, 3, 1875-1882.

 [29] Cobb, H.G., 1990.An Investigation Into The Use Of Hypermutation As An

Adaptive Operator In Genetic Algorithms Having Continuous, Time-

Dependent Nonstationary Environments. Technical Report.AIZC-90-

001, Naval Research Laboratory. Washington DC.

[30] F. Vavak, K. Jukes, and T. C. Fogarty. 1997. Adaptive Combustion

Balancing In Multiple Burner Boiler Using A Genetic Algorithm With

Variable Range Of Local Search. International Conference on Genetic

Algorithms, Morgan Kaufmann, 719-726.

[31] Mori, N., Kita, H., and Nishikawa, Y., 1998. Adaptation to a Changing

Environment by Means of the Feedback Thermodynamical Genetic

 65

Algorithm. Proc. Parallel Problem Sol. From Nature. Springer Berlin:

Heidelberg. 1411, 513-522.

[32] Gottlieb, J., 1999. Algorithms for Constrained Optimization Problems. Phd

Thesis, Technical University of Clausthal, Germany.

[33] Pisinger, D., Knapsack Problems: Generation of Test Instances, online,

http://www.diku.dk/~pisinger/codes.html (18.07.2007)

 66

AUTOBIOGRAPHY

Gulshat Kulzhabayeva was born in Taraz, Kazakhstan in 1977. She was graduated

from Talgar Kazakh-Turkish Technical High School. She gained 1
st
 place at the

Pascal Olympiad, in Talgar region in 1996. In 1997, she was ranked first at

graduation from High school. She was accepted to Middle East Technical University

in 1997 and was graduated in 2002. After graduation from the university, in 2003 she

entered the graduate programme in computer engineering department offered by

Istanbul Technical University. This work is her graduate thesis.

