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EVOLUTIONARY ALGORITHMS IN DYNAMIC ENVIRONMENTS: 
MANAGING CHANGES WITHIN GENERATIONS 
 

SUMMARY 

Evolutionary algorithms (EAs), based on natural evolutionary theory, are 

computational methods for static and dynamic problems. Since EAs are naturally 

inspired, they seem to be more suitable to be applied to dynamic optimization 

problems. In order to apply EAs to the continuously changing real world problems, 

changes have to be analyzed in a detailed way.  According to the type of change and 

problem instance, if method of managing changes can be predicted it will improve 

ability of problem solving of EAs.  

In nature changes are not happening in an organized way, although almost all 

researchers’ approach to dynamic changing environment was in that way, thus 

assuming that changes are happening between generations 

The main goal of the thesis is to examine and show the ability of methods on 

changing environments within generations by empirical way. The methods are:  

- Use the changed fitness function for all subsequent individuals, but keep the 

evaluations of the offspring already evaluated 

- Temporarily reduce the population size. The generation is terminated, and the 

offspring generated so far serve as basis to generate the next. 

- Re-evaluate all offspring already generated; ignore the change and continue 

to work with the old fitness function to the end of that generation 

- Ignore the change and continue to work with the old fitness function until all 

offspring of that generation have been evaluated. 

As a result, in real world problems where changes happen at any time, as in design of 

EAs within generation, knowing the ability of above methods will help us in 

organizing more effective EAs which are not time consuming as well as resources. 
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DİNAMİK ORTAMLARDA EVRİMSEL ALGORİTMALAR: 
NESİLİÇİ DEĞİŞİMİN YÖNETİMİ 

 

ÖZET 

Evrimsel Algoritmalar, evrim teorisinin kavramına dayalı olarak statik ve dinamik 

problemleri çözmek adına geliştirilmiş hesaplama yöntemleridir. Evrimsel 

Algoritmaların doğadan esinlenen yapısı itibarı ile günümüzdeki değişken 

problemlere en çok uyum sağlayan algoritmalardır.  

Dinamik problemlere Evrimsel algoritmalar ile çözüm bulabilmek için değişen 

ortamın ve değişimin çok detaylı analiz edilmesi gerekmektedir. Yani ortam 

değiştikten sonra değişim çeşidine ve probleme bağlı olarak en uygun yol 

seçildiğinde Evrimsel Algoritmaların daha etkin bir şekilde çözüm bulunması 

sağlanabilir. Günümüzdeki gerçek problemlerde var olan değişimin rastgele olmasına 

rağmen, bu alandaki çalışmaların hemen hepsi değişimlerin sistematik bir şekilde, 

yani nesiller arası gerçekleştiğini varsayılarak yapılmıştır. Bu varsayım yeterli olmuş 

olsa da geliştirilmesi ve araştırılması gereken bir konu olarak karşımıza çıkmaktadır.  

Bu tezin asıl amacı ortamın nesil içi değiştiğini varsayarak, aşağıdaki yöntemlerden 

hangisinin daha etkin bir yol olduğunu deneysel sonuçlarla kanıtlamak. Bunlar:  

- Ortam değiştikten sonra neslin geri kalanını yeni ortama göre hesaplamak ve 

yeni bireyleri eski bireylerle değerlendirmek 

- Ortam değiştikten sonra neslin yaşamını durdurmak ve bir sonraki nesli eski 

nesilden türeterek devam etmek 

- Ortam değiştikten sonra neslin şimdiye kadar hesaplanan bireylerini tekrar 

yeni ortamda değerlendirmek 

- Ortam değiştikten sonra neslin geri kalan bireylerini eski ortama göre 

hesaplamaya devam etmek ve değişen ortamı bir sonraki nesle uygulamak 

Yukarıda sıralanan yöntemlerin hangisinin daha etkin bir yol olduğunun bilinmesi 

gerçek problemler üzerinde, yani değişimin neslin ortasında olduğu durumlarda daha 

etkin çalışan, zamandan ve kaynaktan tasarruf eden uygun Evrimsel Algoritma 

geliştirmemize yardımcı olacaktır. 

 
 

 

 

 



 

 

 

 

1 INTRODUCTION 
 

Since many optimization problems are dynamic and change over time, a suitable 

optimization algorithm has to be ready to act on these changes by repeatedly 

adapting the solution to the changed environment. Since Evolutionary Algorithms 

(EAs) are naturally inspired, they are suitable to be applied to dynamic optimization 

problems.  

In nature, changes do not occur in an organized way, although almost all researchers’ 

approach to dynamic changing environment has been in that way. In order to know 

how to deal with the problem after a change occurs in a quickly changing 

environment, we have to examine these changes as they occur in nature, i.e are 

stochastic. Thus it is equivalent to having changes within generations in EAs’ design. 

In order to clarify, it is known that EAs are iterative algorithms, so in each 

“generation”, a number of new solutions are generated, evaluated, and inserted into 

the population. So far previous works on all publications on EAs for dynamic 

optimization problems assume that the environment changes between generations. 

Although this assumption is convenient, Branke and Wang consider it as an 

oversimplification, because of the case that generally the environment is independent 

of the EA, and thus can change at any time, i.e. also within a generation [3].   

When change happens within generation, the question is whether to reevaluate the 

individuals generated before the change in the same generation or continue to 

calculate the fitness of the rest of the individuals according to the new environment. 

Therefore to have an idea where to direct the search after change has happened we 

have to examine the different changes also with different approaches within a 

generation. In order to perform an empirical work on above stated idea, the following 

proposal was made by Branke in [9]:  

- Use the changed fitness function for all subsequent individuals, but keep the 

evaluations of the offspring already evaluated 
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- Temporarily reduce the population size. The generation is terminated, and the 

offspring generated so far serve as basis to generate the next. 

- Re-evaluate all offspring already generated; ignore the change and continue 

to work with the old fitness function to the end of that generation 

- Ignore the change and continue to work with the old fitness function until all 

offspring of that generation have been evaluated. 

The main goal of the thesis is to compare the above four methods in changing 

environments. It is believed to be of help to us in organizing our actions when 

designing a suitable EA for a problem in changing environments. 

The structure of the thesis is as follows: 

Chapter 2 gives introductory information about EAs and their main considerations, 

application areas as well as their mechanisms. Chapter 3 is mainly about dynamic 

EAs and criteria on their design. Also some approaches used in EAs for dynamic 

environments are explained briefly. Chapter 4 is about experiments and tools used in 

the thesis. Chapter 5 gives the conclusions obtained after the experiments in the 

thesis.   
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2 BACKGROUND INFORMATION 

2.1 History 

 

The idea of Evolutionary Algorithms is borrowed from nature by imitating the 

natural process of evolution. An ultimate goal of the algorithm is to reach the 

optimum decision in a complex problem. As is known, during evolution the most 

adapted individuals survive. This leads to the fact that the fitness of a population 

increases, allowing it to survive under changing condition. 

Since the mid 1960s, a few tools are invented which are inspired by the Darwinian 

evolution theory such as: evolutionary programming, genetic programming, 

evolution strategies, and genetic algorithms. All of them can be combined under the 

term of “Evolutionary Algorithms”. On the first look they can be perceived the same 

algorithm because of their similar names, but indeed these names carry quite distinct 

meanings to the scientists deeply involved in this area of research. In short, all tools’ 

basic principle parts are the same such as:  

o Working on a population of individuals, each of which is a solution to the 

problem.  

o Having an iterative, stochastic search process which is based on the goodness 

or badness of individuals.  

o Undergoing selection, reproduction and replacement, in one generation [8]  

2.2 Major Considerations of Using EAs 

Successful encoding solutions of a given problem can make Evolutionary Algorithms 

useful to nearly everyone. Thus an effective EA representation and meaningful 

fitness evaluation are the keys of the success in EA applications. EA applications are 

used when traditional ways fail. Failure can be connected with one of the following 

reasons: rough dependence of optimized criterion on selected parameters; too big 

number of parameters; impossibility to calculate derivatives on parameters. Thus 

difference of Eas from traditional methods can be considered as searching from one 
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population of solutions to another, rather than from individual to individual; using 

only objective function information, not derivatives; using probabilistic, not 

deterministic transition rules [13]. 

Moreover, the approach of the EA can be beneficial in that it can handle arbitrary 

kinds of constraints and objectives. All constraints and objectives can be handled as 

weighted components of the fitness evaluation [see Section 2.4.1.3.], making it easy 

to adapt the EA to the particular requirements of possible problems.  

2.3 Application Areas of EAs 

EAs have been used for problem-solving and for modelling. Moreover, EAs are 

applied to many scientific, engineering problems, in business and entertainment, 

including:  

Optimization 

Automatic Programming  

Machine and robot learning 

Economic models  

Immune system models  

Ecological models 

Population genetics models 

Interactions between evolution and learning 

Models of social systems [10]  

2.4 A Brief Overview of EAs’ Mechanisms 

From biology we know, that any organism can be presented by the phenotype which 

actually defines the object in the real world, and a genotype which contains the 

information about an object. Thus each gene, that is an element of the information of 

a genotype, has the reflection in a phenotype. Thus, for the decision of problems it is 

necessary to present each attribute of object in the suitable form of genetic algorithm 

in order to be able to apply evolutionary operators on them and solve problem in a 

desired way [See Section 2.4.1.1].  
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All further functioning of mechanisms of EAs is made at a level of a genotype and 

this causes its wide application in the most different tasks. Each chromosome which 

is usually called individual presents a solution to a problem. There should be 

satisfactorily many solutions in a search space in order to find the optimum. For that 

reason there is a population formed by individuals as in nature. Each individual is 

weighted with its fitness value which is definitely its adapting measurement 

according environment. Moreover, some better individuals, selected with respect to 

their fitness values, after evolutionary operators such as selection, recombination and 

mutation are applied, can pass into the next generation as an offspring generation. 

Evolutionary operators and fitness values are explained further.   

The scheme of an Evolutionary Algorithm which is used in the thesis is given in 

Figure 2.1 in a pseudo-code fashion; Figure 2.2 shows a diagram. 

BEGIN 

 INITIALISE population with random candidate solutions; 

 REPEAT UNTIL (   TERMINATION CONDITION is satisfied) 

          EVALUATE each candidate; 

          SELECT parents; 

          RECOMBINE pairs  of parents; 

          MUTATE the resulting offspring; 

          CHECK FOR DUPLICATE the offspring 

END. 

Figure 2.1 :   The scheme of an Evolutionary Algorithm in a Pseudo-code Fashion 

 

Figure 2.2 :    The scheme of an Evolutionary Algorithm in a Diagram 
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2.4.1 Main Components of EAs 

In order to design a particular EA some of the main components should be 

considered and the most important components are: 

o Representation (definition of individuals) 

o Evaluation function (or fitness function) 

o Reproduction (selection mechanism) 

o Variation operators, recombination and mutation 

o Reinsertion operators 

o Duplicate-elimination operators 

o Termination 

2.4.1.1 Representation  

As mentioned above in order to apply EAs to a problem in an effective way, 

representation of solutions is important. Chromosomes are basic concepts of EAs and 

they consist of genes, as in nature. Therefore in order to computerize EAs we have to 

represent each gene usually identified as an allele. 

Although binary representation form is widely used, representation for each problem 

can vary depending on its requirements when solving real world problems on using 

EAs. 

The most common representations are: 

- Binary representation, where allele Є{0, 1} 

- Real-valued representation, where allele Є R  

- Integer representations, where allele Є Z 

2.4.1.2 Initialization  

The first population is commonly formed by randomly generated individuals.  Here 

each of the genes in each chromosome is generated randomly according to the 

representation. For example, assuming representation is binary, an unbiased coin is 

tossed for each gene. If it turns up heads the gene’s value is 0 and if it is tails the 

value of gene is 1. In this manner, all chromosomes in the first population are 

generated. However in some cases a Case-Based initialization is used [1]. 
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2.4.1.3 Fitness Evaluation 

Evolution is a process of adaptation and as mentioned above the chromosome is a 

coded decision and there is a value of function of suitability which corresponds to 

each chromosome thus to each alternative decision. The main goal is to reach the 

best chromosomes according to their suitability.  

Therefore EAs work not with one chromosome, but instead they work with a 

population of chromosomes. It makes search for an effective decision start at once 

from several points of a search space. At each iteration of EAs, there is a switching 

of an old population to a new generation. Thus some chromosomes pass from an old 

population to the new when others die by leaving the population. Thus, it is provided 

that, according to the principle of Darwin, the chromosome having a better value of 

suitability has more chances "to survive", i.e. to pass to next generation. 

For example, let us assume that our problem is maximization of adaptation to the 

environment. So there has to be one chromosome representing the environment and 

let’s have 3 individuals with length of 6 and our representation is also binary 

representation such as: 

  Environment chromosome ����010101     

  1st Individual  ����100100    Fitness Value of 1st Individual is 3  

  2nd Individual ����101000    Fitness Value of 1st Individual is 1  

  3rd Individual  ����101001   Fitness Value of 1st Individual is 2  

As expected here we have used a bit matching fitness calculation, thus fitness value 

is the number of genes of individual that matches with the genes of environment 

chromosome.   

Each problem has its own fitness landscape defined by the fitness function over the 

search space. So the structure of fitness landscape varies from problem to problem.   

2.4.1.4 Reproduction  

EA is an iterative process in which individuals all over are selected for crossing and 

then crossed. After crossing, a new generation is formed from the offspring and all 

begins all over again. Strategy of selection is a main and one of the most important 

components of EAs and it defines "worthy" individuals for crossing according to 

their fitness value. Below the most widespread strategies are considered such as [21]: 
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Rank selection: Each individual in the population is assigned a numerical rank based 

on fitness, and selection is based on this ranking rather than absolute difference in 

fitness.  

Roulette-wheel selection: Individuals according to their fitness are replaced on a 

circular diagram and roulette is rotated. The individual from the sector where roulette 

stops is chosen out for selection. Mathematically, selection probabilities of 

individuals are proportional equivalent to their fitness value compared to the fitness 

values of their competitors. 

Scaling selection: As the average fitness of the population increases, the strength of 

the selective pressure also increases and the fitness function becomes more 

discriminating.  

Tournament selection[11]: Selected t individuals from a population containing N 

individuals, and the best one among t individuals enters the group called mating 

group in which individuals are used for reproduction. This operation repeats N times. 

The size of the group of the individuals selected for tournament is often equal to 2. In 

this case tournament size is defined according to t, selected individuals for 

tournament. Permutation Selection, used in this thesis, is a kind of a tournament 

selection where all individuals in the population are paired according to a randomly 

generated permutation, so it is a pairing of set of individuals where each pair appears 

exactly once.   

2.4.1.5 Variation Operators 

Variation operators are necessary to apply principles of heredity and variability to a 

population used in EAs. Thus described operators are not necessarily applied to all 

crossed individuals which brings an additional element of uncertainty to the search 

process for the optimum. In this case, uncertainty does not mean a negative factor, 

and can be defined as “a degree of freedom" of EAs [20]. There are two types of 

variation methods such as: recombination and mutation. 

2.4.1.5.1 Recombination 

The recombination, also named as crossover, is the basic genetic operator making the 

exchange of genetic material between individuals, called parents in order to 

reproduce offspring. Recombination is a stochastic operator, thus the choice of what 

parts of each parent are combined depends on random drawings. Thus the random 
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number defines a point inside of a chromosome in which both chromosomes 

(parents) exchange that part of chromosomes. This point is called a crossover point 

or cut-point. There are many variants of crossover which vary in the number of cut-

points such as: One-point, two points and uniform crossover [19]. The situation 

mentioned above is illustrated in Figure 2.3. 

  

Figure 2.3 : One Point Crossover 

2.4.1.5.2 Mutation 

The mutation operator is necessary to drive a population away from a local 

extremum. Moreover, it promotes protection against premature convergence and loss 

of important notions. Most genetic algorithm research has used mutation as a tool for 

recovering desirable genes that have been accidentally deleted from population [13]. 

These are obtained by inverting casually chosen bits in a chromosome, as shown on 

Figure 1.4. Note that although for simple string encoded EAs, low mutation rates are 

sufficient, it is known that an efficient way of coping with low coverage is to use 

higher mutation rates [12]. 

  

Figure 2.4 : Binary mutation 
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2.4.1.6 Reinsertion 

There are some reinsertion approaches applied by researchers for different purposes. 

Thus purposes can be compensating size of population between generations. 

Sometimes algorithms produce more or less offspring from the parents than the 

population size. Therefore elimination of extra individuals or addition of new ones is 

needed in order to keep population size constant. In addition to these, some 

algorithms such as Random Immigrants [16] use this operator for “preserving the 

diversity” by reinserting new randomly generated individuals into the population. 

Moreover, elitist principle can be applied by reinsertion method. The essence of this 

principle is that the best parental individuals join the new generation. Their count can 

be 1 and more. However carefully designed application of this principle is needed 

because of the following reason: while it prevents losing the good intermediate 

solution, the algorithm can get stuck in a local optimum.  

2.4.1.7 Duplicate-Elimination 

The main goal of this operator is to prevent duplication of individuals. Some 

algorithms use this operator in order to preserve diversity but it has an additional 

cost, therefore should be considered well before using. Moreover, continual usage 

will slow down the algorithm and can be time consuming for real world problems. 

2.4.1.8  Termination Condition 

The loop of a genetic algorithm proceeds until the pre determined condition of its 

termination is reached. For example, if the problem has a known optimal fitness 

level, if one or several individuals’ fitness values reach this desired optimum, this 

can be used as a termination condition. Stochastic iterative characteristic of EAs 

usually make algorithms work forever because it can not guarantee to reach the 

optimum level of fitness value. Therefore there are commonly used methods to stop 

the algorithm such as: the maximum allowed CPU time is elapsed; the total number 

of fitness evaluations reaches a given limit; for a given period of time the fitness 

improvement remains under pre-determined value; the population diversity drops 

under a given threshold [2]. 
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3 DYNAMIC ENVIRONMENTS 

Since the EAs are inspired from nature where continuous changes are indispensable, 

dynamic real world problems are attempted to solve by using suitable dynamic EAs. 

However, the decision of solving dynamic real world problems requires us to 

consider many uncertainties. So the sources of uncertainty are: 

- Noise 

- Robustness 

- Fitness Approximation 

- Time Varying fitness function 

3.1 Noise 

Due to the sensory measurement errors or randomized simulations, fitness 

evaluations are subjected to noise. When conditions change within the environment, 

fitness of a solution can change abruptly or gradually. If each fitness is evaluated in a 

finite period of time, the fitness of other solutions can change while one solution is 

being evaluated. This unpredictable change causes to uncertainty in the current 

fitness of the solutions [14].  

3.2 Robustness 

The design variables can change after the optimal solution has been determined. 

Therefore, despite of slightly change in design variables a common requirement is 

that a solution should still work satisfactorily. Such solutions are called robust 

solutions [3]. Robustness and Noise looks like as if the approach of EAs to them is 

the same, but they have a difference, since noise acts on the fitness function while 

robustness is due to perturbances in the design variables. To clarify, when noise 

affects appear it cannot guarantee the same value for the same individual in 

consecutive evaluations. However, in robustness even though the fitness function is 

the same, solution can change after optimization. 
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3.3 Fitness Approximation 

Fitness approximations are used usually when the fitness function is too expensive to 

evaluate or when an analytical fitness function is not available. It is the case when 

fitness functions generated from collected data or from simulations are used. 

3.4 Time Varying Fitness Function 

In the general case of an open system, fitness function is not a time invariant 

function, since it is controlled by an evolutionary mechanism. The fitness function is 

in this case a measure of the goodness of the response of the system to environment 

events. As in the real life examples, which is a quiet dynamic environment where 

everything is in flux. Interest rates change, the weather conditions vary everyday, 

exchange rates are different each day, etc. So as in EAs given individual may change 

its fitness as time goes on and the environment changes. Optimal solutions at a given 

time can become bad solution.  

Change in the environment occurs through: 

- change in the objective function  

- change in the constraints 

- change in the problem instance 

Above stated matters usually causes optimum to change and forces adaptation of the 

old solution. There are possible approaches such as  

- Treat as a new solution after change and the problem with it is that change 

may not be detected immediately or new solution may not be too different 

from the old one so starting as if a new solution may be too time consuming. 

- The optimization continuously adapts to the change 

Although there are a lot of meta-heuristic search methods which are used with 

dynamic environments, EAs seem to be a suitable candidate because they have been 

inspired from natural evolution where there is a continuous adaptation process.  

However, then the main problem with standard EAs while handling dynamic 

Environments as an optimizer, are that EAs eventually converge to an optimum and 

thereby loose their diversity. Keeping diversity in a population is necessary for 

efficiently exploring the search space and their ability to adapt to a change in the 

environment when change occurs[7].  
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As mentioned about changes, ignoring the noise that effects the fitness function, 

there are different dynamic environments which require different optimization 

approaches. Therefore all criteria of changes in dynamic environments should be 

known in order to characterize that one algorithm is better than the other to apply for 

a problem. In works [4] and [5], dynamic environments are grouped with respect to 

some criteria given below.  

3.5 Criteria for Dynamic Environments 

Frequency of change defines the average number of generations (EA time) passed 

for one environment. Frequent changes make it harder to find the optimum than 

infrequent changes, because fast adaptation to the environment after a change is more 

difficult in case of frequent changes. Some algorithms’ performance can get better 

than others as the EA time passes. Therefore, frequency of change will be one of the 

most important criteria of which algorithm to choose.  

Severity of change accounts for the magnitude of changes by comparing the 

landscape before and after the change. This is also an important criterion in choosing 

or designing the algorithms. If change severity is low, EAs’ first population after 

change is not so different from the last population before change.  

Predictability of change defines if the next change can be predicted. In some 

dynamic problems, it is quite possible that environment changes follow a 

recognizable pattern. If this is the case, EA evolves accordingly and will be ready for 

the next change. Predictability divided roughly into three classes in [6]: 1) highly or 

completely predictable changes such as translatory and cyclic movements induced by 

analytic coordinate transformations, 2) completely unpredictable changes such as 

those depending on realizations of random variables and 3) chaotic changes. Also in 

above stated research interdependencies between severity, change frequency and 

predictability of the changes are analyzed and their experiments carried out that the 

main influence is severity. For more information refer to [6], [7]. 

Cycle length / accuracy defines the average EA time to encounter a previously seen 

environment or close to that environment and the similarity between these 

environments respectively.  
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3.6 Approaches in EAs 

As stated above EAs are more suitable as an optimizer in dynamic environments, 

therefore it is time to have a look at its approaches in it. These approaches’ aim is 

have better solution. These approaches are  

- Restart 

- Generate diversity after a change 

- Maintain diversity through the run 

- Memory based approaches 

- Multipopulation approaches 

3.6.1 Restart  

Population is re-initialized randomly after a change and no information is transferred 

from the previous instance. This method is not recommended in most cases because 

it is useless if the new solution is close to the old. Some individuals may be 

transferred to the new population. The amount of information transferred is 

important, thus if it is too much may lead to convergence, also too little may slow 

down the search. So knowledge base of individuals that perform well are kept, 

indexed with a measure of their environment. When change occurs, population is 

initialized using individuals that have performed well under similar conditions. In 

order to perform this kind of task it must be possible to measure environment 

similarities.  

3.6.2 Generate Diversity After a Change  

As stated above, one of the problems with standard EAs was losing the diversity 

while searching for an optimum in the environment. Also we know that in EAs the 

mutation operator is for generating new different individuals throughout the run. 

Usually mutation rate is small in order to not spread away from the optimum. 

Therefore adapting mutation rate explicitly after change can help as to spread out the 

individuals to find the new optimum. As a result of experiments it is seen that higher 

mutation rate helps the converged population to spread out and search. However 

method of adaptation of mutation rate can be grouped in two groups, depending on 

its application on individuals throughout the run, such as: 
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- (triggered) Hypermutation as proposed by Cobb [29] whenever change occurs 

in the environment, mutation rate is increased drastically for some number of 

generations. 

- Variable local search is variant of Hypermutation method, has been suggested 

by Vavak et al. [30] after change occurs, range of mutation is increased 

slowly. If population fitness does not improve, the range of the local search is 

extended by increasing the mutation rate more till the population fitness 

improves. Experiments done show that this method performs best with very 

small changes. 

3.6.3 Maintain Diversity Throughout The Run 

There are several works done on maintaining diversity through the run as stated in 

[5]: 

Random immigrants was introduced by Grefenstette [16] where in every generation 

population is partly replaced by random new individuals. Thus this preserves 

diversity in population through the process. 

Sharing/crowding an effect of genotypic and phenotypic sharing on the EA’s ability 

to track moving optima was examined by Andersen [18]. This method tries to spread 

out the population over multiple peaks, it should keep the diversity. Experiments 

done related to this method concluded that the sharing method remarkably enhances 

the EA’s ability to find optima in slowly changing environments. 

Thermodynamical genetic algorithm (TDGA) which was proposed by Mori et al. [31] 

is to control diversity in the population explicitly through a measure named "free 

energy". For a minimization problem, this term is calculated as F=<E>-TH where 

<E> is the average population fitness TH is the measure of diversity in the 

population. New population selected from the parents and offspring one by one based 

on trying to minimize F <t. T is a temperature parameter set to change the 

importance of diversity over time. 

As a result of examining overall the studies on maintaining diversity through the run 

the optimization process results of tests performed show: If change has low severity 

triggered hypermutation performs better, however in cases of higher severity 

changes, random immigrants perform better. 
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3.6.4 Memory-Based approaches 

EA is supplied with memory to remember useful information from past generations. 

It is quite useful when the optimum returns to previous locations. There are two main 

groups of providing memory: implicit memory and explicit memory approaches. For 

more information refer to [5]. 

3.6.5 Multipopulation approaches 

In the multipopulation approach, the main idea is dividing the population into sub-

populations which are searching for peaks in their own space at the same time. The 

goal of different subpopulations is maintaining information about promising regions 

of the search space. There are some example approaches such as: 

- self-organizing scouts  

- a multinational GA 

- shifting balance GA 

- sentinels 

3.6.5.1 Self Organizing Scouts 

 

The main idea is when x peaks are found, the population is split into x small fractions 

called the "scout population" which watches over the peak and the rest of the 

population called the "base population" spreads out and continues search for new 

peaks overtime. When a watched peak moves, scout population follow peak by 

demanding reinforcement from base population. In order to supply the request of 

reinforcement for scout population when population size is limited, individuals are 

redistributed to sub-populations where they are most needed. Thus unpromising 

regions may be abandoned by reporting successful results. For more information 

refer to [5]. 

3.6.5.2 Shifting Balance GA 

The main aim is to increase exploratory power. Population is divided into a core and 

a number of small colony populations. The core population exploits the best optimum 

found, and the colony populations are forced to search in other parts of landscape. If 

a colony gets close to the core population, it is driven away using a distance measure 

at intervals. It shows good performance only with small changes in the environment. 
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3.6.5.3 Multinational GA 

The main idea is grouping of individuals based on hill-valley detection procedure for 

two points in the search space. Defining borders of the subpopulation requires many 

extra fitness evaluations to detect valleys. Results reported on two peak 

environments are shown to be better than sharing method. 

3.6.5.4 Sentinels 

Sentinels are population members distributed uniformly on the search space where 

they are treated as regular members used for selection and crossover. They are never 

replaced when the population converges around a peak and the environment changes, 

other sentinels are selected for reproduction. Main aim is to have a uniform 

distribution of individuals on the search space. There are many successful methods 

existing in literature and successful results are reported. 

3.7 Suitable Benchmark Problems 

Branke stated in his work [5] that optimization in dynamic environments seems to 

require two fundamental capabilities: 

- Tracking of a solution that changes slightly  

- Jumping from an old solution to a quite distant new optimum that appeared 

elsewhere. 

Thus it should be possible to vary many of the environmental variables such as peak 

heights, peak shapes, peak locations. It should also provide benchmarking for binary 

and real valued encodings while it should be possible to vary change dynamics, 

change frequency and change severity, it should be simple to implement, it should be 

simple to analyze and it should allow conjectures to real world problems. The 

Moving Peaks Benchmark introduced by Branke in [27,28]  tries to provide the 

above aspects. There are several kinds of commonly used Benchmark problems such 

as:  

- Dynamic Multiple Knapsack Problem 

- Dynamic Bit-Matching Problem (will be introduced in [Section 4.1.1]) 

- Dynamic Simple Knapsack Problem (will be introduced in [Section 4.1.2]) 
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3.8 Measuring Performance 

There are some criteria taken for account by many researchers while evaluating the 

results of algorithms in changing environments, such as intuitive meaning, 

straightforward methods for statistical significance testing of comparative results, 

and measurement of performance over a sufficiently large exposure to landscape 

dynamics 

Some of the mostly used performance measures for dynamic environments are online 

performance, offline performance, offline error and best fitness values.  

3.8.1 Online Performance 

Online Performance at EA time T is defined as the average fitness of all evaluations 

over entire run and every evaluation requires testing the real world.  

3.8.2 Offline Performance 

Offline performance at EA time is defined as the average fitness of all best 

individuals found so far and optimization is done in a simulated environment and 

only best solutions are transferred to real world  

For non-stationary environments, offline performance should only consider 

individuals evaluated since the last change. Also offline performance requires that 

the changes are detected or known. 

3.8.3 Offline Error 

 Offline Error at EA time T is defined as the average of current errors, i.e. the 

difference between the current optimum and the current best fitness, over the entire 

run. This performance is applicable only if the researchers know the optima of all 

environments encountered.  
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3.8.4 Best Fitness Performance 

Best Fitness Performance at EA time is defined as the set of best fitness values found 

in each environment encountered up to that time.  

Where *ε  is the offline error 

performance     and T is the number of 

evaluations considered.   
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3.9 Theories on EAs 

Most of the work done on dynamic environments was of practical nature, however in 

the recent time, researchers try to look at the problem from a theoretical point of 

view. To summarize there are some approaches done overall:  

A first approach can be found in [23], where equations for the transition probabilities 

of a (1+1) EA on the dynamic bit matching problem was stated. 

Droste [24] looks at the first hitting time (the expected time to hit the optimum for 

the first time) for a (1+1) evolution strategy on the dynamic bit matching problem. 

The polynomial                    , where exactly 1 bit is changed with a given probability 

defined by p.  

A formula predicting   the tracking distance of the population from the target is 

derived by Arnold and Beyer [26] 

Finally Branke and Wang [3] also consider the dynamic bit matching problem, and 

analytically compare different strategies to deal with an environmental change within 

generation based on similar methods, as in [23]. In their work firstly, two 

reproduction methods of (1,2) and (1+1) on an Environment Changing between 

Generations are compared and results are derived which are supported by some 

empirical tests. As a conclusion derived from the results, it is seen that it would be 

beneficial to use (1,2) at the beginning then switch to (1+1) at the end of run. As for 

work on environmental change within generations, they have compared two 

statements such as: 

- Evaluating two individuals with the respective current fitness function 

- Delaying the change and use the old fitness function for the second individual 

As an illustration of above statements refer to the Figure below: 

 

Figure 3.1 :  Illustrative example for situation in EAs before and after change 

)
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If algorithm will behave according to the first statement individual x1will be selected: 

 

Figure 3.2 : Illustrative Example for Selection According to 1
st
 Statement 

On the other hand, according to second statement x2 will be selected, where it has a 

less fitness value in new environment: 

 

Figure 3.3 : Illustrative Example for Selection According to 2
nd

 Statement 

An empirical test with (1,2) reproduction scheme on bit-matching problem was done. 

The conclusion derived from the result was that according to the severity of the 

problem, one or the other can be preferred. Thus, for instance if the severity of the 

environment change is stated as d, ordering from best to worst approaches according 

to the research results can be summarized in the following way:  

d=1 with new individual is best, d=1 with old fitness is next, d=2 with old fitness is 

in third place, d=2 with new fitness following them, d=3 with old fitness is next 

before last and d=3 with new fitness is the last in performance.  

Above stated theory served an inspiration and basis to our thesis. In order to have 

any idea where to direct the search after change has happened within generation we 

have to examine the following approaches proposed by Branke in [9]:  
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1. Use the changed fitness function for all subsequent individuals, but keep the 

evaluations of the offspring already evaluated 

2. Temporarily reduce the population size. The generation is terminated, and the 

offspring generated so far serve as basis to generate the next. 

3. Re-evaluate all offspring already generated; ignore the change and continue 

to work with the old fitness function to the end of that generation 

4. Ignore the change and continue to work with the old fitness function until all 

offspring of that generation have been evaluated. 

Thus the consecutive section is about the experiments performed in order to compare 

the four methods stated above.  
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4 EXPERIMENTS 

4.1 Used Tools 

Experiments on two benchmarks are performed. While one of them compares four 

methods on the Bit-Matching Problem (BMP), a unimodal problem, the other 

compares them on the Single Knapsack Problem (SKP). For both of the experiments 

the Generational Reproduction Method of EAs is used. 

4.1.1 Bit-Matching Problem  

In the BMP, the environment is defined as a string and the fitness of each individual 

is calculated as the sum of the bits matching the environment string. Environment 

change is applied on the string with a predefined rate by complementing some of the 

bits. For example if severity of change is 0.05, at least randomly selected 5 bits in 

string the are complemented. 

4.1.2 Single Knapsack Problem  

The Single Knapsack Problem (SKP) is defined as: 

Maximize∑
∈

…=
Jj

jj xP J1,j here         w*                                                              (4.1)  
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In the SKP, the environment consists of profits, weights and capacity. Also its usage 

as a penalty based Single Knapsack Problem, where each individual’s fitness is 

defined as  

Penalty(x)-f  F ii =                                                                                                    (4.3) 

   (4.2) 
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0)( =xpenalty  if x is feasible, 

0)( >xpenalty  if x is unfeasible                                                                             (4.4) 

where f and Penalty is defined as follows [32]: 
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Where 0>jw  , maxp   is the maximum profit,  minw  is the minimum resource 

consumption,   ),( ixCV is the maximum constraint violation, n is the number of 

items and  
ijx  is the j

th 
gene of i

th
  individual in the EA population. 

The initial knapsack instances is generated by using David Pisinger's knapsack 

generator codes in [33]. The generated sample knapsack has 100 items and profits 

and weights take on values between 0 and 1000. The profit and weight values are 

highly correlated. The original knapsack generated by the generator had a very low 

tightness ratio so the capacity value was manually changed in order to have a 

tightness ratio of 0.75, which makes the initial problem fairly easy.  

Following values are used in running the knapsack instance generator given in 

“generator.c” [33]: 

c=generator.c, n=100, r=1000, type=3, i=1, S=1000, where 

C : name of the generator’s code 

N : number of items 

R : range of coefficients 

Type : 1=uncorrelated, 2=weakly correlated, 3=strongly correlated, 4=inverse 

strongly correlated, 5=almost strongly correlated, 6=subset-sum,                   

7=even-odd subset-sum, 8=even-odd knapsack, 9=uncorrelated similar    

weights, 11=Avis subset-sum, 12=Avis knapsack, 13=collapsing KP, 

14=bounded strongly corr, 15=No small weights 
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I : instance no 

S : number of tests in series (typically 1000) 

Change of the environment in the SKP, is achieved through changing the profits, 

weights and capacity according to predefined Upper and Lower bound. The dynamic 

multi-dimensional knapsack problem generation method given in [22] is modified to 

be applied to the SKP, as explained below. The initial values for the environment are 

defined at the beginning of the run according to the formula: 

Lower bound of pj=pj*(0.8) for each profit 

Upper bound of pj=pj*(1.2) 

Lower bound of wj=wj*(0.8) for each weight 

Upper bound of wj=wj*(1.2) 

Lower bound of c=c*(0.8) for capacity  

Upper bound of c=c*(1.2)          (4.6) 

At each change instance, each of the profits, weights and capacities are changed 

according to the following statement: 

pj=pj*(1+N(0,0.05)) 

wj=wj*(1+N(0,0.05)) 

c=c*(1+N(0,0.05))            (4.7) 

where N(0,0.05) is the random number from the Gaussian distribution with mean=0, 

and standard deviation=0.05 

For more information related to penalty based fitness calculation and towards the 

analysis of Multiple Knapsack Problem refer to [22]  

4.1.3 Generational Reproduction Method  

The offspring of the individuals selected from each generation become the entire 

next generation. No individuals are retained between generations.  

4.1.4 Time for Change of Environment 

In our experiment, three kinds of periods are tested for change over the entire run, i.e. 

the beginning, in the middle, and at the early end of the run. To clarify, if time of 
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change is defined by x, the value of x for the change at the beginning of run is 3, 

x=10 for medium change, and x=25 for the change at the end of run. 

Moreover, different stages in the generation are defined as an offset, which shows at 

which individual’s evaluation the environment has been changed. In our experiments 

this value is defined as 50, in order to have the environment changed at the middle of 

generation where 100 individuals exist in the population. 

To sum up, for example if x=3, and offset=50 with a population which has size of 

100, change happens at (x * population_size + offset) = 350th evaluation. 

In our experiments, basically, four methods in previously stated proposal are 

compared. The main goal of the experiment is to see how to manage when change 

happens within a generation. First we have compared four methods with x=3,x=10 

and x=25. The main aim is to see how the methods manage change which happens at 

early stage, at the medium stage and at the end. The results are shown in plots as well 

as in tables.  

In order to compare four methods in equal time period giving them an equal chance 

for recovering, values of offline error at Z evaluations after change are compared, 

where Z is defined as Z=z*population_size, (in our work z=3).  

In each case, 1000 runs are performed and the average of these runs are plotted. Also 

standard error, which is equal to [(Standard Deviation)/(sqrt (number of runs))] is 

calculated in order to look at intervals of calculated standard error and see 

differences in a numerical way.   

4.2 Experiment on Bit-Matching Problem  

4.2.1 Details of Experiment  

Representation: Binary representation  

Fitness Evaluation: Fitness evaluated according to Bit-Matching Problem 

Selection: Permutational Selection 

Crossover: Uniform crossover of rate 0.8 

Mutation: Mutation rate of 0.01 is applied  

Duplicate-Elimination: For each randomly generated individual at the beginning of 

population, same individuals are not allowed, as well as for offspring. 
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Elitizm: Elitist individual of previous generation which are different from currently 

generated offspring are allowed to join them. 

Change Severity: Environment change of 0.1 severity means at most randomly 

selected 10 bits are flipped when change happens. 

Performance Measurement: Offline Error, Best Fitness 

4.2.2 Results of Experiment w.r.t. Offline Error Performance 

Table 4.1 shows offline errors at Z evaluations after change as well as the offline 

errors at 4000
th

 evaluations. Moreover Table 4.1 shows the Standard Error at Z 

evaluations after change and calculated intervals according to Standard Error is given 

in Table 4.2. As mentioned above, in order to compare four methods by giving to 

them equal time to recover after change, we have to look at their offline errors at Z 

evaluations after change. The important point here is that the offline error is 

calculated in two different ways such as: 1) it is calculated only after the change has 

happened in order to see the difference of the methods significantly 2) it is calculated 

from the beginning in order to see the overall performance of the methods.   

Thus, in 1
st
 type of calculation ordering of the methods from best to worst according 

to the values of each method at Z evaluations after change is as follows: 

for period 3: 2, 1, 4, 3 

for period 10:  2, 1, 4, 3 

for period 25:  2, 4, 3, 1 

In 2
nd

 type of calculation ordering of the methods from best to worst according to the 

values of each method Z evaluations after change is as follows: 

for period 3   : 2, 1, 4, 3 

for period 10 : 1, 2, 3, 4 

for period 25 : 1, 3, 2, 4 

1st Method: Unexpected good performance of 1
st
 Method where fitness values 

according to old environment compete with the fitness values according to new 

environment could be because the changes are not very severe and the landscape is 

unimodal. Possibly even though the fitness values of the individuals change, ordering 

of individuals could be staying more or less the same. In order to support this idea 

pair wise ordering of individuals according to their fitness before and after the 

change can be examined. Refer to Test 1 performed in Section 4.2.4.  
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2nd Method: Although performance of method 2 is best in first calculation type, it 

decreases in overall period with larger period of change. It can be explained possibly 

as there is more time for the EA, it gets more converged around a local optimum. 

Then not having enough time with decreased size of the population, there is not 

sufficient diversity to find optimum. In order to support this idea Test 2, where 

average hamming distance of reduced population is calculated at different periods of 

change time in order to have a look at diversity in periods, has been performed in 

Section 4.2.4. 

3rd Method: The bad performance of method 3 in smaller periods or in quick change 

could be because of the fact that it spends some of its time for reevaluating and has 

less time for trying to find the new optimum. This idea is supported by the increasing 

performance with respect to increasing period.  For example, for the period of 25, 

method 3 also gets better because at this moment it also gets some time to look for 

the new optimum. Moreover from Table 4.2 and illustrated graphs shown on Figure 

4.4, Figure 4.5 and Figure 4.6 it can be said that 1
st
 and 3

rd
 Methods’ behaviors are 

similar. 

4th Method: Performance of the 4
th

 Method is better than 3
rd

 Method in the 1
st
 type 

of evaluation. Indeed it seems to be better than the 3
rd

 Method because of the method 

of calculation of offline error. In the 4
th

 Method after change has happens, offline 

error is calculated according to the new environment while algorithm itself continues 

with the old environment by ignoring the change. This idea can be shown by 

comparing methods according to their Best Fitness Performance [Section 4.2.3]. In 

the 2
nd

 type of calculation where overall offline error is calculated 4
th

 Method is the 

worst. Possible reasons can be that it ignores the change and in its time given to 

converge, it continues to converge around the wrong peak. Thus since even more 

diversity is lost, it takes longer to move to the new peak. In order to support this idea 

Test 3 is performed in Section 4.2.4. 

Figure 4.1, Figure 4.2 and Figure 4.3 illustrate the performance w.r.t. Offline Errors 

after change. 
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Figure 4.1 : Methods for Period 3 on BMP w.r.t. Offline Error Performance 
 
 

 
Figure 4.2 : Methods for Period 10 on BMP w.r.t. Offline Error Performance 
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Figure 4.3 : Methods for Period 25 on BMP w.r.t. Offline Error Performance 

Table 4.2 : Intervals of Methods at z Evaluations w.r.t. Offline Error Performance 

 For period 3 For period 10 For period 25 

Method 2 [30.280;30.336] [21.144;21.260] [11.180;11.252] 

Method 1 [31.151;31.252] [21.958;22.048] [11.578;11.650] 

Method 4 [31.325;31.423] [22.048;22.146] [11.518;11.587] 

Method 3 [31.990;32.025] [22.166;22.274] [11.568;11.640] 
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Figure 4.4 : Intervals for Period 3 on BMP w.r.t. Offline Error Performance 

 

Figure 4.5 : Intervals for Period 10 on BMP w.r.t. Offline Error Performance 
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Figure 4.6 : Intervals for Period 25 on BMP w.r.t. Offline Error Performance 

4.2.3 Results of Experiment w.r.t. Best Fitness 

Table 4.3 shows Best Fitness overall at Z evaluations after change as well as the Best 

Fitness at 4000
th

 evaluations. As in above experiment, the Standard Error at Z 

evaluations after change is given in Table 4.3 and calculated intervals according to 

Standard Error is given in Table 4.4. 

Ordering of the methods from best to worst according to the values of each method 

on Z evaluations after change is as follows: 

for period 3   : 2, 1, 4, 3 

for period 10 : 1, 2, 3, 4 

for period 25 : 1, 3, 2, 4 

Here the ordering is same as the offline error calculated overall. It means that 

performance of methods overall is same with the first experiment where offline error 

is calculated.  

1
st
 Method: As in the previous experiment, we have seen that after change although 

1
st
 Method’s performance is slightly decreasing it is still best according to other 

methods. 
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2
nd

 Method: In this experiment, it is significantly seen that 2
nd

 Method’s performance 

is decreasing with larger periods of change time. We can also say that 2
nd

 Method’s 

decreasing performance is much bigger than the 1
st
 Method’s.  

3
rd

 Method: The result clearly shows that 3
rd

 Method is having better performance 

with increasing period of change time. Moreover this experiment have been 

performed again with BMP but this time w.r.t. Best Fitness Performance in order to 

show the related performance of 3
rd

 and 4
th

 Methods.  As a result we can see that 4
th

 

Method is in fact worse than 3
rd

 Method, actually it is the worst one. 

 

Figure 4.1, Figure 4.2 and Figure 4.3 illustrate the performance w.r.t. Best Fitness 

overall. In graphs it is important that 4
th

 Method taking the change of environment 

into account after a half generation passed. 
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Figure 4-7 : Methods for Period 3 on BMP w.r.t. Best Fitness Performance 

 

Figure 4.8 : Methods for Period 10 on BMP w.r.t. Best Fitness Performance 
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Figure 4.9 : Methods for Period 25 on BMP w.r.t. Best Fitness Performance 

Table 4.4 : Intervals of Methods at z Evaluations 

 
For period 3 For period 10 For period 25 

Method 2 [72.564;72.696] [80.860;80.986] [89.925;90.001] 

Method 1 [72.171;72.305] [81.345;81.457] [95.230;95.306] 

Method 4 [71.975;72.102] [80.482;80.596] [89.676;89.752] 

Method 3 [71.342;71.466] [80.865;80.977] [95.115;95.193] 
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Figure 4.10 : Intervals for Period 3 on BMP w.r.t. Best Fitness Performance 

 

Figure 4.11 : Intervals for Period 10 on BMP w.r.t. Best Fitness Performance 
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Figure 4.12 : Intervals for Period 25 on BMP w.r.t. Best Fitness Performance 

4.2.4 Tests Performed According to Results of Experiment on Bit-Matching 

Problem 

Test 1: The aim of this test is to detect the severity of change or in other words to 

have a look at the similarity of environments before and after the change. 

- All individuals in the population (half with old fitness, half with new 

fitness) at the generation where change has happened are ordered - it is the 

first string 

- First half of population was re-evaluated according to the new environment 

and all individuals in the population are ordered-it is the second string. As an 

ordering algorithm Bubble Sort Algorithm has been used in order to not 

change the related order of individuals with the same fitness value. 

- Pair wise "better" relationships between all individual pairs in both strings are 

compared. The number of differences (worst case is n*(n-1)/2 where n is the 

number of individuals. It is equal to 4990 in our experiment) is calculated. 
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Illustration of Test 1is as follows, where xi, i є{1…6} is for individuals and current 

time is defined as t so that fitness function at the current time is defined as ft, the time 

after change has happened is defined as t+1, also fitness function at that time is 

defined as ft+1.   

 

Figure 4.13 : Illustration of Test 1 

Results: 

for period 3: 715.7 different out of 4990 

for period 10: 1067.0 different out of 4990 

for period 25: 1560.5 different out of 4990 

As it can be seen that similarity of environments before and after the change is 

decreasing as the period of change time is increasing. Therefore this result has 

proved our assumption about 1
st
 Method. Thus, as the period of change time is 

decreasing, the poopulation has time to converge and for that reason severity of 

change is larger than in small periods. Similarly in small periods of change time, the 

population is distributed and is not huddled around the optimum, change severity is 

small and orderings of individuals do not change roughly.  
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Test 2: The aim of this test is to explain the claim of the experiments as to why the 

2
nd

 Method looses its performance with the increasing period of change time by 

calculating the  average hamming distances of the half population before change. 

Illustration of Test 2 is as follows, where where xi, i є{1…6} is for individuals: 

 

Figure 4.14 : Illustration of Test 2 

Results: 

for period 3: 23.309 

for period 10: 18.060 

for period  25: 8.282 

As seen in the results above, the average hamming distance of the half population 

before change is decreasing as the period for change time is increasing. Therefore, 

the result supports the assumption about 2
nd

 Method. Thus 2
nd

 Method has worse 

performance the increasing period of change time because of the decreasing diversity 

of the population.   

Test 3: The aim of the test is to show that 4
th

 Method is losing its diversity by 

continuing to converge around the wrong peak. In order to show this, average 

hamming distance of the half population, which is AVR1, before change is 

calculated and compared with the average hamming distance of all the population in 

that generation which is AVR2. 

Illustration of Test 3 is as follows, where xi, i є{1…6} is for individuals and current 

time is defined as t so that fitness function at the current time is defined as ft. Since 

Test 3 is applied for 4
th

 Method, fitness function is same after change until the end of 

current generation: 
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Figure 4.15 : Illustration of Test 3 

Results: 

for period 3: AVR1=22.829; AVR2= 23.308 

for period 10: AVR1=17.713; AVR2= 18.101 

for period  25: AVR1=8.165; AVR2= 8.342 

It can be seen from the results that the diversity of population before change and the 

diversity of population after change are nearly same. To say in a different way their 

difference is decreasing as the period of change is increasing. Thus it supports the 

idea about 4
th

 Method that since it ignores the change, in its time given to converge it 

continues to converge around the wrong peak. Thus even more diversity is lost, it 

takes longer to move to the new peak. 

Test 4: The aim of the test is to show that 1
st
 Method have larger diversity than in 4

th
 

Method. To do this: 

a) keep the old fitness values in the current generation (Method 4), look at the 

diversity in next generation 

b) use new fitness values after the change (Method 1), look at diversity in next 

generation. It is expected that the diversity in 4
th

 Method is getting smaller as 

period of change is increasing. 

Illustration of Test 4 is as follows, where where xi, i є{1…6} is for individuals and 

current time is defined as t so that fitness function at the current time is defined as ft, 

the time after change has happened is defined as t+1, also fitness function at that time 

is defined as ft+1. M4 and M1 are stated for 4
th

 and 1
st
 Methods. 
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Figure 4.16 : Illustration of Test 4 

Results: 

a) Avr. Diversity of M1: period 3 =22.157; period 10 =16.911; period 25 = 

8.066 

b) Avr. Diversity of M4: period 3 =22.607 ; period 10 =17.294; period 25 = 

7.863 

It is shown that in smaller periods, there are ignorable small differences between 

diversity of populations in 4
th

 Method and 1
st
 Method, and the diversity of population 

in 4
th

 Method is getting smaller as time passes.   

Test 5: The aim of the test is to compare diversity of population in 2
nd

 Method (M2) 

and 4
th

 Method (M4) in next generation just after change. 

a) In M4 look at the diversity in next generation just after change 

b) In M2 look at the diversity in next generation just after change 

Illustration of Test 5 is as follows, where xi, i є{1…6} is for individuals and current 

time is defined as t so that fitness function at the current time is defined as ft, the time 
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after change has happened is defined as t+1, also fitness function at that time is 

defined as ft+1. M4 and M2 are stated for 4
th

 and 2
nd

 Methods.: 

 

Figure 4.17 : Illustration of Test 5 

Results: 

a) Avr. Diversity of M2: period 3 = 23.309; period 10 = 18.060; period 25 = 

8.282 

b) Avr. Diversity of M4: period 3 =22.607 ; period 10 =17.294;  period 25 = 

7.863 

4.3 Experiment on Single Knapsack Problem 

4.3.1 Details of Experiment  

Representation: Binary representation  

Fitness Evaluation: Fitness evaluated according to Single Knapsack problem 

Selection: Permutational Selection 

Crossover: Uniform crossover of rate 0.8 

Mutation: Mutation rate of 0.01 is applied  



 44

Duplicate-Elimination: For each randomly generated individual at the beginning of 

population, same individuals are not allowed, as well as for offspring. 

Elitizm: Elitist individual of previous generation which are different from currently 

generated offspring are aloowed to join them. 

Change Severity: Severity of Environment is changed according to randomly 

generated numbers from Gaussian distribution with mean=0, and standard 

deviation=0.05.  

Performance Measurement: Best Fitness Performance 

4.3.2 Results of Experiment   

Table 4.5 shows Best Fitness overall at Z evaluations after change as well as the Best 

Fitness at 4000
th

 evaluations. As in above experiments, the Standard Error at Z 

evaluations after change is given in Table 4.3 and the calculated intervals according 

to Standard Error is given in Table 4.4. As it is can be read from intervals’ 

illustrations, in Figure 4.16, 1
st
 and 2

nd
 Method has same performance at period of 3. 

In figure 4.17 it can be seen that differences between Methods’ performances are 

increasing. Also in Figure 4.17 and Figure 4.18, it can be seen that 2
nd

 Method and 

4
th

 Method are same as period of change time is increasing. Here the performance of 

2
nd

 Method became worse than in BMP.    

Ordering of the methods from best to worst according to the values of each method 

on Z evaluations after change is as following: 

for period 3   : 2, 1, 4, 3 

for period 10 : 1, 3, 2, 4 

for period 25 : 1, 3, 2, 4 

One important issue to note is that if change has happened in an early stage, 

independently from the problem, ordering according to their performance is same in 

all experiments. Thus it is in a way that 2
nd

 Method is best, than 1
st 

Method is next, 

after that 4
th

 Method is at third place and the 3
rd

 Method is the last. 

1st Method: Performance of 1
st
 Method is better than in BMP. It can be seen in 

Figure 4.10 and in Figure 4.16. To clarify, the intervals of 1
st
 Method and 2

nd
 Method 

do not intersect in BMP, while in SKP they fall down in same interval. To look at the 

pair wise ordering of individuals according to their fitness before and after change 

can clarify the situation. Refer to Test 1 performed in Section 4.3.3. 
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2
nd

 Method: 2
nd

 Method has better performance in BMP relatively than in SKP. This 

idea can be supported by the work in [32]. In this work feasible SKP space is defined 

as an area which is surrounded by the boundary of feasibility. The penalty method 

causes individuals trying to move towards the border. Individuals outside the border 

are unfeasible individuals. It is possible that individuals which are close to 

converging before the change may become unfeasible after the change because the 

feasible space relocates and the individuals may fall outside the boundary. For this 

reason, 2
nd

 Method can have its performance decreasing in SKP. Why its 

performance is same as 4
th

 Method’s performance can be shown by Test 5 in Section 

4.3.3 by calculating the diversity of them in the next generation just after change.  

3
rd

 Method: It performs better with larger periods because of the reason stated in the 

experiment done on BMP. Thus the bad performance of method 3 in smaller periods 

or in quick change could be because of the fact that it spends some of its time for 

reevaluating and has less time for trying to find the new optimum. With increasing 

change periods, the performance of the 3
rd

 Method also increases since it has some 

more time to converge. 

4
th

 Method: 4
th

 Method is the worst. Possible reasons as in other experiments can be 

that since it ignores the change, in its time given to converge it continues to converge 

around the wrong peak. Thus it is worse than the 3
rd

 Method where it also losies time 

by reevaluating half of the population according to the new environment, because it 

loses time as well as diversity by continuing to converge to the wrong direction. 
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Figure 4.18 : Methods for Period 3 on SKP w.r.t. Best Fitness Performance 

 
 

 
Figure 4.19 : Methods for Period 10 on SKP w.r.t. Best Fitness Performance 
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Figure 4.20 : Methods for Period 25 on SKP w.r.t. Best Fitness Performance 

Table 4.6 : Intervals of Methods at z Evaluations 

 For period 3 For period 10 For period 25 

Method 1 [42477.6;42562.7] [43876.1;43955.4] [44052.9;44131.5] 

Method 3 [42123.1;42197.2] [43844.9;43923.0] [44052.5;44128.7] 

Method 2 [42470.9;42569.5] [43222.3;43347.1] [43378.1;43503.0] 

Method 4 [42332.8;42429.0] [43186.4;43310.7] [43342.9;43467.6] 
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Figure 4-21 : Intervals for Period 3 on SKP w.r.t. Best Fitness Performance 

 

Figure 4-22 : Intervals for Period 10 on SKP w.r.t. Best Fitness Performance 
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Figure 4.23 : Intervals for Period 25 on SKP w.r.t. Best Fitness Performance 

4.3.3 Tests Performed According to Results of Experiment on Single 
Knapsack Problem 

Test 1: The aim of test is to show the reason of 1
st
 Method having better performance 

than in BMP [Figure 4.13].   

- All individuals in the population (half with old fitness, half with new 

fitness) at the generation where change has happened are ordered-it is the first 

string 

- First half of population is re-evaluated according to the new environment and 

all individuals in the population (all with new fitness) are ordered-it is the 

second string 

- Pair wise "better" relationships between all individual pairs in both strings are 

compared. The number of differences (worst case is n*(n-1)/2 where n is the 

no of individuals) are calculated. 

Results: 

for period 3: 96.7 differences out of 4990 

for period 10: 680.60 differences out of 4990 
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for period 25: 751.6 differences out of 4990 

As a result, it is shown that similarity between populations before and after  the 

change is much smaller than in BMP. Thus it explains the relatively better 

performance of 1
st
 Method in SKP. 

Test 2: The aim of the test is to have a look at diversity of the reduced population 

after the change according to different periods and explain the behavior of having a 

worse performance than in BMP. In order to show it, as it was explained before, the 

average hamming distance of the half population before the change is calculated for 

different periods of change time [Figure 4.14]. 

Results: 

for period 3: 23.287 

for period 10: 19.629 

for period  25: 18.351 

Although the diversity of the population is much larger than in the experiment on 

BMP, it is not sufficient to find the optimum, since SKP is a multimodal problem 

which is harder that the BMP.  

Test 3: The aim of the test is to explain the poor performance of 4
th

 Method. In order 

to do that the average hamming distance of the half population, which is AVR1, 

before change is calculated and compared to the average hamming distance of the 

whole  population in that generation which is defined as AVR2 [Figure 4.15]. 

Results: 

for period 3: AVR1=22.841; AVR2= 23.328 

for period 10: AVR1=19.280; AVR2= 19.675 

for period  25: AVR1=17.662; AVR2= 18.024 

Results show as in Test 2, although the diversity of population is much larger than in 

BMP, it is not enough to converge.  

Test 4:  The aim of the test is to show the reason of the significant difference 

between 1
st  

Method which is the best in SKP and 4
th

 Method which is the worst in 

SKP. In the BMP experiment, Test 4 has shown that although M1< M4, because of 
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the methods interpretation M1 has better performance. It is expected in SKP that 

M1>M4. In order to show this[Figure 4.16]: 

a) keep the old fitness values in the current generation (M4), look at the 

diversity in next generation 

b) use new fitness values after the change (M1), look at diversity in next 

generation.  

Results: 

a) Avr. Diversity of M1: period 3=22.028; period 10 = 19.416; period 25 = 

18.267 

b) Avr. Diversity of M4: period 3=22.028; period 10 = 19.260; period 25 = 

17.909 

As expected M1>M4, thus supports the idea stated above.  

Test 5: The aim of the test is to have a look at similar performance of 2
nd

 Method 

with 4
th

 Method. In experiment on BMP, 2
nd

 Method has much better performance 

than 4
th

 Method and in Test 5 in Section 4.2.4 it was shown that the diversity of 

population in 2
nd

 Method is larger than in 4
th

 Method. In SKP because of their nearly 

same performance it is expected that M2<M4 or M2=M4 [Figure 4.17].  

a) In M4 look at the diversity of population in next generation just after change 

b) In M2 look at the diversity of population in next generation just after change 

Results: 

a) Avr. Diversity of M2: period 3 = 21.313; period 10 = 18.858; period 25 = 

17.767 

b) Avr. Diversity of M4: period 3 = 22.028; period 10 = 19.260; period 25 = 

17.909 

Results have shown that M2<M4 and it explains their similar performance in SKP.  

The results obtained from the experiments can be summarized as below:  

- If changes happen in the early stage of the run, independently of the problem, 2
nd

 

Method can be a variant for managing changes within a generation in designing a 

suitable algorithm.  
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- If change with a small severity has happened, i.e. environments before and after the 

change are similar, 1
st
 Method can be preferred as a variant for 3

rd
 Method, where 

application is costly if changes happen frequently.  

- On the other hand, looking at the results for the 4
th

 Method, it can be said that it is 

not a suitable way to ignore the changes in a generation. Thus ignoring the current 

change affects performance by converging late because of continuing converging 

around the wrong peak.  

Therefore now we know that assuming changes to occur only between generations 

can lead us to unsuitable, late converging populations. The reason is if change has 

happened almost within a generation, this interpretation becomes the same as the 4
th
 

Method and we see that it is the worst way of managing changes within generations. 

4.4 Further Experiments  

4.4.1 Appropriateness of Periods   

Defining of periods of change time is analyzed by plotting the best fitness graph of 

BMP and SKP without any change. As a result, it is seen that defining periods of 

change time as 3, 10 and 25 is quite meaningful according to the plot. Graphs are 

given below in Figure 4.24 and 4.25, where the averages of the best fitness at each 

evaluation over 1000 runs are plotted.  

It is seen that period 3 in Figure 4.24 with the early stage of overall run. The entire 

run can be divided into two parts where at first part tangent of a curve is bigger than 

the one in the second part. Thus the period 10 is in the middle of the first part, that it 

is appropriate to observe the run in the middle of the progress of performance. It can 

be seen that the period 25 is near towards the early end of the run. 
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Figure 4.24 : BMP Best Fitness without Change 

 

Figure 4.25 : SKP Best Fitness without Change 
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It is seen that period 3 in Figure 4.2, which visualizes the SKP performance in 4000 

evaluations over the 1000 runs, coincides with the middle stage of the converging 

progress. It is observed that the period 10 and period 25 are in the nearly similar 

stage of converging progress. Thus, it is explanation for the similarity in results 

relevant to periods 10 and 25.  

4.4.2 Additional Experiments on 2nd Method 

The results of experiments on BMP have shown that 2
nd

 Method’s performance is 

relatively good. Also remember that the offset for change was 50 where change 

happened at 50
th

 individuals’ evaluation and it account for the middle of population. 

Here we have tested 2
nd

 Method with offsets of 10 and 25. It means that environment 

has changed at 10
th

 and 25
th

 individuals’ evaluation. Therefore the results are given 

in Table 4.7. 

It can be seen that in the 2
nd

 Method, performance of the method at offset 10 is worse 

than the performance of it at offset 25. Also performance of the method at offset 25 

is worse than the performance of it at offset 50.  Ordering, according to the value at Z 

evaluations after change, is the same in experiments with offset 25 and offset 50. 

However it is seen that the performance is of the 2
nd

 Method in experiment with 

offset 10 is the relatively worst. 

In order to look at diversity of population at different offsets in 2
nd

 Method, Test 2 

[Figure 4.14] is reapplied. Results are given in Table 4.8. It can be said that results 

are in an expected way that diversity of the least population where change happens at 

offset 10, is considerably least. Also, the diversity of population at offset 25 is much 

near the value of diversity of population at offset 50.  

In summary, the decreasing performance of 2
nd

 Method with offset 10 is clearly 

explained by the decreasing diversity of population. 
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Table 4.7 : Various Offsets on Method II 

Bit Matching Problem 

Best Fitness Performance 

Method II 

 Offset 10 Offset 25 Offset 50 

Periods For 

Change 
3 10 25 3 10 25 3 10 25 

Change 

Happened at 

Given Fitness 

Evaluation 3
1
0

 

1
0
1

0
 

2
5
1

0
 

3
2
5

 

1
0
2

5
 

2
5
2

5
 

3
5

0
 

1
0

5
0
 

2
5

5
0
 

Change Time + Z 

 

6
1
0
 

1
3
1
0
 

2
8
1
0
 

6
2
5
 

1
3
2
5
 

2
8
2
5
 

6
5
0
 

1
3
5
0
 

2
8
5
0
 

Value at Z
th
 

Evaluation after 

change 7
2

.4
7

7
 

8
0

.6
7

 

8
9

.8
1

9
 

7
2

.5
0

8
 

8
0

.9
6

4
 

8
9

.8
2

7
 

7
2

.6
0

3
 

8
0

.9
2

3
 

8
9

.9
6

3
 

Value at 4000th  

Evaluation 

9
9

.6
1
9
 

9
9

.2
5
1
 

9
6

.1
6
7
 

9
9

.6
8
8
 

9
9

.2
7
9
 

9
6

.3
0
7
 

9
9

.7
0
0
 

9
9

.2
9
3
 

9
6

.3
3
4
 

Std. Error of 1000 

Runs at 4000
th
  

evaluations 0
.0

1
6
1

 

0
.0

2
1
2

 

0
.0

3
3
0

 

0
.0

1
4
9

 

0
.0

2
1
2

 

0
.0

3
2
4

 

0
.0

1
4
8

 

0
.0

1
9
2

 

0
.0

3
1
9

 

Std. Error of 1000 

Runs at Z
th 

evaluations after 

change 0
.0

7
4

4
 

0
.0

6
4

7
 

0
.0

4
1

8
 

0
.0

7
0

4
 

0
.0

6
2

4
 

0
.0

3
9

3
 

0
.0

6
5

9
 

0
.0

6
2

6
 

0
.0

3
8

1
 

Ordering 

according to 

value at Zth  

evaluations after 

change 

1 3 4 1 2 3 1 2 3 

   

Table 4.8 : The Diversity of Population in Method II 

                  Offsets 

Periods 

50 10 25 

3 23.309 21.225 22.826 

10 18.060 16.657 17.658 

25 8.282 7.622 7.996 
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4.4.3 Experiments on higher severity of environmental changes 

In experiments done so far, severity of environment changes was not high and it is 

concluded in unexpected good performance of 1
st
 Method. Here we have increased 

the severity of environmental changes in BMP up to 0.4 from 0.1, and in SKP up to 

0.1 from 0.05.  Results are given in Table 4.11. In order to compare the performance 

of methods following tables 4.9 and 4.10 are formed where old and new 

performances according to ordering of the methods are shown separated by (/). 

The compared results of BMP are shown in Table 4.9. It can be seen that 

performance of 4
th

 Method remained the same, that it has still the worst performance. 

As it is expected, performance of 1
st
 Method is getting worse, but still better than 2

nd
 

and 4
th

 Methods. Performance of 3
rd

 Method is getting better with large periods. The 

reason can be that at an early stage of run it looses time, but towards the end it can 

settle the deficiency. Performance of 2
nd

 Method is getting much worse than before. 

Therefore as a summary, if change in environment is severe, we have to use the 3
rd

 

Method, however if time is not available for reevaluation, the 1
st
 Method can be 

preferred by compromising the performance. 

Table 4.9 : Comparing Ordering Performance According to Severity in BMP 

 Period 3 Period 10 Period 25 

Method 1 2/1 1/2 1/2 

Method 2 1/4 2/3 3/3 

Method 3 4/2 3/1 2/1 

Method 4 3/3 4/4 4/4 

The compared results of SKP are shown in Table 4.9. Here it can be seen that the 1
st
 

Method has a bit decreasing performance, while the 3
rd

 Method has an increasing 

performance. The 2
nd

 and the 4
th

 Methods’ performances are the same as before. The 

important issue is that in spite of slight differences, performances of all methods are 

remaining the same. The reason for that is in period 10 and 25 SKP has almost 

similar converging performance [Figure 4.25].    
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Table 4.10: Comparing Ordering Performance According to Severity in SKP 

 Period 3 Period 10 Period 25 

Method 1 2/1 1/1 1/2 

Method 2 1/2 3/3 3/3 

Method 3 4/3 2/2 2/1 

Method 4 3/4 4/4 4/4 

 

Table 4.11 : BMP with Environment Severity of 0.4 

Bit Matching Problem 

Best Fitness Performance  

Method I II III IV 

Periods For 

Change 
3 10 25 3 10 25 3 10 25 3 10 

2

5 

Change 

Happened at 

Given Fitness 

Evaluation 3
5
0

 

1
0
5

0
 

2
5
5

0
 

3
5
0

 

1
0
5

0
 

2
5
5

0
 

3
5
0

 

1
0
5

0
 

2
5
5

0
 

4
0
0

 

1
1
0

0
 

2
6
0

0
 

Change Time + 

Z 

 6
5

0
 

1
3

5
0
 

2
8

5
0
 

6
5

0
 

1
3

5
0
 

2
8

5
0
 

6
5

0
 

1
3

5
0
 

2
8

5
0
 

6
5

0
 

1
3

5
0
 

2
8

5
0
 

Value at Z
th
 

Evaluation after 

change 6
8
.8

 

7
9
.7

 

9
5
.1

4
 

6
6
.4

1
 

6
7
.3

5
 

6
5
.7

6
 

6
8
.0

8
 

7
9
.8

6
 

9
5
.1

7
 

6
6
.7

1
 

6
6
.3

 

6
5
.7

4
 

Order 1 2 2 4 3 3 2 1 1 3 4 4 

 

Table 4.12 : SKP with Environment Severity of 0.1 

Simple Knapsack Problem 

Best Fitness 

Method I II III IV 

Periods 3 10 25 3 10 25 3 10 25 3 10 25 

Change 

Happened at 

Given Fitness 

Evaluation 3
5
0
 

1
0
5
0
 

2
5
5
0
 

3
5
0
 

1
0
5
0
 

2
5
5
0
 

3
5
0
 

1
0
5
0
 

2
5
5
0
 

4
0
0
 

1
1
0
0
 

2
6
0
0
 

Overall Best 

fitness before 

change 

4
0
2
8

0
.0

3
1
 

 4
3
1
4

9
.0

9
0
 

 4
3
4
5

0
.9

8
0
 

 4
0
3
5

2
.8

5
2
 

 4
3
1
4

6
.0

7
0
 

 4
3
4
8

1
.5

3
9
 

 4
0
3
0

5
.1

8
0
 

 4
3
1
4

8
.7

3
8
 

 4
3
4
6

4
.0

3
1
 

 4
0
7
3

7
.4

2
2
 

 4
3
1
6

8
.8

7
9
 

 4
3
4
8

4
.9

6
9
 

 

Standard 

Error at z 

2
0
4

.3
2
 

1
9
5

.2
5
 

2
0
0

.8
3
 

2
5
3

.8
9
 

3
5
8

.0
4
 

3
5
7

.9
6
 

1
7
0

.9
8
 

1
9
2

.5
8
 

1
9
9

.2
4
 

2
4
9

.6
4
 

3
5
1

.5
7
 

5
5
1

.0
6
 

Order 
1 1 2 2 3 3 3 2 1 4 4 4 
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4.4.4 Experiments on more environmental changes  

Up to now the methods are experienced on the basis of one change in environment. 

Here the behaviors of methods are analyzed according to the 20 changes in the 

overall run. To clarify, in these experiments period 3 means change happens 

frequently at every 3 generations passed. Value of the best fitness at Z
th

 evaluations 

after last change is compared in all methods. Results are given in Table 4.15 and 

4.16. In order to compare ordering performances of methods according to 

environment with one change and environment with 20 changes Table 4.13 and 

Table 4.14 separately for BMP and SKP are formed.  

By looking at results it can be said that the 1
st
 Method has a good performance. Since 

the 3
rd

 Method has considerably better performance than others, performance of the 

1
st
 Method seems getting worse. However, it has a good performance. While 

performance of the 2
nd

 Method is getting worse, performance of the 4
th

 Method is 

remaining the same, thus the worst.  

In summary, in situations where changes are frequent and if time is available for 

reevaluation we can continue with the 3
rd

 Method after changes. In a limited time 

conditions 1
st
 Method can be preferred.  

Table 4.13 : Comparing Ordering Performance According to Frequent Change in 

BMP 

 Period 3 Period 10 Period 25 

Method 1 2/1 1/2 1/2 

Method 2 1/2 2/3 3/3 

Method 3 4/4 3/1 2/1 

Method 4 3/3 4/4 4/4 

 

As for results shown in Table 4.14, it can be said that the 1
st
 Method has the best 

performance. The 3
rd

 Method has poor performance. The reason can be because of 

the time consuming reevaluation feature of 3
rd

 Method and special structure of SKP. 

The 2
nd

 Method has relatively the same performance. Due to the worsening of 

performance of the 3
rd

 Method, performance of 2
nd

 Method seems getting better. 

Performance of the 4
th

 Method is still the worst one.    

In summary, dependent on the problem, if changes are frequent and severity of 

change is not high 1
st
 Method can suit best.  
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Table 4.14 : Comparing Ordering Performance According to Frequent Change in 

SKP 

 Period 3 Period 10 Period 25 

Method 1 2/1 1/1 1/1 

Method 2 1/4 3/2 3/2 

Method 3 4/2 2/3 2/3 

Method 4 3/3 4/4 4/4 

 

Table 4.15 : Bit Matching Problem with 20 changes 

Bit Matching Problem 20 change 

Best Fitness Performance 

Method I II III IV 

Periods  3 10 25 3 10 25 3 10 25 3 10 25 

1
st
 Change 

Happened at 

Given Fitness 

Evaluation 3
5

0
 

1
0

5
0
 

2
5

5
0
 

3
5

0
 

1
0

5
0
 

2
5

5
0
 

3
5

0
 

1
0

5
0
 

2
5

5
0
 

4
0

0
 

1
1

0
0
 

2
6

0
0
 

Value at Zth 

Evaluation after 

change 

7
7
.0

8
 

8
8
.5

9
 

9
8
.2

6
 

7
6
.8

3
 

8
5
.0

6
 

9
0
.6

7
 

7
4
.8

1
 

8
9
.1

4
 

9
8
.5

9
 

7
6
.4

4
 

8
4
.6

2
 

9
0
.3

 

Std. Error of 

1000 Runs at Z
th 

evaluations after 

change 0
.1

8
1
8

 

0
.1

5
7
7

 

0
.0

8
4
8

 

0
.2

3
0
1

 

0
.1

6
3
8

 

0
.0

7
7
9

 

0
.2

0
5
3

 

0
.1

4
5
0

 

0
.0

7
5
3

 

0
.2

1
0
0

 

0
.1

6
1
9

 

0
.0

7
5
9

 

Order 1 2 2 2 3 3 4 1 1 3 4 4 

Table 4.16 : Simple Knapsack Problem with 20 changes 

Simple Knapsack Problem 20 change 

Best Fitness 

Method I II III IV 

Periods 3 10 25 3 10 25 3 10 25 3 10 25 

Overall Best 

Fitness at z 

evaluation 4
6
4
4

1
.6

1
 

4
8
0
2

3
.4

1
 

4
8

4
4
0
.6

 

4
5
5
4

3
.0

7
 

4
6
5
5

9
.3

1
 

4
7
4
0

4
.2

9
 

4
5
9
2

3
.0

8
 

4
6
6
9

8
.7

3
 

4
7
1
2

2
.2

6
 

4
5
7
9

1
.8

4
 

4
6
4
5

6
.4

1
 

4
7
0
0

6
.7

8
 

Standard 

Error at z 9
7

0
.1

8
 

9
1

6
.6

5
 

8
9

9
.6

2
 

9
8

0
.7

3
 

1
0
4
3
.2

8
 

9
2
1
.7

0
1

 

1
2

7
5
.9

 

1
3
4

8
.4

1
7
 

1
2
9
4
.2

1
 

9
8
1
.4

6
5

 

1
0
4
9
.4

2
 

0
2
8

.0
 

Order 1 1 1 4 2 2 2 3 3 3 4 4 



 61

 

 

 

 

 

5 CONCLUSION 

EAs are known as heuristic algorithms inspired from nature and for that reason they 

are suitable to the real world dynamic problems.  It is known that in nature changes 

are happening in a stochastic manner. This has to be taken into account in the EAs 

design. However, almost all researches performed in this area, assumed that changes 

are happening between generations. Although this was a convenient assumption, it 

needs to be examined in a detailed way. 

Thus, the aim of this thesis is to compare four methods of managing changes within 

generations and to do some empirical works on those methods. 

Experiments have been performed on the Bit Matching and the Single Knapsack 

Problems where the former is a unimodal and the latter is a multimodal problem. The 

results derived according to empirical works provided interesting insights which can 

be used in design of more suitable algorithms according to the nature of the change. 

Thus, the results obtained from the experiments can be summarized as:  

- If change with a small severity has happened, the 1
st
 Method can be preferred as a 

variant for 3
rd

 Method, where application is costly if changes happen frequently.  

- On the other hand if period of change is in an early stage of the run, the 2
nd

 Method 

can also be a variant for managing changes within a generation.   

- In addition, the 4
th

 Method is not a suitable way since it ignores the changes until 

the end of the generation in which they occur. 

As a future work, real world problems can be analyzed where the severity is high and 

changes happen at different stages of the generation. Since this work is in progress, 

further results can enhance designing more suitable algorithms for real world 

problems where changes are happening in a stochastic manner.  
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