

ĐSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS by

Didem KÖKTEN, B.Sc.

Department: Computer Engineering

Programme: Computer Engineering

JUNE 2007

CMMI IMPLEMENTATION FRAMEWORK

ĐSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS by
Didem KÖKTEN, B.Sc.

(504031547)

Date of submission : 21 May 2007

Date of defence examination: 14 June 2007

SuperVisor (Chairman): Prof. Dr. Eşref ADALI

Members of the Examining Committee Prof.Dr. Coşkun SÖNMEZ

 Assoc. Prof.Dr. Mustafa KAMAŞAK

JUNE 2007

CMMI IMPLEMENTATION FRAMEWORK

 ii

 ĐSTANBUL TEKNĐK ÜNĐVERSĐTESĐ ���� FEN BĐLĐMLERĐ ENSTĐTÜSÜ

CMMI UYGULAMA ALTYAPI SĐSTEMĐ

HAZĐRAN 2007

YÜKSEK LĐSANS TEZĐ
Müh. Hatice Didem KÖKTEN

(504031547)

Tezin Enstitüye Verildiği Tarih: 21 Mayıs 2007

Tezin Savunulduğu Tarih: 14 Haziran 2007

Tez Danışmanı: Prof. Dr. Eşref ADALI

Diğer Jüri Üyeleri: Prof.Dr. Coşkun SÖNMEZ

 Assoc. Prof.Dr. Mustafa KAMAŞAK

 iii

ACKNOWLEDGEMENTS

I would like to express our sincere gratitude to my project supervisor Prof. Dr. Eşref

Adalı for his guidance, motivation, patience and continuous support.

 iv

INDEX

ACKNOWLEDGEMENTS iii
INDEX iv
ACRONYMS vi
TABLE LIST vii
FIGURE LIST viii
ÖZET xi
SUMMARY xiii

1. INTRODUCTION 1
1.1 Thesis Introduction 1

1.2 General Concepts 3

1.3 Literature and Theoretical Focus 4

1.3.1 SPI Method 5

1.3.2 Software Process Reuse Repository 7

1.3.3 Software Process Evolution and Change Management 7

1.3.4 Knowledge-based Software Process Model 7

1.4 Strength of the Process Improvement in Practice 7

1.5 Target of the Thesis 9

2. MAIN CONCEPTS 11
2.1 SPI 11

2.1.1 What is SPI? 11

2.1.2 Importance of SPI 12

2.1.3 How is SPI Determined? 13

2.1.4 Key Methods for SPI 14

2.1.5 General-Purpose Process Improvement Cycles 15

2.1.6 General-Purpose Process Improvement Criteria 15

2.1.7 Software Process Modeling Notations 17

2.1.8 Software Engineering Standards 18

2.1.9 Software Engineering Life Cycles 19

2.1.10 Software Engineering Methodologies 19

2.1.11 Software Engineering Notations 19

2.1.12 Software Engineering Processes 20

2.1.13 Software Engineering Tools 20

2.2 CMMI 20

2.2.1 CMMI History & Background 21

2.2.2 CMMI Content 21

2.2.3 CMMI Models 22

2.2.4 Process Areas 24

2.2.5 Levels 25

2.2.6 Process Areas and their Relationships 29

2.3 Practical Implementation 36

 v

3. PRESENTATION OF THE THESIS 39
3.1 Subject of the Thesis 39

3.2 Process Areas and CMMI Compliance 40

3.3 Traceability Property 41

3.3.1 Requirements Management 41

3.3.2 Project Management 42

3.3.3 Analysis & Design and Implementation 42

3.3.4 Testing 43

3.3.5 Change Management 43

4. THE IMPLEMENTATION PROCESS 44
4.1 Process Management Framework 44

4.1.1 Implementation Solution 44

4.1.2 Process Structure 44

4.1.3 Discipline Details: 47

4.2 Traceability Relations 149

5. RESULTS AND DISCUSSIONS 175

6. CONCLUSION 177

REFERENCES 179

BIOGRAPHY 184

 vi

ACRONYMS

CMMI : Capability Maturity Model Inegration

SPI : Software Process Improvement

SEI : Software Engineering Ensititute

IT : Information Technology

ROI : Return on Investment

OSD :Office of the Secretary of Defense

GQM :Goal/Question/Metric

CAR :Causal Analysis and Resolution

CM :Configuration Management

DAR :Decision Analysis and Resolution

IPM :Integrated Project Management

MA :Measurement and Analysis

OID :Organizational Innovation and Deployment

OPD :Organizational Process Definition

OPF :Organizational Process Focus

OPP :Organizational Process Performance

OT :Organizational Training

PI :Product Integration

PMC :Project Monitoring and Control

PP :Project Planning

PPQA :Process and Product Quality Assurance

QPM :Quantitative Project Management

RD :Requirements Development

REQM :Requirements Management

RSKM :Risk Management

SAM :Supplier Agreement Management

TS :Technical Solution

VAL :Validation

VER :Verification

COBIT : Control Objectives for Information and related Technology

RUP :Rational Unified Process

 vii

TABLE LIST

 Page Number

Table 1.1 History of SPI …………………………………………………….. 5

Table 2.1 Comparison of Well vs. Poorly Designed Processes ……………... 12

Table 2.2 Representation Capability and Maturity Levels ………………….. 27

Table 2.3 CSF’s Identified Through Literature and Empirical Study ………. 37

Table 3.1 CMMI & Process Framework Compliance List…………………… 41

 viii

FIGURE LIST

Page Number

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5

: Frameworks Quagmire..

: Process Management Process Areas...

: Project Management Process Areas..

: Engineering Process Areas...
: Support Process Areas..
: Requirement Management – Introduction....................................

: Requirement Management – Concepts...

: Requirement Management – Workflow.......................................

: Requirement Management – Workflow – Analyze the Problem.

: Requirement Management – Workflow – Understand

Stakeholder Needs...

18

30

31

34

36

47

49

50

51

53

Figure 4.6
Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15

: Requirement Management – Workflow – Define the System......

: Requirement Management – Workflow – Manage the Scope of

the System...

: Requirement Management – Workflow – Refine the System

Definition..

: Requirement Management – Workflow – Manage Changing

Requests..

: Requirement Management– Activities...

: Requirement Management– Artifacts...

: Analysis & Design – Introduction..

: Analysis & Design – Concepts...

: Analysis & Design – Workflow..

: Analysis & Design – Workflow - Perform Architectural

Synthesis…………………………………………………………

54

55

57

58

60

61

63

64

65

66

Figure 4.16

Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25

: Analysis & Design – Workflow - Define a Candidate

Architecture...

: Analysis & Design – Workflow – Refine Architecture................

: Analysis & Design – Workflow – Analyze Behavior...................

: Analysis & Design – Workflow – Design Components...............

: Analysis & Design – Workflow – Design the Database...............

: Analysis & Design – Activities...

: Analysis & Design – Workflow – Artifacts.................................

: Implementation – Introduction..

: Implementation – Concepts..

: Implementation – Workflow..

67

68

71

73

76

78

79

80

81

82

Figure 4.26
Figure 4.27
Figure 4.28
Figure 4.29
Figure 4.30

: Implementation – Structure the Implementation..........................

: Implementation – Workflow – Plan the Integration.....................

: Implementation – Workflow – Implement Components..............

: Implementation – Workflow - Integrate Each SubSystem...........

: Implementation – Workflow - Integrate the System....................

83

84

85

86

88

 ix

Figure 4.31
Figure 4.32
Figure 4.33
Figure 4.34
Figure 4.35

: Implementation – Workflow – Activities....................................

: Implementation – Artifacts..

: Test – Introduction...
: Test – Concepts..
: Test – Workflow..

89

90

91

93

94

Figure 4.36
Figure 4.37
Figure 4.38
Figure 4.39
Figure 4.40
Figure 4.41
Figure 4.42
Figure 4.43
Figure 4.44
Figure 4.45

: Test – Workflow – Define Evaluation Mission...........................

: Test – Workflow - Verify Test Approach....................................

: Test – Workflow – Validate Build Stability................................

: Test – Workflow – Test and Evaluate..

: Test – Workflow – Achieve Acceptable Mission........................

: Test – Workflow – Improve Test Assets.....................................

: Test – Activities...
: Test – Workflow – Artifacts..

: Deployment – Introduction..

: Deployment – Concepts...

95

96

99

101

103

105

107

108

109

110

Figure 4.46
Figure 4.47
Figure 4.48
Figure 4.49
Figure 4.50
Figure 4.51
Figure 4.52
Figure 4.53
Figure 4.54
Figure 4.55

: Deployment – Workflow...

: Deployment – Workflow – Plan Deployment.............................

: Deployment – Workflow – Develop Support Material...............

: Deployment – Workflow – Manage Acceptance Test.................

: Deployment – Workflow – Produce Deployment Unit...............

: Deployment – Workflow - Beta Test Product.............................

: Deployment – Workflow – Package Product...............................

: Deployment – Workflow – Provide Access to Download Site....

: Deployment – Activities...

: Deployment – Artifacts...

111

112

113

114

115

116

117

118

119

120

Figure 4.56
Figure 4.57
Figure 4.58
Figure 4.59
Figure 4.60

Figure 4.61

Figure 4.62

Figure 4.63

Figure 4.64
Figure 4.65

: Change Management – Introduction..

: Change Management – Concepts...

: Change Management– Workflow..

: Change Management– Workflow – Plan Project Configuration

: Change Management– Workflow – Create Project

Configuration..

: Change Management– Workflow – Manage Baselines and

Releases..

: Change Management– Workflow – Change and Deliver

Configuration Items..

: Change Management– Workflow – Monitor & Report

Configuration..

: Change Management– Workflow – Manage Change Request....

: Change Managemen – Activities...

121

123

124

125

126

127

128

130

131

132

Figure 4.66
Figure 4.67
Figure 4.68
Figure 4.69
Figure 4.70
Figure 4.71
Figure 4.72
Figure 4.73
Figure 4.74
Figure 4.75

: Change Management– Artifacts..

: Project Management – Introduction..

: Project Management – Concepts..

: Project Management– Workflow...

: Management– Workflow – Conceive New Project.....................

: Management– Workflow – Evaluate Project Scope and Risk.....

: Project Management– Workflow – Plan the Project...................

: Project Management– Workflow – Plan for Next Iteration........

: Project Management– Workflow – Manage Iteration.................

: Project Management– Workflow – Monitor and Control Project

133

134

135

136

137

138

139

140

141

143

 x

Figure 4.76
Figure 4.77
Figure 4.78
Figure 4.79
Figure 4.80
Figure 4.81
Figure 4.82
Figure 4.83
Figure 4.84

: Project Management– Workflow – Close Out Phase..................

: Project Management– Workflow – Close Out Project.................

: Project Management– Activities..

: Project Management– Artifacts...

: Traceability Relation..
: Traceability – Create Project..
: Traceability – Create Project – User..
: Traceability – Create Project – Confirmation..............................

: Traceability – List Projects..

144

146

147

148

150

152

153

154

155

Figure 4.85
Figure 4.86
Figure 4.87
Figure 4.88
Figure 4.89
Figure 4.90
Figure 4.91
Figure 4.92
Figure 4.93
Figure 4.94

: Traceability – Login...
: Traceability – Disciplines..
: Traceability – Artifact..
: Traceability – Versioning..
: Traceability – Template...

: Traceability – Select Artifact...
: Traceability – Requirements..

: Traceability – Ceate Feature..
: Traceability – Requirement Create..

: Traceability – Create HLD Component.......................................

156

157

158

159

160

161

162

163

165

166

Figure 4.95
Figure 4.96
Figure 4.97
Figure 4.98
Figure 4.99
Figure 4.100
Figure 4.101
Figure 4.102

Figure Figure 4.103

: Traceability – Create HLD...
: Traceability – List Requirements...
: Traceability – HLD Update..
: Traceability – Plan..
: Traceability – Create Project..
: Traceability – Open MS Project...
: Traceability – Update MS Project...
: Traceability – Update Database..
: Traceability – List HLD...

167

168

169

170

171

172

172

173

174

 xi

ÖZET

Tezin konusu, sistematik ve en iyi yazılım mühendisliği tecrübelerine dayanan bir

süreç yönetimi yazılımı geliştirmektir. Tasarlanan ve geliştirilen yazılım, yazılım

mühendisliğinin

• proje yonetimi,

• gereksinim yönetimi,

• analiz ve tasarm,

• uygulama geliştirme,

• test,

• değişiklik yönetimi ve

• aktarım süreçlerinde

gerekli olan adımlarının bir bütün içinde, yönetilebilir bir şekilde tutulmasını

hedeflemektedir.

Her bir süreç alanı için literatürde ve uygulamada cok kapsamlı arastırmalar ve

ürünler bulunmaktadır, ama son dönemde yapılan araştırmalar ve firmaların edindiği

pratik tecrübeler göstermiştir ki, yazılım mühenisliğinden gercek anlamda fayda

alınması süreçlerin bir bütün halinde işlemesine bağlıdır. Günümüz dinamikleri

içinde pazar gereksinimleri, çok hızlı değişen teknolojiler ve rekabet piyasası, bilgi

teknolojileri firmalarını çok zorlamaktadir. Koşullar söz konusu olduğunda firmalar

her ne kadar yazılım mühendisliği süreçleriyle işlerini çok kolaylaştıracak olsalar da,

pratikte bu süreçlerin gereksinimleri fazladan iş olarak görülmektedir.

Yazılım mühendisliği alalnında tecrübeli süreç mühendisleri tarafından süreç

altyapısı kurulmadığı takdirde de bu yaklaşım çoğu zaman doğrudur. Süreçler

aslında bir bütündür ve birbirleriyle olan ilişkileri çok kuvvetlidir. Bu ilişkiler göz

önüne alınmayıp özel süreçler üzerine yoğunlaşmak sonucunda üretilen çıktılar

genelde sadece dökümantasyon amaçlı kullanımın önüne geçemezler.

Projenin özelliği yazılım geliştirmenin temel süreçlerinin kontrollü bir şekilde

belirlenmiş bir formatta uygulanmasını sağlamaktır. Geliştirilen sistem, hem süreç

adımı ve uygulanışı hakkında bilgi vermekte, hem de üretilen çıktıların saklanması,

değişiklerin yönetilebilmesi için versiyonlanması işlemlerini gerçekleştirmektedir.

Süreçlerin bir bütün halinde çalıştığı ve birbirlerinin ürettikleri çıktıları otomatik

kullanarak yeni çıkarımlar yaptığı bir altyapı bulunmaktadır.

Yazılım mühendisliği alanında çalışan üniversiteler, yazılım geliştirme enstitüleri

gibi merkezler tarafından süreçlerin detaylarını ve aralarındaki ilişkileri gösteren pek

çok model üretilmiştir. Beklenen bu modellere dayanarak şirketlerin kendilerine en

uygun süreç yönetimi altyapısını oluşturmalarıdır. Bu nedenden dolayı da olayın

bütününü gösteren, firmalara bir bütün halinde sunan araçlar bulunmamaktadır.

Büyük ölçekli firmalar kalite ve süreç konuları için ayrı bir ekip ayırıp uyarlama

CMMI UYGULAMA ALTYAPI SĐSTEMĐ

 xii

çalışmalarını sürdürürken, orta ve küçük ölçekli firmalar kaynak ve zaman sıkıntısı

nedeniyle çalışmaları mümkün olmamaktadır.

Tezde amaçlanan orta ve küçük ölçekli firmaların süreç yönetimi konularına

uygulamanın en hızlı ve en doğru yapabilecekleri bir ortam sunmaktır. Temel alınan

sistem şu anda en yaygın kullanılan Canegie Mellon üniversitesinin kurduğu

Software Engineering Enstitusunun (SEI) geliştirmiş olduğu Capability Maturity

Model Integration modelidir. Tezin en önemli özelliği CMMI modelinde yer alan

temel özellik olan izlenebilirliği firmalara uygulamak ve en yüksek faydayı

almalarını sağlamaktır. Gereksinim üretimi ve yönetimiyle başlayan süreç,

veritabanına girilen gereksinimlerden otomatik proje planlarının üretilmesi ile devam

etmekte ve yazılım için üretilen proje planı üzerinden yine otomatik ilerleme ve

tamamlama yüzdeleri alınabilmektedir.

 xiii

SUMMARY

This thesis studies the development of a systematic software solution to provide

software engineering process management based on best practices. This software

solution which has been designed and developed for this study aims to provide

specific practices for integrated management of the following:

• project management,

• requirements management,

• analysis & design,

• implementation

• testing,

• change management, and

• deployment

There are various in depth research analyses as well as products that provide

solutions to the abovementioned specific process areas. However it has also been

recently recognized by various studies as well as through practical experience that it

is crucial to operate all of these process areas in an integrated fashion to expedite

maximum outcome from a software engineering study.

Today’s information technology (IT) companies are driven by technologies that

rapidly change, a vicious competition environment as well as steep market

requirements. As much as software engineering is recommended as a process

improvement solution to optimize these companies’ output areas, it is however still

practically seen as additional overhead. As a matter of fact, this usually turns out to

be the fact if the process infrastructure is not developed and managed by an

experienced team of process engineers.

In order to maximize the outcome of software engineering, the said processes should

be treated as a united process flow, and the interdependences of each process should

be treated exclusively. If these interdependencies are ignored and only specific

process areas are focused on, the software engineering outputs can only help with

documentation of existing inefficiencies at best.

The solution provided with this thesis focuses on management and execution of the

key processes of software management and development in a controlled environment

and format. The solution provides an information base on the specific process steps

and their implementation as well as a storage management system for processed

outcome, change management and versioning operations. Its infrastructure provides a

business flow that establishes an integrated environment for all the said processes

which can utilize each others outputs to provide a synergetic outcome.

There has been many models developed by universities as well as software

development institutes which focus on process details as well as interdependencies

between these processes. The expectation from an IT company is to choose and

CMMI IMPLEMENTATION FRAMEWORK

 xiv

integrate the best fitting model among these into their business practices. This,

however, presents an additional business challenge to the companies as there is not

one common tool that provides an integrated approach to the entirety of these process

areas from a higher level approach. While large scale companies can afford separate

teams for study and implementation quality and process activities, medium and small

scale companies usually cannot afford such luxuries in neither planning nor

implementation phases due to lack of time and resources.

Accordingly, this thesis aims to establish an environment that provides fast and

applicable adaptation to such software engineering processes for small and medium

scale companies. The solution provided within this thesis study is based on one of the

most popular models developed by Carnegie Mellon University (U.S.) Software

Engineering Institute, the Capability Maturity Model Integration (CMMI) model.

The main focus of this study is to implement the main target of CMMI, namely

traceability to the companies to obtain maximum results from software engineering.

The study follows a process that starts with production and management of

requirements, continues with automatic development of project items and plans from

the requirements database, and provides an environment for automatic project

tracking and completion analysis.

 1

1. INTRODUCTION

1.1 Thesis Introduction

Despite millions of software and IT professionals globally and the ubiquitous social

presence of software, software engineering has only recently reached the status of a

legitimate engineering discipline and a recognized profession. It is a key milestone in

all disciplines to achieve consensus by the profession on a core body of knowledge.

This has also been identified by the IEEE Computer Society as crucial for the

evolution of software engineering towards professional status.

The IEEE Computer Society defines software engineering as follows:

(1) The application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the application of

engineering to software

(2) The study of approaches as in (1) [1].

This thesis studies the development of a systematic software solution to provide

software engineering process management based on best practices. This software

solution which has been designed and developed for this study aims to provide

specific practices for integrated management of the following:

• requirements management,

• project management,

• analysis & design,

• implementation

• testing,

 2

• change management, and

• deployment

There are various in depth research analyses as well as products that provide

solutions to the abovementioned specific process areas. However it has also been

recently recognized by various studies as well as through practical experience that it

is crucial to operate all of these process areas in an integrated fashion to expedite

maximum outcome from a software engineering study.

Today’s information technology (IT) companies are driven by technologies that

rapidly change, a vicious competition environment as well as steep market

requirements. As much as software engineering is recommended as a process

improvement solution to optimize these companies’ output areas, it is however still

practically seen as additional overhead. As a matter of fact, this usually turns out to

be the fact if the process infrastructure is not developed and managed by an

experienced team of process engineers.

In order to maximize the outcome of software engineering, the mentioned processes

should be treated as a united process flow, and the interdependences of each process

should be treated exclusively. If these interdependencies are ignored and only

specific process areas are focused on, the software engineering outputs can only help

with documentation of existing inefficiencies at best.

The solution provided with this thesis focuses on management and execution of the

key processes of software management and development in a controlled environment

and format. The solution provides an information base on the specific process steps

and their implementation as well as a storage management system for processed

outcome, change management and versioning operations. Its infrastructure provides a

business flow that establishes an integrated environment for all the said processes

which can utilize each others outputs to provide a synergetic outcome.

There has been many models developed by universities as well as software

development institutes which focus on process details as well as interdependencies

between these processes. The expectation from an IT company is to choose and

integrate the best fitting model among these into their business practices. This,

 3

however, presents an additional business challenge to the companies as there is not

one common tool that provides an integrated approach to the entirety of these process

areas from a higher level approach. While large scale companies can afford separate

teams for study and implementation quality and process activities, medium and small

scale companies usually cannot afford such luxuries in neither planning nor

implementation phases due to lack of time and resources.

Accordingly, this thesis aims to establish an environment that provides fast and

applicable adaptation to such software engineering processes for small and medium

scale companies. The solution provided within this thesis study is based on one of the

more popular models developed by Carnegie Mellon University (U.S.) Software

Engineering Institute, the Capability Maturity Model Integration (CMMI) model.

The main focus of this study is to implement the main target of CMMI, namely

tracebility to the companies to obtain maximum results from software engineering.

The study follows a process that starts with production and management of

requirements, continues with automatic development of project items and plans from

the requirements database, and provides an environment for automatic project

tracking and completion analysis.

1.2 General Concepts

As explained in the “Thesis Introduction” todays companies are dealing with

software engineering. In a very competitive IT world, it is not enough just to build

the product. Todays key factor is to build the product in quality. The quality of a

system is highly influenced by the quality of the process used to acquire, develop,

and maintain it.

This is area of software engineering. Every company, if they are alive and selling

products are dealing somewhat with processes. So they are all doing software

engineering. But the question is, whether their product is in good quality or not. The

answer of this question will determine their profit, their market share, their growth

capability. To compete with other companies, they have to improve the quality

concept. To improve the quality of the product, they have to improve the way they

produce it. They have to improve their processes.

 4

Software Process Improvement (SPI) is an approach to design and define new and

improved software processes to achieve basic business goals and objectives.

Examples to these goals include increased revenues and profitability as well as

decreased operating costs. The major benefits of SPI include quality, cost savings,

cycle time reduction, increased customer satisfaction and productivity. It is also the

means by which software companies can achieve significant increases in profitability

and peak operating efficiency.

SPI is used to manipulate or change software processes to increase revenues or

profits and decrease operating costs. This is accomplished by measuring the

performance of an old software process, improving the process, and then

implementing it. SPI also consists of measuring the performance of new software

processes and institutionalizing them if they have improved.

It should be noted that the benefits of SPI provide the basis for calculating the return

of investment (ROI) of SPI. Hence, SPI and the ROI of SPI are inseparably linked by

basic origin, purpose, and function.

There are lots of SPI models since 1980’s. Capability Maturity Model Integration

(CMMI) is a popular process improvement approach that provides organizations with

the essential elements of effective processes. The Software Engineering Institute

(SEI) , which was established at Carnegie Mellon University in December of 1984 to

address the need for improved software in U.S. Department of Defense operations,

developed the Software Process Maturity Model for use both by the Department of

Defense and by industrial software organizations.

CMMI helps integrate traditionally separate organizational functions, set process

improvement goals and priorities, provide guidance for quality processes, and

provide a point of reference for appraising current processes.

1.3 Literature and Theoretical Focus

There are various issues relating to the software process management system for

software process generation and improvement in the literature.

 5

1.3.1 SPI Method

Recently a lot of software process improvement(SPI) models and approaches have

been suggested. Top-down approaches, assessment based approach, provide a high-

level model of processes comprised of best practices in a software development

organization(e.g., CMM, TRILLIUM, BOOTSTRAP, SPICE). They are based on

descriptive and unstructured representations about what a software process ought to

be, resulting in the difficulties to implement improvement initiatives as a software

process model. On the other hands, bottom-up approaches start with understanding

the processes that the organization owns. A process improvement is conducted based

on measurement and experience. These approaches include Software Engineering

Laboratory(SEL)'s approaches at the NASA and Goal/Question/Metric(GQM)

approach [2]. It is difficult to reuse the mechanisms and knowledge of bottom-up

without huge experience base. Table 1.1 shows the history of SPI.

Table 1.1: History of SPI

Year Model /Standard

1983 NQI/CAE: 1st Canadian Award for Excellence (Canada)

1987 ISO 9001 released (initial release)

NIST/MBNQA: 1st Malcolm Baldrige National Quality Award

(USA)

 SEI-87-TR-24 (SW-CMM questionaire) released

1988 AS 3563 (Software Quality Management System) standard released

1991 IEEE 1074 released (initial release)

 ImproveIT V1.0 released (this is the beginning of TickIT)

 ISO 9000-3 released (initial release)

 SEI SW-CMM V1.0 released (initial release of model)

 6

 Trillium V1.0 released (initial release)

1992 EFQM/BEA: 1st Business Excellence Award (Europe)

 IEEE adopts the Australian AS 3563 as "IEEE 1298"

 Control Objectives for Information and related Technology (COBIT)

 TickIT V2.0 released

1993 SEI SW-CMM V1.1 released

1994 ISO 9001 re-released

 Trillium V3.0 released

1995 ISO 12207 released (initial release)

 ISO 15504 (SPICE) initial "draft" released

1996 IEEE/EIA 12207 released

 COBIT v1 released

1997 ISO 9000-3 re-released

SEI halts SW-CMM revisions in support for CMM Integration

(CMMI)

1998 ISO 15504 (SPICE) released to public as "type 2" Technical Reports

 COBIT v2

 TickIT V4.0 released

2000 ISO 9000:2000 edition released

 SEI CMMI V1.02 released

 COBIT v3 released

 7

2005 COBITv4 released

2006 CMMI for Development released

2007 CMMI for Aquisiton released

1.3.2 Software Process Reuse Repository

The concept of a Process Asset Library(PAL) has been introduced as an

organizational repository for processes, supporting future reference and reuse. A

prototype has been developed at SEI, as reported in [3], Other related work includes

the "Experience Factory" concept of Basili and Rombach[4].

1.3.3 Software Process Evolution and Change Management

Some forms of planned changes are supported by several Policies and Mechanisms

to Support Process Evolution (PSEE). A first class of PSEEs offers ad-hoc features

to support process model evolution and contains an embedded policy of change. This

is the case of MELMAC and Marvel. A second class 'of PSEEs is based on reflective

PMLs which provide means to model the meta-process as part of the process model,

and to manipulate the process model as any other process data, EPOS, IPSE 2.5, and

SPADE offer this kind of support. In most cases, however, these systems offer only

the ability to manipulate template variations [5].

1.3.4 Knowledge-based Software Process Model

We can find several knowledge based software process modeling environments.

TAME project suggested a top-down goal-oriented approach to model and executes

software engineering activities. In PROGEN project of George Mason University, a

knowledge-based system was presented to generate, tailor and reuse processes [6].

1.4 Strength of the Process Improvement in Practice

Every process improvement methodology has its respective strengths and

shortcomings.

 8

But the common and main problem comes into play when interpreting the model to

the organization and implementing these guidelines or best practices into a working

environment. “Viewing software processes as blueprints emphasizes that design is

separate from use, and thus that software process designers and users are

independent. In the approach presented here, software processes are viewed as

recipes; developers individually and collectively design their own software processes

through facilitation, reflection, and improvisation“ [7]. This has to do with the

concept of institutionalization. In case, if a middle or small scale company wants to

begin a process improvement work, then it is very difficult for the organization to

build a team and work on this improvement project in a long time. The improvement

has a cost for company. This cost seems bigger and not worth under market and

customer pressure. There are some published models for replacing the

implementation need. “Software process improvement is a demanding and complex

undertaking. To support the constitution and implementation of software process

improvement schemes the Software Engineering Institute (SEI) proposes a

framework, the so-called IDEAL model.” [8]. The most famous one is the IDEAL

model. But also this model is a load for small scale companies. There are a lot of

failure stories in literature. They are deeply researched. The capability maturity

model (CMM) approach to software process improvement is the most dominant

paradigm of organizational change that software organizations implement. While

some organizations have achieved various levels of success with the CMM, the vast

majority have failed. The thesis investigate the assumptions about organizational

culture embedded in the CMM models and discuss their implications for software

process improvement (SPI) initiatives. The well-known competing values are utilize

model to surface and analyze the assumptions underlying the CMM. The analysis

reveals contradictory sets of assumptions about organizational culture in the CMM

approach. An understanding of these contradictions can help researchers address

some of the difficulties that have been observed in implementing and

institutionalizing SPI programs in organizations. Further, this research can help to

open up a much-needed line of research that would examine the organization theory

assumptions that underpin CMM. This type of research is important if CMM is to

evolve as an effective organizational change paradigm for software organizations.

[9]. In some cases, alltough it is seen that one of the benefits of process

 9

improvement is to increase market share, it could be the opposite way in a small

company if it is not managed well. “It may hurt the competitiveness of small

companies and companies in highly innovative markets that according to the

empirical study” [10].

1.5 Target of the Thesis

The target of the thesis is to find a solution for the strength of implementation of SPI

models (specially CMMI) to the medium and small scale companies. “The research

found that small businesses are faced not only with a lack of resources and funds

required to implement many of the practices stated in the CMM, but also with the

task of basing their process improvement initiatives on practices that do not apply to

a small business and small software organization” [11]. Lots of models and standarts

notice that company culture, business needs and policies are the most important

aspects of process improvement project. But if small scale companies are the group

which will be focused on this thesis, it will reported that the failure reasons shows

some similarites. So the solution has to be created depending on these concerns.

Assuming that their failure is common, it will be thought that a common

methodology could also be a solution to this problem. Common problems on

institutionilization of process improvement methodologies are:

• Using single-discipline models that can result in confusion and higher costs.

• Customer rules

• Lack of experience and skill in provess improvement

• Resource problem, not enough time for process improvement actvities

• Resource problem, not enuogh time to create and maintain required artifacts

• No quantitative feedback on progress

• Wrong interpretation of improvement models

 10

• Limited communication, project members could not see the project as a

whole

• Do not really understand, need and use artifacts

• No overall traceability

At the end of this research, there will be a solution to every item listed above.

 11

2. MAIN CONCEPTS

2.1 SPI

2.1.1 What is SPI?

SPI provides creation of new and improved software processes to achieve some level

of benefits. These benefits are increased revenues or profits, decreased costs, and

significant cost savings. It should be noted early attempts at SPI were designed to

improve quality and reliability at any cost, however today it has also evolved to

include cost savings.

The benefit cycle of SPI can be summarized as follows:

• Faster cycle times, shorter time to market, higher customer satisfaction, and

alignment with strategic goals,

• Improved project management within the SPI framework, more accurate time

and budget accounting as well as better cost and schedule performance,

• Lower defect rates, smaller module sizes, increased verification and

validation efficiency, and increased productivity,

• Improvement certainly leads to better cost, quality, and reliability estimation

and higher software quality and reliability.

SPI is used to create a new and improved software processes.

• Initially, statistical process control is used to measure the performance of an

old software process.

• Then, a new and simplified software process is formed to improve

performance.

 12

• Usually the new and improved software process is piloted to measure its new

performance.

• Finally, the new software process which exhibits the desired performance

level may be institutionalized.

SPI is used to create new software processes for strategic software activities such as

software project management, software quality management, and most importantly,

software design management.

SPI of processes for software quality management is a proven discipline which yields

orders-of-magnitude improvement. SPI of processes for software project

management is starting to achieve international recognition. It is fueled by emerging

data and hard economic justification for this discipline. SPI of processes for software

design management is a discipline. Its economic underpinnings are anchored in the

fields of software reuse and product line management.

2.1.2 Importance of SPI

SPI is the primary means by which a new and improved software process is created

to achieve significant economic benefits at the least possible costs. A comparison of

well-designed versus poorly designed software processes can be found below:

Table 2.1: Comparison of Well vs. Poorly Designed Processes

Well Designed Software Processes Poorly Designed Software Processes

Positive bottom-line economic effects Negative bottom-line economic effects

Increased Productivity High cost of operations

Increased cost efficiency Inefficient use of resources

Decreased costs Lost of market opportunities and share

 Lack of quality & reliability

 Poor customer satisfaction & morale

 13

In addition to its obvious benefits and the aforementioned ROI factor, SPI can also

be used to create a new and improved software process to respond to a new industry

standard. SPI is often performed to adhere to a new customer standard, lower

operating capital, and changing skill requirements. Technological innovations,

changes in organizational structures, and increased competition are also reasons to

perform SPI. Thus, it can be said that SPI may be performed to effect incremental

changes in operating efficiency as well as to support aggressive/new market

maneuvers that require radically new software processes.

2.1.3 How is SPI Determined?

Statistical process control tools are used to determine SPI by measuring the

performance of a new and improved process. Initially, the attributes or characteristics

of an old software process are measured and analyzed to determine its performance.

Then, the attributes or characteristics of a new software process are measured and

analyzed to determine its performance. Typical attributes or characteristics include

the following:

• effort (how many hours a process requires),

• cost (how much money a process requires),

• cycle time (how long a process takes),

• productivity (how many units a process yields),

• quality (how many defects a process yields),

• reliability (frequency of failures encountered),

• precision (exactness and conciseness),

• predictability (statistical accuracy),

• efficiency (resources consumed relative to process output),

• simplicity (process complexity),

 14

• customer satisfaction (how well clients are served),

• degree of automation (a measure of eliminating the causes of human

variation),

• consistency (a measure of minimal performance variation),

• repeatability (a measure of minimal performance variation),

• measurability (quantitative and often tangible or physical characteristic of a

process or product),

• variety (a measure of process flexibility to satisfy multiple diverse customer

requirements),

• innovation (a measure of the range and creativity of products and services).

2.1.4 Key Methods for SPI

Key methods for SPI consist of the following:

• general-purpose process improvement cycles

• general-purpose process improvement criteria

• software process modeling notations

• software engineering standards

• software engineering life cycles

• software engineering methodologies

• software engineering notations,

• software engineering processes,

• software engineering tools,

• software engineering measurement

 15

2.1.5 General-Purpose Process Improvement Cycles

General-purpose process improvement cycles are used in conjunction with general-

purpose process improvement criteria as the preferred methods. They are designed to

be the basic frameworks necessary to begin the process of SPI. However, these

frameworks tend to be diluted and ineffective at best, with little overall direction for

improving software processes.

These methods are usually not recommended for novices who need specific help to

identify high-impact and high-ROI SPI methods such as Six Sigma, statistical

process control, plan-do-check-act, and initiating-diagnosing-establishing-acting-

learning. Total quality management, total productivity management, and total cost

management are also popular examples.

2.1.6 General-Purpose Process Improvement Criteria

These criteria are used in conjunction with general purpose process improvement

cycles. General-purpose process improvement cycles tend to have an appraisal stage.

This stage is used to leverage the specific requirements of general-purpose process

improvement criteria and provides built-in mechanisms to:

• help organizations identify high-leverage areas for improvement.

• prioritize process improvements and utilize resources toward high-priority

areas.

They tend to be more specific than general-purpose process improvement cycles and

minimize some confusion for the novice. However, they tend to have so many

criteria as to confuse and dilute the overall effectiveness of using them.

Examples of general-purpose process improvement criteria include ISO 9001, TL

9000, BOOTSTRAP, and TRILLIUM, The Malcolm Baldrige National Quality

Award. There are also the following unique models, some of which constitute the

basis for this thesis:

• Software Capability Maturity Model,

 16

• Capability Maturity Model Integration,

• Systems Engineering Capability Maturity Model,

• Integrated Product Team Capability Maturity Model,

• Systems Security Engineering Capability Maturity Model,

• System Acquisition Capability Maturity Model,

• The Trusted Capability Maturity Model,

• People Capability Maturity Model, and

• Integrated Capability Maturity Model.

All of the models were created within an environment of evolving national and

international standards and frameworks. As standards become used and accepted,

maintaining harmonization between them and the improvement models becomes a

continuing challenge, particularly across disciplines. In describing the complexity of

this environment, Sarah Sheard of the Software Productivity Consortium has coined

the term "the frameworks quagmire."[12] shows her depiction of the proliferation

and heritage of the various systems and software engineering standards, life-cycle

models, quality awards, and process-improvement models.

 17

Figure 2.1: The Frameworks Quagmire[12]

In Figure 2.1, the arrows show where one model or standard contributed to the

development of another.

The single disciplines and processes involved in contemporary engineering are

closely intertwined. The overhead and confusion resulting from the application of

multiple models are too costly in terms of business expenses and resource allocation.

As a consequence, a means of addressing process improvement across anumber of

disciplines within a single framework is needed. The bold boxes in the framework

quagmire show integrated ones.

2.1.7 Software Process Modeling Notations

These are textual or visual aids designed to define and document software processes,

and used to communicate, facilitate, and even use a new and improved software

process.

 18

Software process modeling notations may bring various challenges of use, as

follows:

• Some are inadequate for expressing the depth of detail necessary to describe

software processes which can lead to hindering the use, exploitation, and

consistency of software processes.

• The choice of notation can lead to debilitating politics, which results in little

progress toward the creation and use of a new and improved software

process.

• Only one or two of many of the available notations may be effective. Few are

recommended for defining new and improved software processes. These

methods provide little direction for novices on what software processes to

define and their depth of definition.

Examples of software process modeling notations include short checklists, textual

descriptions, flowcharts, information mapping, input/output charts, and professional

policy and procedure formats as well as proprietary notations built into workflow

automation tools.

2.1.8 Software Engineering Standards

Software engineering standards are the minimum requirements for designing new

software processes. These standards have greater breadth than general-purpose

process improvement criteria and tend to offer better priorities for SPI. It should

however also be noted that software engineering standards have much less depth than

general-purpose process improvement criteria which can lead to ineffective guidance

to achieve their purpose.

The recommended approach is to blend general-purpose process improvement

criteria and software engineering standards to achieve a balance of both breadth and

depth. Examples of software engineering standards include MIL-STD-1521B, MIL-

STD-973, MIL-HDBK-61, and MIL-STD-2549, ISO 12207, and ISO 15288.

 19

2.1.9 Software Engineering Life Cycles

Software engineering life cycles add integration, workflow, and tactical execution to

software engineering processes to help organizations manage the design and

development of software products and services. Unfortunately, software engineering

life cycles lack the breadth of software engineering standards as well as the depth of

general-purpose process improvement criteria. Instead, software engineering life

cycles tend to offer much tactical guidance for novices. Examples include waterfall,

spiral, evolutionary, prototyping, incremental, concurrent, concurrent incremental,

and V model.

2.1.10 Software Engineering Methodologies

Software engineering methodologies are designed to string or thread multiple

software engineering notations together to achieve the goal of specifying, designing,

and implementing software-based systems. They tend to be based on graphical or

mathematical notations to be used for capturing software requirements, software

designs, and constructs for software implementation. Examples include structured

analysis, structured design, information engineering, and object oriented analysis,

object-oriented design, Clean Room, and Rational Unified Process (RUP) [13].

2.1.11 Software Engineering Notations

Software engineering notations are the building blocks of software engineering

methodologies. They are used to create visual representations of software constructs

to facilitate rational and logical software development, and also to influence software

engineers to do more than just computer programming. Software engineering

notations can be seen as the viewgraphs of SPI, and software engineering for that

matter. Examples include data flow diagrams, state transition diagrams, entity

relationship diagrams, control specifications, structure charts, and program design

languages. Newer examples include the Object Modeling Technique and Unified

Modeling Language UML.

 20

2.1.12 Software Engineering Processes

Software engineering processes are designed to represent logical groupings of major

software engineering activities. These standards are merely collections of software

engineering activities, and are thought of as major sub-activities or sub-elements

within the software life cycle. Configuration management is an example of a process

that once embodied the entire discipline of software engineering. While some

software engineering processes add negligible value, others offer an overwhelming

amount of benefits.

Examples include software configuration management, software testing, and

independent verification and validation. Commercial off-the-shelf integration,

software architecture, and product line management are some of the latest examples.

2.1.13 Software Engineering Tools

Software engineering tools are designed to define and formalize software

engineering processes, and automate tedious tasks that cannot be consistently

performed by humans. They add great value, increase software productivity, and

increase work product output, and perform many built-in verification and validation

tasks.

Software engineering tools, fueled by SPI methods and computer systems, will

answer many potential SPI challenges faced by corporations. Examples include

computer-aided software engineering tools, software project management tools,

software estimation tools, code generation tools, graphical user interface

management systems, and automated static analysis tools. In addition. requirements

management tools, office automation tools, Web-enabled tools, and operating

systems are also good examples.

2.2 CMMI

Capability Maturity Model® Integration (CMMI) is a process improvement approach

that provides organizations with the essential elements of effective processes. CMMI

 21

is used to guide process improvement across a project, a division, or an entire

organization.

CMMI helps integrate traditionally separate organizational functions, set process

improvement goals and priorities, provide guidance for quality processes, and

provide a point of reference for appraising current processes.

2.2.1 CMMI History & Background

Since 1984, the Carnegie Mellon® Software Engineering Institute (SEI) has served

as a United States of America government-funded research and development center.

As part of Carnegie Mellon University, the SEI has the following attributes [14] :

• SEI is sponsored by The Office of the Secretary of Defense (OSD) and the

National Defense Industrial Association

• SEI capitalizes on the similarities of other process improvement models;

eliminates differences that increase effort and expense of “stovepiping”

models

• SEI began with the following source models:

o SEI’s Capability Maturity Model for Software (SW-CMM)

o Electronic Industries Alliance Systems Engineering Capability Model,

Interim Standard (EIA/IS 731) - the result of the merger of the SE-

CMM, created by the Enterprise Process Improvement Collaboration

(EPIC), and the SECAM, created by INCOSE

o A draft model covering Integrated Product and Process Development

(IPPD), the IPD-CMM, previously released in draft form by EPIC

2.2.2 CMMI Content

CMMI provides guidance for the managerial processes of companies. This includes

establishing and maintaining a plan for managing the work, and making sure that

everyone involved is committed to performing and supporting the plan. In addition,

 22

when the plans are made, the development and maintenance costs, schedules, and

product estimates should be available as well.

Upon execution of the plan, the performance and progress to the plan needs to be

compared and corrective actions should be scheduled if actual and planned results

are found to be out of sync. Agreements with suppliers should be established and

maintained, and it should be made sure that these agreements are satisfied. Finally,

there is also the management of the information on project risks and on creating and

managing teams as well.

CMMI guidance on technical matters includes ways to develop, elaborate, and

manage requirements, and to develop technical solutions that meet those

requirements. CMMI is the key reminder of the fact that the integration of product

components depends on good interface information, and it needs to be planned and

verified. It should be made sure that the products and services that are developed are

consistent with the requirements and satisfy the customer's needs through verification

and validation practices [17].

CMMI also addresses support processes for technical and managerial activities. It

provides methods of ensuring that the defined processes being followed and the

products that are being developed meet the quality specifications that have been

established. Finally, CMMI also helps figuring out the root cause of serious problems

with the products or key processes.

2.2.3 CMMI Models

CMMI models describe what have been determined to be the best practices that

organizations have found to be productive and useful to achieving their business

objectives. The organizations must use professional judgment when interpreting the

CMMI practices for their situation, needs, and business objectives. Although process

areas depict the characteristics of an organization committed to process

improvement, the organization must interpret the process areas using an in-depth

knowledge of CMMI, the organization itself, the business environment, and the

specific circumstances involved.

 23

During the CMMI model initiation to improve the organization’s processes, real-

world processes are mapped to CMMI process areas. This mapping enables the

organization to initially judge and later track the level of conformance to the CMMI

model and to identify opportunities for improvement.

CMMI for Development is a reference model that covers the development and

maintenance activities applied to both products and services. Organizations from

many industries, including aerospace, banking, computer hardware, software,

defense, automobile manufacturing, and telecommunications, use CMMI for

Development [18].

Models in the CMMI for Development constellation contain practices that cover

project management, process management, systems engineering, hardware

engineering, software engineering, and other supporting processes used in

development and maintenance.

Continuous Representation:

If the processes that need to be improved in the organization are already known and

the dependencies among these processes understood, the continuous representation is

the proper choice for the organization.

The continuous representation offers maximum flexibility when using a CMMI

model for process improvement. An organization may choose to improve the

performance of a single process-related trouble spot, or it can work on several areas

that are closely aligned to the organization’s business objectives. The continuous

representation also allows an organization to improve different processes at different

rates. There are some limitations on an organization’s choices because of the

dependencies among some process areas.

Staged Representation:

The staged representation offers a systematic, structured way to approach model-

based process improvement one stage at a time. Achieving each stage ensures that an

adequate process infrastructure has been laid as a foundation for the next stage.

 24

Process areas are organized by maturity levels that take some of the guess work out

of process improvement. The staged representation prescribes an order for

implementing process areas according to maturity levels, which define the

improvement path for an organization from the initial level to the optimizing level.

Achieving each maturity level ensures that an adequate improvement foundation has

been laid for the next maturity level and allows for lasting, incremental

improvement.

2.2.4 Process Areas

A process area is a cluster of related practices in an area that, when implemented

collectively, satisfy a set of goals considered important for making improvement in

that area.

There are 22 process areas of CMMI, as listed in alphabetical order [15]:

• Causal Analysis and Resolution (CAR)

• Configuration Management (CM)

• Decision Analysis and Resolution (DAR)

• Integrated Project Management (IPM)

• Measurement and Analysis (MA)

• Organizational Innovation and Deployment (OID)

• Organizational Process Definition (OPD)

• Organizational Process Focus (OPF)

• Organizational Process Performance (OPP)

• Organizational Training (OT)

• Product Integration (PI)

• Project Monitoring and Control (PMC)

 25

• Project Planning (PP)

• Process and Product Quality Assurance (PPQA)

• Quantitative Project Management (QPM)

• Requirements Development (RD)

• Requirements Management (REQM)

• Risk Management (RSKM)

• Supplier Agreement Management (SAM)

• Technical Solution (TS)

• Validation (VAL)

• Verification (VER)

2.2.5 Levels

CMMI uses “Levels” to describe an evolutionary path recommended for an

organization that wants to improve the processes. Levels can also be the outcome of

the rating activity of appraisals. Appraisals can be performed for organizations or for

smaller groups such as a group of projects or a division within a company.

CMMI supports two improvement paths. One path enables organizations to

incrementally improve processes corresponding to an individual process area (or

process areas) selected by the organization. The other path enables organizations to

improve a set of related processes by incrementally addressing successive sets of

process areas.

These two improvement paths are associated with the two types of levels that

correspond to the two representations discussed previously. For the continuous

representation, the term “capability level” is used; for the staged representation, the

term “maturity level” is used.

 26

Regardless of which representation is selected, the concept of levels is the same.

Levels characterize improvement from an ill-defined state to a state that uses

quantitative information to determine and manage improvements that are needed to

meet an organization’s business objectives.

To reach a particular level, an organization must satisfy all of the appropriate goals

of the process area or set of process areas that are targeted for improvement,

regardless of whether it is a capability or a maturity level. Both representations

provide the same essential content and use the same model components, as shown in

the following table.

Table 2.2: Representation Capability and Maturity Levels

Level Continuous Representation

Capability Levels

Staged Representation

Maturity Levels

Level 0 Incomplete N/A

Level 1 Performed Initial

Level 2 Managed Managed

Level 3 Defined Defined

Level 4 Quantitatively Managed Quantitatively Managed

Level 5 Optimizing Optimizing

Maturity Level 1: Initial

Processes are usually best defined as ad hoc and chaotic at maturity level 1. The

organization usually does not provide a stable environment to support the processes.

Success in these organizations depends on the competence and heroics of the people

in the organization and not on the use of proven processes.

In spite of this chaos, maturity level 1 organizations often produce products and

services that work; however, they frequently exceed their budgets and do not meet

their schedules.

 27

Maturity level 1 organizations are characterized by a tendency to over commit,

abandonment of processes in a time of crisis, and an inability to repeat their

successes.

Maturity Level 2: Managed

At maturity level 2, processes are planned and executed in accordance with policy;

the projects employ skilled people who have adequate resources to produce

controlled outputs; involve relevant stakeholders; are monitored, controlled, and

reviewed; and are evaluated for adherence to their process descriptions.

Maturity level 2 ensures that existing practices are retained during times of stress.

When these practices are in place, projects are performed and managed according to

their documented plans. In addition, the status of the work products and the delivery

of services are visible to management at defined points along with commitments

established among relevant stakeholders.

Maturity Level 3: Defined

At maturity level 3, processes are well characterized and understood, and are

described in standards, procedures, tools, and methods. The basis of maturity level 3

actually consists of the organization’s set of standard processes. These standard

processes are used to establish consistency across the organization.

A critical distinction between maturity levels 2 and 3 is the scope of standards,

process descriptions, and procedures. At maturity level 2, the standards, process

descriptions, and procedures may be quite different in each specific instance of the

process (e.g., on a particular project). At maturity level 3, the standards, process

descriptions, and procedures for a project are tailored from the organization’s set of

standard processes to suit a particular project or organizational unit and therefore are

more consistent, except for the differences allowed by the tailoring guidelines.

Another critical distinction is that at maturity level 3, processes are typically

described more rigorously than at maturity level 2. A defined process clearly states

the purpose, inputs, entry criteria, activities, roles, measures, verification steps,

outputs, and exit criteria. At maturity level 3, processes are managed more

 28

proactively using an understanding of the interrelationships of the process activities

and detailed measures of the process, its work products, and its services.

Maturity Level 4: Quantitatively Managed

At maturity level 4, the organization and projects establish quantitative objectives for

quality and process performance and use them as criteria in managing processes.

Quantitative objectives are based on the needs of the customer, end users,

organization, and process implementers.

Quality and process performance is understood in statistical terms and is managed

throughout the life of the processes. For selected sub-processes, detailed measures of

process performance are collected and statistically analyzed. Quality and process

performance measures are incorporated into the organization’s measurement

repository to support fact-based decision making. Special causes of process variation

are identified and, where appropriate, the sources of special causes are corrected to

prevent future occurrences.

A critical distinction between maturity levels 3 and 4 is the predictability of process

performance. At maturity level 4, the performance of processes is controlled using

statistical and other quantitative techniques, and is quantitatively predictable. At

maturity level 3, processes are typically only qualitatively predictable.

Maturity Level 5: Optimizing

At maturity level 5, an organization continually improves its processes based on a

quantitative understanding of the common causes of variation inherent in processes.

Maturity level 5 focuses on continually improving process performance through

incremental and innovative process and technological improvements. Quantitative

process improvement objectives for the organization are established, continually

revised to reflect changing business objectives, and used as criteria in managing

process improvement [19]. The effects of deployed process improvements are

measured and evaluated against the quantitative process improvement objectives.

A critical distinction between maturity levels 4 and 5 is the type of process variation

addressed. At maturity level 4, the organization is concerned with addressing special

 29

causes of process variation and providing statistical predictability of the results.

Although processes may produce predictable results, the results may be insufficient

to achieve the established objectives. At maturity level 5, the organization is

concerned with addressing common causes of process variation and changing the

process (to shift the mean of the process performance or reduce the inherent process

variation experienced) to improve process performance and to achieve the

established quantitative process improvement objectives.

2.2.6 Process Areas and their Relationships

Process areas can be grouped into four categories [15]. These areas often interact and

have an effect on one another regardless of their defined group:

• Process Management

• Project Management

• Engineering

• Support

Process Management

Process Management contains the cross-project activities related to defining,

planning, deploying, implementing, monitoring, controlling, appraising, measuring,

and improving processes. It includes Organizational Process Focus (OPF),

Organizational Process Definition (OPD) and Organizational Training (OT) process

areas.

 30

Figure 2.2: Process Management Process Areas [15]

The Organizational Process Focus (OPF) process area, as defined in the above Figure

2.2, helps the organization to plan, implement, and deploy organizational process

improvements based on an understanding of the current strengths and weaknesses of

the organization’s processes and process assets.

Candidate improvements are obtained through various means such as process

improvement proposals, measurement of the processes, lessons learned in

implementing the processes, and results of process appraisal and product evaluation

activities.

The Organizational Process Definition (OPD) process area establishes and maintains

the organization’s set of standard processes, work environment standards, and other

assets based on the process needs and objectives of the organization. These other

assets include descriptions of lifecycle models, process tailoring guidelines, and

process-related documentation and data. Projects tailor the organization’s set of

standard processes to create their defined processes. The other assets support

tailoring as well as implementation of the defined processes. Experiences and work

products from performing these defined processes, including measurement data,

process descriptions, process artifacts, and lessons learned, are incorporated as

appropriate into the organization’s set of standard processes and other assets[20] .

 31

The Organizational Training (OT) process area identifies the strategic training needs

of the organization as well as the tactical training needs that are common across

projects and support groups. In particular, training is developed or obtained to

develop the skills required to perform the organization’s set of standard processes.

The main components of training include a managed training development program,

documented plans, personnel with appropriate knowledge, and mechanisms for

measuring the effectiveness of the training program.

Project Management

Project Management contains all project maintenance related process areas such as

Project Planning (PP), Project Monitoring and Control (PMC), and the Supplier

Agreement Management (SAM) process areas, as depicted in the following Figure

2.3.

Figure 2.3: Project Management Process Areas [15]

The Project Planning (PP) process area includes developing the project plan,

involving stakeholders appropriately, obtaining commitment to the plan, and

maintaining the plan. Planning begins with requirements that define the product and

project and the plan covers the various project management and development

 32

activities performed by the project. These plans cover configuration management,

verification, and measurement and analysis.

The Project Monitoring and Control (PMC) process area includes monitoring

activities and taking corrective action. The project plan specifies the appropriate

level of project monitoring, the frequency of progress reviews, and the measures

used to monitor progress. Progress is determined primarily by comparing project

status to the plan, and corrective actions, including re-planning, are taken as

necessary.

The Supplier Agreement Management (SAM) process area addresses the portions of

work that are produced by suppliers. As such. the supplier is selected, and a supplier

agreement is established to manage the supplier. The supplier’s progress and

performance are tracked by monitoring selected work products and processes, and

the supplier agreement is revised as appropriate. Acceptance reviews and tests are

conducted on the supplier-produced product component.

Engineering

Engineering process area includes the complete end-to-end product engineering

process, as described in Figure 2.4. It includes Requirements Development (RD),

Technical Solution (TS), Product Integration (PI), Requirements Management

(REQM), Verification (VER), and Validation (VAL) process areas.

 33

Figure 2.4: Engineering Process Areas [15]

The Requirements Development (RD) process area identifies customer needs and

translates these needs into product requirements. The set of product requirements is

analyzed to produce a high-level conceptual solution. This set of requirements is then

allocated to establish an initial set of product component requirements. Other

requirements that help define the product are derived and allocated to product

components.

The Requirements Development process area supplies requirements to the Technical

Solution (TS) process area, where the requirements are converted into the product

architecture, the product component design, and the product component itself (e.g.,

coding and fabrication).

Requirements are also supplied to the Product Integration (PI) process area, where

product components are combined and interfaces are verified to ensure that they

meet the interface requirements supplied by Requirements Development.

The Requirements Management (REQM) process area maintains the requirements. It

describes activities for obtaining and controlling requirement changes and ensuring

that other relevant plans and data are kept current. It provides traceability of

requirements from customer to product to product component. Requirements

 34

Management ensures that changes to requirements are reflected in project plans,

activities, and work products.

The Technical Solution (TS) process area develops technical data packages for

product components that will be used by the Product Integration or Supplier

Agreement Management process area. Alternative solutions are examined with the

intent of selecting the optimum design based on established criteria. These criteria

may be significantly different across products, depending on product type,

operational environment, performance requirements, support requirements, and cost

or delivery schedules. The task of selecting the final solution makes use of the

specific practices in the Decision Analysis and Resolution process area.

The Technical Solution process area relies on the specific practices in the

Verification (VER) process area to perform design verification and peer reviews

during design and prior to final build. The Verification process area ensures that

selected work products meet the specified requirements. The Verification process

area selects work products and verification methods that will be used to verify work

products against specified requirements. Verification is generally an incremental

process and involves peer reviews.

The Validation (VAL) process area incrementally validates products against the

customer’s needs. Validation may be performed in the operational environment or in

a simulated operational environment. Coordination with the customer on the

validation requirements is an important element of this process area. The scope of the

Validation process area includes validation of products, product components,

selected intermediate work products, and processes.

The Product Integration (PI) process area contains the specific practices associated

with generating the best possible integration sequence, integrating product

components, and delivering the product to the customer. Product Integration uses the

specific practices of both Verification and Validation in implementing the product

integration process.

 35

Support

The support process area mainly consists of Measurement and Analysis (MA),

Process and Product Quality Assurance (PPQA), and the Configuration Management

(CM) areas, as depicted in the following Figure 2.5.

Figure 2.5: Support Process Areas [15]

The Measurement and Analysis (MA) process area supports all process areas by

providing specific practices that guide projects and organizations in aligning

measurement needs and objectives with a measurement approach that will provide

objective results. These results can be used in making informed decisions and taking

appropriate corrective actions.

The Process and Product Quality Assurance (PPQA) process area supports all

process areas by providing specific practices for objectively evaluating performed

processes, work products, and services against the applicable process descriptions,

standards, and procedures, and ensuring that any issues arising from these reviews

are addressed.

The Configuration Management (CM) process area supports all process areas by

establishing and maintaining the integrity of work products using configuration

identification, configuration control, configuration status accounting, and

configuration audits. The work products placed under configuration management

include the products that are delivered to the customer, designated internal work

 36

products, acquired products, tools, and other items that are used in creating and

describing these work products. Examples of work products that may be placed

under configuration management include plans, process descriptions, requirements,

design data, drawings, product specifications, code, compilers, product data files, and

product technical publications.

2.3 Practical Implementation

It have been researched about a model, which have adopted a CMMI approach and

developed a maturity model for SPI implementation in order to guide organizations

in assessing and improving their SPI implementation processes. The basis of this

model is the SPI literature and an empirical study. In the design of this maturity

model the concept have extended the concept of critical success factors (CSFs). The

model hasbeen conducted with 23 Australian practitioners. It has also analysed CSFs

and critical barriers using 50 research articles (published experience reports and case

studies) [16].

The Table 2.3 shows critical barriers to understand the nature of issues that

undermine the SPI implementation programmes. The results are in comparison with

the literature and an empirical study. The results show that most of the practitioners

in literature consider lack of resources a major critical barrier for the implementation

of SPI. The results also suggest that in practitioners’ opinion time pressure and

inexperienced staff can undermine the success of SPI implementation programmes. It

shows that practitioners would prefer to avoid organizational politics during the

implementation of SPI programmes [21].

 37

Table 2.3: CSF’s identified through literature and empirical study [16]

Organizational politics is ranked highest in CSF interviews, i.e. 52%. Two new

critical barriers––lack of formal methodology and lack of awareness––have been

identified in our empirical study which have not been identified in the literature. The

second most cited criticalbarrier in CSF interviews is lack of support. The critical

barrier ‘‘lack of resources’’ is cited 35% in the CSF interviews.

Comparison of the critical barriers provides evidence that there are some clear

similarities and differences between the findings of the two sets. There are seven

barriers in common, i.e. inexperienced staff, lack of resources, lack of support,

negative or bad experiences, organizational politics, paperwork required and time

pressure.

There are also a number of differences between the findings. For example,

‘‘changing the mindset of management and technical staff’’ and ‘‘staff turnover’’

have not been cited in our empirical study but these barriers are present in the

literature. Similarly, lack of awareness of SPI and lack of formal methodology are

critical in our empirical study but have not been identified through the literature. This

shows that practitioners, who took part in our study, are more concerned about SPI

awareness activities and implementation methodology [22]. This is because

• SPI is an expensive and long-term approach that takes a long time to realise

its real benefits. Hence, in order to get the support of management and

 38

practitioners and to successfully continue SPI initiatives it is very important

to provide and maintain sufficient awareness of SPI within organizations

[23].

• Formal methodology has also emerged because little attention has been paid

to the effective implementation of SPI initiatives. Studies show that 67% of

SPI managers want guidance on how to implement SPI activities, rather than

what SPI activities to actually implement. This new barrier suggests that in

practitioners’ opinion the lack of a formal SPI implementation methodology

can undermine the implementation of SPI programmes [24][25].

 39

3. PRESENTATION OF THE THESIS

3.1 Subject of the Thesis

The solution is a software engineering process framework and implementation

tool. It provides a disciplined approach to assigning tasks and responsibilities within

a development organization. Its goal is to ensure the production of high-quality

software that meets the needs of its end users within a predictable schedule and

budget.

There are three central elements that define the product:

• The underlying set of philosophies and practices for successful software

development depending on CMMI.

• A process model repository, that includes all the versioned artifacts

• Automatic generated artifacts and traceability

If software development is a critical factor to the success of an organization, then the

implementation tool will help the organization to built a process management

framework. The implementation tool is developed with two primary groups of users:

• software development practitioners working as part of a project team,

including the stakeholders of those software development projects.

• process engineering practitioners, specifically software process engineers and

managers.

Software development practitioners can find guidance on what is required of them in

the roles defined in process framework. A practitioner working on an implementation

tool applied project is assigned to one or more of the roles defined in process

framework, where each role partitions a set of activities and artifacts that role is

 40

responsible for. Those roles collaborate in terms of the detailed work that is required

to enact the workflow within an iteration.

Process engineers will have template process framework using the implementation

tool. The only thing, they have to is create new projects and users. They can also

work on defining, configuring, tailoring and implementing engineering processes.

3.2 Process Areas and CMMI Compliance

The process framework is designed to meet CMMI requirements. The Table 3.1

shows the compliance matrix between the created disciplines and CMMI process:

Table 3.1: CMMI & Process Framework Compliance List

 CMMI PROCESS FRAMEWORK

Causal Analysis and Resolution N/A

Configuration Management Change Management

Decision Analysis and Resolution N/A

Integrated Project Management Project Management

Measurement and Analysis Project Management

Organizational Innovation and

Deployment Process Framework

Organizational Process Definition Process Framework

Organizational Process Focus Process Framework

Organizational Process Performance Process Framework

Organizational Training Process Framework

Product Integration Deployment

 41

Project Monitoring and Control Project Management

Project Planning Project Management

Process and Product Quality Assurance Test

Quantitative Project Management Project Management

Requirements Development Requirements Management

Requirements Management Requirements Management

Risk Management Project Management

Supplier Agreement Management N/A

Technical Solution

Implementation, Analysis &

Design

Validation Test

 Verification Test

3.3 Traceability Property

3.3.1 Requirements Management

The purpose of Requirements Management is to manage the requirements of the

project's products and product components and to identify inconsistencies between

those requirements and the project's plans and work products. Requirements

Management has one specific goal: to manage requirements and identify

inconsistencies with plans and work products. To manage requirements, the person

or team that receives them needs to develop an understanding of what they mean

before doing anything with the requirements. It should obtain a commitment from the

people who implement the requirements. Once the requirements are received and

understood, and a commitment is obtained, all changes to the requirements should be

 42

managed, including recording change histories and evaluating change impacts. The

project should provide for bidirectional traceability of the requirement and the

associated plans and work products. Tracing the requirements provides a better basis

for determining the ramifications of changes, and it ensures that all requirements

have a parent and that the product design covers all high-level requirements. Finally,

the project should identify inconsistencies between the requirements and the project

plans and work products. Any corrective action required to fix inconsistencies is

accomplished in the requirements development process, the project planning process,

or possibly other processes.

3.3.2 Project Management

The tracebility part of Project Management is Project Monitoring and Control. The

Purpose of Project Monitoring and Control is to provide an understanding of the

project's progress so that appropriate corrective actions can be taken when the

project's performance deviates significantly from the plan. It has two specific goals:

one on monitoring actual performance, and another on managing corrective actions.

3.3.3 Analysis & Design and Implementation

The purpose of Technical Solution is to design, develop, and implement solutions to

requirements. Solutions, designs, and implementations encompass products, product

components, and product-related life-cycle processes either singly or in combinations

as appropriate. Technical solution has three specific goals that address selecting

product-component solutions, developing the design, and implementing the design.

In the first goal—selecting product-component solutions alternative solutions are

developed and analyzed, and the one that best satisfies the criteria is selected. The

selected alternative may be used to develop more detailed requirements in the

“Requirements Management” process area or designed in the second goal of

Technical Solution. After the product components are designed, they are

implemented together with support documentation in the third goal of Technical

Solution.

 43

3.3.4 Testing

The purpose of Testing is to demonstrate that a product or product component fulfills

its intended use when placed in its intended environment. Testing has two specific

goals that address preparing for validation and validating the product or product

components. The validation practices are similar to those used in verification, but the

two process areas focus on different topics. Validation addresses those activities

needed to show that a product fulfills its intended use when it is placed in its

intended environment, whereas verification shows that the work products meet their

specified requirements.

3.3.5 Change Management

The purpose of Change Management is to establish and maintain the integrity of

work products using configuration identification, configuration control,

configuration status accounting, and configuration audits. Change Management has

three specific goals that address establishing baselines, tracking and controlling

changes, and establishing the integrity of baselines. It is assumed that it can occur at

multiple levels of granularity and formality.

 44

4. THE IMPLEMENTATION PROCESS

4.1 Process Management Framework

4.1.1 Implementation Solution

The solution is a software engineering process framework and implementation

tool. It provides a disciplined approach to assigning tasks and responsibilities within

a development organization. Its goal is to ensure the production of high-quality

software that meets the needs of its end users within a predictable schedule and

budget. [26].

The Solution has a JAVA based graphical user interface, which enables to visualize

the process framework. The produced artifacts are stored in a repository. The

repository consists of an Oracle database and a file server.

4.1.2 Process Structure

A process is a set of partially ordered steps intended to reach a goal. In software

engineering, the goal is to build a software product or to enhance an existing one. In

process engineering, the goal is to develop or enhance a process. In the

implementation tool, these are organized into a set of disciplines that further define

the workflows and other process elements.

The implementation tool is a CMMI dependend process framework for object-

oriented software engineering. It describes a family of related software engineering

processes that share a common structure and a common process architecture. The

Implementation tool provides a disciplined approach to assigning tasks and

responsibilities within a development organization.

The Process Management category of CMMI model is directly related with the

process structure of the implementation tool. Each of the Process Management

 45

process areas is strongly dependent on the ability to develop and deploy process and

supporting assets. Here the implementation tool can play an important role. This can

function as an additional organizational support asset and can help quantitative

project management and statistical management of critical sub-processes for both

projects and organization level. The organization analyses the process performance

data collected from the defined processes to develop a quantitative understanding of

product quality, service quality, and process performance of the organization’s set of

standard.The implementation tools “Process Structure” is explained below:

Disciplines:

A discipline is a collection of related activities that are related to a major area within

the overall project.

WorkFlows:

A collection of all roles, activities and artifacts constitute a process, but it is not easy

to understand in practical environment. To explain the structure in a better way, the

implementation tool describes meaningful sequences of activities that produce some

valuable result, and to show interactions between roles. A workflow is a sequence of

activities that produces a result of observable value.

Workflow Details:

The implementation tool’s process structure also includes workflow detail diagrams,

which show groupings of activities that often are performed together. These

diagrams show roles involved, input and output artifacts, and activities performed.

The workflow detail diagrams are there for the following reasons:

The activities of a workflow are neither performed in sequence, nor done all at once.

The workflow detail diagram shows how you often will work in workshops or team

meetings while performing a workflow. People typically work in parallel on more

than one activity, and look at more than one artifact while doing that. There are

several workflow detail diagrams for a discipline.

 46

It becomes too complex to show input and output artifacts for all activities of a

discipline in one diagram. The workflow detail diagram allows to show activities and

artifacts together, for one part of a workflow at a time.

The disciplines are not completely independent of one another. The workflow detail

diagram can show a group of activities and artifacts in the discipline, together with

closely related activities in another discipline.

Activities:

Roles have activities that define the work they perform. An activity is something that

a role does that provides a meaningful result in the context of the project.

An activity is a unit of work that an individual playing the described role may be

asked to perform. The activity has a clear purpose, usually expressed in terms of

creating or updating some artifacts, such as a model, a class, or a plan. Every activity

is assigned to a specific role. The granularity of an activity is generally a few hours

to a few days, it usually involves one role, and affects one or only a small number of

artifacts.

Activities may be repeated several times on the same artifact, especially when going

from one iteration to another, refining and expanding the system, by the same role,

but not necessarily the same individual[27].

Artifacts:

Activities have input and output artifacts. An artifact is a work product of the

process. Roles use artifacts to perform activities, and produce artifacts in the course

of performing activities. Artifacts are the responsibility of a single role, making

responsibility easy to identify and understand, and promoting the idea that every

piece of information produced in the process requires the appropriate set of skills.

Even though one role may own the artifact, other roles will use the artifact, perhaps

even updating it if the role has been given permission to do so. Artifacts don’t have

to be documents. Many processes have an excessive focus on documents, and in

particular on paper documentation [28]. The most efficient approach to managing

project artifacts is to maintain the artifacts within the appropriate tool used to create

 47

and manage them. When necessary, you may generate documents from these tools,

on a just-in-time basis. You should also consider delivering artifacts to the interested

parties inside and together with the tool, rather than on paper. This approach ensures

that the information is always up-to-date and based on actual project work, and it

should not require any additional effort to produce .

4.1.3 Discipline Details

4.1.3.1 Requirements Management

Introduction:

In Figure 4.1 “Requirements Management” discipline purpose is explained.

Figure 4.1: Requirement Management – Introduction

The purpose of the “Requirements Management” discipline is:

 48

• To establish and maintain agreement with the customers and other

stakeholders on what the system should do.

• To provide system developers with a better understanding of the system

requirements.

• To define the boundaries of the system.

• To provide a basis for planning the technical contents of iterations.

• To provide a basis for estimating cost and time to develop the system.

• To define a user-interface for the system, focusing on the needs and goals of

the users.

• To achieve these goals, it is important, first of all, to understand the definition

and scope of the problem which is trying to solve with this system. The

Business Rules, Business Use-Case Model and Business Analysis Model

developed during Business Modeling will serve as valuable input to this

effort. Stakeholders are identified and Stakeholder Requests are elicited,

gathered and analyzed.

Concepts:

The main concepts are listed in this menuitem as keywords. In Figure 4.2

“Requirements Management” disciplines concepts are explained.

 49

Figure 4.2: Requirement Management – Concepts

Workflow:

The main flowchart of this discipline is shown on this menu item. There are two

ways to see the details. Project members could work on the flowchart by clicking on

the activities listed on the screen or selecting from the submenu. In Figure 4.3,

workflow details are shown.

 50

Figure 4.3: Requirement Management – Workflow

On Figure 4.4 “Analyze the Problem” workflow details are shown.

 51

Figure 4.4: Requirement Management - Workflow – Analyze the Problem

The first step in any problem analysis is to make sure that all parties involved agree

on what the problem is that needs to be solved-or opportunity that will be realized-by

the system. In order to help avoid misunderstandings, it is important to agree on

common terminology which will be used throughout the project. Starting early in the

lifecycle, project terms should be defined in a glossary which will be maintained

throughout the life of the project[31].

In order to fully understand the problems that need to be addressed, it is very

important to know who the stakeholders are in the conceptual vision for the project.

It should be noted that some of these stakeholders-the users of the system-will be

represented by actors in your use-case model.

The requirements management plan is used to provide guidance on the requirements

artifacts that you should develop, the types of requirements that should be managed

for the project, the requirement attributes that should be collected and the approach

to requirements traceability that will be used in managing the product requirements.

 52

The primary artifact in which you capture the information gained from your problem

analysis is the vision, which identifies the high-level user or customer view of the

system to be built. In the vision, initial high-level requirements identify the key

features it is desired that the appropriate solution will provide. These are typically

expressed as a set of high-level features the system might possess in order to solve

the most critical problems.

Key stakeholders should be involved in gathering the set of features to be considered,

which might be gathered in a requirements workshop. The features can then be

assigned attributes such as rationale, relative value or priority, source of request and

so on, so that dependencies and work plans can begin to be managed.

To determine the initial scope for your project, the boundaries of the system must be

agreed upon. The system analyst identifies users and systems - represented by actors

- which will interact with the system.

 In Figure 4.5, “Understand Stakeholder Needs” workflow details are shown.

Figure 4.5: Requirement Management – Workflow – Understand Stakeholder Needs

 53

This workflow detail addresses collecting and eliciting information from the

stakeholders in the project in order to understand what their needs really are. The

collected stakeholder requests can be regarded as a "wish list" that will be used as

primary input to defining the high-level features of your system, as described in the

vision, which drive the specification of the software requirements, as described in the

use-case model, use cases and supplementary specifications.

This activity is performed during iterations in the inception and elaboration phases,

however additional stakeholder requests will continue to be gathered throughout the

project via change requests submitted and approved in accordance with your projects

“Change Management” process.

The main objective is to elicit stakeholder requests using such input as interviews

business rules, enhancement requests, and requirements workshops. The primary

outputs are collections of prioritized features and their critical attributes, which will

be used in defining the system and managing the scope of the system.

This information results in a refinement of the vision artifact, as well as a better

understanding of the requirements attributes. Also, during the enactment of this

workflow detail you may start discussing the functional requirements of the system

in terms of its use cases and actors. Those non-functional requirements, which do not

fit appropriately within the use-case specifications, should be documented in

supplementary specifications.

Another important output is an updated glossary of terms to facilitate communication

through the use of a common vocabulary among team members.

In Figure 4.6, “Define the System” workflow details are shown.

 54

Figure 4.6: Requirement Management – Workflow – Define the System

The workflow detail addresses:

• Aligning the project team in their understanding of the system.

• Performing a high-level analysis on the results of collected stakeholder

requests.

• Refining the vision to capture the key features that characterize the system.

• Refining the use-case model to include outlined use cases.

• Beginning to capture the results of the requirements elicitation activities in a

more structured manner.

The activities that focus on problem analysis and understanding stakeholder needs

create early iterations of key system definitions including the features defined in the

vision and a first outline of the detailed requirements. In defining the system the

 55

focus on identifying actors and use cases are more completely, and the global non-

functional requirements are expanded as defined in the supplementary

specifications.

Typically, this is primarily performed in iterations during the inception and

elaboration phases, however it may be revisited as needed when managing scope and

responding to changing requirements, as well as other changes in the project

conditions.

In Figure 4.7, “Manage the Scope of the System” workflow details are shown.

Figure 4.7: Requirement Management – Workflow – Manage the Scope of the

System

This workflow detail addresses:

• Prioritizing and refining the input to the selection of features and

requirements that are to be included in the current iteration.

 56

• Defining the set of behavioral scenarios, for one or more use cases, that

represent some significant central functionality.

• Defining how traceability will be maintained, including which requirement

attributes and traceability relationships to maintain.

The scope of a project is defined by the set of requirements allocated to it. Managing

project scope to fit the available resources (time, people, and money) is key to

managing successful projects. Managing scope is a continuous activity that requires

iterative or incremental development, which breaks project scope into smaller more

manageable pieces.

Use requirement attributes, such as priority, effort, and risk, as the basis for

negotiating the inclusion of a requirement is a particularly useful technique for

managing scope. Focusing on the attributes rather than the requirements themselves

helps desensitize negotiations that are otherwise contentious.

It is also helpful for team leaders to be trained in negotiation skills and for the project

to have a champion in the organization, as well as on the customer side.

Product/project champions should have the organizational power to refuse scope

changes beyond the available resources or to expand resources to accommodate

additional scope.

Project scope should be managed continuously throughout the project. A better

understanding of system functionality can be formulated at the point that most actors

and use cases have been identified and outlined. Non-functional requirements, which

either do not fit in the use-case model or are general across multiple use cases,

should be documented in the supplementary specifications. The system analyst role

is responsible for determining values of priority, effort, cost, risk values etc., from

the appropriate stakeholders, which are collected in the repository of requirements

attributes. These will be used by staff in the project manager role when planning each

iteration and will enable staff in the software architect role to identify the

architecturally significant scenario's or complete use cases, which will help define

the use-case view of the architecture.

In Figure 4.8, “Refine the System Definition” workflow details are shown.

 57

Figure 4.8: Requirement Management – Workflow – Refine the System Definition

The workflow detail addresses:

• Describing the use case flow of events in detail.

• Detailing Supplementary Specifications.

• Developing a Software Requirements Specification, if more detail is needed,

This workflow detail furthers the understanding of project scope reflected in the set

of prioritized product features that it is believed can be achieved by fairly firm

budgets and dates. The output is a more in-depth understanding of system

functionality expressed in refined, detailed requirements in specification artifacts and

outlined behavioral prototypes. The specification artifacts can take the form of

detailed use cases and Supplementary Specifications and in some cases a formal

Software Requirements Specification may be developed. This work typically starts

by reviewing the existing actor definitions and if necessary least briefly describing

 58

the actors, then continues with detailing the use cases that have been previously

outlined for each actor.

Whenever the requirements specifications are changed, regular reviews and updates

to the associated requirements attributes should be done as shown in the Manage

Changing Requirements workflow detail.

In Figure 4.9, “Manage Changing Requests” workflow details are shown.

Figure 4.9: Requirement Management – Workflow – Manage Changing Requests

This workflow detail addresses:

• Evaluating requested changes and determining their impact on the existing

requirement set.

• Structuring the use-case model.

• Setting up appropriate requirements attributes and traceability relationships.

 59

• Verify that the results of the requirements work conform to the customer's

view of the system.

Changes to requirements naturally impact downstream artifacts. For example the

models produced in the course of analysis & design work, the tests developed to

validate that the requirements have been met, and the end-user support materials. The

traceability relationships identified in the manage dependency activity of this

discipline, identify the relationships between requirements and other artifacts. These

relationships are the key to understanding the impact of requirements change.

Another important consideration is the tracking of requirement history. By capturing

the nature and rationale of requirements changes, reviewers (in this case the role is

played by anyone on the software project team whose work is affected by the

change) receive the information needed to respond to the change properly.

Regular reviews, along with updates to the requirement attributes and dependencies,

should be done whenever the requirements are updated.

Activities:

In figure xx, acitivites of the “Requirements Management” discipline are shown.

The details are explained in the workflow details meuitem. This view is added to the

menuitems to list the roles’s responsibilities in a clear way.

In Figure 4.10, workflow activities are shown.

 60

Figure 4.10: Requirement Management– Activities

Artifacts:

In Figure 4.11, artifacts of the “Requirements Management” discipline are shown.

The workflow details are explained in the workflow details meuitem. This view is

added to the menuitems to list the produced artifacts.

 61

Figure 4.11: Requirement Management– Artifacts

A vision document, a use-case model, use cases and Supplementary Specification are

developed to fully describe the system - what the system will do - in an effort that

views all stakeholders, including customers and potential users, as important sources

of information (in addition to system requirements).

Stakeholder requests are both actively elicited and gathered from existing sources to

get a "wish list" of what different stakeholders of the project (customers, users,

product champions) expect or desire the system to include, together with information

on how each request has been considered by the project [32].

The vision document provides a complete vision for the software system under

development and supports the contract between the funding authority and the

development organization. Every project needs a source for capturing the

expectations among stakeholders. The vision document is written from the

customers' perspective, focusing on the essential features of the system and

acceptable levels of quality. The vision should include a description of what features

 62

will be included as well as those considered but not included. It should also specify

operational capacities (volumes, response times, accuracies), user profiles (who will

be using the system), and inter-operational interfaces with entities outside the system

boundary, where applicable. The vision document provides the contractual basis for

the requirements visible to the stakeholders.

The use-case model should serve as a communication medium and can serve as a

contract between the customer, the users, and the system developers on the

functionality of the system, which allows:

• Customers and users to validate that the system will become what they

expected.

• System developers to build what is expected.

The use-case model consists of use cases and actors. Each use case in the model is

described in detail, showing step-by-step how the system interacts with the actors,

and what the system does in the use case. Use cases function as a unifying thread

throughout the software lifecycle; the same use-case model is used in system

analysis, design, implementation, and testing.

The supplementary specifications are an important complement to the use-case

model, because together they capture all software requirements (functional and

nonfunctional) that need to be described to serve as a complete software

requirements specification.

A complete definition of the software requirements described in the use cases and

supplementary specifications may be packaged together to define a software

requirements specification (SRS) for a particular "feature" or other subsystem

grouping.

A requirements management plan specifies the information and control mechanisms

which will be collected and used for measuring, reporting, and controlling changes to

the product requirements.

Complementary to the above mentioned artifacts, the following artifacts are also

developed:

 63

• Glossary

• Storyboard

The glossary is important because it defines a common terminology which is used

consistently across the project or organization.

The storyboards may be generated during requirements elicitation, which are done in

parallel with other requirements activities. They provide important feedback

mechanisms in later iterations for discovering unknown or unclear requirements.

4.1.3.2 Analysis & Design:

Introduction:

In Figure 4.12 “Analysis & Design” disciplines purpose is explained.

Figure 4.12: Analysis & Design – Introduction

The purposes of Analysis & Design are:

 64

• To transform the requirements into a design of the system-to-be.

• To evolve a robust architecture for the system.

• To adapt the design to match the implementation environment, designing it

for performance.

Concepts:

The main concepts are listed in this menuitem as keywords. In Figure 4.13 “Analysis

& Design” disciplines purpose is explained.

Figure 4.13: Analysis & Design – Concepts

Workflow:

The main flowchart of this discipline is shown on this menuitem. There are two ways

to see the details. Project members could work on the flowchart by clicking on the

activities listed on the screen or selecting from the submenu.

 65

Figure 4.14: Analysis & Design – Workflow

In figure 4.15, “Perform Architectural Synthesis” workflow details are shown.

 66

Figure 4.15: Analysis & Design – Workflow - Perform Architectural Synthesis

This workflow detail is about showing that there exists, or is likely to exist, a

solution which will satisfy the architecturally significant requirements, thus showing

that the system, as envisioned, is feasible.

As with “Workflow Detail: Define a Candidate Architecture”, shown in Figure 4.16,

these activities are best carried out by a small team staffed by cross-functional team

members. Issues that are typically architecturally significant include performance,

scaling, process and thread synchronization, and distribution. The team should also

include members with domain experience who can identify key abstractions. The

team should also have experience with model organization and layering. From these

inputs, the team will need to be able to synthesize a model, or even a prototype, of a

solution.

 67

Figure 4.16: Analysis & Design – Workflow - Define a Candidate Architecture

This workflow detail has the following goals:

• Create an initial sketch of the architecture of the system

o Define an initial set of architecturally significant elements to be used

as the basis for analysis

o Define an initial set of analysis mechanisms

o Define the initial layering and organization of the system

o Define the use-case realizations to be addressed in the current

iteration

• Identify analysis classes from the architecturally significant use cases

• Update the use-case realizations with analysis class interactions

 68

The work is best done in several sessions, perhaps performed over a time, with

iteration between Architectural Analysis and Use-Case Analysis. Perform an initial

pass at the architecture in Architectural Analysis, then choose architecturally

significant use cases, performing Use-Case Analysis on each one. After each use

case is analyzed, update the architecture as needed to reflect adaptations required to

accommodate new behavior of the system and to address potential architectural

problems which are identified.

Where the architecture already exists, change requests may need to be created to

change the architecture to account for the new behavior the system must support.

These changes may be to any artifact in the process, depending on the scope of the

change.

In Figure 4.17, “Refine Architecture” workflow details are shown.

Figure 4.17: Analysis & Design – Workflow – Refine Architecture

This Workflow Detail:

 69

• Provides the natural transition from analysis activities to design activities,

identifying:

o appropriate design elements from analysis elements

o appropriate design mechanisms from related analysis mechanisms

• Describes the organization of the system's run-time and deployment

architecture

• Organizes the implementation model so as to make the transition between

design and implementation seamless

• Maintains the consistency and integrity of the architecture, ensuring that:

o new design elements identified for the current iteration are integrated

with pre-existing design elements.

o maximal re-use of available components and design elements is

achieved as early as possible in the design effort.

The work is best done in several sessions. The initial focus will be on the activities

“Activity: Identify Design Mechanisms” and “Activity: Identify Design Elements”,

with a great deal of iteration with the “Activity: Incorporate Existing Design

Elements” activity to make sure that new elements do not duplicate functionality of

existing elements.

As the design emerges, concurrency and distribution issues are introduced in the

activities “Activity: Describe the Run-time Architecture” and “Activity: Describe

Distribution”, respectively. As these issues are considered, changes to design

elements may be required to split behavior across processes, threads or nodes.

As the individual models are refined to incorporate the architectural decisions, the

results are documented in respective view sections in the Software Architecture

Document. The resulting architecture is reviewed [33].

These activities are best carried out by a small team staffed by cross-functional team

members. Issues that are typically architecturally significant include usability,

 70

performance, scaling, process and thread synchronization, and distribution. The team

should also include members with domain experience who can identify key

abstractions. The team should also have experience with model organization and

layering. The team will need to be able to pull all these disparate threads into a

cohesive, coherent architecture.

Because the focus of the architecture effort is shifting toward implementation issues,

greater attention needs to be paid to specific technology issues. This will force the

architecture team to shift members or expand to include people with distribution and

deployment expertise. In order to understand the potential impact of the structure on

the implementation model on the ease of integration, expertise in the software build

management process is useful to have.

At the same time, it is essential that the architecture team not be composed of a large

extended team. A strategy for countering this trend is to retain a relatively small core

team with a satellite group of extended team members that are brought in as

"consultants" on key issues. This structure also works well for smaller projects where

specific expertise may be borrowed or contracted from other organizations; they can

be brought in as specific issues need to be addressed.

In Figure 4.18, “Analyze Behavior” workflow details are shown.

 71

Figure 4.18: Analysis & Design – Workflow – Analyze Behavior

This workflow detail occurs in each iteration in which there are behavioural

requirements to be analyzed and designed.

The analysis of behavioural requirements includes:

• identifying analysis classes that satisfy the required behaviour

• determining how these analysis classes fit into the logical architecture of the

system. The analysis classes may be determined to belong to existing

subsystems, require the creation of new subsystems, or cause existing

subsystems and their interfaces to be redefined.

This Workflow Detail may also include modeling and prototyping of the user

interface:

“Activity: Design the User-Interface” and “Activity: Prototype the User-Interface”

are performed iteratively throughout the elaboration iterations. Early iterations focus

 72

on the initial user interface design, which includes the identification and design of

the key user interface elements and the navigation paths between them.

“Storyboarding” is an effective technique that can be used during user-interface

design to gain a better understanding of how the user interface should behave. Once

consensus on the initial user-interface design has been reached, then the development

of an executable user-interface prototype begins. Feedback on the prototype is fed

back into the user-interface design. The initial prototype typically supports only a

subset of the system's features. In subsequent iterations, the prototype is expanded,

gradually adding broader coverage of the system's features. The main benefit of

producing non-functional versions of the user-interface during user-interface design

is to postpone the investment of more elaborate and costly functional user-interface

prototypes until there is consensus on the overall user-interface design. It is

important to work closely with users and potential users of the system when

designing and prototyping the user-interface in order to confirm and validate the

usability of the system.

A number of use-case analysis workshops may be organized in parallel, limited only

by the available resource pool and the skills of the participants. As soon as possible

following each use-case analysis workshop, some members of the workshop and

some members of the architecture team should work to merge the results of the

workshop in the “Activity: Identify Design Elements”. Members of both teams are

essential: the use-case analysis team members understand the context in which the

analysis classes were identified, while the architecture team understands the greater

context of the design as well as other use cases which have already been identified.

As the design work matures and stabilizes, increasingly larger parts of it can and

should be reviewed. Smaller, more focused reviews are better than large all-

encompassing reviews; sixteen two-hour reviews focused on very specific aspects

are significantly better than a single review spanning two days. In the focused

reviews, define objectives to bound the focus of the review, and ensure that a small

review team with the right skills for the review, given the objectives, is available for

the review. Early reviews should focus primarily on the integrity of layering and

packaging in the design, the stability and quality of the interfaces, and the

completeness of coverage of the use case behavior. Later reviews should drill down

 73

into packages and subsystems to ensure that their contents completely and correctly

realize their defined interfaces, and that the dependencies and associations between

design elements are necessary, sufficient and correct.

In Figure 4.19, “Design Components” workflow details are shown.

Figure 4.19: Analysis & Design – Workflow – Design Components

This Workflow Detail has the following goals:

• Refine the definitions of design elements (including capsules and protocols)

by working out the 'details' of how the design elements realize the behavior

required of them.

• Refine and update the use-case realizations based on new design element

identified.

• Reviewing the design as it evolves

 74

Typically the work here is carried in individually or in small teams, with informal

inter-group interactions where needed to communicate changes between the teams.

As design elements are refined, responsibilities often shift between them, requiring

simultaneous changes to a number of design elements and use-case realizations.

Because of the interplay of responsibilities, it is almost impossible for design team

members to work in complete isolation. To keep the design effort focused on the

required behavior of the system, a typical pattern of interaction emerges:

• design elements are refined by the responsible persons or teams

• a small group gathers informally to work out the impact of the new design

elements on a set of existing use-case realizations

• in the course of the discussion, changes to both the use-case realization and

the participating design elements are identified

• the cycle repeats until all required behaviour for the iteration is designed.

Because the process itself is iterative, the criteria for 'all required behaviour for the

iteration' will vary depending on the position in the lifecycle:

• In the elaboration phase, the focus will be on architecturally-significant

behaviors, with all other 'details' effectively ignored.

• In the construction phase there is a shift to completeness and consistency of

the design, so that by the end of the construction phase there are no

unresolved design issues.

Note that the design for an iteration does not need to be complete before beginning

implementation and test activities. Partially implementing and testing a design as it

evolves can be an effective means of validating and refining design, even within an

iteration.

Typically, one person or a small team is responsible for a set of design elements,

usually one or more packages or subsystems containing other design elements. This

person/team is responsible for fleshing out the design details for the elements

contained in the package or subsystem: completing all operation definitions and the

 75

definition of relationships to other design elements. The “Activity: Capsule Design”

focuses on the recursive decomposition of functionality in the system in terms of

capsules and classes. The “Activity: Class Design” focuses on refining the design of

passive class design elements, while the “Activity: Subsystem Design” focuses on

the allocation of behavior mapped to the subsystem itself to contained design

elements (either contained capsules and classes or subsystems). Typically

subsystems are used primarily as large-grained model organization structures, while

capsules being used for the bulk of the work and "ordinary" classes being relegated

largely to passive stores of information.

The individuals or teams responsible for designing capsules should be

knowledgeable in the implementation language as well as possessing expertise in the

concurrency issues in general. Individuals responsible for designing passive classes

should also be knowledgeable in the implementation language as well as in

algorithms or technologies to be employed by the class. Individuals or teams

responsible for subsystems should be more generalists, able to make decisions on the

proper partitioning of functionality between design elements, and able to understand

the inherent trade-offs involved in various design alternatives.

While the individual design elements are refined, the use-case realizations must be

refined to reflect the evolving responsibilities of the design elements. Typically, one

person or a small team is responsible for refining one or more related use-case

realizations. As design elements are added or refined, the use-case realizations need

to be reconsidered and evolved as they become outdated, or as improvements in the

design model allow for simplifications in the use-case realizations. The individuals

or teams responsible for use-case realizations need to have broader understanding of

the behavior required by the use cases and of the trade-offs of different approaches to

allocating this behavior amongst design elements. In addition, since they are

responsible for selecting the elements that will perform the use cases, they need to

have a deep understanding of external (public) behaviors of the design elements

themselves.

In Figure 4.20, “Design the Database” workflow details are shown.

 76

Figure 4.20: Analysis & Design – Workflow – Design the Database

This Workflow Detail includes:

• Identifying the persistent classes in the design

• Designing appropriate database structures to store the persistent classes

• Defining mechanisms and strategies for storing and retrieving persistent data

in such a way that the performance criteria for the system are met

The database and persistent data storage and retrieval mechanisms, are implemented

and tested as part of the overall implementation of the components and subsystems of

the application.

In the elaboration phase, this workflow focuses on ensuring that the persistence

strategy is scalable and that the database design and persistence mechanism will

support the throughput requirements of the system. Persistent classes identified in

“Activity: Class Design” are mapped to the persistence mechanism and data-

 77

intensive use cases are analyzed to ensure the mechanisms will be scalable. The

persistence mechanism and database design is assessed and validated.

Persistence must be treated as an integral part of the design effort, and close

collaboration between designers and database designers is essential. Typically the

database designer is a 'floating' resource, shared between several teams as a

consulting resource to address persistence issues. The database designer is also

typically responsible for the persistence mechanisms; if the persistence mechanism is

built rather than bought, there will typically be a team of people working on this.

Larger projects will typically require a small team of database designers who will

need to coordinate work between both design teams and amongst themselves to

ensure that persistence is consistently implemented across the project.

The Designers responsible for persistent classes need to have an understanding of the

persistence in general and the persistence mechanisms in specific. Their primary

responsibility is to ensure that persistent classes are identified and that these classes

utilize the persistence mechanisms in an appropriate manner. The Database Designer

needs to understand the persistent classes in the design model and so must have a

working understanding of object-oriented design and implementation techniques.

The Database Designer also needs a strong background in database concurrency and

distribution issues.

Activities:

In Figure 4.21, acitivites of the “Analysis and Design” discipline are shown. The

details are explained in the workflow details menu item. This view is added to the

menu items to list the roles’s responsibilities in a clear way.

 78

Figure 4.21: Analysis & Design – Activities

Artifacts:

In Figure 4.22, artifacts of the “Analysis and Design” discipline are shown. The

workflow details are explained in the workflow details menu item. This view is

added to the menu items to list the produced artifacts.

 79

Figure 4.22: Analysis & Design – Workflow – Artifacts

4.1.3.3 Implementation:

Introduction:

In Figure 4.23 “Implementation” discipline purpose is explained.

 80

Figure 4.23: Implementation – Introduction

The purpose of implementation is:

• to define the organization of the code, in terms of implementation subsystems

organized in layers

• to implement the design elements in terms of implementation elements

(source files, binaries, executables, and others)

• to test the developed components as units

to integrate the results produced by individual implementers (or teams), into an

executable system

The Implementation discipline limits its scope to how individual classes are to be

unit tested. System test and integration test are described in the Test discipline.

Concepts:

 81

In Figure 4.24, “Implementation” concepts are shown.

Figure 4.24: Implementation – Concepts

Workflow:

The main flowchart of this discipline is shown on this menu item. There are two

ways to see the details. Project members could work on the flowchart by clicking on

the activities listed on the screen or selecting from the submenu.

In Figure 4.25, “Implementation” workflow are shown.

 82

Figure 4.25: Implementation – Workflow

In Figure 4.26, “Structure the Implementation” workflow details are shown.

 83

Figure 4.26: Implementation – Workflow - Structure the Implementation

Structuring the implementation model generally results in a set of Implementation

Subsystems that can be developed relatively independently. A well-organized model

will prevent configuration management problems and will allow the product to built-

up from successively larger integration builds.

Structuring the implementation model should be done in parallel with the evolution

of the other aspects of the architecture; failure to consider it early in the architecting

process may lead to poor organization of the implementation and may impede the

implementation and build process. In the worst case, a poorly organized

implementation model will impede parallel development of software by the project

team.

While the software architect has primary responsibility for the structure of the

implementation model, the software architect's experience needs to include that of an

integrator at the system level. They need experience in software build management,

configuration management, and experience in the programming language in which

 84

the components to be integrated are written. Because the automation of integration

will be handled by the integrator, the software architect need not be an expert in

scripting or integration automation, but some familiarity with the topic will often

help the build process go more smoothly.

In Figure 4.27, “Plan the Integration” workflow details are shown.

Figure 4.27: Implementation – Workflow – Plan the Integration

Planning the integration is focussed on which implementation subsystems should be

implemented, and the order in which the implementation subsystems should be

integrated in the current iteration. Integration is typically carried out by a single

person (for a small project on which the build process in simple) or a small team (for

a large project on which the build process is complex). The integrators need

experience in software build management, configuration management, and

experience in the programming language in which the components to be integrated

are written. Because integration often involves a high degree of automation, expertise

in operating system shell or scripting languages and tools like 'make' is also essential.

 85

Planning the integration process should be done early, at least in rough form, when

the architecture is baselined. As the architecture and design evolve, the integration

plan should be examined and updated to ensure that the build plan does not become

obsolete by changes in the architecture or the design.

In Figure 4.28, “Implementaiton Components” workflow details are shown.

Figure 4.28: Implementation – Workflow – Implement Components

In this workflow detail:

• The implementers write source code, adapt existing source code, compile,

link and perform unit tests, as they implement the elements in the design

model. If defects in the design are discovered, the implementer submits

rework feedback on the design.

• The implementers also fix code defects and perform unit tests to verify the

changes. Then the code is reviewed to evaluate quality and compliance with

the Programming Guidelines.

 86

These activities carried out by the implementer tend to be done by a single person.

The review activity is best carried out by a small team staffed by cross-functional

team members, typically more senior members of technical staff with greater

experience into common problems and pitfalls encountered in the programming

language. Special expertise may be required in the problem domain, as is often the

case in systems involving telephony or devices with special interfaces. Expertise in

specific algorithms or programming techniques may also be required.

The review work is best done in several sessions, each focused on small sections of

the system or on specific issues. The goal of these sessions is to identify specific

problems in the code that need to be resolved, not to resolve them on the spot;

resolution discussions should be postponed until after the review. More frequent

reviews which are smaller in scope are more productive than less frequent sessions

which are larger in scope.

In Figure 4.29, “Integrate Each SubSystem” workflow details are shown.

Figure 4.29: Implementation – Workflow - Integrate Each SubSystem

 87

If several implementers work in the same implementation subsystem, the changes

from the individual implementers need to be integrated to create a new consistent

version of the implementation subsystem. The integration results in series of builds

in a subsystem integration workspace. Each build is then integration tested by a tester

and/or an implementer executing the developer tests. Following testing, the

Implementation Subsystem is delivered into the system integration workspace.

Integration is typically carried out by a single person (for a small project on which

the build process in simple) or a small team (for a large project on which the build

process is complex). The integrators need experience in software build management,

configuration management, and experience in the programming language in which

the components to be integrated are written.

Integration work is typically automated to a large degree, with manual effort required

when the build breaks. A frequent strategy is to perform automated nightly builds

and some automated testing (usually at the unit level), allowing for frequent feedback

from the build process.

In Figure 4.30, “Integrate the Subsystem” workflow details are shown.

 88

Figure 4.30: Implementation – Workflow - Integrate the System

The integrator integrates the system, in accordance with the integration build plan, by

adding the delivered implementation subsystems into the system integration

workspace and creating builds. Each build is then integration tested by a tester. After

the last increment, the build can be completely system tested by a tester.

Integration work is typically automated to a large degree, with manual effort required

when the build breaks. A frequent strategy is to perform automated nightly builds

and some automated testing (usually at the unit level), allowing for frequent feedback

from the build process.

Activities:

In Figure 4.31, acitivites of the “Implementation” discipline are shown. The details

are explained in the workflow details meuitem. This view is added to the menu items

to list the roles’s responsibilities in a clear way.

 89

Figure 4.31: Implementation – Workflow - Activities

Artifacts:

In Figure 4.32, artifacts of the “Implementation” discipline are shown. The

workflow details are explained in the workflow details meuitem. This view is added

to the menuitems to list the produced artifacts.

 90

Figure 4.32: Implementation – Artifacts

4.1.3.4 Testing:

Introduction:

In Figure 4.33 “Test” discipline purpose is explained.

 91

Figure 4.33: Test – Introduction

The test discipline acts as a service provider to the other disciplines in many respects.

Testing focuses primarily on evaluating or assessing product quality, which is

realized through these core practices:

• Find and document defects in software quality.

• Advise on the perceived software quality.

• Validate and prove the assumptions made in design and requirement

specifications through concrete demonstration.

• Validate that the software product works as designed.

• Validate that the requirements are implemented appropriately.

A good test effort is driven by questions such as:

• How could this software break?

 92

• In what possible situations could this software fail to work predictably?

Test challenges the assumptions, risks, and uncertainty inherent in the work of other

disciplines, and addresses those concerns using concrete demonstration and impartial

evaluation. To avoid two potential extremes:

• an approach that does not suitably or effectively challenge the software, and

exposes its inherent problems or weaknesses

• an approach that is inappropriately negative or destructive - adopting such a

negative approach, you may find it impossible to consider the software

product of acceptable quality and could alienate the Test effort from the other

disciplines

Information presented in various surveys and essays states that software testing

accounts for 30 to 50 percent of total software development costs. It is, therefore,

somewhat surprising to note that most people believe computer software is not well

tested before it's delivered. This contradiction is rooted in a few key issues:

• Typically testing is done without a clear methodology, creating results that

vary from project to project and from organization to organization. Success is

primarily a factor of the quality and skills of the individuals.

• Productivity tools are used insufficiently, which makes the laborious aspects

of testing unmanageable. In addition to the lack of automated test execution,

many test efforts are conducted without tools that let you effectively manage

extensive test data and test results. Flexibility of use and complexity of

software make complete testing an impossible goal. Using a well-conceived

methodology and state-of-the-art tools can improve both the productivity and

effectiveness of software testing.

High-quality software is essential to the success of safety-critical systems - such as

air-traffic control, missile guidance, or medical delivery systems - where a failure

can harm people. The criticality of a typical system may not be as immediately

obvious, but it's likely that the impact of a defect could cause the business using the

software considerable expense in lost revenue and possibly legal costs. In this

 93

information age, with increasing demands on providing electronically delivered

services over the internet, many systems are now considered mission-critical; that is,

companies cannot fulfill their functions and they experience massive losses when

failures occur.

A continuous approach to quality, initiated early in the software lifecycle, can lower

the cost of completing and maintaining your software significantly. This greatly

reduces the risk associated with deploying poor quality software.

Concepts:

In Figure 4.34, “Test” concepts are shown.

Figure 4.34: Test – Concepts

Workflow:

The main flowchart of this discipline is shown on this menu item. There are two

ways to see the details. Project members could work on the flowchart by clicking on

 94

the activities listed on the screen or selecting from the submenu. In Figure 4.35,

wokflow details are shown.

Figure 4.35: Test – Workflow

In Figure 4.36, “Define Evaluation Mission” wokflow details are shown.

 95

Figure 4.36: Test – Workflow – Define Evaluation Mission

For each iteration, this work is focused mainly on:

• Identifying the objectives for, and deliverables of, the testing effort

• Identifying a good resource utilization strategy

• Defining the appropriate scope and boundary for the test effort

• Outlining the approach that will be used

• Defining how progress will be monitored and assessed.

It should be noted that this work is performed in each iteration. The main value in

performing this work is to think through the various concerns and issues that will

impact testing over the course of the iteration, and consider the appropriate actions

you should take. As a general rule, don't spend excessive amounts of time on the

presentation of the documentation for these aspects of the test effort.

 96

Although most of the roles involved in the Test discipline play a part in performing

this work, the effort is primarily centered around the Test Manager and Test Analyst

roles. The most important skills required for this work include negotiation,

elicitation, strategy and planning.

While most of the resource for this work will be expended in Construction,

significant resources will need to be allocated to this work from Inception to

Transition.

As a relative indication of test resource use for this workflow detail by phase, typical

percentages are: Inception - 50%, Elaboration - 25%, Construction - 10% and

Transition - 10%.

In Figure 4.37, “Verify Test Approach” workflow details are shown.

Figure 4.37: Test – Workflow - Verify Test Approach

The objective is to gain an understanding of the constraints and limitations of each

technique as it will be applied in the given project context, and to either:

 97

• find an appropriate implementation solution for each technique or

• find alternative techniques that can be used.

This helps to mitigate the risk of discovering too late in the project lifecycle that the

test approach is unworkable. For each iteration, this work is focused mainly on:

• Early verification that the intended test strategy will work and produces

results of value

• Establishing the basic infrastructure to enable and support the test strategy

• Obtaining commitment from the development team to develop the software to

meet testability requirements necessary to achieve the test strategy, and to

provide continued support for those testability requirements.

• Identifying the scope, boundaries, limitations and constraints of each

technique

This work is somewhat independent of the test cycles, often involving the

verification of techniques that will not be used until subsequent Iterations. This work

normally begins after the evaluation mission has been defined for the current

Iteration, although it can begin earlier. In some cases, finding the best

implementation approach to a technique may take multiple Iterations.

The test implementation and execution activities that form a part of this work are

performed for the purpose of obtaining demonstrable proof that the techniques being

verified can actually work. As such, you should limit your selection of tests to a

small, representative subset; typically focusing on areas with substantial quality risk.

You should try to include a selection of tests that you expect to fail to confirm that

the technique will successfully detect these failures.

While failures with the target test items will be identified and these incidents logged

accordingly, this focus of this work is not directly on attempting to identify failures

in the target test items as it's main objective. Again, the objective is to verify that the

approach is appropriate (it produces results that complement the Iteration objectives),

 98

is achievable (it can be implemented with given resource constraints), and that it will

work.

For this work to produce timely results, it is often necessary to make use of

incomplete, "unofficial" Builds, or to perform this work outside of a recognized Test

Environment Configuration. Although these are appropriate compromises, be aware

of the constraints, assumptions and risks involved in verifying your approach in

under these conditions.

As the lifecycle progresses through its Phases, the focus of the test effort typically

changes. Potentially this requires new or additional approaches, often requiring the

introduction of new types of tests or new techniques to support the test effort.

In situations where the combination of domain, the test environment and other

critical aspects of the strategy are unprecedented, you should allow more time and

effort to complete this work. In some cases-especially where automation is a

requirement-it may be more economic to obtain the use of resources with specialized

skills that have proven experience in the unprecedented aspects of the strategy for a

limited period of time (such as on contract) to define and verify the key technical

needs of the test strategy.

Although most of the roles involved in the Test discipline play a part in performing

this work, the effort is primarily centered around the Test Designer and Tester roles.

The most important skill areas required for this work include software architecture,

software design and problem solving.

It is typical for this work to require more resource in iterations from the late

Inception to early Construction phases, often requiring minimal resource late in the

Construction and in the Transition phases. However, be aware that as the project

progresses, new objectives or deliverables may be identified that require new test

strategies to be defined and verified.

As a heuristic for relative resource allocation by phase, typical percentages of test

resource use for this workflow detail are: Inception - 30%, Elaboration - 20%,

Construction - 10% and Transition - 05%.

 99

In Figure 4.38, “Validate Build Stability” workflow details are shown.

Figure 4.38: Test – Workflow – Validate Build Stability

For each build to be tested, this work is focused on:

• Making as assessment of the stability and testability of the Build

• Gaining an initial understanding-or confirming the expectation-of the

development work delivered in the Build

• Making a decision to accept the Build as suitable for use-guided by the

evaluation mission-in further testing, or to conduct further testing against a

previous Build.

This work is potentially conducted once per Build-note however that it's typical not

to test every Build. Once the Build is determined suitably stable, focus turns to

“Workflow Detail: Test and Evaluate”. Where it is determined that the build is

 100

sufficiently unsuitable to conduct further testing against, Test and Evaluation work

typically recommences against a previous suitable Build.

The work is primarily centered around the Tester and Test Analyst roles. The most

important skills required for this work include providing timely results, thoroughness

and applying reasonable judgment to assessing the usefulness of the Build for further

testing.

It is appropriate to allocate a subset of the test team to perform this work; the other

team members ignore the new build until it is validated as stable, devoting their

efforts instead to either additional tests against the build from the previous test cycle,

or improving test assets as appropriate.

The sophistication and availability of test automation tools and the necessary

prerequisite skills to use them will have an impact on the resourcing of this work.

Where automation tools are used, much of this work can be performed fast and

efficiently: without automation significantly more effort is required.

In Figure 4.39, “Test and Evaluate” workflow details are shown.

 101

Figure 4.39: Test – Workflow – Test and Evaluate

Typically performed once per test cycle, this work involves performing the core

tactical work of the test and evaluation effort: namely the implementation, execution

and evaluation of specific tests and the corresponding reporting of incidents that are

encountered [35].

For each test cycle, this work is focused mainly on:

• Providing ongoing evaluation and assessment of the Target Test Items

• Recording the appropriate information necessary to diagnose and resolve any

identified Issues

• Achieving suitable breadth and depth in the test and evaluation work

• Providing feedback on the most likely areas of potential quality risk

As noted, this work is typically performed multiple times during an iteration; the

actual number of times often equating to once per Build. It should be noted however

 102

that it's typical not to test every Build. Build schedule will often result in this work

increasing in frequency during the course of the iteration. The need for additional

cycles is governed by assessing when appropriate breadth and depth of testing is

achieved within a test cycle, which is the focus of the Workflow Detail: Achieve

Acceptable Mission.

For iterations prior to and including those early in the Construction phase, additional

effort is usually required to address tactical problems encountered for the first time

during test implementation and execution. These issues often detract from the

number of actual tests successfully implemented and executed and limit either the

breadth or depth of the testing.

The sophistication and availability of test automation tools and the necessary

prerequisite skills to use them effectively will have an impact on the resourcing of

this work. It may be appropriate to strategically deploy specialized contract resource

for some part of this work to improve the likelihood of success. It may also be more

economical to lease the automation tools and contract appropriately skilled people to

use the tools, especially to help mitigate the risks in getting started. The benefits of

this approach with the necessity to develop in-house skills to maintain automation

assets into the future should be balanced.

The work is primarily centered around the Tester and Test Analyst roles. The most

important skills required for this work include investigative and analytical skills,

tenacity, thoroughness, good technical knowledge and good verbal and written

communication skills (documentation of incidents, change requests and so on).

As a heuristic for relative resource allocation by phase, typical percentages of test

resource use for this workflow detail are: Inception - 05%, Elaboration - 25%,

Construction - 40% and Transition - 35%.

Where the requirement for test automation is particularly important, it may be useful

to assign the creation and maintenance of automation assets to a separate sub-team,

allowing them to specialize on automation concerns. This allows the other team

members to focus on the improvement of non-automation test assets.

In Figure 4.40, “Achieve Acceptable Mission” workflow details are shown.

 103

Figure 4.40: Test – Workflow – Achieve Acceptable Mission

For each test cycle, this work is focused mainly on:

• Actively prioritizing the minimal set of necessary tests that must be

conducted to achieve the Evaluation Mission

• Advocating the resolution of important issues that have a significant negative

impact on the Evaluation Mission

• Advocating appropriate quality

• Identifying regressions in quality introduced between test cycles

• Where appropriate, revising the Evaluation Mission in light of the evaluation

findings so as to provide useful evaluation information to the project team

Given that providing focused evaluation feedback and achieving test-cycle closure

are the objectives of this work, ongoing prioritization of the work and strategic

management of the test resources is required. Focus continually on identifying and

 104

executing the minimum set of specific tasks to achieve the evaluation mission.

Ongoing involvement by the stakeholders in the test and evaluation effort is critical

to ensure the appropriate focus is maintained and, ultimately, that the work is

successful.

Notice that for some iterations it may not be possible to achieve the Evaluation

Mission as originally defined. Rather than simply abandoning the test and evaluation

effort, it is important to find an appropriate and agreeable revision of the original

Evaluation Mission based on the current situation, and attempt to provide useful

evaluation information to the stakeholders of the test effort.

This work typically starts toward the end of each test cycle as suitable breadth and

depth is achieved in the testing effort. For test cycles earlier in the project lifecycle,

there is typically less work to be managed, therefore less effort is required to address

this workflow detail. In later iterations-especially those toward the end of the

Elaboration phase and throughout the Construction phase-this work becomes more

important and typically requires more focused effort.

The availability of analysis tools that provide accurate and timely results has an

impact on resourcing this work. Without the use of appropriate tools, this task

quickly becomes unmanageable as the test effort progresses and increasingly more

detail needs to be analyzed and assessed manually.

This work is primarily centered around the Test Manager and Test Analyst roles,

although success relies heavily on the work of the Tester. The most important skills

required for this work include problem and results analysis, communication and

negotiation, as well as the ability to identify and focus on the most important items.

As a heuristic for relative resource allocation by phase, typical percentages of test

resource use for this workflow detail are: Inception - 10%, Elaboration - 00%,

Construction - 20% and Transition - 30%.

In Figure 4.41, “Improve Test Assests” workflow details are shown.

 105

Figure 4.41: Test – Workflow – Improve Test Assets

For each test cycle, this work is focused mainly on:

• Adding the minimal set of additional tests to validate the stability of

subsequent Builds

• Removing test assets that no longer serve a useful purpose or have become

uneconomic to maintain

• Conducting general maintenance of and making improvements to the

maintainability of test automation assets

• Assembling test scripts into additional appropriate test suites

• Exploring opportunities for reuse and productivity improvements

• Maintaining test environment configurations and test data sets

 106

• Documenting lessons learned-both good and bad practices discovered during

the test cycle.

This work typically occurs at the end of each test cycle, however some teams

perform aspects of this work only once per Iteration. A common practice is to focus

the work in each test cycle on adding and maintaining only those tests necessary to

assess the stability for the build in the subsequent test cycle. After the final build for

the iteration has been tested, other aspects of test asset improvement may also be

explored.

Although most of the roles in the Test discipline play a part in performing this work,

the effort is primarily centered around the Test Designer and Tester roles. The most

important skills required for this work include focus on test asset coverage, an eye

for potential reuse, consistency of test assets and an appreciation of architectural

issues.

As a heuristic for relative resource allocation by phase, typical percentages of test

resource use for this workflow detail are: Inception - 05%, Elaboration - 20%,

Construction - 10% and Transition - 10%.

Where the requirement for test automation is particularly important, this work may

take more effort and, therefore, more time or more resource. In some cases it may be

useful to assign the creation and maintenance of automation assets to a separate sub-

team, allowing them to specialize on automation concerns. This allows the other

team members to focus on the improvement of non-automation test assets.

Activities:

In Figure 4.42, acitivites of the “Test” discipline are shown. The details are

explained in the workflow details meuitem. This view is added to the menuitems to

list the roles’s responsibilities in a clear way.

 107

Figure 4.42: Test – Activities

Artifacts:

In Figure 4.43, artifacts of the “Test” discipline are shown. The workflow details are

explained in the workflow details menu item. This view is added to the menu items

to list the produced artifacts.

 108

Figure 4.43: Test – Workflow - Artifacts

4.1.3.5 Deployment:

Introduction:

In Figure 4.44 “Deployment” discipline purpose is explained.

 109

Figure 4.44: Deployment - Introduction

The “Deployment” discipline describes the activities associated with ensuring that

the software product is available for its end users.

The “Deployment” discipline describes three modes of product deployment:

• the custom install

• the product offering

• access to software over the internet

In each instance, there is an emphasis on testing the product at the development site,

followed by beta-testing before the product is finally released to the customer.

Although deployment activities peak in the transition phase, some of the activities

occur in earlier phases to plan and prepare for deployment.

 110

Concepts:

In Figure 4.45, “Deployment” concepts are shown.

Figure 4.45: Deployment - Concepts

Workflow:

The main flowchart of this discipline is shown on this menuitem. There are two ways

to see the details. Project members could work on the flowchart by clicking on the

activities listed on the screen or selecting from the submenu. In Figure 4.43

workflow is shown.

 111

Figure 4.46: Deployment – Workflow

In Figure 4.47, “Plan Deployment” workflow details are shown.

 112

Figure 4.47: Deployment – Workflow – Plan Deployment

Deployment planning requires a high degree of customer collaboration and

preparation. A successful conclusion to a software project can be severely impacted

by factors outside the scope of software development such as the building, hardware

infrastructure not being in place, and the staff being ill-prepared for cut-over to the

new system.

To ensure successful deployment, and transition to the new system and ways of

doing business, the Deployment Plan needs to address not only the deliverable

software, but also the development of training material and system support material

to ensure that end users can successfully use the delivered software product.

A deployment manager needs to be someone who is aware of the operational needs

of the end user and capable of pulling together all the items that go into making the

product. The deployment manager runs the beta test and, in the case of "shrink wrap"

products, deals with the manufacturers to ensure that adequate quality is achieved in

the product.

 113

The deployment manager "gets the product out there" and, as such, needs to be well

versed in the required infrastructure, and user needs, to ensure that the product is

available for the users.

In Figure 4.48, “Develop Support Material” workflow details are shown.

Figure 4.48: Deployment – Workflow – Develop Support Material

Support material covers the full range of information that will be required by the

end-user to install, operate, use, and maintain the delivered system. It also includes

training material for all of the various positions that will be required to effectively

use the new system.

Both the Technical Writer and Course Developer need to be articulate and adept at

creating information, written or otherwise, that is relevant from an end-user

perspective.

In Figure 4.49, “Manage Acceptance Test” workflow details are shown.

 114

Figure 4.49: Deployment – Workflow – Manage Acceptance Test

The Deployment Manager organizes the installation of the product on one or more

Test Environment Configurations that represents an environment acceptable to the

customer as specified in the Product Acceptance Plan. In some cases, this

environment will actually be the production deployment environment itself.

In some cases, the installation process itself may involve be subject to an acceptance

test, as may any preceding hardware upgrades and configurations.

Once installed, the Tester typically runs through a preselected set of tests-usually

based on a selected subset of the existing Test Suites-and determines the Test

Results. The Deployment Manager and other stakeholders review the Test Results

for anomalies. If there are "show stoppers", the Deployment Manager raises Change

Requests that require immediate attention and resolution, and may delay or postpone

subsequent plans for deployment to a wider user base.

In Figure 4.50, “Produce Deployment Unit” workflow details are shown.

 115

Figure 4.50: Deployment – Workflow – Produce Deployment Unit

The purpose of this workflow detail is to:

• Create a deployment unit that consists of the software, and the necessary

accompanying artifacts required to effectively install and use it.

• The deployment unit can be created for the purposes of beta testing a test

deployment to the final users or, depending on it level of maturity, for the

final product.

This workflow detail relies on the skill set of described roles to create the product,

installation scripts, and associated user support material, in a form that can be

effectively delivered to the end users.

In Figure 4.51, “Beta Test Product” workflow details are shown.

 116

Figure 4.51: Deployment – Workflow - Beta Test Product

Feedback from the Beta Program is treated as Stakeholder Requests and factored into

the developing product features in subsequent iterations.

In Figure 4.52, “Package Product” workflow details are shown.

 117

Figure 4.52: Deployment – Workflow – Package Product

The idea is to take the deployment unit, installation scripts, and user manuals, then

package them for mass production-as in a consumer product.

Apart from the software logistics people like the Deployment Manager, this

workflow detail calls for the product image-makers such as the technical "copy"

writers and graphic artists to lend their talents to add to the product's visual appeal as

it competes for consumer attention. Also required is handing off of the product to

manufacturing, who will produce the product in massive quantities.

In Figure 4.53, “Provide Access to Download Site” workflow details are shown.

 118

Figure 4.53: Deployment – Workflow – Provide Access to Download Site

The appeal of the Internet as a software distribution channel is obvious. The product

is entirely accessible through the software environment via browsers and web-sites.

The challenge for the provider is to make sure the product is reliably available at all

times to a global marketplace, even through varying that could choke the host

hardware and communication bandwidths.

Setting up the hardware infrastructure to host the corporate web presence is beyond

the scope of a software development process. However, the deployment manager

needs to know how to add the product offering to the list of products available over

the web and that the product is available for purchase and delivery on demand.

Activities:

In Figure 4.54, acitivites of the “Deployment” discipline are shown. The details are

explained in the workflow details meuitem. This view is added to the menuitems to

list the roles’s responsibilities in a clear way.

 119

Figure 4.54: Deployment – Activities

Artifacts:

In Figure 4.55, artifacts of the “Deployment” discipline are shown. The workflow

details are explained in the workflow details meuitem. This view is added to the

menuitems to list the produced artifacts.

 120

Figure 4.55: Deployment – Artifacts

4.1.3.6 Configuration Management:

Introduction:

In Figure 4.56 “Change Management” discipline purpose are explained.

 121

Figure 4.56: Change Management - Introduction

Change Management(CM) involves:

• identifying configuration items,

• restricting changes to those items,

• auditing changes made to those items, and

• defining and managing configurations of those items.

The methods, processes, and tools used to provide change and configuration

management for an organization can be considered as the organization's CM System.

An organization's CM System holds key information about its product development,

promotion , deployment and maintenance processes, and retains the asset base of

potentially re-usable artifacts resulting from the execution of these processes.

 122

The CM System is an essential and integral part of the overall development

processes.

A CM System is essential for controlling the numerous artifacts produced by the

many people who work on a common project. Control helps avoid costly confusion,

and ensures that resultant artifacts are not in conflict due to some of the following

kinds of problems [35]:

• Simultaneous Update: When two or more team members work separately on

the same artifact, the last one to make changes destroys the work of the

former. The basic problem is that if a system does not support simultaneous

update this leads to serial changes and slows down the development process.

However, with simultaneous update, the challenge is to detect that updates

have occurred simultaneously and to resolve any integration issues when

these changes are incorporated

• Limited Notification: When a problem is fixed in artifacts shared by several

developers, and some of them are not notified of the change.

• Multiple Versions: Most large programs are developed in evolutionary

releases. One release could be in customer use, while another is in test, and

the third is still in development. If problems are found in any one of the

versions, fixes need to be propagated between them. Confusion can arise

leading to costly fixes and re-work unless changes are carefully controlled

and monitored.

A CM System is useful for managing multiple variants of evolving software systems,

tracking which versions are used in given software builds, performing builds of

individual programs or entire releases according to user-defined version

specifications, and enforcing site-specific development policies.

Some of the direct benefits provided by a CM System are that it:

• supports development methods,

• maintains product integrity,

 123

• ensures completeness and correctness of the configured product,

• provides a stable environment within which to develop the product,

• restricts changes to artifacts based on project policies, and

• provides an audit trail on why, when and by whom any artifact was changed.

In addition, a CM System stores detailed 'accounting' data on the development

process itself: who created a particular version (and when, and why), what versions

of sources went into a particular build, and other relevant information.

Concepts:

In Figure 4.57, “Change Management” concepts are shown.

Figure 4.57: Change Management – Concepts

Workflow:

 124

The main flowchart of this discipline is shown on this menu item. There are two

ways to see the details. Project members could work on the flowchart by clicking on

the activities listed on the screen or selecting from the submenu.

In Figure 4.58, “Change Management” workflow is shown.

Figure 4.58: Change Management– Workflow

In Figure 4.59, “Plan Project Configuration & Change Control” workflow details are

shown.

 125

Figure 4.59: Change Management– Workflow – Plan Project Configuration

The workflow detail focuses on:

• Establishing project configuration management policies

• Establishing policies and processes for controlling product change

• Documenting this information in the configuration management plan

“Configuration Management” policies refer to the ability to identify and report on the

artifacts that have been approved for use in a project. Identification is simplified and

enabled through the use of proper tools to control project artifacts, and the systematic

labeling of those artifacts over time to identify their relative maturity and their

relationships with each other at given points in time. Systematic identification

practices are a key enabler for the safeguarding of project artifacts through archiving

and baselining techniques.

 126

Standard, documented change control processes help to ensure that changes are made

within a project in a consistent manner, and the appropriate stakeholders are

informed of the current state of the product, requested changes to it and the impact of

these changes on cost, schedule and so forth.

The configuration management plan documents how product related activities are to

be planned, implemented controlled and organized.

A person playing the configuration manager role needs to be organized by nature, yet

flexible enough to plan configuration and change control to suit the needs of the

project team. The configuration manager role supports the team by ensuring that the

project change policies are reflected within the projects change management tools,

enabling software developers to easily transition artifacts through state changes in

accordance with the defined development and approval practices. The configuration

manager role is required to put measures in place to monitor that the CM Plan is

being followed as intended, that audit reporting is occurring on a regular basis, and to

work with the System Administrator role to ensure that backups of CM assets are in

safekeeping.

The change control manager is a key arbitration role. In this capacity, the decision

for the inclusion of any given change in a software build is ultimately made by the

change control manager on a project. In practice, only those changes of significant

potential impact typically warrant monitoring, and any potential impact on the

inclusion-or exclusion-of changes to the product should be carefully considered with

regard to project factors such as the political climate, the need to establish trust

between developer and customer and so forth.

In Figure 4.60, “Create Project Configuration Management (CM) Environments”

workflow details are shown.

 127

Figure 4.60: Change Management– Workflow – Create Project Configuration

This work is done by making sure the essential artifacts are available to developers

and integrators in the various private and public workspaces as they need them, and

then are adequately baselined and stored for subsequent use. Setting up the CM

environment involves creating the product directory structure, repositories,

workspaces (developer and integration) and allocating machine resources (servers

and disk space).

To set up an appropriate environment, a person playing the configuration manager

role needs to have a good understanding of the component structures of the overall

product, and will need to work closely with the software architect to ensure that

adequate "place holder" CM items are established.

A person playing the integrator role in this work needs to ensure that artifacts

delivered from the developer workspaces are sufficiently tested such that they can be

incorporated into a testable build. The integrator role needs to be familiar with

project configuration management policies, build and test practices.

 128

In Figure 4.61, “Manage Baselines & Releases” workflow details are shown.

Figure 4.61: Change Management– Workflow – Manage Baselines and Releases

The frequency and formality in which baselines are created are described in the CM

Plan. The degree of formality is clearly much higher for a product being released to a

customer than for executable releases within the internal project team. When the

combined set of artifacts reach certain stages or levels of maturity, baselines are

created to assist managing availability for release, reuse and so forth.

This work is primarily driven by the configuration manager role, where the typical

need is to be able to assemble a product for release. The released product requires a

Bill of Materials (BOM) that serves as a complete checklist of what is to be delivered

to the customer. The released product will inevitably require release notes and

training material as described in the deployment activities.

 129

The integrator role contributes to this work by ensuring that artifacts delivered from

the developer workspaces are integrated such that they can be incorporated into a

independently testable build.

In Figure 4.62, “Change and Deliver Configuration Items” workflow details are

shown.

Figure 4.62: Change Management– Workflow – Change and Deliver Configuration

Items

This workflow detail is focused on:

• The creation of workspaces, accessing project artifacts, making changes to

those artifacts, delivering the changes for inclusion in the overall product, by

any role in the project team.

• The building of the product, creation of baselines and promotion of the

baselines for availability to the rest of the development team.

 130

In Figure 4.63, “Monitor & Report Configuration Status” workflow details are

shown.

Figure 4.63: Change Management– Workflow – Monitor & Report Configuration

This workflow detail is focused on:

• Ensuring that artifacts and their associated baselines are available.

• Determining if required artifacts are stored in a controlled library and

baselined.

• Supporting project Configuration Status Accounting activities.

• Facilitating reporting of change request information, especially the activities

related to work performed against defect and enhancement requests.

• Ensuring that data is "rolled-up" and reported for the purposes of tracking

progress and trends.

 131

In Figure 4.64, “Manage Change Requests” workflow details are shown.

Figure 4.64: Change Management– Workflow – Manage Change Request

Having a standard, documented change control process ensures that changes are

made within a project in a consistent manner and the appropriate stakeholders are

informed of the state of the product, changes to it and the cost and schedule impact of

these changes.

Activities:

In Figure 4.65, activites of the “Change Management” discipline are shown. The

details are explained in the workflow details menu item. This view is added to the

menuitems to list the roles’s responsibilities in a clear way.

 132

Figure 4.65: Change Managemen - Activities

Artifacts:

In Figure 4.66, artifacts of the “Change Management” discipline are shown. The

workflow details are explained in the workflow details menu item. This view is

added to the menu items to list the produced artifacts.

 133

Figure 4.66: Change Management– Artifacts

4.1.3.7 Project Management:

Introduction:

In Figure 4.67 “Project Management” discipline purpose is explained.

 134

Figure 4.67: Project Management - Introduction

Software project management is the art of balancing competing objectives, managing

risk, and overcoming constraints to successfully deliver a product which meets the

needs of both customers (the payers of bills) and the users. The fact that so few

projects are unarguably successful is comment enough on the difficulty of the task.

Our goal with this section is to make the task easier by providing some context for

project management. It is not a recipe for success, but it presents an approach to

managing the project that will markedly improve the odds of delivering successful

software.

The purpose of “Project Management” is:

• To provide a framework for managing software-intensive projects.

• To provide practical guidelines for planning, staffing, executing, and

monitoring projects.

 135

• To provide a framework for managing risk.

This discipline focuses mainly on the important aspects of an iterative development

process:

• Risk management

• Planning an iterative project, through the lifecycle and for a particular

iteration

• Monitoring progress of an iterative project, metrics

Concepts:

In Figure 4.68, “Project Management” concepts are shown.

Figure 4.68: Project Management - Concepts

Workflow:

In Figure 4.69, “Project Management” workflow is shown.

 136

Figure 4.69: Project Management– Workflow

In Figure 4.70, “Conceive New Projects” workflow details are shown.

 137

Figure 4.70: Project Management– Workflow – Conceive New Project

On the basis of the initial vision, risks are assessed and an economic analysis, the

business case, is produced. If the “Activity:Project Approval Review” finds these

satisfactory, the project is formally set up (in Activity: Initiate Project), and given

limited sanction (and budget) to begin a complete planning effort. This latter activity

adds substance to the initial Vision, validates and refines it.

In the Business Case, the Project Manager should describe at least two approaches to

realizing the Vision, and analyze these in terms of risk impact, and economic

outcomes. During the “Activity:Project Approval Review”, one of the offered

choices will be selected, if the project is to continue. There is a considerable body of

management knowledge and theory to assist the Project Manager and the Project

Reviewer in risk and decision analysis, and it is valuable to have a few of the project

management and review staff well versed in these techniques - especially if the

project is large, unprecedented, complex or otherwise risky.

In Figure 4.71, “Evaluate Project Scope and Risk” workflow details are shown.

 138

Figure 4.71: Project Management– Workflow – Evaluate Project Scope and Risk

The purpose of this workflow detail is to reappraise the project's intended capabilities

and characteristics, and the risks associated with achieving them. As the capabilities

and risks are better understood, the business case should be updated, to ensure that

the project continues to be worth investing in, in its current form, or if a change in

direction is needed.

This workflow detail updates and refines the Risk List and Business Case.

Techniques such as those described in Workflow Detail: Conceive New Project:

Guidelines may be used for risk and decision analysis. The Risk List and Business

Case should be subjected to internal walkthroughs and reviews to ensure there is a

general consensus, before the next round of detailed planning is begun.

In Figure 4.72, “Plan the Project” workflow details are shown.

 139

Figure 4.72: Project Management– Workflow – Plan the Project

The major effort in creating these artifacts comes early in the inception phase;

thereafter, when this workflow detail is invoked at the beginning of each iteration, it

is to revise the Software Development Plan (and its enclosures) on the basis of the

previous iteration's experience and the Iteration Plan for the next. The Project

Manager will also collate all other contributions to the Software Development Plan

and assemble them in “Activity: Compile Software Development Plan”.

Estimation should ideally be based in the organization's own experience, which is

then used to calibrate an estimation model, such as COCOMO. If the Project

Manager is starting from scratch, using default values for model coefficients, it will

be important to use other methods to validate the estimates. Just as important is to

obtain staff and other stakeholder agreement that the estimates are realistic and

achievable. However, the Project Manager has to take into account the experience of

staff giving feedback about estimates. More junior staff may be just guessing

numbers and then adding large margins for error; conversely, their effort estimates

may be naively low. The Project Manager must be circumspect when dealing with

 140

estimates from junior staff, and be prepared to counsel them when necessary, and

offer the assistance of a more experienced peer.

All enclosed plans and sections of the Software Development Plan should be

evaluated through internal walkthroughs and reviews before the “Activity:Project

Planning Review” occurs.

In Figure 4.73, “Plan for Nex Iteration” workflow details are shown.

Figure 4.73: Project Management– Workflow – Plan for Next Iteration

The Iteration Plan should be reviewed by the customer and other stakeholders, and, if

satisfactory, should be approved through the “Activity:Iteration Plan Review”. This

review also gives the customer visibility of the project's expectations of customer

participation and resources-particularly if the iteration is intended to deliver artifacts

or deploy software-so the customer can make appropriate plans.

The Project Manager should work closely with the Software Architect to define the

iteration's contents. The Iteration Plan should be evaluated internally, through

 141

walkthrough and review, before being presented for the “Activity:Iteration Plan

Review”, in particular:

• to assess the clarity of expression of the evaluation criteria for the iteration

• to reach agreement internally that the planned artifacts can be built with the

effort and time available

• to ensure that the results of the iteration will be testable or otherwise

demonstrable; that is, the iteration will have a tangible outcome

In Figure 4.74, “Manage Iteration” workflow details are shown.

Figure 4.74: Project Management– Workflow – Manage Iteration

This workflow detail contains the activities that begin, end and review an iteration.

The purpose is to acquire the necessary resources to perform the iteration (in

“Activity: Acquire Staff” and “Activity: Initiate Iteration”), allocate the work to be

done (in “Activity: Initiate Iteration”), and finally, to assess the results of the

 142

iteration in “Activity: Assess Iteration”. An iteration concludes with an

“Activity:Iteration Acceptance Review” which determines, from the

“Activity:Iteration Assessment”, whether the objectives of the iteration were met.

Optionally, in a lengthy iteration, the project manager may think it prudent to

resynchronize the expectations of management, technical staff, customer and other

stakeholders, by holding an “Activity:Iteration Evaluation Criteria Review” mid-way

through the iteration. At this review, which is based mainly around the test plan, the

project reveals the planned contents of the iteration in a very concrete way. This

gives an opportunity for a 'mid-course correction', should misunderstandings have

arisen over the intent of the iteration plan.

The evaluation criteria for an iteration should have been set objectively and clearly,

so the assessment of an iteration requires the project manager to be analytic and

equally objective.

Failing the iteration on this count alone would not be sensible. Far better for the

project manager and management reviewer to agree to relax this requirement, and as

compensation, to add capability elsewhere. The management reviewer (and Pproject

manager) need the experience and confidence to make these kinds of trades, which

do not compromise the Vision for the product.

In figure 4.75, “Monitor and Control Project” workflow details are shown.

 143

Figure 4.75: Project Management– Workflow – Monitor and Control Project

This workflow detail captures the daily, continuing, work of the project manager,

covering:

• dealing with change requests that have been sanctioned by the change control

manager, and scheduling these for the current or future iterations;

• continuously monitoring the project in terms of active risks and objective

measurements of progress and quality;

• regular reporting of project status, in the status assessment, to the project

review authority (PRA), which is the organizational entity to which the

project manager is accountable;

• dealing with issues and problems as they are discovered, through the

“Activity: Monitor Project Status” or otherwise, and driving these to closure

according to the Problem Resolution Plan. This may require that change

 144

requests be issued for work that cannot be authorized by the project manager

alone.

The project manager should put in place mechanisms to automate, as far as possible,

the collection and reduction of information (metrics, for example) about the project.

Time should be spent in analyzing trends, not in collection and calculation. The

responsibility for solution of problems that arise on a project obviously ultimately

rests with the project manager. However, there is a class of technical problems that

should be delegated to the software architect, for example, for solution. The project

manager's role is then to implement the suggested solution - which may give rise to a

secondary problem, say, lack of resources, which does have to be solved by the

project manager. This demonstrates the kind of trust that must exist between the

project manager and the technical staff - the project manager expects the software

architect to devise sound technical solutions, and the software architect expects the

project manager to put in place the infrastructure and resources to implement them,

contractual and financial constraints permitting.

In Figure 4.76, “Close-Out Phase” workflow details are shown.

Figure 4.76: Project Management– Workflow – Close Out Phase

 145

In this workflow detail, the Project Manager brings the phase to closure by ensuring

that:

• all major issues from the previous iteration are resolved

• the state of all artifacts is known (through configuration audit)

• required artifacts have been distributed to stakeholders

• any deployment (for example, installation, transition, training), problems

are addressed

• the project's finances are settled, if the current contract is ending (with the

intent to recontract for the next phase)

A final phase status assessment is prepared for the lifecycle milestone review, at

which point the phase artifacts are reviewed and, if the project state is satisfactory,

sanction is given to proceed to the next phase.

In Figure 4.77, “Close Out Project” workflow details are shown.

 146

Figure 4.77: Project Management– Workflow – Close Out Project

A final status assessment is prepared for the “Activity: Project Acceptance Review”,

which, if successful, marks the point at which the customer formally accepts

ownership of the software product. The Project Manager then completes the close-

out of the project by disposing of the remaining assets and reassigning the remaining

staff.

Activities:

In Figure 4.78, acitivites of the “Project Management” discipline are shown. The

details are explained in the workflow details menu item. This view is added to the

menuitems to list the roles’s responsibilities in a clear way.

 147

Figure 4.78: Project Management– Activities

Artifacts:

In Figure 4.79, artifacts of the “Project Management” discipline are shown. The

workflow details are explained in the workflow details menu item. This view is

added to the menu items to list the produced artifacts.

 148

Figure 4.79: Project Management– Artifacts

 149

4.2 Traceability Relations

 The implementation tool sould not to be seen just as a document management tool.

There are three main areas, where the tool is very strong and be a pioneer.

First, the implementation tool acts a tutorial, which has a deep knowledge on

sofftware engineering. It tolds the user, how a process area work, what the main

concepts are, which artifacts should be prepared. It also gives teplate and guidelines

of those artifacts.

Second, it has a strong configuration management framework. More then just a a

fileserver, it keeps track of all the artifacts. It has a self version control mechanism to

fulfill this CMMI requirement.

Third, the tracebility issue on main artifacts are the strongets part of this tool. There

are lots of discipline spesific tools, which have a deep expertise on the spesific area.

But CMMI impresses, that the power of software engineering comes from the overall

integrity of all the disciplines. The implementation tool has the both way tracebility,

and control properties on the seven disciplines.

 150

Figure 4.80: Traceability Relation

The traceability starts with requirements management discipline as seen in Figure

4.80. In requirements management discipline, it is required to define requirements.

First of all, there should be main ideas, which have to be collected. They are not the

real requirements but features. The traceability begins with features. After features

are defined, it is time to transfer them as real requirements for products. There could

be one to one relationship between features and requiremets, or the feature will not

be implementedon this product, or the last scenario there could be many to many

relationship. All the relation types are supported from the implementation tool. After

approving requirements from development team, the team started to create High

Level Design components. These components will also be main steps for activities in

implementation phase. The implementation tool has the ability to prepare

automatically a project plan using HLD components. The Automation has a lot of

advantages like, time saving from preparing the artifact,no mismatches or human

error, both way traceability. The plan can be updated on MSProjet side or the HLD

can be updated inside the implementation tool. From both ways, the implementation

tool could make synchronisation to be consistent.

 151

This plan will also be updated when developers start to begin implementation. They

give inputs to the implementation tool, how much effort do they use before

committing a class or a component. The implementation tool gives the project

manager the information by updating their plan, and putting completing percentages

into the plan. So every person, especially project manager could be aware from the

flow of the project , whenever they want.

Usecases and testcases are also directly in a relationship with requirements. Every

functional requirement is also a usecase in implementation tool. Again a time saving

and tracebility advantange appears here between Requirements Management

discipline and Test discipline. In Analysis and Design discpline, the classes also

defined based on usecase realizations.

The detailed explanation on the spesific disciplines and artifacts are in Discipline

Step of this document.

Traceability Flow:

The usage cycle begins with creating a new project in implementation tool. Entering

an unique project name and a description is enough information for project

authentication.

 152

Figure 4.81: Traceability – Create Project

After clicking “Continue” button on the window in Figure 4.79, the implementation

tool continues creating users for your project. An user could be in more then one role

in the project. It is mandatory to fullfill all the roles for a project.

 153

Figure 4.82: Traceability – Create Project - User

To complete creating the user and continue with a new user, it must be clicked the

“Create Another User ” button o the window shown in Figure 4.82. To complete and

finish the user, it must be clicked “Finish” buton. To cancel the creation, it must be

clicked “CANCEL” button. It could be then continuing creating user using “Edit

Project” menu.

 154

Figure 4.83: Traceability – Create Project - Confirmation

The implementation tool displays the confirmation message ”Succesfully created”,

when the project is created on the database side. It is shown on Figure 4.83. To list

projects created before, “List Projects” menuitem could be selected. If a project is no

longer alive, and need not to be listed on the “List Project” menuitem, then it could

be removed using “Remove Project” menuitem.

 155

Figure 4.84: Traceability – List Projects

To begin working on a project, users have to login to the project. From “Login to

Project” menu item, users select the project using dropdown menu and click

“LOGIN” button.

 156

Figure 4.85: Traceability – Login

After loging to the project shown in Figure 4.85, project members can begin working

on disciplines selecting from “Disciplines”menu. There are seven disciplines listed

on the “Disciplines” menu shown in Figure 4.86. The traceability cycle begins with

the concept “defining requirements”. Requirements Management will be the first

discipline therefore.

 157

Figure 4.86: Traceability – Disciplines

The discipline detail will be explained later. Every discipline has five menuitems,

which are “Introduction”, “Concepts”, “Workflow”, “Activities” and “Artifacts”.

The main work on disciplines is to produce some artifacts to be more predictable.

The first tracebility property is to keep track of this artifacts. Using “Workflow

Details” menuitems or “Artifacts” menuitem, artifacts will be produced or seen.

Every artifact document will be kept on the server in a versioned way.

 158

Figure 4.87: Traceability – Artifact

Clicking on a document shown on the Figure 4.87 will guide to another window,

where a new document or a new version of a document will be created. Documents

latest version, document template could be seen on this window shown in Figure

4.86. If it is the first time, “Latest Version” will be “v0”. The user could view the

template (shown in 4.87) document download it and fill the template depending on

his project.

 159

Figure 4.88: Traceability – Versioning

All the view activities opens documents using their original programs.

 160

Figure 4.89: Traceability – Template

To create the first version “v1”, the browse utility should be used. To confirm the

selection the user clicks on the document twice or clicks on Open button. Then click

on “Upload” button, to send the file to the server. Figure 4.90. Older versions could

be viewed, when selected from “Older Versions” combobox.

 161

Figure 4.90: Traceability – Select Artifact

All the artifacts used in this project cycle will be versioned. This window is availale

for all the artifacts in the process framework.

The next tracebility item on this process improvement framework is the db icon. All

the requirements will be kept in a repository. So, every single requirement could be

traced till the project plan.

To start requirement definition, click on the repository icon on Figure 4.91.

 162

Figure 4.91: Traceability – Requirements

A new repository query window will be opened shown in Figure 4.91. There are

three main types of requirements:

• Features,

• Requirements,

• High Level Design(HLD) components

The first step is define features for the product. All the fields are mandatory.

Headline should be unique. Clicking on “OK ” button will save the reocrd to the

project repository.

Features are not real requirements for the product. They represents ideas, market

analysis items, customer whishes, etc..

 163

Figure 4.92: Traceability – Ceate Feature

A requirement is defined as "a condition or capability to which a system must

conform". Requirements should be in a relation with features. A requirement

spesific design is a customer centric approach to the issue. The Requirement creation

screen could be seen on Figure 4.93.

The attributes assigned to each requirement will be used to manage the software

development and to prioritize the features for each release.

The objective of requirements traceability is to reduce the number of defects found

late in the development cycle. Ensuring all product requirements are captured in the

software requirements, design, and test cases improves the quality of the product.

 164

Status:

Set after the analysis has drafted the use cases. Tracks progress of the development

of the use case from initial drafting of the use case through to final validation of the

use case.

Proposed: Use Cases which have been identified though not yet reviewed and

approved.

Approved:Use Cases approved for further design and implementation.

Validated:Use Cases which have been validated in a system test.

Priority

Set by the Project Manager. Determines the priority of the use case in terms of the

importance of assigning development resources to the use case and monitoring the

progress of the use case development. Priority is typically based upon the perceived

benefit to the user, the planned release, the planned iteration, complexity of the use

case (risk), and effort to implement the use case.

High: Use Case is a high priority relative to ensuring the implementation of the use

case is monitored closely and that resources are assigned appropriately to the task.

Medium:Use Case is medium priority relative to other use cases.

Low:Use Case is low priority. Implementation of this use case is less critical and

may be relayed or rescheduled to subsequent iterations or releases.

Technical Risk:

Set by development team based on the probability the use case will experience

undesirable events, such as effort overruns, design flaws, high number of defects,

poor quality, poor performance, etc. Undesirable events such as these are often the

result of poorly understood or defined requirements, insufficient knowledge, lack of

resources, technical complexity, new technology, new tools, or new equipment.

 165

High:The impact of the risk combined with the probability of the risk occurring is

high.

Medium:The impact of the risk is less severe and/or the probability of the risk

occurring is less.

Low:The impact of the risk is minimal and the probability of the risk occurring is

low.

Figure 4.93: Traceability – Requirement Create

Requirements explains what the product have to do. In order to built the right

product, they are very important. In every phase of the development, there are

practices, that have directly relationship to requirements.

 166

From requirements, first the activity items should be prepared. Activity items are

High Level Design components. Choosing HLD Component from “Select

Requirement Box” Combobox, new HLD Components could be createted.

Figure 4.94: Traceability – Create HLD Component

Every HLD Component should cover one or more Requirements. One or more

developers should be assigned to a HLD Component shown in Figure 4.94. The

Phase and iteration number should be specified. HLD components will be used as

acitivities when preparing automatically the project plan. So the predecessor

combobox(if initial selected, then StartDate have to be filled), relation type property

and estimated effort should not leave empty.

 167

Figure 4.95: Traceability – Create HLD

In case that a predecessor is selected, then the user could leave startdate empty like

shown in Figure 4.93.

 168

Figure 4.96: Traceability – List Requirements

For all three types of requirements, there are list and update screens. In Figure 4.96 a

HLD component update screen is shown 4.97. After selecting a component from the

first combobox, all the responsible fields are filled with the values from repository.

The values could be changed using the update property.

 169

Figure 4.97: Traceability – HLD Update

The next step for tracesbility is to create automatically the project plan. From the

HLD components created in “Requirements Management” discipline, a project plan

in Microsoft Project will be created. All the HLD Components will be activities for

project plan. Their relationships, developers, effort estimates are inputs for project

plan. The responsible document for this relation is “Software Development Plan” as

shown in Figure 4.98.

 170

Figure 4.98: Traceability – Plan

Similar to version control window, the project plan window also helps to create

project plan. Clicking “GO” button from “Create Initial Software Development Plan

TimePlan/Schedule” will create a new project plan, depending on values from

repository. If it is the first time, then the project plan created and the Latest version

will display the “mssdpln_v1”. To view the plan, select it from “Older Versions” and

click on “View ” button. I is possible to download and make modifications on hat

plan. After finishing the modifications, it could be uploaded using “Upload and

Synchronize with HLD Components Database” as shown in Figure 4.99.

 171

Figure 4.99: Traceability – Create Project

In Figure 4.100, the first version of project plan is created depending on repository

values.

Figure 4.100: Traceability – Open MS Project

 172

Traceability is in both ways. If there is modification in project plan, then it could be

saved in MS Project format.

Figure 4.101: Traceability – Update MS Project

Changes in MS Project side like in Figure 4.101, could be uploaded using the

“Upload and Synchronize with HLD Component Database” button. This option

creates new version of the plan on server and updates related repository values as

shown in Figure 4.102.

 173

Figure 4.102: Traceability – Update Database

The update could also be traced from Requirement side. So both ways traceability

could be established as seen on Figure 4.103.

 174

Figure 4.103: Traceability – List HLD

 175

RESULTS AND DISCUSSIONS

The ultimate goal of software engineering is to develop a high quality product in

time and at reasonable costs. But since the time software is developed a phenomenon

called “software crisis” exists subsuming wrong schedules and cost estimates, low

productivity of people as well as low product quality. A promising approach out of

this crisis is now growing up in the software engineering community. The underlying

assumption of this approach is that the quality of a software product to a high degree

relies on the quality of the software process. Therefore quite a few software process

improvement (SPI) approaches were developed during the last years.

Usually, todays software processes are supported and partly automated by tools. The

umbrella stands for a large number of applications ranging from simple editing tools

to environments supporting the whole software life cycle [3]. In point of view there

are important interdependencies between an organization’s software development

environment consisting of tools and people and a software process improvement

approach. The configuration of the software development environment may

influence progress and success of the implementation of a SPI approach to a high

degree. Two viewpoints have to be distinguished.

The first one is concerned with human factors in SPI. People affected by changes

have to be informed about activities planned as well as their goals and intents.

Beyond that, they have to be motivated to actively participate in the improvement

process and they have to be trained to be able to positively influence the SPI efforts.

The implementation tool and underlying process framework is not enaugh for the SPI

succes of a company or project. There should be users, which understand the needs

and benefitsof the improvement process.

Second, the tool environment of a software development organization has to be

adapted to the new way of software engineering driven by a SPI approach. Tools thus

not only have to support production process activities like developing an analysis

 176

document or coding a module, but also meta process support like process

management or process monitoring. The important question for an organization is

how to choose the right tools environment in order to promote the implementation of

a software process improvement approach. The implemetation solution provided in

this thesis is a right solution for the middle and small scale companies,which aren’t

yet so far institutionalized. With the concept institutionalization, the companies have

had some processes, which could be hardly changed. What the thesis offers is an end

to end solution. So the compaines should adapt their old processes to the tool.

 177

CONCLUSION

Different advances have been made in the development of software process

improvement (SPI) standards and models, e.g.capability maturity model (CMM),

more recently CMMI, and ISO’s SPICE. However, these advances have not been

matched by equal advances in the adoption of these standards and models in software

development which has resulted in limited success for many SPI efforts. The current

problem with SPI is not a lack of standard or model, but rather a lack of an effective

strategy to successfully implement these standards or models. The importance of SPI

implementation demands that it be recognised as a

complex process in its own right and that organizations should determine their SPI

implementation maturity through an organized set of activities. In the literature,

much attention has been paid to ‘‘what activities to implement’’ instead of ‘‘how to

implement’’ these activities. We believe that identification of only ‘‘what’’ activities

to implement is not sufficient and that knowledge of ‘‘how’’ to implement is also

required for successful implementation of SPI programmes.

Automated tool support is a productive way to enhance the visibility of processes, to

identify processes weakness and to better understand the processes. A tool can also

be used to observe the behaviour of different activities and their interactions. The

participants suggested that this tool will speed up the process of SPI implementation

assessment.

Despite all the differences, company type, application domain and CMM maturity

levels, companies should get real benefits using process improvement framework and

implementation tool. The framework acts as a guidence, which all the practitioners

need during interpretation and implementation of the SPI models. Practical

implementation of the things, which were explained in the models, could be easily

done with the help of the implementation tool. This meta-support structure appears to

 178

be practice introduction, refinement and extension, standardization, enforcement,

measurement of results, analysis of measurements and trainibg of its users. When

implemented as a whole package, the need for iterative improvementmay be

eliminated alltgether, thus shortening the time to process improvement.

 179

REFERENCES

[1] “IEEE Standard Glossary of Software Engineering Terminology,” 1990 IEEE,

Piscataway, NJ std 610.12-1990,.

[2] P.C. Paulk, B. Curtis, M.B. Christie, C.V. Weber, 1993, Capability Maturity

Model for Software, version 1.1, Software Engineering Institute,

Camegie Mellon University, CMU/SEI- 93-TR-24

[3] L,. Kerschberg, H. Gomaa, R.G. Mohan, G.A. Farmkh, Feb 1996, “PROGEN:

A Knowledge-based System for Process Model Generation, Tailoring

and Reuse”, ISSE-TR96-05, Information and software Systems

Engineering, George Mason University

[4] Victor R. Basili, H.Dieter Rombach., Sep. 1991, ”Support for Comprehensive

Reuse” Software Engineering Journal 6.5, pp 303-3116.

[5] Sergio Bandinelli, Elisabetta Di Nitto, Alfonso Fuggetta, 1994 , “Policies and

Mechanisms to Support Process Evolution in PSEEs”, Proceedings of

the 3rd intemational Conference on the software process.

[6] V.R. Basili, H.D. Rombach, June 1988, “The TAME project : Toward

improvement-oriented software environment,” IEEE Trans. On

Software Engineering, Vol SE-14, pp 758-773,

[7] Aaen, I. Aalborg Univ., Denmark; 2003, Software Process Improvement:

Blueprints versus recipes, Software, IEEE. ISSN: 0740-7459 INSPEC

Accession Number: 7728301.Digital Object Identifier:

10.1109/MS.2003.1231159. 86-93.

[8] Limerick, Ireland.,2000 On page(s): 626-633 Meeting Date: 06/04/2000 -

06/11/2000 Location: ISBN: 1-58113-206-9 References Cited: 11

INSPEC Accession Number: 6727624 Digital Object Identifier:

10.1109/ICSE.2000.870456

[9] Ngwenyama, O. Nielsen, P.A. , 2002, Dept. of Inf. Syst., Virginia

Commonwealth Univ., Richmond, VA, USA; Competing values in

 180

software process improvement: an assumption analysis of CMM from

an organizational culture perspective; Engineering Management, IEEE

Transactions on Publication Date: Feb. 2003 Volume: 50, Issue: 1 On

page(s): 100- 112 ISSN: 0018 9391 INSPEC Accession Number:

7709789 Digital Object Identifier: 10.1109/.808267

 [10] M. Fritsch, Monika Meschede, 2000, Product innovation, process innovation,

and size, Technical University Bergakademie Freiberg.

[11] Brodman, J.G. Johnson, D.L., 1994. Proceedings. ICSE-16., 16th

International Conference on Publication Date: 16-21 May 1994 On

page(s): 331-340 Meeting Date: 05/16/1994 - 05/21/1994 Location:

Sorrento, Italy ISBN: 0-8186-5855-X References INSPEC Accession

Number: 4711538

[12] www.software.org/quagmire

[13] By Philippe Kruchten Published 2003 Addison-Wesley professional 320 pages

ISBN 0321197704

[14] CMMI® Distilled, 2003, A Practical Introduction to Integrated Process

Improvement, Second Edition By Dennis M. Ahern, Aaron Clouse,

Richard Turner Publisher: Addison Wesley Pub Date: September 23,

2003 ISBN: 0-321-18613-3

[15] Software Engineering Enstitute, CMMI for Development, Version 1.2 CMMI-

DEV, V1.2 CMU/SEI-2006-TR-008 ESC-TR-2006-008

[16] Ojelanki Ngwenyama and Peter Axel Nielsen. , Feb 2003, Competing Values

in Software Process Improvement: An Assumption Analysis of CMM

From an Organizational Culture Perspective. IEEE Transactions On

Engineering Management, VOL. 50, NO. 1

[17] Proceedings of 1st International Conference on Information and

Communication Technology, ICICT 2005, v 2005, Proceedings of

1st International Conference on Information and Communication

Technology, ICICT 2005, 2005, p 296-301 Implementation and

analysis of CMMI's configuration management process area;

Applicable to "defined" Level - 3

 181

[18] Rassa, Robert C. (Systems Supportability, Raytheon Electronic Systems

Company, MS R1/B510); Garber, Vitalij; Etter, Delores, 2002, 1

Capability maturity model integration (CMMI): A view from the

sponsors. Source: Systems Engineering, v 5, n 1, February, 2002, p 3-

6

[19] Niazi, Mahmood (Faculty of Information Technology, University of

Technology Sydney); Wilson, David; Zowghi, Didar., 2005, A

maturity model for the implementation of software process

improvement: An empirical study, Journal of Systems and Software, v

74, n 2 SPEC. ISS., p 155-172

[20] Niazi, Mahmood (National ICT Australia, Empirical Software Engineering,

Bay 15 Locomotive Workshop); Wilson, David; Zowghi, Didar, A

framework for assisting the design of effective software process

improvement implementation strategies, Journal of Systems and

Software, v 78, n 2, p 204-222

[21] Ellmer, E. (Dept. of Inf. Eng., Wien Univ., Austria); Merkl, D., 1996,

Defining a set of criteria for the assessment of tool support for CMM-

based software process improvement, Proceedings of the Fourth

International Symposium on Assessment of Software Tools (Cat.

No.96TB100054), p 77-86

[22] Bilotta, J.G. (Charles Schwab & Co. Inc., San Francisco, CA, USA);

McGrew, J.E., 1998, A Guttman scaling of CMM Level 2 practices:

investigating the implementation sequences underlying software

engineering maturity, Empirical Software Engineering, v 3, n 2, p

159-77.

[23] Miller, M.J.; Pulgar-Vidal, F.; Ferrin, D.M.; 2002, Achieving higher levels

of CMMI maturity using simulation Simulation Conference.

Proceedings of the Winter Volume 2, Page(s):1473 - 1478 vol.2

[24] Fredrik Ekdahl; Stig Larsson; 2006, Experience Report: Using Internal

CMMI Appraisals to Institutionalize Software Development

Performance Improvement; Software Engineering and Advanced

Applications, 2006. SEAA '06. 32nd EUROMICRO Conference,

Page(s):216 – 223

 182

[25] David E. Drehmer and Sasa M. Dekleva., 2001, A note on the evolution of

software engineering practices; Journal of Systems and Software,

Volume 57, Issue 1, Pages 1-7

[26] Yu-Whoan Ahn (Software Eng. Dept., Syst. Eng. Res. Inst., Taejeon, South

Korea); Gil-Jo Kim; Ja-Kyong Koo; Hyun-Min Park; In-Geol

Chun; 1998, Design of knowledge-based integrated software process

improvement tools, SMC'98 Conference Proceedings. 1998 IEEE

International Conference on Systems, Man, and Cybernetics (Cat.

No.98CH36218), pt. 3, p 2132-7 vol.3

[27] Sharp, H.; Woodman, M.; Hovenden, F.; Robinson, H.;., The role of

`culture' in successful software process improvement , EUROMICRO

Conference, 1999. Proceedings. 25th Volume 2, 8-10 Sept. 1999

Page(s):170 - 176 vol.2

[28] James YLThong An integrated model of information systems adoption in

small businesses ; Journal of Management Information Systems;

Spring 1999; 15, 4; ABI/INFORM Global Pages. 187

[29] Margaret K. Kulpa, Kent A. Johnson., 2003, Interpreting the CMMI,

Auerbach Publications ISBN:0-8493-1654-5

[30] Michael West, 2004, Real Process Improvement using the CMMI, Auerbach

Publications ISBN: 0-8493-2109-3

[31] Dean Leffingwell, Don Widrig., May 05 2003 , Managing Software

Requirements: A Use Case Approach, Second Edition Publisher:

Addison Wesley Pub ISBN: 0-321-12247-X Pages: 544

[32] Karl E. Wiegers., 2003, Software Requirements, Second Edition,

ISBN:0735618798Microsoft Press Pages:400-410

[33] Howard Podeswa., UML for the IT Business Analyst: A Practical Guide to

Object-Oriented Requirements Gathering, Thomson Course

Technology

[34] David E. Bellagio, Tom J. Milligan., May 23, 2005, Software Configuration

Management Strategies and IBM® Rational® ClearCase® Second

Edition A Practical Introduction. Publisher: Addison Wesley

Professional Print ISBN: 0-321-20019-5 Pages: 384

 183

[35] Paul Goodman, 2004, Software Metrics: Best Practices for Successful IT

Management, ISBN:1931332266 Rothstein Associates Pages: 120-

125

 184

BIOGRAPHY

Didem Kökten earned her BS degree in Computer Engineering in 2000 from Istanbul

Technical University (ITU). Her professional career started as a technical assistant in

ITU computer labs, and continued in TUBITAK (Turkish National Science &

Research Institute) throughout school years. After college, Didem started in

KocBryce as a certified Sun Microsystems trainer on subjects such as Java, Solaris

operating system and Network Administration. She resumed her professional career

as a software support specialist, focusing on training as well as implementation of

software engineering methodologies and process management practices. She is

currently with Telenity, an international telecommunications software vendor,

managing the company-wide CMMI initiative. Didem continues her masters degree

in Istanbul Technical University on CMMI. She is also a part-time consultant on

process management and CMMI with Mentor Project Management, Training and

Consultancy.

