ISTANBUL TECHNICAL UNIVERSITY * INSTITUTE OF SCIENCE AND TECHNOLOGY

CMMI IMPLEMENTATION FRAMEWORK

MASTER’S THESIS by
Didem KOKTEN, B.Sc.

Department: Computer Engineering

Programme: Computer Engineering

JUNE 2007



ISTANBUL TECHNICAL UNIVERSITY * INSTITUTE OF SCIENCE AND TECHNOLOGY

CMMI IMPLEMENTATION FRAMEWORK

MASTER’S THESIS by
Didem KOKTEN, B.Sc.
(504031547)

Date of submission : 21 May 2007
Date of defence examination: 14 June 2007

SuperVisor (Chairman): Prof. Dr. Esref ADALI
Members of the Examining Committee Prof.Dr. Coskun SONMEZ

Assoc. Prof.Dr. Mustafa KAMASAK

JUNE 2007



ISTANBUL TEKNIK UNIiVERSITESI * FEN BiLIMLERI ENSTITUSU

CMMI UYGULAMA ALTYAPI SISTEMi

YUKSEK LiSANS TEZi
Miih. Hatice Didem KOKTEN
(504031547)

Tezin Enstitiiye Verildigi Tarih: 21 Mayis 2007
Tezin Savunuldugu Tarih: 14 Haziran 2007

Tez Damismani: Prof. Dr. Esref ADALI
Diger Jiiri Uyeleri: Prof.Dr. Coskun SONMEZ

Assoc. Prof.Dr. Mustafa KAMASAK

HAZIRAN 2007

ii



ACKNOWLEDGEMENTS

I would like to express our sincere gratitude to my project supervisor Prof. Dr. Egref
Adal for his guidance, motivation, patience and continuous support.

il



INDEX

ACKNOWLEDGEMENTS
INDEX

ACRONYMS

TABLE LIST

FIGURE LIST

OZET

SUMMARY

1. INTRODUCTION

1.1 Thesis Introduction

1.2 General Concepts

1.3 Literature and Theoretical Focus
1.3.1 SPI Method
1.3.2 Software Process Reuse Repository
1.33 Software Process Evolution and Change Management
1.3.4 Knowledge-based Software Process Model

1.4 Strength of the Process Improvement in Practice

1.5  Target of the Thesis

2. MAIN CONCEPTS

2.1 SPI
2.1.1 What is SPI?
2.1.2 Importance of SPI
2.1.3 How is SPI Determined?
2.1.4 Key Methods for SPI
2.1.5 General-Purpose Process Improvement Cycles
2.1.6 General-Purpose Process Improvement Criteria
2.1.7 Software Process Modeling Notations
2.1.8 Software Engineering Standards
2.1.9 Software Engineering Life Cycles
2.1.10  Software Engineering Methodologies
2.1.11  Software Engineering Notations
2.1.12  Software Engineering Processes
2.1.13  Software Engineering Tools

22 CMMI
2.2.1 CMMI History & Background
222 CMMI Content
223 CMMI Models
2.2.4 Process Areas
2.2.5 Levels
2.2.6 Process Areas and their Relationships

2.3 Practical Implementation

v

iii
iv
vi
vii
viii
xi
xiii

e B B B Y N A



3. PRESENTATION OF THE THESIS

3.1 Subject of the Thesis

3.2 Process Areas and CMMI Compliance

33 Traceability Property
3.3.1 Requirements Management
332 Project Management
333 Analysis & Design and Implementation
334 Testing
3.3.5 Change Management

4. THE IMPLEMENTATION PROCESS
4.1 Process Management Framework
4.1.1 Implementation Solution
4.1.2 Process Structure
413 Discipline Details:
4.2 Traceability Relations

5. RESULTS AND DISCUSSIONS
6. CONCLUSION
REFERENCES

BIOGRAPHY

39
39
40
41
41
42
42
43
43

44
44
44
44
47

149

175

177

179

184



ACRONYMS

CMMI
SPI
SEI

IT
ROI
OSD
GQM
CAR
CM
DAR
IPM
MA
OID
OPD
OPF
OPP
oT

PI
PMC
PP
PPQA
QPM
RD
REQM
RSKM
SAM
TS
VAL
VER
COBIT
RUP

: Capability Maturity Model Inegration
: Software Process Improvement

: Software Engineering Ensititute

: Information Technology

: Return on Investment

:Office of the Secretary of Defense
:Goal/Question/Metric

:Causal Analysis and Resolution
:Configuration Management

:Decision Analysis and Resolution
:Integrated Project Management
:Measurement and Analysis
:Organizational Innovation and Deployment
:Organizational Process Definition
:Organizational Process Focus
:Organizational Process Performance
:Organizational Training

:Product Integration

:Project Monitoring and Control
:Project Planning

:Process and Product Quality Assurance
:Quantitative Project Management
:Requirements Development
:Requirements Management

:Risk Management

:Supplier Agreement Management
:Technical Solution

:Validation

:Verification

: Control Objectives for Information and related Technology
:Rational Unified Process

vi



TABLE LIST

Table 1.1
Table 2.1
Table 2.2
Table 2.3
Table 3.1

Page Number

History of SPI ... 5

Comparison of Well vs. Poorly Designed Processes .................. 12
Representation Capability and Maturity Levels ....................... 27
CSF’s Identified Through Literature and Empirical Study .......... 37
CMMI & Process Framework Compliance List........................ 41

Vil



FIGURE LIST

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5

Figure 4.6
Figure 4.7

Figure 4.8
Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15

Figure 4.16

Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26
Figure 4.27
Figure 4.28
Figure 4.29
Figure 4.30

Page Number

: Frameworks Quagmire...........ccoccooeiiniiiiiniee e 18
: Process Management Process Areas........ccoccceevueeniieiiieenieennneenne 30
: Project Management Process ATeas.........cceeveereeercieenieeneieneeeneeene 31
: Engineering Process Areas.........ccccevveerierieiieeie e 34
$ SUPPOTTE ProCess ATEaS......cevuiiiiieeiiiieiie ettt ettt 36
: Requirement Management — Introduction............ccceceeeveieenennne. 47
: Requirement Management — CONCEPLS........ccceerereceerseeeseeniennnns 49
: Requirement Management — Workflow...........ccoceeveniiieninnnnnens 50
: Requirement Management — Workflow — Analyze the Problem. 51

: Requirement Management — Workflow — Understand

Stakeholder Needs.........ooevivirineniinieniieiciececceee e 53
: Requirement Management — Workflow — Define the System...... 54
: Requirement Management — Workflow — Manage the Scope of

the SYSIEML...iciiiiiiiiieiieeece et 55
: Requirement Management — Workflow — Refine the System

DefINItION. ....eeiiiiiiiiiiiiiee e 57
: Requirement Management — Workflow — Manage Changing

REQUESTS...eeiiiiiiiee e 58
: Requirement Management— ACtiVIties.........ccceevueeieereeneeniieeiene 60
: Requirement Management— Artifacts.........ccocceeveevienieiiieeicnnens 61
: Analysis & Design — Introduction...........ccccceeveeviiiieeieenceneenee. 63
: Analysis & Design — Concepts.......ccceeeerrerneenieniesieee e 64
: Analysis & Design — Workflow..........coooeeiieiiiiinieiecee e 65
: Analysis & Design — Workflow - Perform Architectural

N 011 1 TS1) 1 66
: Analysis & Design — Workflow - Define a Candidate 67

ATCRIECTUTE. ...t
: Analysis & Design — Workflow — Refine Architecture................ 68
: Analysis & Design — Workflow — Analyze Behavior................... 71
: Analysis & Design — Workflow — Design Components............... 73
: Analysis & Design — Workflow — Design the Database............... 76
: Analysis & Design — ACtIVITIES.....ccueveeiererrieniieienieeieie e 78
: Analysis & Design — Workflow — Artifacts.........cccceceeverienences 79
: Implementation — Introduction.............ccoeeeevierienieeie e, 80
: Implementation — CONCEPLS.....cccuerueriirieieniriereeiereeeee e 81
: Implementation — Workflow.........c.coceviniinininniiicee, 82
: Implementation — Structure the Implementation............c..cc........ 83
: Implementation — Workflow — Plan the Integration..................... 84
: Implementation — Workflow — Implement Components.............. 85
: Implementation — Workflow - Integrate Each SubSystem........... 86
: Implementation — Workflow - Integrate the System.................... 88

viii



Figure 4.31
Figure 4.32
Figure 4.33
Figure 4.34
Figure 4.35
Figure 4.36
Figure 4.37
Figure 4.38
Figure 4.39
Figure 4.40
Figure 4.41
Figure 4.42
Figure 4.43
Figure 4.44
Figure 4.45
Figure 4.46
Figure 4.47
Figure 4.48
Figure 4.49
Figure 4.50
Figure 4.51
Figure 4.52
Figure 4.53
Figure 4.54
Figure 4.55
Figure 4.56
Figure 4.57
Figure 4.58
Figure 4.59
Figure 4.60

Figure 4.61
Figure 4.62
Figure 4.63

Figure 4.64
Figure 4.65
Figure 4.66
Figure 4.67
Figure 4.68
Figure 4.69
Figure 4.70
Figure 4.71
Figure 4.72
Figure 4.73
Figure 4.74
Figure 4.75

: Implementation — Workflow — Activities.........coceeeereciieneennenne. 89

: Implementation — ATtifacts........cceeeeeeeiieiienee e 90
: Test — INtroduction..........coeevenirieieniinineccne e 91
2 TSt — CONCEPLS...eeeeiieeiieeiireeieeeteesreeesiteeeree s e e ebe e ssreeessae e 93
tTest — WOrkflow.......ccoeiiiiininiiiniccccecc 94
: Test — Workflow — Define Evaluation Mission.............ccccceeuee.e. 95
: Test — Workflow - Verify Test Approach...........ccceevveeiierienens 96
: Test — Workflow — Validate Build Stability...........cccccvereiennnne. 99
: Test — Workflow — Test and Evaluate............ccccceeveininincnnnnnn 101
: Test — Workflow — Achieve Acceptable Mission........................ 103
: Test — Workflow — Improve Test ASSets.......cccveveereeeieerieennnene. 105
2 Test — ACHIVITIES...c.evuiiuiiiriiriectcertetee s 107
: Test — Workflow — Artifacts........ccoevenenenciieniciiiciiicieicees 108
: Deployment — Introduction............cceeeeereenienienie e 109
: Deployment — CONCEPLS......eeeveeieeiieiieeieeeeeriie e 110
: Deployment — Workflow..........ccoviiiiiiieeeee, 111
: Deployment — Workflow — Plan Deployment............c.ccccceenee.. 112
: Deployment — Workflow — Develop Support Material............... 113
: Deployment — Workflow — Manage Acceptance Test................. 114
: Deployment — Workflow — Produce Deployment Unit............... 115
: Deployment — Workflow - Beta Test Product..........c.cccccceenneenee. 116
: Deployment — Workflow — Package Product...........cccccveeenennne. 117
: Deployment — Workflow — Provide Access to Download Site.... 118
: Deployment — ACHIVITIES. ....c.erueeieriirieieniiereenie ettt 119
: Deployment — ATtifactS.......cceeevieeiercieeciieiecie e 120
: Change Management — Introduction.............ccceevveevrecveeneenneennen. 121
: Change Management — CONCEPLS.......ccuereveerreerreerienrenreeneenerenens 123
: Change Management— Workflow..........ccccccvevveeiiecienieneceeeee, 124
: Change Management— Workflow — Plan Project Configuration 125
: Change Management— Workflow — Create Project

CONTIGUIALION. .....vieiieiieeie ettt eteeete e eee et e see e e e e sbe e seesaaeenseens 126
: Change Management— Workflow — Manage Baselines and

REIEASES. ..ottt e 127
: Change Management— Workflow — Change and Deliver

Configuration [tems...........cceeoieiiiriieie e 128
: Change Management— Workflow — Monitor & Report

CONTIGUIALION. ...eevievieiieeie ettt eteeete et eeee e e e e se e reesaaeesseens 130
: Change Management— Workflow — Manage Change Request.... 131
: Change Managemen — ACHIVItIES.......cceerveriernienierienierieienieeenne 132
: Change Management— Artifacts........cccoceeverieneneenieneeneneeenn 133
: Project Management — Introduction...........cccceeeeveeienenceniennenne. 134
: Project Management — CONCEPLS......ccevveruereeneneerienieeienieenienn 135
: Project Management— Workflow...........ccocoeeirinniniiiininicncnne. 136
: Management— Workflow — Conceive New Project..................... 137
: Management— Workflow — Evaluate Project Scope and Risk..... 138
: Project Management— Workflow — Plan the Project................... 139
: Project Management— Workflow — Plan for Next Iteration........ 140
: Project Management— Workflow — Manage Iteration................. 141

: Project Management— Workflow — Monitor and Control Project 143

X



Figure 4.76 : Project Management— Workflow — Close Out Phase.................. 144
Figure 4.77 : Project Management— Workflow — Close Out Project................. 146
Figure 4.78 : Project Management— ACHIVItIES.......cccevvenenerieninieeneeienieneenne. 147
Figure 4.79 : Project Management— Artifacts.........cccooceevveneeienenienenieneneens 148
Figure 4.80 : Traceability Relation...........cccoevueviriiininieninieieieecee e 150
Figure 4.81 : Traceability — Create Project...........ccccovveeivininienincncnenciennn. 152
Figure 4.82 : Traceability — Create Project — USer..........ccccoevenenenicnienncnennene. 153
Figure 4.83 : Traceability — Create Project — Confirmation.............ccceveveneeee. 154
Figure 4.84 : Traceability — List Projects..........ccccvvevvininineninencnienicieicns 155
Figure 4.85 : Traceability — LOZIN........ccccceviiiiiniiniiiniicciececcec 156
Figure 4.86 : Traceability — DiSCIPlINes.........ccccovevueniiienieiiniiiiicineceecse 157
Figure 4.87 : Traceability — Artifact.........cccocevinininiiiniiiciccnccecec 158
Figure 4.88 : Traceability — VEISIONINg. .......cccccevirinenineninienicieicieeereeenen 159
Figure 4.89 : Traceability — Template.........c.ccccceeieviniiiininicniniinecceeeen 160
Figure 4.90 : Traceability — Select Artifact.........c.cccoeeirvinieiininicnciieneeen 161
Figure 4.91 : Traceability — Requirements...........c.ccoceecueririienenienennecncnnennnn. 162
Figure 4.92 : Traceability — Ceate Feature.........c..ccccooceevieniniiininiencnecicnenee. 163
Figure 4.93 : Traceability — Requirement Create..........c..coceveveveeienenecccnnenne. 165
Figure 4.94 : Traceability — Create HLD Component........c..ccccceeeceenerienencene 166
Figure 4.95 : Traceability — Create HLD.........cccccociiiiniiiiniiiinicciece 167
Figure 4.96 : Traceability — List Requirements.........c..ccccceervrnineeiicnennicnennne. 168
Figure 4.97 : Traceability — HLD Update..........ccceceririininiiininicicnieiccee 169
Figure 4.98 : Traceability — Plan..........ccccoccoiiiiininiiiiniiccccceees 170
Figure 4.99 : Traceability — Create Project........cocevevieveneeiieninnenecieneeeeene 171
Figure 4.100: Traceability — Open MS Project..........ccceveverieneneeneniencneeine 172
Figure 4.101 : Traceability — Update MS Project...........ccccoceverinenencnevienicnennes 172
Figure 4.102 : Traceability — Update Database...........c.ccccocereninenicnenieienennnne 173
Figure 4.103: Traceability — List HLD.......c..coccoiiiiiiiiiceeccee 174



CMMI UYGULAMA ALTYAPI SISTEMi

OZET

Tezin konusu, sistematik ve en iyi yazilim miihendisligi tecriibelerine dayanan bir
stire¢ yonetimi yazilimi gelistirmektir. Tasarlanan ve gelistirilen yazilim, yazilim
miihendisliginin

proje yonetimi,

gereksinim yonetimi,

analiz ve tasarm,

uygulama gelistirme,

test,

degisiklik yonetimi ve

aktarim siireclerinde

gerekli olan adimlarinin bir biitiin i¢inde, yonetilebilir bir sekilde tutulmasini
hedeflemektedir.

Her bir siire¢ alanmi i¢in literatiirde ve uygulamada cok kapsamli arastirmalar ve
tirtinler bulunmaktadir, ama son donemde yapilan arastirmalar ve firmalarin edindigi
pratik tecriibeler gostermistir ki, yazilim miihenisliginden gercek anlamda fayda
alimmasi siireglerin bir biitlin halinde islemesine baghdir. Giiniimiiz dinamikleri
icinde pazar gereksinimleri, ¢cok hizl1 degisen teknolojiler ve rekabet piyasasi, bilgi
teknolojileri firmalarin1 ¢ok zorlamaktadir. Kosullar s6z konusu oldugunda firmalar
her ne kadar yazilim miihendisligi siirecleriyle islerini ¢ok kolaylastiracak olsalar da,
pratikte bu siireclerin gereksinimleri fazladan is olarak goriilmektedir.

Yazilim mihendisligi alalninda tecriibeli siire¢ miihendisleri tarafindan siireg
altyapis1 kurulmadig: takdirde de bu yaklasim c¢ofu zaman dogrudur. Siirecler
aslinda bir biitiindiir ve birbirleriyle olan iliskileri ¢ok kuvvetlidir. Bu iligkiler géz
Oniine alinmayip 06zel siiregler ilizerine yogunlagsmak sonucunda iiretilen ¢iktilar
genelde sadece dokiimantasyon amacli kullanimin 6niine gegemezler.

Projenin ozelligi yazilim gelistirmenin temel siireglerinin kontrollii bir sekilde
belirlenmis bir formatta uygulanmasini saglamaktir. Gelistirilen sistem, hem siire¢
adim1 ve uygulanig1 hakkinda bilgi vermekte, hem de iiretilen ¢iktilarin saklanmasi,
degisiklerin yonetilebilmesi i¢in versiyonlanmasi islemlerini gergeklestirmektedir.
Siireglerin bir biitliin halinde calistigi ve birbirlerinin {irettikleri ¢iktilart otomatik
kullanarak yeni ¢ikarimlar yaptig1 bir altyap: bulunmaktadir.

Yazilim miihendisligi alaninda g¢alisan {iniversiteler, yazilim gelistirme enstitiileri
gibi merkezler tarafindan siireclerin detaylarini ve aralarindaki iliskileri gosteren pek
¢ok model {iiretilmistir. Beklenen bu modellere dayanarak sirketlerin kendilerine en
uygun siire¢ yonetimi altyapisin1 olusturmalaridir. Bu nedenden dolay1 da olaym
biitlinlinii gosteren, firmalara bir biitiin halinde sunan araglar bulunmamaktadir.
Biiyiik 6lcekli firmalar kalite ve siire¢ konulari i¢in ayr1 bir ekip ayirip uyarlama

X1



calismalarim siirdiiriirken, orta ve kiiciik 6lcekli firmalar kaynak ve zaman sikintisi
nedeniyle caligmalari miimkiin olmamaktadir.

Tezde amaclanan orta ve kiiciik Olgekli firmalarin siire¢ yonetimi konularina
uygulamanin en hizli ve en dogru yapabilecekleri bir ortam sunmaktir. Temel alinan
sistem su anda en yaygin kullanilan Canegie Mellon {niversitesinin kurdugu
Software Engineering Enstitusunun (SEI) gelistirmis oldugu Capability Maturity
Model Integration modelidir. Tezin en énemli 6zelligi CMMI modelinde yer alan
temel oOzellik olan izlenebilirligi firmalara uygulamak ve en yiiksek fayday:
almalarin1  saglamaktir. Gereksinim iiretimi ve yonetimiyle baglayan siirec,
veritabanina girilen gereksinimlerden otomatik proje planlarinin tiretilmesi ile devam
etmekte ve yazilim igin iiretilen proje plani ilizerinden yine otomatik ilerleme ve
tamamlama ylizdeleri alinabilmektedir.

xii



CMMI IMPLEMENTATION FRAMEWORK
SUMMARY

This thesis studies the development of a systematic software solution to provide
software engineering process management based on best practices. This software
solution which has been designed and developed for this study aims to provide
specific practices for integrated management of the following:

project management,
requirements management,
analysis & design,
implementation

testing,

change management, and
deployment

There are various in depth research analyses as well as products that provide
solutions to the abovementioned specific process arecas. However it has also been
recently recognized by various studies as well as through practical experience that it
is crucial to operate all of these process areas in an integrated fashion to expedite
maximum outcome from a software engineering study.

Today’s information technology (IT) companies are driven by technologies that
rapidly change, a vicious competition environment as well as steep market
requirements. As much as software engineering is recommended as a process
improvement solution to optimize these companies’ output areas, it is however still
practically seen as additional overhead. As a matter of fact, this usually turns out to
be the fact if the process infrastructure is not developed and managed by an
experienced team of process engineers.

In order to maximize the outcome of software engineering, the said processes should
be treated as a united process flow, and the interdependences of each process should
be treated exclusively. If these interdependencies are ignored and only specific
process areas are focused on, the software engineering outputs can only help with
documentation of existing inefficiencies at best.

The solution provided with this thesis focuses on management and execution of the
key processes of software management and development in a controlled environment
and format. The solution provides an information base on the specific process steps
and their implementation as well as a storage management system for processed
outcome, change management and versioning operations. Its infrastructure provides a
business flow that establishes an integrated environment for all the said processes
which can utilize each others outputs to provide a synergetic outcome.

There has been many models developed by universities as well as software
development institutes which focus on process details as well as interdependencies
between these processes. The expectation from an IT company is to choose and

xiii



integrate the best fitting model among these into their business practices. This,
however, presents an additional business challenge to the companies as there is not
one common tool that provides an integrated approach to the entirety of these process
areas from a higher level approach. While large scale companies can afford separate
teams for study and implementation quality and process activities, medium and small
scale companies usually cannot afford such luxuries in neither planning nor
implementation phases due to lack of time and resources.

Accordingly, this thesis aims to establish an environment that provides fast and
applicable adaptation to such software engineering processes for small and medium
scale companies. The solution provided within this thesis study is based on one of the
most popular models developed by Carnegie Mellon University (U.S.) Software
Engineering Institute, the Capability Maturity Model Integration (CMMI) model.

The main focus of this study is to implement the main target of CMMI, namely
traceability to the companies to obtain maximum results from software engineering.
The study follows a process that starts with production and management of
requirements, continues with automatic development of project items and plans from
the requirements database, and provides an environment for automatic project
tracking and completion analysis.

X1V



1. INTRODUCTION

1.1 Thesis Introduction

Despite millions of software and IT professionals globally and the ubiquitous social
presence of software, software engineering has only recently reached the status of a
legitimate engineering discipline and a recognized profession. It is a key milestone in
all disciplines to achieve consensus by the profession on a core body of knowledge.
This has also been identified by the IEEE Computer Society as crucial for the

evolution of software engineering towards professional status.
The IEEE Computer Society defines software engineering as follows:

(1) The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the application of

engineering to software
(2) The study of approaches as in (1) [1].

This thesis studies the development of a systematic software solution to provide
software engineering process management based on best practices. This software
solution which has been designed and developed for this study aims to provide

specific practices for integrated management of the following:

e requirements management,

e project management,

e analysis & design,

e implementation

e testing,



e change management, and

e deployment

There are various in depth research analyses as well as products that provide
solutions to the abovementioned specific process areas. However it has also been
recently recognized by various studies as well as through practical experience that it
is crucial to operate all of these process areas in an integrated fashion to expedite

maximum outcome from a software engineering study.

Today’s information technology (IT) companies are driven by technologies that
rapidly change, a vicious competition environment as well as steep market
requirements. As much as software engineering is recommended as a process
improvement solution to optimize these companies’ output areas, it is however still
practically seen as additional overhead. As a matter of fact, this usually turns out to
be the fact if the process infrastructure is not developed and managed by an

experienced team of process engineers.

In order to maximize the outcome of software engineering, the mentioned processes
should be treated as a united process flow, and the interdependences of each process
should be treated exclusively. If these interdependencies are ignored and only
specific process areas are focused on, the software engineering outputs can only help

with documentation of existing inefficiencies at best.

The solution provided with this thesis focuses on management and execution of the
key processes of software management and development in a controlled environment
and format. The solution provides an information base on the specific process steps
and their implementation as well as a storage management system for processed
outcome, change management and versioning operations. Its infrastructure provides a
business flow that establishes an integrated environment for all the said processes

which can utilize each others outputs to provide a synergetic outcome.

There has been many models developed by universities as well as software
development institutes which focus on process details as well as interdependencies
between these processes. The expectation from an IT company is to choose and

integrate the best fitting model among these into their business practices. This,



however, presents an additional business challenge to the companies as there is not
one common tool that provides an integrated approach to the entirety of these process
areas from a higher level approach. While large scale companies can afford separate
teams for study and implementation quality and process activities, medium and small
scale companies usually cannot afford such luxuries in neither planning nor

implementation phases due to lack of time and resources.

Accordingly, this thesis aims to establish an environment that provides fast and
applicable adaptation to such software engineering processes for small and medium
scale companies. The solution provided within this thesis study is based on one of the
more popular models developed by Carnegie Mellon University (U.S.) Software
Engineering Institute, the Capability Maturity Model Integration (CMMI) model.

The main focus of this study is to implement the main target of CMMI, namely
tracebility to the companies to obtain maximum results from software engineering.
The study follows a process that starts with production and management of
requirements, continues with automatic development of project items and plans from
the requirements database, and provides an environment for automatic project

tracking and completion analysis.

1.2 General Concepts

As explained in the “Thesis Introduction” todays companies are dealing with
software engineering. In a very competitive IT world, it is not enough just to build
the product. Todays key factor is to build the product in quality. The quality of a
system is highly influenced by the quality of the process used to acquire, develop,

and maintain it.

This is area of software engineering. Every company, if they are alive and selling
products are dealing somewhat with processes. So they are all doing software
engineering. But the question is, whether their product is in good quality or not. The
answer of this question will determine their profit, their market share, their growth
capability. To compete with other companies, they have to improve the quality
concept. To improve the quality of the product, they have to improve the way they

produce it. They have to improve their processes.



Software Process Improvement (SPI) is an approach to design and define new and
improved software processes to achieve basic business goals and objectives.
Examples to these goals include increased revenues and profitability as well as
decreased operating costs. The major benefits of SPI include quality, cost savings,
cycle time reduction, increased customer satisfaction and productivity. It is also the
means by which software companies can achieve significant increases in profitability

and peak operating efficiency.

SPI is used to manipulate or change software processes to increase revenues or
profits and decrease operating costs. This is accomplished by measuring the
performance of an old software process, improving the process, and then
implementing it. SPI also consists of measuring the performance of new software

processes and institutionalizing them if they have improved.

It should be noted that the benefits of SPI provide the basis for calculating the return
of investment (ROI) of SPI. Hence, SPI and the ROI of SPI are inseparably linked by

basic origin, purpose, and function.

There are lots of SPI models since 1980’s. Capability Maturity Model Integration
(CMMI) is a popular process improvement approach that provides organizations with
the essential elements of effective processes. The Software Engineering Institute
(SEI) , which was established at Carnegie Mellon University in December of 1984 to
address the need for improved software in U.S. Department of Defense operations,
developed the Software Process Maturity Model for use both by the Department of

Defense and by industrial software organizations.

CMMI helps integrate traditionally separate organizational functions, set process
improvement goals and priorities, provide guidance for quality processes, and

provide a point of reference for appraising current processes.

1.3 Literature and Theoretical Focus

There are various issues relating to the software process management system for

software process generation and improvement in the literature.



1.3.1 SPI Method

Recently a lot of software process improvement(SPI) models and approaches have
been suggested. Top-down approaches, assessment based approach, provide a high-
level model of processes comprised of best practices in a software development
organization(e.g., CMM, TRILLIUM, BOOTSTRAP, SPICE). They are based on
descriptive and unstructured representations about what a software process ought to
be, resulting in the difficulties to implement improvement initiatives as a software
process model. On the other hands, bottom-up approaches start with understanding
the processes that the organization owns. A process improvement is conducted based
on measurement and experience. These approaches include Software Engineering
Laboratory( SEL)'s approaches at the NASA and Goal/Question/Metric(GQM)
approach [2]. It is difficult to reuse the mechanisms and knowledge of bottom-up

without huge experience base. Table 1.1 shows the history of SPI.
Table 1.1: History of SPI

Year Model /Standard

1983 | NQI/CAE: 1st Canadian Award for Excellence (Canada)

1987 | ISO 9001 released (initial release)

NIST/MBNQA: 1st Malcolm Baldrige National Quality Award
(USA)

SEI-87-TR-24 (SW-CMM questionaire) released

1988 | AS 3563 (Software Quality Management System) standard released

1991 | IEEE 1074 released (initial release)

ImprovelT V1.0 released (this is the beginning of TickIT)

ISO 9000-3 released (initial release)

SEI SW-CMM V1.0 released (initial release of model)




Trillium V1.0 released (initial release)

1992

EFQM/BEA: 1st Business Excellence Award (Europe)

IEEE adopts the Australian AS 3563 as "IEEE 1298"

Control Objectives for Information and related Technology (COBIT)

TickIT V2.0 released

1993

SEI SW-CMM V1.1 released

1994

ISO 9001 re-released

Trillium V3.0 released

1995

ISO 12207 released (initial release)

ISO 15504 (SPICE) initial "draft" released

1996

IEEE/EIA 12207 released

COBIT vl released

1997

ISO 9000-3 re-released

SEI halts SW-CMM revisions in support for CMM Integration
(CMMI)

1998

ISO 15504 (SPICE) released to public as "type 2" Technical Reports

COBIT v2

TickIT V4.0 released

2000

ISO 9000:2000 edition released

SEI CMMI V1.02 released

COBIT v3 released




2005 | COBITV4 released

2006 | CMMI for Development released

2007 | CMMI for Aquisiton released

1.3.2 Software Process Reuse Repository

The concept of a Process Asset Library(PAL) has been introduced as an
organizational repository for processes, supporting future reference and reuse. A
prototype has been developed at SEI, as reported in [3], Other related work includes
the "Experience Factory" concept of Basili and Rombach[4].

1.3.3 Software Process Evolution and Change Management

Some forms of planned changes are supported by several Policies and Mechanisms
to Support Process Evolution (PSEE). A first class of PSEEs offers ad-hoc features
to support process model evolution and contains an embedded policy of change. This
is the case of MELMAC and Marvel. A second class 'of PSEEs is based on reflective
PMLs which provide means to model the meta-process as part of the process model,
and to manipulate the process model as any other process data, EPOS, IPSE 2.5, and
SPADE offer this kind of support. In most cases, however, these systems offer only

the ability to manipulate template variations [5].

1.3.4 Knowledge-based Software Process Model

We can find several knowledge based software process modeling environments.
TAME project suggested a top-down goal-oriented approach to model and executes
software engineering activities. In PROGEN project of George Mason University, a

knowledge-based system was presented to generate, tailor and reuse processes [6].

1.4 Strength of the Process Improvement in Practice

Every process improvement methodology has its respective  strengths and

shortcomings.



But the common and main problem comes into play when interpreting the model to
the organization and implementing these guidelines or best practices into a working
environment. “Viewing software processes as blueprints emphasizes that design is
separate from use, and thus that software process designers and users are
independent. In the approach presented here, software processes are viewed as
recipes; developers individually and collectively design their own software processes
through facilitation, reflection, and improvisation® [7]. This has to do with the
concept of institutionalization. In case, if a middle or small scale company wants to
begin a process improvement work, then it is very difficult for the organization to
build a team and work on this improvement project in a long time. The improvement
has a cost for company. This cost seems bigger and not worth under market and
customer pressure. There are some published models for replacing the
implementation need. “Software process improvement is a demanding and complex
undertaking. To support the constitution and implementation of software process
improvement schemes the Software Engineering Institute (SEI) proposes a
framework, the so-called IDEAL model.” [8]. The most famous one is the IDEAL
model. But also this model is a load for small scale companies. There are a lot of
failure stories in literature. They are deeply researched. The capability maturity
model (CMM) approach to software process improvement is the most dominant
paradigm of organizational change that software organizations implement. While
some organizations have achieved various levels of success with the CMM, the vast
majority have failed. The thesis investigate the assumptions about organizational
culture embedded in the CMM models and discuss their implications for software
process improvement (SPI) initiatives. The well-known competing values are utilize
model to surface and analyze the assumptions underlying the CMM. The analysis
reveals contradictory sets of assumptions about organizational culture in the CMM
approach. An understanding of these contradictions can help researchers address
some of the difficulties that have been observed in implementing and
institutionalizing SPI programs in organizations. Further, this research can help to
open up a much-needed line of research that would examine the organization theory
assumptions that underpin CMM. This type of research is important if CMM is to
evolve as an effective organizational change paradigm for software organizations.

[9]. In some cases, alltough it is seen that one of the benefits of process



improvement is to increase market share, it could be the opposite way in a small
company if it is not managed well. “It may hurt the competitiveness of small
companies and companies in highly innovative markets that according to the

empirical study” [10].

1.5 Target of the Thesis

The target of the thesis is to find a solution for the strength of implementation of SPI
models (specially CMMI) to the medium and small scale companies. “The research
found that small businesses are faced not only with a lack of resources and funds
required to implement many of the practices stated in the CMM, but also with the
task of basing their process improvement initiatives on practices that do not apply to
a small business and small software organization” [11]. Lots of models and standarts
notice that company culture, business needs and policies are the most important
aspects of process improvement project. But if small scale companies are the group
which will be focused on this thesis, it will reported that the failure reasons shows

some similarites. So the solution has to be created depending on these concerns.

Assuming that their failure is common, it will be thought that a common
methodology could also be a solution to this problem. Common problems on

institutionilization of process improvement methodologies are:
e Using single-discipline models that can result in confusion and higher costs.
e Customer rules
e Lack of experience and skill in provess improvement
e Resource problem, not enough time for process improvement actvities
e Resource problem, not enuogh time to create and maintain required artifacts
e No quantitative feedback on progress

e Wrong interpretation of improvement models



¢ Limited communication, project members could not see the project as a

whole
e Do not really understand, need and use artifacts

e No overall traceability

At the end of this research, there will be a solution to every item listed above.

10



2. MAIN CONCEPTS

2.1 SPI

2.1.1 Whatis SPI?

SPI provides creation of new and improved software processes to achieve some level
of benefits. These benefits are increased revenues or profits, decreased costs, and
significant cost savings. It should be noted early attempts at SPI were designed to
improve quality and reliability at any cost, however today it has also evolved to

include cost savings.
The benefit cycle of SPI can be summarized as follows:

e Faster cycle times, shorter time to market, higher customer satisfaction, and

alignment with strategic goals,

e Improved project management within the SPI framework, more accurate time

and budget accounting as well as better cost and schedule performance,

e Lower defect rates, smaller module sizes, increased verification and

validation efficiency, and increased productivity,

e Improvement certainly leads to better cost, quality, and reliability estimation

and higher software quality and reliability.
SPI is used to create a new and improved software processes.

o [Initially, statistical process control is used to measure the performance of an

old software process.

e Then, a new and simplified software process is formed to improve

performance.

11



e Usually the new and improved software process is piloted to measure its new

performance.

e Finally, the new software process which exhibits the desired performance

level may be institutionalized.

SPI is used to create new software processes for strategic software activities such as
software project management, software quality management, and most importantly,

software design management.

SPI of processes for software quality management is a proven discipline which yields

orders-of-magnitude improvement. SPI of processes for software project
management is starting to achieve international recognition. It is fueled by emerging
data and hard economic justification for this discipline. SPI of processes for software
design management is a discipline. Its economic underpinnings are anchored in the

fields of software reuse and product line management.

2.1.2 Importance of SPI

SPI is the primary means by which a new and improved software process is created
to achieve significant economic benefits at the least possible costs. A comparison of

well-designed versus poorly designed software processes can be found below:

Table 2.1: Comparison of Well vs. Poorly Designed Processes

Well Designed Software Processes

Poorly Designed Software Processes

Positive bottom-line economic effects

Negative bottom-line economic effects

Increased Productivity

High cost of operations

Increased cost efficiency

Inefficient use of resources

Decreased costs

Lost of market opportunities and share

Lack of quality & reliability

Poor customer satisfaction & morale

12




In addition to its obvious benefits and the aforementioned ROI factor, SPI can also
be used to create a new and improved software process to respond to a new industry
standard. SPI is often performed to adhere to a new customer standard, lower
operating capital, and changing skill requirements. Technological innovations,
changes in organizational structures, and increased competition are also reasons to
perform SPI. Thus, it can be said that SPI may be performed to effect incremental
changes in operating efficiency as well as to support aggressive/new market

maneuvers that require radically new software processes.

2.1.3 How is SPI Determined?

Statistical process control tools are used to determine SPI by measuring the
performance of a new and improved process. Initially, the attributes or characteristics
of an old software process are measured and analyzed to determine its performance.
Then, the attributes or characteristics of a new software process are measured and
analyzed to determine its performance. Typical attributes or characteristics include

the following:
e cffort (how many hours a process requires),
e cost (how much money a process requires),
e cycle time (how long a process takes),
e productivity (how many units a process yields),
e quality (how many defects a process yields),
o reliability (frequency of failures encountered),
e precision (exactness and conciseness),
e predictability (statistical accuracy),
e cfficiency (resources consumed relative to process output),

e simplicity (process complexity),

13



e customer satisfaction (how well clients are served),

e degree of automation (a measure of eliminating the causes of human

variation),

e consistency (a measure of minimal performance variation),

e repeatability (a measure of minimal performance variation),

e measurability (quantitative and often tangible or physical characteristic of a

process or product),

e variety (a measure of process flexibility to satisfy multiple diverse customer

requirements),

e innovation (a measure of the range and creativity of products and services).

2.1.4 Key Methods for SPI

Key methods for SPI consist of the following:

e general-purpose process improvement cycles

e general-purpose process improvement criteria

e software process modeling notations

e software engineering standards

e software engineering life cycles

e software engineering methodologies

e software engineering notations,

e software engineering processes,

e software engineering tools,

e software engineering measurement

14



2.1.5 General-Purpose Process Improvement Cycles

General-purpose process improvement cycles are used in conjunction with general-
purpose process improvement criteria as the preferred methods. They are designed to
be the basic frameworks necessary to begin the process of SPI. However, these
frameworks tend to be diluted and ineffective at best, with little overall direction for

improving software processes.

These methods are usually not recommended for novices who need specific help to
identify high-impact and high-ROI SPI methods such as Six Sigma, statistical
process control, plan-do-check-act, and initiating-diagnosing-establishing-acting-
learning. Total quality management, total productivity management, and total cost

management are also popular examples.

2.1.6 General-Purpose Process Improvement Criteria

These criteria are used in conjunction with general purpose process improvement
cycles. General-purpose process improvement cycles tend to have an appraisal stage.
This stage is used to leverage the specific requirements of general-purpose process

improvement criteria and provides built-in mechanisms to:

e help organizations identify high-leverage areas for improvement.

e prioritize process improvements and utilize resources toward high-priority

areas.

They tend to be more specific than general-purpose process improvement cycles and
minimize some confusion for the novice. However, they tend to have so many

criteria as to confuse and dilute the overall effectiveness of using them.

Examples of general-purpose process improvement criteria include ISO 9001, TL
9000, BOOTSTRAP, and TRILLIUM, The Malcolm Baldrige National Quality
Award. There are also the following unique models, some of which constitute the

basis for this thesis:

e Software Capability Maturity Model,

15



e (Capability Maturity Model Integration,

e Systems Engineering Capability Maturity Model,

e Integrated Product Team Capability Maturity Model,

e Systems Security Engineering Capability Maturity Model,
e System Acquisition Capability Maturity Model,

e The Trusted Capability Maturity Model,

e People Capability Maturity Model, and

e Integrated Capability Maturity Model.

All of the models were created within an environment of evolving national and
international standards and frameworks. As standards become used and accepted,
maintaining harmonization between them and the improvement models becomes a
continuing challenge, particularly across disciplines. In describing the complexity of
this environment, Sarah Sheard of the Software Productivity Consortium has coined
the term "the frameworks quagmire."[12] shows her depiction of the proliferation
and heritage of the various systems and software engineering standards, life-cycle

models, quality awards, and process-improvement models.

16



et

" n
oD Do

DoD- ;‘;T_‘;)" 5T
sto- | |9 ) zies
T935A N

4
150/1EC O >
1554 MIL-STD-

498
7
= RICA
1785 [
H ]
] IEEE/ElA
! 12207
R
! I'I I' r
e, (@ .
SO0 ==~ | [SO/IEC
- SoTivs 122007
CE) e ™ 1

L ]
MIL-STD-
4998

...fw'-.‘..é-l 0
fiZ

® TLso00

® 150/IEC 15288

Process Sids
Chaality Stds

® el released Malic= obsolefs L ]
u
& Maturity or Capability Models
*

“ harserd on CHA IPL SAM, and others = integrating
EV2 also based onm m.myquhq-rn — hl:l"’ﬁ'f“-rn."l,"h
Sewr trtin sofleanc ong Aprangmire —— bhased on

=== =i Used refrenoes

Appraisal methods

Cruidelines

Cogryrighit © H01, Sofewan: Produceiviey Consontium NEE e All rights seserved.

Figure 2.1: The Frameworks Quagmire[12]

In Figure 2.1, the arrows show where one model or standard contributed to the

development of another.

The single disciplines and processes involved in contemporary engineering are
closely intertwined. The overhead and confusion resulting from the application of
multiple models are too costly in terms of business expenses and resource allocation.
As a consequence, a means of addressing process improvement across anumber of

disciplines within a single framework is needed. The bold boxes in the framework
quagmire show integrated ones.
2.1.7 Software Process Modeling Notations

These are textual or visual aids designed to define and document software processes,

and used to communicate, facilitate, and even use a new and improved software

process.

17



Software process modeling notations may bring various challenges of use, as

follows:

e Some are inadequate for expressing the depth of detail necessary to describe
software processes which can lead to hindering the use, exploitation, and

consistency of software processes.

e The choice of notation can lead to debilitating politics, which results in little
progress toward the creation and use of a new and improved software

process.

e Only one or two of many of the available notations may be effective. Few are
recommended for defining new and improved software processes. These
methods provide little direction for novices on what software processes to

define and their depth of definition.

Examples of software process modeling notations include short checklists, textual
descriptions, flowcharts, information mapping, input/output charts, and professional
policy and procedure formats as well as proprietary notations built into workflow

automation tools.

2.1.8 Software Engineering Standards

Software engineering standards are the minimum requirements for designing new
software processes. These standards have greater breadth than general-purpose
process improvement criteria and tend to offer better priorities for SPI. It should
however also be noted that software engineering standards have much less depth than
general-purpose process improvement criteria which can lead to ineffective guidance

to achieve their purpose.

The recommended approach is to blend general-purpose process improvement
criteria and software engineering standards to achieve a balance of both breadth and
depth. Examples of software engineering standards include MIL-STD-1521B, MIL-
STD-973, MIL-HDBK-61, and MIL-STD-2549, ISO 12207, and ISO 15288.

18



2.1.9 Software Engineering Life Cycles

Software engineering life cycles add integration, workflow, and tactical execution to
software engineering processes to help organizations manage the design and
development of software products and services. Unfortunately, software engineering
life cycles lack the breadth of software engineering standards as well as the depth of
general-purpose process improvement criteria. Instead, software engineering life
cycles tend to offer much tactical guidance for novices. Examples include waterfall,
spiral, evolutionary, prototyping, incremental, concurrent, concurrent incremental,

and V model.

2.1.10 Software Engineering Methodologies

Software engineering methodologies are designed to string or thread multiple
software engineering notations together to achieve the goal of specifying, designing,
and implementing software-based systems. They tend to be based on graphical or
mathematical notations to be used for capturing software requirements, software
designs, and constructs for software implementation. Examples include structured
analysis, structured design, information engineering, and object oriented analysis,

object-oriented design, Clean Room, and Rational Unified Process (RUP) [13].

2.1.11 Software Engineering Notations

Software engineering notations are the building blocks of software engineering
methodologies. They are used to create visual representations of software constructs
to facilitate rational and logical software development, and also to influence software
engineers to do more than just computer programming. Software engineering
notations can be seen as the viewgraphs of SPI, and software engineering for that
matter. Examples include data flow diagrams, state transition diagrams, entity
relationship diagrams, control specifications, structure charts, and program design
languages. Newer examples include the Object Modeling Technique and Unified
Modeling Language UML.

19



2.1.12 Software Engineering Processes

Software engineering processes are designed to represent logical groupings of major
software engineering activities. These standards are merely collections of software
engineering activities, and are thought of as major sub-activities or sub-elements
within the software life cycle. Configuration management is an example of a process
that once embodied the entire discipline of software engineering. While some
software engineering processes add negligible value, others offer an overwhelming

amount of benefits.

Examples include software configuration management, software testing, and
independent verification and validation. Commercial off-the-shelf integration,

software architecture, and product line management are some of the latest examples.

2.1.13 Software Engineering Tools

Software engineering tools are designed to define and formalize software
engineering processes, and automate tedious tasks that cannot be consistently
performed by humans. They add great value, increase software productivity, and
increase work product output, and perform many built-in verification and validation

tasks.

Software engineering tools, fueled by SPI methods and computer systems, will
answer many potential SPI challenges faced by corporations. Examples include
computer-aided software engineering tools, software project management tools,
software estimation tools, code generation tools, graphical user interface
management systems, and automated static analysis tools. In addition. requirements
management tools, office automation tools, Web-enabled tools, and operating

systems are also good examples.

2.2 CMMI

Capability Maturity Model® Integration (CMMI) is a process improvement approach

that provides organizations with the essential elements of effective processes. CMMI

20



is used to guide process improvement across a project, a division, or an entire

organization.

CMMI helps integrate traditionally separate organizational functions, set process
improvement goals and priorities, provide guidance for quality processes, and

provide a point of reference for appraising current processes.

2.2.1 CMMI History & Background

Since 1984, the Carnegie Mellon® Software Engineering Institute (SEI) has served
as a United States of America government-funded research and development center.

As part of Carnegie Mellon University, the SEI has the following attributes [14] :

e SEI is sponsored by The Office of the Secretary of Defense (OSD) and the

National Defense Industrial Association

e SEI capitalizes on the similarities of other process improvement models;
eliminates differences that increase effort and expense of “stovepiping”

models
e SEI began with the following source models:
o SEI’s Capability Maturity Model for Software (SW-CMM)

o Electronic Industries Alliance Systems Engineering Capability Model,
Interim Standard (EIA/IS 731) - the result of the merger of the SE-
CMM, created by the Enterprise Process Improvement Collaboration
(EPIC), and the SECAM, created by INCOSE

o A draft model covering Integrated Product and Process Development

(IPPD), the IPD-CMM, previously released in draft form by EPIC

2.2.2 CMMI Content

CMMI provides guidance for the managerial processes of companies. This includes
establishing and maintaining a plan for managing the work, and making sure that

everyone involved is committed to performing and supporting the plan. In addition,

21



when the plans are made, the development and maintenance costs, schedules, and

product estimates should be available as well.

Upon execution of the plan, the performance and progress to the plan needs to be
compared and corrective actions should be scheduled if actual and planned results
are found to be out of sync. Agreements with suppliers should be established and
maintained, and it should be made sure that these agreements are satisfied. Finally,
there is also the management of the information on project risks and on creating and

managing teams as well.

CMMI guidance on technical matters includes ways to develop, elaborate, and
manage requirements, and to develop technical solutions that meet those
requirements. CMMI is the key reminder of the fact that the integration of product
components depends on good interface information, and it needs to be planned and
verified. It should be made sure that the products and services that are developed are
consistent with the requirements and satisfy the customer's needs through verification

and validation practices [17].

CMMI also addresses support processes for technical and managerial activities. It
provides methods of ensuring that the defined processes being followed and the
products that are being developed meet the quality specifications that have been
established. Finally, CMMI also helps figuring out the root cause of serious problems

with the products or key processes.

2.2.3 CMMI Models

CMMI models describe what have been determined to be the best practices that
organizations have found to be productive and useful to achieving their business
objectives. The organizations must use professional judgment when interpreting the
CMMI practices for their situation, needs, and business objectives. Although process
areas depict the characteristics of an organization committed to process
improvement, the organization must interpret the process areas using an in-depth
knowledge of CMMI, the organization itself, the business environment, and the

specific circumstances involved.

22



During the CMMI model initiation to improve the organization’s processes, real-
world processes are mapped to CMMI process areas. This mapping enables the
organization to initially judge and later track the level of conformance to the CMMI

model and to identify opportunities for improvement.

CMMI for Development is a reference model that covers the development and
maintenance activities applied to both products and services. Organizations from
many industries, including aerospace, banking, computer hardware, software,
defense, automobile manufacturing, and telecommunications, use CMMI for

Development [18].

Models in the CMMI for Development constellation contain practices that cover
project management, process management, systems engineering, hardware
engineering, software engineering, and other supporting processes used in

development and maintenance.
Continuous Representation:

If the processes that need to be improved in the organization are already known and
the dependencies among these processes understood, the continuous representation is

the proper choice for the organization.

The continuous representation offers maximum flexibility when using a CMMI
model for process improvement. An organization may choose to improve the
performance of a single process-related trouble spot, or it can work on several areas
that are closely aligned to the organization’s business objectives. The continuous
representation also allows an organization to improve different processes at different
rates. There are some limitations on an organization’s choices because of the

dependencies among some process areas.
Staged Representation:

The staged representation offers a systematic, structured way to approach model-
based process improvement one stage at a time. Achieving each stage ensures that an

adequate process infrastructure has been laid as a foundation for the next stage.

23



Process areas are organized by maturity levels that take some of the guess work out
of process improvement. The staged representation prescribes an order for
implementing process areas according to maturity levels, which define the
improvement path for an organization from the initial level to the optimizing level.
Achieving each maturity level ensures that an adequate improvement foundation has
been laid for the next maturity level and allows for lasting, incremental

improvement.

2.2.4 Process Areas

A process area is a cluster of related practices in an area that, when implemented
collectively, satisfy a set of goals considered important for making improvement in

that area.

There are 22 process areas of CMMI, as listed in alphabetical order [15]:

e Causal Analysis and Resolution (CAR)

e Configuration Management (CM)

e Decision Analysis and Resolution (DAR)

¢ Integrated Project Management (IPM)

e Measurement and Analysis (MA)

e Organizational Innovation and Deployment (OID)

¢ Organizational Process Definition (OPD)

e Organizational Process Focus (OPF)

¢ Organizational Process Performance (OPP)

e Organizational Training (OT)

e Product Integration (PI)

e Project Monitoring and Control (PMC)

24



¢ Project Planning (PP)

e Process and Product Quality Assurance (PPQA)

¢ Quantitative Project Management (QPM)

e Requirements Development (RD)

e Requirements Management (REQM)

¢ Risk Management (RSKM)

e Supplier Agreement Management (SAM)

e Technical Solution (TS)

e Validation (VAL)

e Verification (VER)

2.2.5 Levels

CMMI uses “Levels” to describe an evolutionary path recommended for an
organization that wants to improve the processes. Levels can also be the outcome of
the rating activity of appraisals. Appraisals can be performed for organizations or for

smaller groups such as a group of projects or a division within a company.

CMMI supports two improvement paths. One path enables organizations to
incrementally improve processes corresponding to an individual process area (or
process areas) selected by the organization. The other path enables organizations to
improve a set of related processes by incrementally addressing successive sets of

process areas.

These two improvement paths are associated with the two types of levels that
correspond to the two representations discussed previously. For the continuous
representation, the term “capability level” is used; for the staged representation, the

term “maturity level” is used.

25



Regardless of which representation is selected, the concept of levels is the same.
Levels characterize improvement from an ill-defined state to a state that uses
quantitative information to determine and manage improvements that are needed to

meet an organization’s business objectives.

To reach a particular level, an organization must satisfy all of the appropriate goals
of the process area or set of process areas that are targeted for improvement,
regardless of whether it is a capability or a maturity level. Both representations
provide the same essential content and use the same model components, as shown in

the following table.

Table 2.2: Representation Capability and Maturity Levels

Level Continuous Representation | Staged Representation
Capability Levels Maturity Levels

Level 0 Incomplete N/A

Level 1 Performed Initial

Level 2 Managed Managed

Level 3 Defined Defined

Level 4 Quantitatively Managed Quantitatively Managed

Level 5 Optimizing Optimizing

Maturity Level 1: Initial
Processes are usually best defined as ad hoc and chaotic at maturity level 1. The

organization usually does not provide a stable environment to support the processes.
Success in these organizations depends on the competence and heroics of the people

in the organization and not on the use of proven processes.

In spite of this chaos, maturity level 1 organizations often produce products and
services that work; however, they frequently exceed their budgets and do not meet

their schedules.

26



Maturity level 1 organizations are characterized by a tendency to over commit,
abandonment of processes in a time of crisis, and an inability to repeat their

successes.
Maturity Level 2: Managed

At maturity level 2, processes are planned and executed in accordance with policy;
the projects employ skilled people who have adequate resources to produce
controlled outputs; involve relevant stakeholders; are monitored, controlled, and

reviewed; and are evaluated for adherence to their process descriptions.

Maturity level 2 ensures that existing practices are retained during times of stress.
When these practices are in place, projects are performed and managed according to
their documented plans. In addition, the status of the work products and the delivery
of services are visible to management at defined points along with commitments

established among relevant stakeholders.

Maturity Level 3: Defined

At maturity level 3, processes are well characterized and understood, and are
described in standards, procedures, tools, and methods. The basis of maturity level 3
actually consists of the organization’s set of standard processes. These standard

processes are used to establish consistency across the organization.

A critical distinction between maturity levels 2 and 3 is the scope of standards,
process descriptions, and procedures. At maturity level 2, the standards, process
descriptions, and procedures may be quite different in each specific instance of the
process (e.g., on a particular project). At maturity level 3, the standards, process
descriptions, and procedures for a project are tailored from the organization’s set of
standard processes to suit a particular project or organizational unit and therefore are

more consistent, except for the differences allowed by the tailoring guidelines.

Another critical distinction is that at maturity level 3, processes are typically
described more rigorously than at maturity level 2. A defined process clearly states
the purpose, inputs, entry criteria, activities, roles, measures, verification steps,

outputs, and exit criteria. At maturity level 3, processes are managed more

27



proactively using an understanding of the interrelationships of the process activities

and detailed measures of the process, its work products, and its services.
Maturity Level 4: Quantitatively Managed

At maturity level 4, the organization and projects establish quantitative objectives for
quality and process performance and use them as criteria in managing processes.
Quantitative objectives are based on the needs of the customer, end users,

organization, and process implementers.

Quality and process performance is understood in statistical terms and is managed
throughout the life of the processes. For selected sub-processes, detailed measures of
process performance are collected and statistically analyzed. Quality and process
performance measures are incorporated into the organization’s measurement
repository to support fact-based decision making. Special causes of process variation
are identified and, where appropriate, the sources of special causes are corrected to

prevent future occurrences.

A critical distinction between maturity levels 3 and 4 is the predictability of process
performance. At maturity level 4, the performance of processes is controlled using
statistical and other quantitative techniques, and is quantitatively predictable. At

maturity level 3, processes are typically only qualitatively predictable.
Maturity Level 5: Optimizing

At maturity level 5, an organization continually improves its processes based on a

quantitative understanding of the common causes of variation inherent in processes.

Maturity level 5 focuses on continually improving process performance through
incremental and innovative process and technological improvements. Quantitative
process improvement objectives for the organization are established, continually
revised to reflect changing business objectives, and used as criteria in managing
process improvement [19]. The effects of deployed process improvements are

measured and evaluated against the quantitative process improvement objectives.

A critical distinction between maturity levels 4 and 5 is the type of process variation

addressed. At maturity level 4, the organization is concerned with addressing special

28



causes of process variation and providing statistical predictability of the results.
Although processes may produce predictable results, the results may be insufficient
to achieve the established objectives. At maturity level 5, the organization is
concerned with addressing common causes of process variation and changing the
process (to shift the mean of the process performance or reduce the inherent process
variation experienced) to improve process performance and to achieve the

established quantitative process improvement objectives.

2.2.6 Process Areas and their Relationships

Process areas can be grouped into four categories [15]. These areas often interact and

have an effect on one another regardless of their defined group:

e Process Management

e Project Management

e Engineering

e Support

Process Management

Process Management contains the cross-project activities related to defining,
planning, deploying, implementing, monitoring, controlling, appraising, measuring,
and improving processes. It includes Organizational Process Focus (OPF),
Organizational Process Definition (OPD) and Organizational Training (OT) process

areas.

29



Sanior -
mManagement dfgfp ./ —\ Traking for projects and
& '\ suppor groups In standard
oT | process and assels

I
.\ﬁ__/.

Stanzard
process and
olher assets

Crganlzation's

buBiness
oojechives

I

- - 1
/" Stardampmeess. work | Prgject Management,
! Suppor, and Enginsering
: Process areas

E"I'.IlI'CIFF"IEEﬂ slangards,
I_a'v:l other aszats.

ol

| OPD+IPPO | *!

| oFF
f Resounces and %
coordinalion \ _/ mprowement Information
—— —— {e.q., lessons learned,
dafa, and arracls)

Procass-mprovement proposals:
rricipation In defining, assessing
Nl depioying proces:

Figure 2.2: Process Management Process Areas [15]

The Organizational Process Focus (OPF) process area, as defined in the above Figure
2.2, helps the organization to plan, implement, and deploy organizational process
improvements based on an understanding of the current strengths and weaknesses of

the organization’s processes and process assets.

Candidate improvements are obtained through various means such as process
improvement proposals, measurement of the processes, lessons learned in
implementing the processes, and results of process appraisal and product evaluation

activities.

The Organizational Process Definition (OPD) process area establishes and maintains
the organization’s set of standard processes, work environment standards, and other
assets based on the process needs and objectives of the organization. These other
assets include descriptions of lifecycle models, process tailoring guidelines, and
process-related documentation and data. Projects tailor the organization’s set of
standard processes to create their defined processes. The other assets support
tailoring as well as implementation of the defined processes. Experiences and work
products from performing these defined processes, including measurement data,
process descriptions, process artifacts, and lessons learned, are incorporated as

appropriate into the organization’s set of standard processes and other assets[20] .

30



The Organizational Training (OT) process area identifies the strategic training needs
of the organization as well as the tactical training needs that are common across
projects and support groups. In particular, training is developed or obtained to

develop the skills required to perform the organization’s set of standard processes.

The main components of training include a managed training development program,
documented plans, personnel with appropriate knowledge, and mechanisms for

measuring the effectiveness of the training program.
Project Management

Project Management contains all project maintenance related process areas such as
Project Planning (PP), Project Monitoring and Control (PMC), and the Supplier
Agreement Management (SAM) process areas, as depicted in the following Figure

2.3.

Slatus, Issues, and resulis of process and
Comecihie SN F'".1 | [Broduct evalualions; measures and analyses

Comective action

Replan I
/
Winat to bullg ; -
| Status, lssuss, - . '
! and rasuits of iinat o do i Enginesring and Support |
[ reviews and Commilments | Process arsas i
{ montioang L :
/ \\ Plans /’,—”
'dEGEl. ement
nesds

. .
Product component requirements,
uJPF'"'ﬂf tecnnical lssuss, complztad proguct
agresmeant components, and Scoeplance reviews
and 26le
Suppher

Figure 2.3: Project Management Process Areas [15]

The Project Planning (PP) process area includes developing the project plan,
involving stakeholders appropriately, obtaining commitment to the plan, and
maintaining the plan. Planning begins with requirements that define the product and

project and the plan covers the various project management and development

31



activities performed by the project. These plans cover configuration management,

verification, and measurement and analysis.

The Project Monitoring and Control (PMC) process area includes monitoring
activities and taking corrective action. The project plan specifies the appropriate
level of project monitoring, the frequency of progress reviews, and the measures
used to monitor progress. Progress is determined primarily by comparing project
status to the plan, and corrective actions, including re-planning, are taken as

necessary.

The Supplier Agreement Management (SAM) process area addresses the portions of
work that are produced by suppliers. As such. the supplier is selected, and a supplier
agreement is established to manage the supplier. The supplier’s progress and
performance are tracked by monitoring selected work products and processes, and
the supplier agreement is revised as appropriate. Acceptance reviews and tests are

conducted on the supplier-produced product component.

Engineering

Engineering process area includes the complete end-to-end product engineering
process, as described in Figure 2.4. It includes Requirements Development (RD),
Technical Solution (TS), Product Integration (PI), Requirements Management

(REQM), Verification (VER), and Validation (VAL) process areas.

32



KEQM\ Requirements

|.'="c-1|.. ang product

| compenent requirements 1
A ] T
. o .
! Product / '
./ \ o PEmative soLsons / \\ .'x-'rpo'l i \ Product !
| RO I Customer
'\ / HJeq.JI'em=rls \\
A Producs components, work p'tljJﬂE
T vertficaon and validation reports

q——r

R = Raguiements D scp=ant
RECM = Fmpeisanmnts Marsga =t

TS = Taechs ksl Solutin
WAL = Vil dason /
WER = Verfioaten

Cuslomer nesss

— () / O
\_/

Figure 2.4: Engineering Process Areas [15]

The Requirements Development (RD) process area identifies customer needs and
translates these needs into product requirements. The set of product requirements is
analyzed to produce a high-level conceptual solution. This set of requirements is then
allocated to establish an initial set of product component requirements. Other
requirements that help define the product are derived and allocated to product

components.

The Requirements Development process area supplies requirements to the Technical
Solution (TS) process area, where the requirements are converted into the product
architecture, the product component design, and the product component itself (e.g.,

coding and fabrication).

Requirements are also supplied to the Product Integration (PI) process area, where
product components are combined and interfaces are verified to ensure that they

meet the interface requirements supplied by Requirements Development.

The Requirements Management (REQM) process area maintains the requirements. It
describes activities for obtaining and controlling requirement changes and ensuring
that other relevant plans and data are kept current. It provides traceability of

requirements from customer to product to product component. Requirements

33



Management ensures that changes to requirements are reflected in project plans,

activities, and work products.

The Technical Solution (TS) process area develops technical data packages for
product components that will be used by the Product Integration or Supplier
Agreement Management process area. Alternative solutions are examined with the
intent of selecting the optimum design based on established criteria. These criteria
may be significantly different across products, depending on product type,
operational environment, performance requirements, support requirements, and cost
or delivery schedules. The task of selecting the final solution makes use of the

specific practices in the Decision Analysis and Resolution process area.

The Technical Solution process area relies on the specific practices in the
Verification (VER) process area to perform design verification and peer reviews
during design and prior to final build. The Verification process area ensures that
selected work products meet the specified requirements. The Verification process
area selects work products and verification methods that will be used to verify work
products against specified requirements. Verification is generally an incremental

process and involves peer reviews.

The Validation (VAL) process area incrementally validates products against the
customer’s needs. Validation may be performed in the operational environment or in
a simulated operational environment. Coordination with the customer on the
validation requirements is an important element of this process area. The scope of the
Validation process area includes validation of products, product components,

selected intermediate work products, and processes.

The Product Integration (PI) process area contains the specific practices associated
with generating the best possible integration sequence, integrating product
components, and delivering the product to the customer. Product Integration uses the
specific practices of both Verification and Validation in implementing the product

integration process.

34



Support

The support process area mainly consists of Measurement and Analysis (MA),
Process and Product Quality Assurance (PPQA), and the Configuration Management
(CM) areas, as depicted in the following Figure 2.5.

CMMI for Developmant
verslon 1.2

s, Qualty and

; noncemplancs '\\'
£5U2E \
.

_. Wessuremsnts |
J,/"-F ™, and analyses !
1

i PRQA

| " All process areas
\ i I
\ / Infermagon | ;
— raeds L Frocesses and —

D e - work producss,
and siandards, and
proceduras

Configuratizn
Ibems and
charge

requests /
\

Baselnes and
audlt reports

A
W,

I‘-._._'_._._.-.-q

M4 = Mzazurement and Analysiz
CM = Comiguration Management
FPOA = Frocess and Froduct Cualky Assurance

Figure 2.5: Support Process Areas [15]

The Measurement and Analysis (MA) process area supports all process areas by
providing specific practices that guide projects and organizations in aligning
measurement needs and objectives with a measurement approach that will provide
objective results. These results can be used in making informed decisions and taking

appropriate corrective actions.

The Process and Product Quality Assurance (PPQA) process area supports all
process areas by providing specific practices for objectively evaluating performed
processes, work products, and services against the applicable process descriptions,
standards, and procedures, and ensuring that any issues arising from these reviews

are addressed.

The Configuration Management (CM) process area supports all process areas by
establishing and maintaining the integrity of work products using configuration
identification, configuration control, configuration status accounting, and
configuration audits. The work products placed under configuration management

include the products that are delivered to the customer, designated internal work

35



products, acquired products, tools, and other items that are used in creating and
describing these work products. Examples of work products that may be placed
under configuration management include plans, process descriptions, requirements,
design data, drawings, product specifications, code, compilers, product data files, and

product technical publications.

2.3 Practical Implementation

It have been researched about a model, which have adopted a CMMI approach and
developed a maturity model for SPI implementation in order to guide organizations
in assessing and improving their SPI implementation processes. The basis of this
model is the SPI literature and an empirical study. In the design of this maturity
model the concept have extended the concept of critical success factors (CSFs). The
model hasbeen conducted with 23 Australian practitioners. It has also analysed CSFs
and critical barriers using 50 research articles (published experience reports and case

studies) [16].

The Table 2.3 shows critical barriers to understand the nature of issues that
undermine the SPI implementation programmes. The results are in comparison with
the literature and an empirical study. The results show that most of the practitioners
in literature consider lack of resources a major critical barrier for the implementation
of SPI. The results also suggest that in practitioners’ opinion time pressure and
inexperienced staff can undermine the success of SPI implementation programmes. It
shows that practitioners would prefer to avoid organizational politics during the

implementation of SPI programmes [21].

36



Table 2.3: CSF’s identified through literature and empirical study [16]

CSFs identified through literature and empirical study

Success factors Occurrence in literature (n = 47) Occurrence in CSF interviews (n = 23)
Frequency Rank Frequency Yo Rank
Assignment of responsibility ol SPI 12 26 7 - - -
Clear and relevant SPI goals 12 26 7 = = =
Crealing process action teams 15 31 5 9 8
Encouraging communication and 10 21 9 22 6
collaboration
Experienced stafl 13 28 6 & 35 4
Facilitation - - - 6 26 5
Formal methodology - - - 8 35 4
Managing the SPI project 7 15 10 3 13 7
Process ownership 11 23 8 - - -
Providing enhanced understanding 7 15 10 - - -
Reviews 13 28 6 2 9 8
Reward schemes 7 15 10 - - -
Senior management commitment 31 66 1 15 65 1
SPl awareness - - - 12 52 2
Stall involvement 24 51 2 10 44 3
Stall time and resources 18 38 4 10 44 3
Tailoring improvement initiatives 7 15 10 2 9 8
Training and mentoring 23 49 3 15 65 1

Organizational politics is ranked highest in CSF interviews, i.e. 52%. Two new
critical barriers—lack of formal methodology and lack of awareness—have been
identified in our empirical study which have not been identified in the literature. The
second most cited criticalbarrier in CSF interviews is lack of support. The critical

barrier ‘‘lack of resources’’ is cited 35% in the CSF interviews.

Comparison of the critical barriers provides evidence that there are some clear
similarities and differences between the findings of the two sets. There are seven
barriers in common, i.e. inexperienced staff, lack of resources, lack of support,
negative or bad experiences, organizational politics, paperwork required and time

pressurc.

There are also a number of differences between the findings. For example,
“‘changing the mindset of management and technical staff’” and ‘‘staff turnover’’
have not been cited in our empirical study but these barriers are present in the
literature. Similarly, lack of awareness of SPI and lack of formal methodology are
critical in our empirical study but have not been identified through the literature. This
shows that practitioners, who took part in our study, are more concerned about SPI

awareness activities and implementation methodology [22]. This is because

e SPI is an expensive and long-term approach that takes a long time to realise

its real benefits. Hence, in order to get the support of management and

37



practitioners and to successfully continue SPI initiatives it is very important
to provide and maintain sufficient awareness of SPI within organizations

[23].

Formal methodology has also emerged because little attention has been paid
to the effective implementation of SPI initiatives. Studies show that 67% of
SPI managers want guidance on how to implement SPI activities, rather than
what SPI activities to actually implement. This new barrier suggests that in
practitioners’ opinion the lack of a formal SPI implementation methodology

can undermine the implementation of SPI programmes [24][25].

38



3. PRESENTATION OF THE THESIS

3.1 Subject of the Thesis

The solution is a software engineering process framework and implementation
tool. It provides a disciplined approach to assigning tasks and responsibilities within
a development organization. Its goal is to ensure the production of high-quality
software that meets the needs of its end users within a predictable schedule and

budget.
There are three central elements that define the product:

e The underlying set of philosophies and practices for successful software

development depending on CMMI.
e A process model repository, that includes all the versioned artifacts
e Automatic generated artifacts and traceability

If software development is a critical factor to the success of an organization, then the
implementation tool will help the organization to built a process management

framework. The implementation tool is developed with two primary groups of users:

e software development practitioners working as part of a project team,

including the stakeholders of those software development projects.

e process engineering practitioners, specifically software process engineers and

managers.

Software development practitioners can find guidance on what is required of them in
the roles defined in process framework. A practitioner working on an implementation
tool applied project is assigned to one or more of the roles defined in process

framework, where each role partitions a set of activities and artifacts that role is

39



responsible for. Those roles collaborate in terms of the detailed work that is required

to enact the workflow within an iteration.

Process engineers will have template process framework using the implementation
tool. The only thing, they have to is create new projects and users. They can also

work on defining, configuring, tailoring and implementing engineering processes.

3.2 Process Areas and CMMI Compliance

The process framework is designed to meet CMMI requirements. The Table 3.1

shows the compliance matrix between the created disciplines and CMMI process:

Table 3.1: CMMI & Process Framework Compliance List

CMMI PROCESS FRAMEWORK
Causal Analysis and Resolution N/A

Configuration Management Change Management
Decision Analysis and Resolution N/A

Integrated Project Management Project Management
Measurement and Analysis Project Management
Organizational Innovation and

Deployment Process Framework
Organizational Process Definition Process Framework
Organizational Process Focus Process Framework
Organizational Process Performance Process Framework
Organizational Training Process Framework
Product Integration Deployment

40



Project Monitoring and Control

Project Management

Project Planning

Project Management

Process and Product Quality Assurance

Test

Quantitative Project Management

Project Management

Requirements Development

Requirements Management

Requirements Management

Requirements Management

Risk Management

Project Management

Supplier Agreement Management

N/A

Implementation, Analysis &

Technical Solution Design
Validation Test
Verification Test

3.3 Traceability Property

3.3.1 Requirements Management

The purpose of Requirements Management is to manage the requirements of the
project's products and product components and to identify inconsistencies between
those requirements and the project's plans and work products. Requirements
Management has one specific goal: to manage requirements and identify
inconsistencies with plans and work products. To manage requirements, the person
or team that receives them needs to develop an understanding of what they mean
before doing anything with the requirements. It should obtain a commitment from the
people who implement the requirements. Once the requirements are received and

understood, and a commitment is obtained, all changes to the requirements should be

41




managed, including recording change histories and evaluating change impacts. The
project should provide for bidirectional traceability of the requirement and the
associated plans and work products. Tracing the requirements provides a better basis
for determining the ramifications of changes, and it ensures that all requirements
have a parent and that the product design covers all high-level requirements. Finally,
the project should identify inconsistencies between the requirements and the project
plans and work products. Any corrective action required to fix inconsistencies is
accomplished in the requirements development process, the project planning process,

or possibly other processes.

3.3.2 Project Management

The tracebility part of Project Management is Project Monitoring and Control. The
Purpose of Project Monitoring and Control is to provide an understanding of the
project's progress so that appropriate corrective actions can be taken when the
project's performance deviates significantly from the plan. It has two specific goals:

one on monitoring actual performance, and another on managing corrective actions.

3.3.3 Analysis & Design and Implementation

The purpose of Technical Solution is to design, develop, and implement solutions to
requirements. Solutions, designs, and implementations encompass products, product
components, and product-related life-cycle processes either singly or in combinations
as appropriate. Technical solution has three specific goals that address selecting
product-component solutions, developing the design, and implementing the design.
In the first goal—selecting product-component solutions alternative solutions are
developed and analyzed, and the one that best satisfies the criteria is selected. The
selected alternative may be used to develop more detailed requirements in the
“Requirements Management” process area or designed in the second goal of
Technical Solution. After the product components are designed, they are
implemented together with support documentation in the third goal of Technical

Solution.

42



3.3.4 Testing

The purpose of Testing is to demonstrate that a product or product component fulfills
its intended use when placed in its intended environment. Testing has two specific
goals that address preparing for validation and validating the product or product
components. The validation practices are similar to those used in verification, but the
two process areas focus on different topics. Validation addresses those activities
needed to show that a product fulfills its intended use when it is placed in its
intended environment, whereas verification shows that the work products meet their

specified requirements.

3.3.5 Change Management

The purpose of Change Management is to establish and maintain the integrity of
work products using configuration identification, configuration control,
configuration status accounting, and configuration audits. Change Management has
three specific goals that address establishing baselines, tracking and controlling
changes, and establishing the integrity of baselines. It is assumed that it can occur at

multiple levels of granularity and formality.

43



4. THE IMPLEMENTATION PROCESS

4.1 Process Management Framework

4.1.1 Implementation Solution

The solution is a software engineering process framework and implementation
tool. It provides a disciplined approach to assigning tasks and responsibilities within
a development organization. Its goal is to ensure the production of high-quality
software that meets the needs of its end users within a predictable schedule and

budget. [26].

The Solution has a JAVA based graphical user interface, which enables to visualize
the process framework. The produced artifacts are stored in a repository. The

repository consists of an Oracle database and a file server.

4.1.2 Process Structure

A process is a set of partially ordered steps intended to reach a goal. In software
engineering, the goal is to build a software product or to enhance an existing one. In
process engineering, the goal is to develop or enhance a process. In the
implementation tool, these are organized into a set of disciplines that further define

the workflows and other process elements.

The implementation tool is a CMMI dependend process framework for object-
oriented software engineering. It describes a family of related software engineering
processes that share a common structure and a common process architecture. The
Implementation tool provides a disciplined approach to assigning tasks and

responsibilities within a development organization.

The Process Management category of CMMI model is directly related with the

process structure of the implementation tool. Each of the Process Management

44



process areas is strongly dependent on the ability to develop and deploy process and
supporting assets. Here the implementation tool can play an important role. This can
function as an additional organizational support asset and can help quantitative
project management and statistical management of critical sub-processes for both
projects and organization level. The organization analyses the process performance
data collected from the defined processes to develop a quantitative understanding of
product quality, service quality, and process performance of the organization’s set of

standard. The implementation tools “Process Structure” is explained below:
Disciplines:

A discipline is a collection of related activities that are related to a major area within

the overall project.
WorkFlows:

A collection of all roles, activities and artifacts constitute a process, but it is not easy
to understand in practical environment. To explain the structure in a better way, the
implementation tool describes meaningful sequences of activities that produce some
valuable result, and to show interactions between roles. A workflow is a sequence of

activities that produces a result of observable value.
Workflow Details:

The implementation tool’s process structure also includes workflow detail diagrams,
which show groupings of activities that often are performed together. These
diagrams show roles involved, input and output artifacts, and activities performed.

The workflow detail diagrams are there for the following reasons:

The activities of a workflow are neither performed in sequence, nor done all at once.
The workflow detail diagram shows how you often will work in workshops or team
meetings while performing a workflow. People typically work in parallel on more
than one activity, and look at more than one artifact while doing that. There are

several workflow detail diagrams for a discipline.

45



It becomes too complex to show input and output artifacts for all activities of a
discipline in one diagram. The workflow detail diagram allows to show activities and

artifacts together, for one part of a workflow at a time.

The disciplines are not completely independent of one another. The workflow detail
diagram can show a group of activities and artifacts in the discipline, together with

closely related activities in another discipline.
Activities:

Roles have activities that define the work they perform. An activity is something that

a role does that provides a meaningful result in the context of the project.

An activity is a unit of work that an individual playing the described role may be
asked to perform. The activity has a clear purpose, usually expressed in terms of
creating or updating some artifacts, such as a model, a class, or a plan. Every activity
is assigned to a specific role. The granularity of an activity is generally a few hours
to a few days, it usually involves one role, and affects one or only a small number of

artifacts.

Activities may be repeated several times on the same artifact, especially when going
from one iteration to another, refining and expanding the system, by the same role,

but not necessarily the same individual[27].
Artifacts:

Activities have input and output artifacts. An artifact is a work product of the
process. Roles use artifacts to perform activities, and produce artifacts in the course
of performing activities. Artifacts are the responsibility of a single role, making
responsibility easy to identify and understand, and promoting the idea that every
piece of information produced in the process requires the appropriate set of skills.
Even though one role may own the artifact, other roles will use the artifact, perhaps
even updating it if the role has been given permission to do so. Artifacts don’t have
to be documents. Many processes have an excessive focus on documents, and in
particular on paper documentation [28]. The most efficient approach to managing

project artifacts is to maintain the artifacts within the appropriate tool used to create

46



and manage them. When necessary, you may generate documents from these tools,
on a just-in-time basis. You should also consider delivering artifacts to the interested
parties inside and together with the tool, rather than on paper. This approach ensures
that the information is always up-to-date and based on actual project work, and it

should not require any additional effort to produce .

4.1.3 Discipline Details

4.1.3.1 Requirements Management
Introduction:

In Figure 4.1 “Requirements Management” discipline purpose is explained.

Configuration Disciplines

(== Requirements Managament Purpose
[ Intraduction|

[ Concepts The purpose of the Requirements discipline is:
e”leU_”_‘r_'DW B To establish and maintain agreement with the customers and other stakeholders on what
[ activities the system should do.

[ artitacts To provide system developers with a better understanding of the system requirements.
To define the boundaries of (delimit) the system.

To provide a basis for planning the technical contents of iterations.

To provide a basis for estimating cost and time to develop the system.

To define a user-interface for the system, focusing on the needs and geals of the users.

Figure 4.1: Requirement Management — Introduction

The purpose of the “Requirements Management” discipline is:

47



e To establish and maintain agreement with the customers and other

stakeholders on what the system should do.

e To provide system developers with a better understanding of the system

requirements.
e To define the boundaries of the system.
e To provide a basis for planning the technical contents of iterations.
e To provide a basis for estimating cost and time to develop the system.

e To define a user-interface for the system, focusing on the needs and goals of

the users.

e To achieve these goals, it is important, first of all, to understand the definition
and scope of the problem which is trying to solve with this system. The
Business Rules, Business Use-Case Model and Business Analysis Model
developed during Business Modeling will serve as valuable input to this
effort. Stakeholders are identified and Stakeholder Requests are elicited,

gathered and analyzed.
Concepts:

The main concepts are listed in this menuitem as keywords. In Figure 4.2

“Requirements Management” disciplines concepts are explained.

48



Configuration Disciplines

T Requirements hanagement A requirement is defined as "a condition or capability to which a system must conform”.

[ ntraduction There are many different kinds of requirements. One way of categorizing them is described as the FURPS+

0 Concepts| model using the acronym FURPS to describe the major categories of requirements with subcategories
@ [ wiorkflow as shown below. .
[ Activities Functionality Reliability Eer!ormance Supportability
i B feature sets B frequency and severity of failure S B testability
[ Ariitacts s B recoverabilty B cficiency B extensibility
5 segurity B predictability B availahility L] ada_ptab\lit)._r_
= B accuracy B accuracy B maintainability
Usability B mean time between failure (WTBF) ™ throughput B compatibility
B human factors B response time B configurability
B zesthetics B recovery time B seiceability
B consistency in the user interface B resource usage B installability
B gnline and context-sensitive help B |ocalizability
B wizards and agents
B yser documentation
B training materials

Design Requirement
A design requirement, often called a design constraint. specifies or constrains the design of a system.
Implementation Requirement Phvsical Requirement

B required standards B material
B implementation languages B shape

B policies for database integrity L size

B resource limits B weight

B gperation environments

Interface Requirement
B an external item with which a system must interact
B constraints on formats, timings, or other factors used by such an interaction

Figure 4.2: Requirement Management — Concepts
Workflow:

The main flowchart of this discipline is shown on this menu item. There are two
ways to see the details. Project members could work on the flowchart by clicking on
the activities listed on the screen or selecting from the submenu. In Figure 4.3,

workflow details are shown.

49



Configuration Disciplines

=2 Requirements Management
D Intraduction
D Concepts
9 O3 Workiow|
D Analyze the Prablem
D Understand StakeHolder
[} Defing the System
D Manage the Scope ofthe
D Refine the System Definil
D Manage Changing Requi
[y activities
[ artitacts

4

[Mews System] ) [Existing System]

Analyze the Understand
Problem Stakeholder Needs
[Incorr ect
problem]

[Addressing
correct problem]

[Can't do all
‘@ the work]
Define the Managethe Scope [Wark
System of the System in scope]

Refine the
System Definition

Manage
Requi

[Mew Input]

Changing
rements

Figure 4.3: Requirement Management — Workflow

On Figure 4.4 “Analyze the Problem” workflow details are shown.

50




LEX

Configuration Disciplines
=2 Requirements Management
D Intraduction
D Concepts
@ [ Warkflow
0 A.h.é.\yze the Problem:
D Understand StakeHolder
[} Defing the System /
D Manage the Scope ofthe  customer
D Refine the System Defini

Gl Software Requirements
PRy Devdopmert  Management

iy
[ g

=,

k Capture a Requirements
Comman Management

ﬂ Vacabulary Plan ad S

D Manage Changing Requi . System > p
e Analyst e .
[} ctivities ' Find Actars Develop
7 and Use Cases AEiAn 5
D Arifacts EndUser % Business
f \ Rule
@ ¥ \
Other “Msion Use-Case Model  Sakeholder
Stakeholder (actors only) Requests

Figure 4.4: Requirement Management - Workflow — Analyze the Problem

The first step in any problem analysis is to make sure that all parties involved agree
on what the problem is that needs to be solved-or opportunity that will be realized-by
the system. In order to help avoid misunderstandings, it is important to agree on
common terminology which will be used throughout the project. Starting early in the
lifecycle, project terms should be defined in a glossary which will be maintained

throughout the life of the project[31].

In order to fully understand the problems that need to be addressed, it is very
important to know who the stakeholders are in the conceptual vision for the project.
It should be noted that some of these stakeholders-the users of the system-will be

represented by actors in your use-case model.

The requirements management plan is used to provide guidance on the requirements
artifacts that you should develop, the types of requirements that should be managed
for the project, the requirement attributes that should be collected and the approach

to requirements traceability that will be used in managing the product requirements.

51



The primary artifact in which you capture the information gained from your problem
analysis is the vision, which identifies the high-level user or customer view of the
system to be built. In the vision, initial high-level requirements identify the key
features it is desired that the appropriate solution will provide. These are typically
expressed as a set of high-level features the system might possess in order to solve

the most critical problems.

Key stakeholders should be involved in gathering the set of features to be considered,
which might be gathered in a requirements workshop. The features can then be
assigned attributes such as rationale, relative value or priority, source of request and

so on, so that dependencies and work plans can begin to be managed.

To determine the initial scope for your project, the boundaries of the system must be
agreed upon. The system analyst identifies users and systems - represented by actors

- which will interact with the system.

In Figure 4.5, “Understand Stakeholder Needs” workflow details are shown.

£

Configuration Disciplines

3 Requirements Managerment

[ ntroduction
eraion @
[ concenpts Pl i ﬁf‘ég?i"ferﬂf
@ Cwarkfow @] \\ ’/ R

(refined)

Customer

D Define the System . Q %zmr‘z: n\;:ien\?‘p ,_
D Manage the Scope ofthe 4 g Vaeabulary - A
; ] Wanage
Refine the System Defini '

D ¥ : § Syetem D D Dependencies
D Manage Changing RequiEnd User‘ Analyst \\

o Elicit Stak ehald i
[ scties W D
[ artifacts . . & o
Other / . Use Case Moddl

Stahcholder ~

D Analyze the Problem ' i /49%@5
[ Understand StakeHalder f b > / altriputes

fsion
(refined)

> L,
= =
= Requirements Supplementary
Storyboard Czjj‘eg; e B Aripues Specifications
(appraved) Requests

Figure 4.5: Requirement Management — Workflow — Understand Stakeholder Needs

52



This workflow detail addresses collecting and eliciting information from the
stakeholders in the project in order to understand what their needs really are. The
collected stakeholder requests can be regarded as a "wish list" that will be used as
primary input to defining the high-level features of your system, as described in the
vision, which drive the specification of the software requirements, as described in the

use-case model, use cases and supplementary specifications.

This activity is performed during iterations in the inception and elaboration phases,
however additional stakeholder requests will continue to be gathered throughout the
project via change requests submitted and approved in accordance with your projects

“Change Management” process.

The main objective is to elicit stakeholder requests using such input as interviews
business rules, enhancement requests, and requirements workshops. The primary
outputs are collections of prioritized features and their critical attributes, which will

be used in defining the system and managing the scope of the system.

This information results in a refinement of the vision artifact, as well as a better
understanding of the requirements attributes. Also, during the enactment of this
workflow detail you may start discussing the functional requirements of the system
in terms of its use cases and actors. Those non-functional requirements, which do not
fit appropriately within the use-case specifications, should be documented in

supplementary specifications.

Another important output is an updated glossary of terms to facilitate communication

through the use of a common vocabulary among team members.

In Figure 4.6, “Define the System” workflow details are shown.

53



Cunf guratlnn D|

nes

Ij Reqwrements Management
D Intraduction
D Concepts
@ [ Warkflow
D Analyze the Prablem
D Unclerstand StakeHolder
O Deﬂne the System
D Manage the Scope ofthe
D Refine the System Defini
D Manage Changing Requi
[y activities
[ artitacts

B B B B

Business Vision Saheholder Supplementary Require merts

Rule \\ \ Requests Speuflcdlons Ma—m amant
N J @
Q / Rapﬂl'.urement-
i Develup Manage — |
Wision Dependencies
Sgrstem Reguirements

Anakyst ributes
fref\ne d)
Find Actors
%i&:‘;i: and Use Cases ﬁ
Vocabulary
L

Use-Case Model
7 “a T \ \\ Se(reaffr?ed) 2
=

Glossary Gossar Mision  Use-CaseModel ~ Use Case
(refine (refined) (outlined)

Figure 4.6: Requirement Management — Workflow — Define the System

The workflow detail addresses:

e Aligning the project team in their understanding of the system.

e Performing a high-level analysis on the results of collected stakeholder

requests.

e Refining the vision to capture the key features that characterize the system.
e Refining the use-case model to include outlined use cases.

e Beginning to capture the results of the requirements elicitation activities in a

more structured manner.

The activities that focus on problem analysis and understanding stakeholder needs
create early iterations of key system definitions including the features defined in the

vision and a first outline of the detailed requirements. In defining the system the

54




focus on identifying actors and use cases are more completely, and the global non-
functional requirements are expanded as defined in the supplementary

specifications.

Typically, this is primarily performed in iterations during the inception and
elaboration phases, however it may be revisited as needed when managing scope and
responding to changing requirements, as well as other changes in the project

conditions.

In Figure 4.7, “Manage the Scope of the System” workflow details are shown.

Configuration Di
=2 Requirements Management

[ introduction iﬁ -

D Concepts “ision %%%gliﬁn;m:g Use-Case Model  Use Case
@ [ wWarkflow e T \ / ¥
Software Architecture
[} analyze the Problem Q\\\\: % Document
= {use-case view)
[} Understand StakeHolder — -
[ Define the Systern g ﬂ s s e ey,
P Requirements Software
D IManage the Scope ofthe ributes Architect -
[} Refine the System Defini e
¥ ‘5 /" (refine d)
D Manage Changing Requi . Q D D e
[ activities j Z] b - .
EvElD| lanage T o -
D Arifacts Endiser s it Dependencies B
ystem
Analyst by

Vision
(refined)

Customer '

Other
Stakeholder

Change

£ 7

Requirement =
Sakeholder
Requests Mmg :_‘me"t

Reque:
(appraved)

Figure 4.7: Requirement Management — Workflow — Manage the Scope of the
System

This workflow detail addresses:

e Prioritizing and refining the input to the selection of features and

requirements that are to be included in the current iteration.

55



e Defining the set of behavioral scenarios, for one or more use cases, that

represent some significant central functionality.

e Defining how traceability will be maintained, including which requirement

attributes and traceability relationships to maintain.

The scope of a project is defined by the set of requirements allocated to it. Managing
project scope to fit the available resources (time, people, and money) is key to
managing successful projects. Managing scope is a continuous activity that requires
iterative or incremental development, which breaks project scope into smaller more

manageable pieces.

Use requirement attributes, such as priority, effort, and risk, as the basis for
negotiating the inclusion of a requirement is a particularly useful technique for
managing scope. Focusing on the attributes rather than the requirements themselves

helps desensitize negotiations that are otherwise contentious.

It is also helpful for team leaders to be trained in negotiation skills and for the project
to have a champion in the organization, as well as on the customer side.
Product/project champions should have the organizational power to refuse scope
changes beyond the available resources or to expand resources to accommodate

additional scope.

Project scope should be managed continuously throughout the project. A better
understanding of system functionality can be formulated at the point that most actors
and use cases have been identified and outlined. Non-functional requirements, which
either do not fit in the use-case model or are general across multiple use cases,
should be documented in the supplementary specifications. The system analyst role
is responsible for determining values of priority, effort, cost, risk values etc., from
the appropriate stakeholders, which are collected in the repository of requirements
attributes. These will be used by staff in the project manager role when planning each
iteration and will enable staff in the software architect role to identify the
architecturally significant scenario's or complete use cases, which will help define

the use-case view of the architecture.

In Figure 4.8, “Refine the System Definition” workflow details are shown.

56



LEX

Configuration Disciplines
] Requirements Management - 1
[ Introduction
i R et
[ concepts Glossary Ry mes ﬁ:ﬁﬁggs 3 -
@ T wWorkflow \ PI’ /, :
[ Analyze the Problem D / e

D Understand StakeHolder

[ Define the System B Bedi 2 AR s

Requirements Use Case R equirements

D Manage the Scope ofthe  Specifier

Supplementary

T 3 Specifications
D ;Reﬂne the System Defini /’ t '\ \ p(detailed)
[} manage Changing Regqui O m
[y activities ¢ S
" Stakeholder  Vision Supplementary Use Case Requirements
D Arifacts Requests Specifications  (outlined) Specification

Figure 4.8: Requirement Management — Workflow — Refine the System Definition
The workflow detail addresses:
e Describing the use case flow of events in detail.
e Detailing Supplementary Specifications.
e Developing a Software Requirements Specification, if more detail is needed,

This workflow detail furthers the understanding of project scope reflected in the set
of prioritized product features that it is believed can be achieved by fairly firm
budgets and dates. The output is a more in-depth understanding of system
functionality expressed in refined, detailed requirements in specification artifacts and
outlined behavioral prototypes. The specification artifacts can take the form of
detailed use cases and Supplementary Specifications and in some cases a formal
Software Requirements Specification may be developed. This work typically starts

by reviewing the existing actor definitions and if necessary least briefly describing

57



the actors, then continues with detailing the use cases that have been previously

outlined for each actor.

Whenever the requirements specifications are changed, regular reviews and updates
to the associated requirements attributes should be done as shown in the Manage

Changing Requirements workflow detail.

In Figure 4.9, “Manage Changing Requests” workflow details are shown.

Configuration Disciplines

=2 Requirements Management =5

Dlntroduction igﬂb .\/4/'

D Concepts terdion  UseCas “'bfe' Reqrfireer;'neer;t“s Risk List I?V%ziigall" Test Mlan
@ IjWDI’kﬂDW Plan {restructured) fan |
{
D Analyze the Problem “\\ ‘{
[} Understand StakeHalder Q [—\ D
D Define the System ol e
! Structure the Manage Hiir Bets

D Manage the Scope ofthe Use-Gase hodel  pependencies - riﬁbutes
[} Refine the Systern Defini ‘{ \ Lo

D :Manage Changing Requi
[ Activities o | o
: Requiremerts Msion
Use €
[ artacts ' Use Case Modd  Supplementary P HEUES B
. Spedfications Pk / ==, G
Customer . \ / 5
: rs
@ O \ D / Saleholder S92
& .

equest

ﬂ Requests (approved)
End U Technical pevien Lo
nd User echnica CET eview
. Reviewer /q »\\ Record
Other
Stakehaolder teration Flan Glossary User-Interface

Prototype

Figure 4.9: Requirement Management — Workflow — Manage Changing Requests

This workflow detail addresses:

e Evaluating requested changes and determining their impact on the existing

requirement set.

e Structuring the use-case model.

e Setting up appropriate requirements attributes and traceability relationships.

58



e Verify that the results of the requirements work conform to the customer's

view of the system.

Changes to requirements naturally impact downstream artifacts. For example the
models produced in the course of analysis & design work, the tests developed to
validate that the requirements have been met, and the end-user support materials. The
traceability relationships identified in the manage dependency activity of this
discipline, identify the relationships between requirements and other artifacts. These

relationships are the key to understanding the impact of requirements change.

Another important consideration is the tracking of requirement history. By capturing
the nature and rationale of requirements changes, reviewers (in this case the role is
played by anyone on the software project team whose work is affected by the

change) receive the information needed to respond to the change properly.

Regular reviews, along with updates to the requirement attributes and dependencies,

should be done whenever the requirements are updated.
Activities:

In figure xx, acitivites of the “Requirements Management” discipline are shown.
The details are explained in the workflow details meuitem. This view is added to the

menuitems to list the roles’s responsibilities in a clear way.
y

In Figure 4.10, workflow activities are shown.

59



Configuration Disciplines

=2 Requirements Management

st o D D O D
[ concepts Q Capture a Develap Develop Elicit Stakehalder

Common Requirements Vision Reguests
@ T wiorkflow [ Vacahulary Management
D Analyze the Problem System Flan
D D
D Understand StakeHolder
Find Actors Manage Stiucture the
D Define the System and Use Cases Dependencies  seCase Model

D Manage the Scope ofthe
[} Refine the System Defini O Q
D Manage Changing Requi & 3 B > '@ ﬂ ! >
activitios| v  Detil D etail th ;
0 Activities ' Prioritze " el it R eview

" Use Cases  Requiremen echnical Requirements
A Softwa
D Hifacts ? nit Ll Specifier Requirements s

Figure 4.10: Requirement Management— Activities
Artifacts:

In Figure 4.11, artifacts of the “Requirements Management” discipline are shown.
The workflow details are explained in the workflow details meuitem. This view is

added to the menuitems to list the produced artifacts.

60



EEX
Configuration Disciplines
=2 Requirements Management
D Intraduction Q =
[ concepts 5 @

Q IjWDI’kﬂDW Requiremernts Glossary Raquirémeﬂts Supplementary

System Management Attributes Specifications
[} analyze the Problem Analyst Plan
[} Understand StakeHalder - @
[} Defing the System . =
Stakeholder Vision Use-Case Storyboard
D Manage the Scope ofthe Requests Model

D Refine the System Defini
D Manage Changing Requi

O X
[ activities B - H =

D AﬂlfaCiS Requiremerts Use Case Soft ware Use- Case Software
Specifier Requirements Package Requirement
Specification

Figure 4.11: Requirement Management— Artifacts

A vision document, a use-case model, use cases and Supplementary Specification are
developed to fully describe the system - what the system will do - in an effort that
views all stakeholders, including customers and potential users, as important sources

of information (in addition to system requirements).

Stakeholder requests are both actively elicited and gathered from existing sources to

get a "wish list" of what different stakeholders of the project (customers, users,
product champions) expect or desire the system to include, together with information

on how each request has been considered by the project [32].

The vision document provides a complete vision for the software system under
development and supports the contract between the funding authority and the
development organization. Every project needs a source for capturing the
expectations among stakeholders. The vision document is written from the
customers' perspective, focusing on the essential features of the system and

acceptable levels of quality. The vision should include a description of what features

61



will be included as well as those considered but not included. It should also specify
operational capacities (volumes, response times, accuracies), user profiles (who will
be using the system), and inter-operational interfaces with entities outside the system
boundary, where applicable. The vision document provides the contractual basis for

the requirements visible to the stakeholders.

The use-case model should serve as a communication medium and can serve as a
contract between the customer, the users, and the system developers on the

functionality of the system, which allows:

o Customers and users to validate that the system will become what they

expected.
e System developers to build what is expected.

The use-case model consists of use cases and actors. Each use case in the model is
described in detail, showing step-by-step how the system interacts with the actors,
and what the system does in the use case. Use cases function as a unifying thread
throughout the software lifecycle; the same use-case model is used in system

analysis, design, implementation, and testing.

The supplementary specifications are an important complement to the use-case
model, because together they capture all software requirements (functional and
nonfunctional) that need to be described to serve as a complete software

requirements specification.

A complete definition of the software requirements described in the use cases and
supplementary specifications may be packaged together to define a software
requirements specification (SRS) for a particular "feature" or other subsystem

grouping.

A requirements management plan specifies the information and control mechanisms
which will be collected and used for measuring, reporting, and controlling changes to

the product requirements.

Complementary to the above mentioned artifacts, the following artifacts are also

developed:

62



e Glossary

e Storyboard

The glossary is important because it defines a common terminology which is used

consistently across the project or organization.

The storyboards may be generated during requirements elicitation, which are done in
parallel with other requirements activities. They provide important feedback

mechanisms in later iterations for discovering unknown or unclear requirements.
4.1.3.2 Analysis & Design:
Introduction:

In Figure 4.12 “Analysis & Design” disciplines purpose is explained.

Configuration Disciplines

[ Analysis & Design Purpose
D Introduction
[ concepts The purposes of Analysis & Design are:
& workflow B To transform the requirements into a design of the systam-to-be.
[} ctivities B To evolve a robust architecture for the system.
D Artifacts B To adapt the design to match the implementation environment, designing it for performance.

Figure 4.12: Analysis & Design — Introduction

The purposes of Analysis & Design are:

63



e To transform the requirements into a design of the system-to-be.
e To evolve a robust architecture for the system.

e To adapt the design to match the implementation environment, designing it

for performance.
Concepts:

The main concepts are listed in this menuitem as keywords. In Figure 4.13 “Analysis

& Design” disciplines purpose is explained.

Configuration Disciplines

[ Analysis & Design Design must define enough of the system so that it can be implemented unambiguously. What constitutes
[ Introduction enough varies from project to project and company to company.
c 1t : 2
&% TP In some cases the design resembles a sketch, elaborated only far enough to ensure that the implementer
Wo.rl.d.luw can proceed (a "sketch and code” approach). The degree of specification varies with the expertise of the
[ Activities implementer, the complexity of the design, and the risk that the design might be misconstrued.
[ Aritacts

In ather cases. the design is elaborated to the point that the design can be transformed automatically into
code. This typically involves extensions to standard UML to represent language and/or environment specific
semantics.

The design may also be hierarchical, such as the following:
B 3 high level design model which sketches an ovenview of the overall system
B 3 subsystem specification model which precisely specifies the required interfaces and behaviour of
major subsystems within the system
B 3 detailed desian model for the internals of subsystems

High Level Design Model and Detailed Design Model

In this approach, there are two levels of design model maintained. Each high level design element is an
abstraction of one or more detailed elements in the round-tripped model. For example, a design class may
map to one "head" class and several "helper” classes, just as in the "sketch and code” approach described
previously. Traceability from the high level design model elements to round-trip model elements can help
maintain consistency between the two models.

Although this can help abstract away less important details, this benefit must be balanced against the effort
required to maintain consistency between the models.

Single Evolving Design Model
In this approach, there i1s a single Uesign Model. Initial sketches of design elements evolve to the point where
they can be synchronized with code. Diagrams, such as those used to describe design use-case
realizations, initially reference sketched design classes, but eventually reference language-specific classes.
High level descriptions of the design are maintained as needed, such as:

B diagrams of the logical structure of the system,

B subsystem/component specifications,

B design patterns / mechanisms.
Such a model is easier to maintain consistent with the implementation.

Figure 4.13: Analysis & Design — Concepts
Workflow:

The main flowchart of this discipline is shown on this menuitem. There are two ways
to see the details. Project members could work on the flowchart by clicking on the

activities listed on the screen or selecting from the submenu.

64



Configuration Disciplines

=2 Analysis & Design
D Intraduction

D Concepts [Early
B | Elaboration [Inception
9 T3 warkiow| teration] fteration [ Optional]]

D Ferform Architectural Syn
D Define 3 Candidate Archi
D Refine the Architecture Define a Candidlate
D Analyze Behaviar grentisdan
D Design Components
D Design the Databaze

[y activities

[ artitacts

Perform
Architectura
Synthesis

Analyze Behavior

Refinethe
Architecture

[Optional]

Design Design the
Components Daabaze

Figure 4.14: Analysis & Design — Workflow

In figure 4.15, “Perform Architectural Synthesis” workflow details are shown.

65



Configuration Di

[ Analysis & Design :_\!
D Intraduction
Glossary
D Concepts E
9 Dl wordiow A= .
[} Perfarm Architectural Syn %‘g’;’c‘i:’é‘:}‘ﬁg d b . —
3 g - i Use-C =x b,
[} Define a candidate Archi (ke,‘gé‘,f{,‘;‘,ﬂ,’;ff@)"“' Todal R :J‘J' %
: (preliminary) Architecture Architectoral
D Refine the Architecture | ar pitacturally Significant O(SYOUCS";"'L?;“&S) Afi?{:;ﬁfe Proof-of- Concept  Business
[} analyze Behaviar \Requiramants / . Lt
[} Design Components \ / \ /
[} Design the Database O
[y activities U b D D
[ artifacts Architectural Corstuct Ass ess Viabilty
Sofware Analys i Progfatl f i i
Architect root-ot-C oncep: Proof-of-Concept

' .\/I'II-/. -:'t' l
Softwar

Praject =
Specific =
Guiddlines 7 e
Tinitial) Desin architecre  DSPIOYTENt | poay
(oveniesw) [Eﬂggﬂeeg (averviaw) Record
Architectural Design
Ove rview

Figure 4.15: Analysis & Design — Workflow - Perform Architectural Synthesis

This workflow detail is about showing that there exists, or is likely to exist, a
solution which will satisfy the architecturally significant requirements, thus showing

that the system, as envisioned, is feasible.

As with “Workflow Detail: Define a Candidate Architecture”, shown in Figure 4.16,
these activities are best carried out by a small team staffed by cross-functional team
members. Issues that are typically architecturally significant include performance,
scaling, process and thread synchronization, and distribution. The team should also
include members with domain experience who can identify key abstractions. The
team should also have experience with model organization and layering. From these

inputs, the team will need to be able to synthesize a model, or even a prototype, of a

solution.

66



Configuration Disciplines

[ Analysis & Design E [ —
[ Introduction E P b \.I'I/.
Concepts Supplementar Use-Case Design
D o Specifications ooy IR gE iodel Gadree
@ T3 'workflow Document
D Perform Architectural Syn /(use'cm i
[} Define a Candidate Archi Q D 9
[} Refine the Architecture D Architectural ==
X Analysis Reference
D Analyze Behavior Software Architecture
; Archite ct
D Design Components / '/'
[} Design the Database o
[ activit B I L ] |. t
epl oy e
Activities E g Lyl
D Arifacts . Design
Project Software Madel
Specific  architecture e
Guidelines Do cumert "
(updated) e and”
o Analysis
L / Use-Case
// Realization
O % Analysis
Class
Use Case (architecturally
FET e Analysis '\ signfiicant)
Use-Case
Supplementary Madel

Glossary Specifications

Figure 4.16: Analysis & Design — Workflow - Define a Candidate Architecture

This workflow detail has the following goals:

e Create an initial sketch of the architecture of the system
o Define an initial set of architecturally significant elements to be used
as the basis for analysis
o Define an initial set of analysis mechanisms
o Define the initial layering and organization of the system
o Define the use-case realizations to be addressed in the current
iteration
o Identify analysis classes from the architecturally significant use cases
o Update the use-case realizations with analysis class interactions

67



The work is best done in several sessions, perhaps performed over a time, with
iteration between Architectural Analysis and Use-Case Analysis. Perform an initial
pass at the architecture in Architectural Analysis, then choose architecturally
significant use cases, performing Use-Case Analysis on each one. After each use
case is analyzed, update the architecture as needed to reflect adaptations required to
accommodate new behavior of the system and to address potential architectural

problems which are identified.

Where the architecture already exists, change requests may need to be created to
change the architecture to account for the new behavior the system must support.
These changes may be to any artifact in the process, depending on the scope of the

change.

In Figure 4.17, “Refine Architecture” workflow details are shown.

& Design

s
’ —& =, 8 |7y
[ introduction .\J - \.g,_,l
ik
D Concepts Software Design  Implementaticn
t Project Model Model
& T workflow Architecture  Specific odle
. Document Guiddines =) ]

[y Perfarm Architectural Syn : B -/;’

[} Define a Candidate Archi E T8 \"'-
1 Analysis Deployment
| | Supplementar,

D Refine the Architecture Sppeemwimsy Model Wodel

D Analyze Behaviar

D Design Components N

[} Design the Datahase O I:/ D D
|dentify Design |dentify Design Incorporate

D Activities D Mechanis ms Elements Existing Design

Elements

[ artitacts b
Software
Structure the Describe Run-

Archite ct

Implementation Madel Time Archite cture D es cribe
(from Implementation) Distribution

v
Soft ware
Architecture

Document
(updated)

® D |

g 28—
Review

Technical the Revizw

e Architecture Recaord
ll‘
Risk List

Project Supplementary
Specific Specifications
Guidelines

Figure 4.17: Analysis & Design — Workflow — Refine Architecture

This Workflow Detail:

68



e Provides the natural transition from analysis activities to design activities,

identifying:
o appropriate design elements from analysis elements
o appropriate design mechanisms from related analysis mechanisms

e Describes the organization of the system's run-time and deployment

architecture

e Organizes the implementation model so as to make the transition between

design and implementation seamless
e Maintains the consistency and integrity of the architecture, ensuring that:

o new design elements identified for the current iteration are integrated

with pre-existing design elements.

o maximal re-use of available components and design elements is

achieved as early as possible in the design effort.

The work is best done in several sessions. The initial focus will be on the activities
“Activity: Identify Design Mechanisms” and “Activity: Identify Design Elements”,
with a great deal of iteration with the “Activity: Incorporate Existing Design
Elements” activity to make sure that new elements do not duplicate functionality of

existing elements.

As the design emerges, concurrency and distribution issues are introduced in the
activities “Activity: Describe the Run-time Architecture” and “Activity: Describe
Distribution”, respectively. As these issues are considered, changes to design

elements may be required to split behavior across processes, threads or nodes.

As the individual models are refined to incorporate the architectural decisions, the
results are documented in respective view sections in the Software Architecture

Document. The resulting architecture is reviewed [33].

These activities are best carried out by a small team staffed by cross-functional team

members. Issues that are typically architecturally significant include usability,

69



performance, scaling, process and thread synchronization, and distribution. The team
should also include members with domain experience who can identify key
abstractions. The team should also have experience with model organization and
layering. The team will need to be able to pull all these disparate threads into a

cohesive, coherent architecture.

Because the focus of the architecture effort is shifting toward implementation issues,
greater attention needs to be paid to specific technology issues. This will force the
architecture team to shift members or expand to include people with distribution and
deployment expertise. In order to understand the potential impact of the structure on
the implementation model on the ease of integration, expertise in the software build

management process is useful to have.

At the same time, it is essential that the architecture team not be composed of a large
extended team. A strategy for countering this trend is to retain a relatively small core
team with a satellite group of extended team members that are brought in as
"consultants" on key issues. This structure also works well for smaller projects where
specific expertise may be borrowed or contracted from other organizations; they can

be brought in as specific issues need to be addressed.

In Figure 4.18, “Analyze Behavior” workflow details are shown.

70



Configuration Disciplines
Analysis & D
[ Analysis .eswgn = : e
D Intraduction —, = E d %
[ concepts Glossary Supplementary  Use-Case
@ T wiorkflow Project Specifications Wadel
D Ferform Architectural Syn GE?;Q'{AZS ./.
[} Define a Candidate Archi / SRS \J/.
[} Refine the Architecture O Architecture  Design Use-Case
& _ Document Model Redizations
[ lanaiyze Behavior [} [ >
D Desion Components Use-Case
[} Design the Database CE- e rE e O
D actvies \' U D ™ Irterface
D Arifacts — Identify Design [Identified]
g So\‘hn_lare Elements
Use Case  Analysis Architect \
Realizations  Class ./l
(updated)  (detailed) X ||' -
B B
E/
~J g s " Design
W B D ™
alysis
Madd D
R eview
Technical the T
Reviewer Design
/ / 4 =
! Review
./. ‘ Record
“d =
Chs =
Navigation E’ggé?ﬁg Supplementary
Map Guiddines Specifications E
v\\‘\.
O \\ /'USEr-mterfaoe
| (> [ .
B Design the Prototype the
User-Interface User-Interface Us er-Interface
Designer
Figure 4.18: Analysis & Design — Workflow — Analyze Behavior
This workflow detail occurs in each iteration in which there are behavioural

requirements to be analyzed and designed.

The analysis of behavioural requirements includes:

» identifying analysis classes that satisfy the required behaviour
e determining how these analysis classes fit into the logical architecture of the
system. The analysis classes may be determined to belong to existing
subsystems, require the creation of new subsystems, or cause existing
subsystems and their interfaces to be redefined.
This Workflow Detail may also include modeling and prototyping of the user
interface:
“Activity: Design the User-Interface” and “Activity: Prototype the User-Interface”

are performed iteratively throughout the elaboration iterations. Early iterations focus

71



on the initial user interface design, which includes the identification and design of
the key wuser interface elements and the navigation paths between them.
“Storyboarding” is an effective technique that can be used during user-interface
design to gain a better understanding of how the user interface should behave. Once
consensus on the initial user-interface design has been reached, then the development
of an executable user-interface prototype begins. Feedback on the prototype is fed
back into the user-interface design. The initial prototype typically supports only a
subset of the system's features. In subsequent iterations, the prototype is expanded,
gradually adding broader coverage of the system's features. The main benefit of
producing non-functional versions of the user-interface during user-interface design
is to postpone the investment of more elaborate and costly functional user-interface
prototypes until there is consensus on the overall user-interface design. It is
important to work closely with users and potential users of the system when
designing and prototyping the user-interface in order to confirm and validate the

usability of the system.

A number of use-case analysis workshops may be organized in parallel, limited only
by the available resource pool and the skills of the participants. As soon as possible
following each use-case analysis workshop, some members of the workshop and
some members of the architecture team should work to merge the results of the
workshop in the “Activity: Identify Design Elements”. Members of both teams are
essential: the use-case analysis team members understand the context in which the
analysis classes were identified, while the architecture team understands the greater

context of the design as well as other use cases which have already been identified.

As the design work matures and stabilizes, increasingly larger parts of it can and
should be reviewed. Smaller, more focused reviews are better than large all-
encompassing reviews; sixteen two-hour reviews focused on very specific aspects
are significantly better than a single review spanning two days. In the focused
reviews, define objectives to bound the focus of the review, and ensure that a small
review team with the right skills for the review, given the objectives, is available for
the review. Early reviews should focus primarily on the integrity of layering and
packaging in the design, the stability and quality of the interfaces, and the

completeness of coverage of the use case behavior. Later reviews should drill down

72



into packages and subsystems to ensure that their contents completely and correctly
realize their defined interfaces, and that the dependencies and associations between

design elements are necessary, sufficient and correct.

In Figure 4.19, “Design Components” workflow details are shown.

Configuration Disciplines

=2 Analysis & Design
D Introduction

B e o
[ concepts Pqt gcg D D

Specif
@ [ Warkflow Supplamentary Guidsines €% —— Capsue  —
. Specifications Design apsule
D Ferfarm Architectural Syn ./. / Designer
D Define a Candidate Archi \."/. \
: o
[} Refine the Architecture D tan L —a
D Analyze Behavior
e oot me b Capsule Protocol

0 Design Components:i .
D Design the Datahase O D D /;r Dcalsign O
[ Activiies teefass Class = >

Design Design
[ Artitacts

Review

Designer D > \ Intertace the Design  Technical
Reviewer

Design Testabilty  Subsystem °—I / \
Elements Design Design ks I.__-l.
\\‘ Subsystem E =

= Review
o] . - Project Test Interface
=

Specific  Reeord  gpecification

8 Guidelines /

Test Interface Testability Design
Spedfication  Class  Package /O
-n @ : '

Interf
Lo D7 [
) Define Testability

Design Elements Test

Madel D esigner

Design Use-Case
Realizaions

Figure 4.19: Analysis & Design — Workflow — Design Components

This Workflow Detail has the following goals:

o Refine the definitions of design elements (including capsules and protocols)
by working out the 'details' of how the design elements realize the behavior

required of them.

e Refine and update the use-case realizations based on new design element

identified.

e Reviewing the design as it evolves

73



Typically the work here is carried in individually or in small teams, with informal
inter-group interactions where needed to communicate changes between the teams.
As design elements are refined, responsibilities often shift between them, requiring
simultaneous changes to a number of design elements and use-case realizations.
Because of the interplay of responsibilities, it is almost impossible for design team
members to work in complete isolation. To keep the design effort focused on the

required behavior of the system, a typical pattern of interaction emerges:
o design elements are refined by the responsible persons or teams

e a small group gathers informally to work out the impact of the new design

elements on a set of existing use-case realizations

e in the course of the discussion, changes to both the use-case realization and

the participating design elements are identified
o the cycle repeats until all required behaviour for the iteration is designed.

Because the process itself is iterative, the criteria for 'all required behaviour for the

iteration' will vary depending on the position in the lifecycle:

e In the elaboration phase, the focus will be on architecturally-significant

behaviors, with all other 'details' effectively ignored.

e In the construction phase there is a shift to completeness and consistency of
the design, so that by the end of the construction phase there are no

unresolved design issues.

Note that the design for an iteration does not need to be complete before beginning
implementation and test activities. Partially implementing and testing a design as it
evolves can be an effective means of validating and refining design, even within an

iteration.

Typically, one person or a small team is responsible for a set of design elements,
usually one or more packages or subsystems containing other design elements. This
person/team is responsible for fleshing out the design details for the elements

contained in the package or subsystem: completing all operation definitions and the

74



definition of relationships to other design elements. The “Activity: Capsule Design”
focuses on the recursive decomposition of functionality in the system in terms of
capsules and classes. The “Activity: Class Design” focuses on refining the design of
passive class design elements, while the “Activity: Subsystem Design” focuses on
the allocation of behavior mapped to the subsystem itself to contained design
elements (either contained capsules and classes or subsystems). Typically
subsystems are used primarily as large-grained model organization structures, while
capsules being used for the bulk of the work and "ordinary" classes being relegated

largely to passive stores of information.

The individuals or teams responsible for designing capsules should be
knowledgeable in the implementation language as well as possessing expertise in the
concurrency issues in general. Individuals responsible for designing passive classes
should also be knowledgeable in the implementation language as well as in
algorithms or technologies to be employed by the class. Individuals or teams
responsible for subsystems should be more generalists, able to make decisions on the
proper partitioning of functionality between design elements, and able to understand

the inherent trade-offs involved in various design alternatives.

While the individual design elements are refined, the use-case realizations must be
refined to reflect the evolving responsibilities of the design elements. Typically, one
person or a small team is responsible for refining one or more related use-case
realizations. As design elements are added or refined, the use-case realizations need
to be reconsidered and evolved as they become outdated, or as improvements in the
design model allow for simplifications in the use-case realizations. The individuals
or teams responsible for use-case realizations need to have broader understanding of
the behavior required by the use cases and of the trade-offs of different approaches to
allocating this behavior amongst design elements. In addition, since they are
responsible for selecting the elements that will perform the use cases, they need to
have a deep understanding of external (public) behaviors of the design elements

themselves.

In Figure 4.20, “Design the Database” workflow details are shown.

75



Configuration Disciplines
=2 Analysis & Design
D Intraduction
D Concepts
@ [ Warkflow
D Ferform Architectural Syn
D Define a Candidate Archi
[} Refine the Architecture
D Analyze Behaviar
D Design Components
[ Design the Datatase
[y activities
[ artitacts

Supplementary
Specificaions

E/E

\éll -8

Andysi

Model

Do

Designer

LEX

Use-Case
Realizations

5B

\J B

is

=7
2o

=1
&:!

Database

Database Design

Designer
/ -/},-L
-

Data Moddl
Technical the

e B,

Praject Supplementary

Gﬁ?ggﬂgs Specifications

Design
Class

\

By =

Q

Review
Record

Figure 4.20: Analysis & Design — Workflow — Design the Database

This Workflow Detail includes:

o Identifying the persistent classes in the design

o Designing appropriate database structures to store the persistent classes

e Defining mechanisms and strategies for storing and retrieving persistent data

in such a way that the performance criteria for the system are met

The database and persistent data storage and retrieval mechanisms, are implemented

and tested as part of the overall implementation of the components and subsystems of

the application.

In the elaboration phase, this workflow focuses on ensuring that the persistence

strategy is scalable and that the database design and persistence mechanism will

support the throughput requirements of the system. Persistent classes identified in

“Activity: Class Design” are mapped to the persistence mechanism and data-

76



intensive use cases are analyzed to ensure the mechanisms will be scalable. The

persistence mechanism and database design is assessed and validated.

Persistence must be treated as an integral part of the design effort, and close
collaboration between designers and database designers is essential. Typically the
database designer is a 'floating' resource, shared between several teams as a
consulting resource to address persistence issues. The database designer is also
typically responsible for the persistence mechanisms; if the persistence mechanism is
built rather than bought, there will typically be a team of people working on this.
Larger projects will typically require a small team of database designers who will
need to coordinate work between both design teams and amongst themselves to

ensure that persistence is consistently implemented across the project.

The Designers responsible for persistent classes need to have an understanding of the
persistence in general and the persistence mechanisms in specific. Their primary
responsibility is to ensure that persistent classes are identified and that these classes
utilize the persistence mechanisms in an appropriate manner. The Database Designer
needs to understand the persistent classes in the design model and so must have a
working understanding of object-oriented design and implementation techniques.
The Database Designer also needs a strong background in database concurrency and

distribution issues.
Activities:

In Figure 4.21, acitivites of the “Analysis and Design” discipline are shown. The
details are explained in the workflow details menu item. This view is added to the

menu items to list the roles’s responsibilities in a clear way.

77



Configuration Disciplines

=2 Analysis & Design

[} Introduction D D D D E? D

j Q Assess Viabilty  Architectural  |dentify D esign Identify Design Capsule
oncepts | ofArchitectural  Analsi Mechanisms  Elemerts GCapsule  Design
@ O wiorkflow Praof-of-Cancept ST

D Perfarm Architectural Syn

D Define a Candidate Archi i?mzrc: D D D I.._._> D

Co

2 Construct Incorporate Describe D escribe
D Refine the Architecture Architectural Existing  the Runtime  Distribution Database
X Proof-of Concept Design Elements  Archite cure Database pesign
D Analyze Behaviar Designer

D Design Companents Q
D___E_)e_js@_gntheDalabase B D D D D g‘/?

D,ﬁctivities_i UseCase UseCase Subsystem Class  Design Testabilty Top  Testabiity
DAnifacts Designer Analsis  Design Design  Design Elements Denoper  Elemens

D D gD D

Design the Prototype the Reviewthe  Review the
User-Interf UserInterf, Technical  Architecture Design
Designer Reviewer

Lo

Figure 4.21: Analysis & Design — Activities

Artifacts:

In Figure 4.22, artifacts of the “Analysis and Design” discipline are shown. The
workflow details are explained in the workflow details menu item. This view is

added to the menu items to list the produced artifacts.

78



Configuration Disciplines

IjAnaIysis & Design
D Intraduction
D Concepts

@ [ Warkflow

[} Refine the Architecture

D Analyze Behaviar

D Design Components

D Design the Databaze
[y activities

D Ferform Architectural Syn
D Define a Candidate Archi

Q o

g a8
Depl nt Software \é/a
Soft eploymel 3
Wenieet Model Architecture Analysis
Document Mode
Architectural Reference Irlta.'l Si 1 t
Proot-of- Concept Architecture L \gna
O B B B -
F-LES o
Testability Design al ysis L
Navigation
cl Class Class
Designer =2 ap
User-Int erface
Designer
Use-Case Design Design
izati User- hterface
Redization Subsystem Package e e

./I
\é A

Design
Madel

Protocol

@

L]

Ddabase
Designer

-/ﬂ-ﬂ

Daa Model

o
i
o
g
o

Test Design

Figure 4.22: Analysis & Design — Workflow — Artifacts

4.1.3.3 Implementation:

Introduction:

In Figure 4.23 “Implementation” discipline purpose is explained.

79




Configuration Di

[ Implementation Purpose
D I.ntroductioni i . u
D .éuonc;pt.s ) The purpose of implementation is:
@ [ wiorkflow ™

to define the organization of the code. in terms of implementation subsystems organized in
[ activities layers
[ artitacts B to implement the design elements in terms of implementation elements (source files,
binaries, executables. and others)
B to test the developed components as units
B to integrate the results produced by individual implementers (or teams), into an executable
system

Figure 4.23: Implementation — Introduction

The purpose of implementation is:

o to define the organization of the code, in terms of implementation subsystems

organized in layers

e to implement the design elements in terms of implementation elements

(source files, binaries, executables, and others)
e to test the developed components as units

to integrate the results produced by individual implementers (or teams), into an

executable system

The Implementation discipline limits its scope to how individual classes are to be

unit tested. System test and integration test are described in the Test discipline.

Concepts:

80



In Figure 4.24, “Implementation” concepts are shown.

Configuration Disciplines
T Implementation A build is an operational version of a system or part of a system that demonstrates a subset of the
[} Introduction capabilities provided in the final product.
D Concepts| : : 2 T F
& D workiow Builds are an integral part of the iterative lifecycle. They represent on-going attempts to demonstrate the
o.r. _DW functionality developed to date. Each build is placed under configuration contral in case there is a need to
[ Activities roll back to an earlier version when added functionality causes breakages or otherwise compromises build
[ artitacts integrity.
During iterative software development there will be numerous builds. Each build serves to provide early
review points and helps to uncover integration problems as soon as they are introduced.
Figure 4.24: Implementation — Concepts
Workflow:

The main flowchart of this discipline is shown on this menu item. There are two

ways to see the details. Project members could work on the flowchart by clicking on

the activities listed on the screen or selecting from the submenu.

In Figure 4.25, “Implementation” workflow are shown.

81




Configuration Disciplines

D Intraduction

[ concepts
9 CWworkfow|
[ Structurethe
D Structure the Implementa Implementation ode

D Flan the Integration

D Implement Camponents

D Integrate Each Subsyster T
D Integrate the System Integration

[ activities
. °p
[ Artitacts Eﬂ

Implement
[More Comp onentsé>

Components
to Implement

for this teration]

=2 Implementation ?

[Components
Implemented and
Validated]

Integrate each
Subsy stem

[More
Subsystem .
Integration for
£ 1 [Subsystems
this teration] Implemented and
Veidaed]

[Dene] ntegratethe

System

[Wore System Builds

for this teraion] TR

Figure 4.25: Implementation — Workflow

In Figure 4.26, “Structure the Implementation” workflow details are shown.

82



EoX

Configuration Disciplines

3 Implementation =8
D Introduction \J,.I =m,
De Design Madel =
oncepts N =
& O3 wWorkflow Q % Scftware Architecture
..... } = A
D \Structure the Implements D D Oc":m
-
D Flan the Integration Structure the o
Jifie Implementation Model TR \i/-

D Implement Components Architect
D Integrate Each Subsyster
D Integrate the System

[ activities

[y Artifacts

Implementation
Madel

Figure 4.26: Implementation — Workflow - Structure the Implementation

Structuring the implementation model generally results in a set of Implementation
Subsystems that can be developed relatively independently. A well-organized model
will prevent configuration management problems and will allow the product to built-

up from successively larger integration builds.

Structuring the implementation model should be done in parallel with the evolution
of the other aspects of the architecture; failure to consider it early in the architecting
process may lead to poor organization of the implementation and may impede the
implementation and build process. In the worst case, a poorly organized
implementation model will impede parallel development of software by the project

team.

While the software architect has primary responsibility for the structure of the
implementation model, the software architect's experience needs to include that of an
integrator at the system level. They need experience in software build management,

configuration management, and experience in the programming language in which

83



the components to be integrated are written. Because the automation of integration
will be handled by the integrator, the software architect need not be an expert in
scripting or integration automation, but some familiarity with the topic will often

help the build process go more smoothly.

In Figure 4.27, “Plan the Integration” workflow details are shown.

LEX

Configuration Disciplines

3 Implementation “
[ introduction

tteration Use-Case

D Concepts Plan Redization
@ [ Warkflow % l 1
D Structure the Implerments O D " 5
D-Plan}he Integration | Flan System Integration
Integration Build Plan
D Implement Camponents Integratar
D Integrate Each Subsyster ./.
D Integrate the System \.{[/I
D Activities Implemertation
; Mod!
D Arifacts

Figure 4.27: Implementation — Workflow — Plan the Integration

Planning the integration is focussed on which implementation subsystems should be
implemented, and the order in which the implementation subsystems should be
integrated in the current iteration. Integration is typically carried out by a single
person (for a small project on which the build process in simple) or a small team (for
a large project on which the build process is complex). The integrators need
experience in software build management, configuration management, and
experience in the programming language in which the components to be integrated
are written. Because integration often involves a high degree of automation, expertise

in operating system shell or scripting languages and tools like 'make’ is also essential.

84



Planning the integration process should be done early, at least in rough form, when
the architecture is baselined. As the architecture and design evolve, the integration
plan should be examined and updated to ensure that the build plan does not become

obsolete by changes in the architecture or the design.

In Figure 4.28, “Implementaiton Components” workflow details are shown.

LEX

Configuration Disciplines

=2 Implementation —
[ introduction

[ concepts implementation Build

9 Tl workilow e
D Structure the Implements

D3 Ptan the Integration

Dilmp\ememoompohents O D
D Integrate Each Subsyster U Integrate
[} Integrate the Systerm At gratar e
[ activities
[ aritacts

Figure 4.28: Implementation — Workflow — Implement Components
In this workflow detail:

o The implementers write source code, adapt existing source code, compile,
link and perform unit tests, as they implement the elements in the design
model. If defects in the design are discovered, the implementer submits

rework feedback on the design.

e The implementers also fix code defects and perform unit tests to verify the
changes. Then the code is reviewed to evaluate quality and compliance with

the Programming Guidelines.

85



These activities carried out by the implementer tend to be done by a single person.
The review activity is best carried out by a small team staffed by cross-functional
team members, typically more senior members of technical staff with greater
experience into common problems and pitfalls encountered in the programming
language. Special expertise may be required in the problem domain, as is often the
case in systems involving telephony or devices with special interfaces. Expertise in

specific algorithms or programming techniques may also be required.

The review work is best done in several sessions, each focused on small sections of
the system or on specific issues. The goal of these sessions is to identify specific
problems in the code that need to be resolved, not to resolve them on the spot;
resolution discussions should be postponed until after the review. More frequent
reviews which are smaller in scope are more productive than less frequent sessions

which are larger in scope.

In Figure 4.29, “Integrate Each SubSystem” workflow details are shown.

Configuration Di

T Implementation

D Introduction
D Concepts
@ [ Warkflow

D Structure the Implements
[ Plan the Integration
D Implement Components
[} Integrate Each Subsyster
D Integrate the System

[y activities

[ artifacts

Change Request

[approved] \
O

Implementer

Im ple mentation
Bement

ra

O

L]

Technical
Reviewer

[

Review
Code

g

Review
Record

v f "

Implement
Design Elements

>

Anahlze
Runtime
Beha\flol

\a\\‘

-/.
\- ~B8

Design Madel
[both application and testability
design elements]

Implement\‘i

Developer Test

D Devel oper

Test
Exzcute /

De\reloper Test

Implementation Test Log
Elemant [Testability]

8

Imp\ement
Testability
E\ements

- 3
Implemantahonl/mvan SbeyEtEm

e i Integration

\ntegrator

Use-Case —
Realization E

Integration
Build Plan

tteration Plan

Figure 4.29: Implementation — Workflow - Integrate Each SubSystem

86




If several implementers work in the same implementation subsystem, the changes
from the individual implementers need to be integrated to create a new consistent
version of the implementation subsystem. The integration results in series of builds
in a subsystem integration workspace. Each build is then integration tested by a tester
and/or an implementer executing the developer tests. Following testing, the

Implementation Subsystem is delivered into the system integration workspace.

Integration is typically carried out by a single person (for a small project on which
the build process in simple) or a small team (for a large project on which the build
process is complex). The integrators need experience in software build management,
configuration management, and experience in the programming language in which

the components to be integrated are written.

Integration work is typically automated to a large degree, with manual effort required
when the build breaks. A frequent strategy is to perform automated nightly builds
and some automated testing (usually at the unit level), allowing for frequent feedback

from the build process.

In Figure 4.30, “Integrate the Subsystem” workflow details are shown.

87



LEX

Configuration Disciplines
=2 Implementation

[ Introduction S m 0
“gE

D Concepts Develsper
@ [ Warkflow Design Model Test Test Log

D Structure the Implements /
D Flan the Integration O D D
D Implement Camponents Implement Execute
[} Integrate Each Subsyster FplRenE;  Aanreereriest Bevelanenies:
[} Integrate the System|

[ activities m

[ Artitacts D

Components /vlntegrate D
(from Implementerx)// Subsystem

/ \ \ Integratar
.l ;
o
Component - ¢
Imp ter ) Imol tati

(fiam Build

Subsystem

Figure 4.30: Implementation — Workflow - Integrate the System

The integrator integrates the system, in accordance with the integration build plan, by
adding the delivered implementation subsystems into the system integration
workspace and creating builds. Each build is then integration tested by a tester. After

the last increment, the build can be completely system tested by a tester.

Integration work is typically automated to a large degree, with manual effort required
when the build breaks. A frequent strategy is to perform automated nightly builds
and some automated testing (usually at the unit level), allowing for frequent feedback

from the build process.
Activities:

In Figure 4.31, acitivites of the “Implementation” discipline are shown. The details
are explained in the workflow details meuitem. This view is added to the menu items

to list the roles’s responsibilities in a clear way.

88



Configuration Disciplines

=2 Implementation

D Introduction D D D

[ Implement Execute Analyze
D Concepts D Q Developer Test Developer Test Runtime Behavior
@ [ Warkflow g Stiucture the E S >
Implementation
Structure the Implemeants  Software Implementer
D P ® Architect Model & ||'“DP|EF“E|'“ Implement
) esign Testabilty
D Plan the Integration Elements Elament

D Implement Camponents

D Integrate Each Subsyster Q
D Integrate the System D D D I:\ D
| 1 Flan System  Plan Subsystem  Infegrate Integrate =

[ Acthities. Integrato;  Integration  Integration  Subsystem  System Techical Lo

[ artitacts Reviewer

Figure 4.31: Implementation — Workflow - Activities

Artifacts:

In Figure 4.32, artifacts of the “Implementation” discipline are shown. The
workflow details are explained in the workflow details meuitem. This view is added

to the menuitems to list the produced artifacts.

89



Configuration Disciplines

3 Implementation Q
D Intraduction g . - . ’
Concepts Implementation  Implementation Testability Test Sub Dewveloper
D o Element "ngsysem Elema'vty Y Tastp
@ [ Warkflow

[} structure the Implements O — - Q -/{I -
[} Plan the Integration ﬂ ﬁ B “m~

¥ Soft: 2
D Implement Components lgheif;drgll;' Buid Software  Architecture lmplehrgf’rglﬂwﬂ
D Integrate Each Subsyster

Architect Document
D Integrate the System

[ activities

Implementer

Integrat or

Figure 4.32: Implementation — Artifacts

4.1.3.4 Testing:

Introduction:

In Figure 4.33 “Test” discipline purpose is explained.

90



£
]

0 _i_n}ro d_L_!CtiDI’?;

[ concepts

@ T workflow practices:
[ Activities
[ artitacts =

Purpose

The Test discipline acts as a senvice provider to the other disciplines in many respects. Testing
focuses primarily on evaluating or assessing product quality, which is realized through these core

Find and document defects in software quality.

Advise on the perceived software quality.

Validate and prove the assumptions made in design and requirement specifications through
concrete demanstration.

Validate that the software product works as designed.

Validate that the requirements are implemented appropriately.

A good test effort is driven by questions such as:

How could this software break?
In what possible situations could this software fail to work predictably?

Test challenges the assumptions, risks. and uncertainty inherent in the work of other disciplines, and
addresses those concemns using concrete demanstration and impartial evaluation. You want to avoid
two potential extremes:

an approach that does not suitably or effectively challenge the software, and exposes its
inherent problems or weaknesses

B an approach that is inappropriately negative or destructive - adopting such a negative

approach, you may find it impossible to consider the software product of acceptable quality
and could alienate the Test effort from the other disciplines

The test discipline acts as a service provider to the other disciplines in many respects.

Testing focuses primarily on evaluating or assessing product quality, which is

Figure 4.33: Test — Introduction

realized through these core practices:

Find and document defects in software quality.

e Advise on the perceived software quality.

e Validate and prove the assumptions made in design and requirement

specifications through concrete demonstration.

o Validate that the software product works as designed.

e Validate that the requirements are implemented appropriately.

A good test effort is driven by questions such as:

e How could this software break?

91




In what possible situations could this software fail to work predictably?

Test challenges the assumptions, risks, and uncertainty inherent in the work of other

disciplines, and addresses those concerns using concrete demonstration and impartial

evaluation. To avoid two potential extremes:

an approach that does not suitably or effectively challenge the software, and

exposes its inherent problems or weaknesses

an approach that is inappropriately negative or destructive - adopting such a
negative approach, you may find it impossible to consider the software
product of acceptable quality and could alienate the Test effort from the other

disciplines

Information presented in various surveys and essays states that software testing

accounts for 30 to 50 percent of total software development costs. It is, therefore,

somewhat surprising to note that most people believe computer software is not well

tested before it's delivered. This contradiction is rooted in a few key issues:

Typically testing is done without a clear methodology, creating results that
vary from project to project and from organization to organization. Success is

primarily a factor of the quality and skills of the individuals.

Productivity tools are used insufficiently, which makes the laborious aspects
of testing unmanageable. In addition to the lack of automated test execution,
many test efforts are conducted without tools that let you effectively manage
extensive test data and test results. Flexibility of use and complexity of
software make complete testing an impossible goal. Using a well-conceived
methodology and state-of-the-art tools can improve both the productivity and

effectiveness of software testing.

High-quality software is essential to the success of safety-critical systems - such as

air-traffic control, missile guidance, or medical delivery systems - where a failure

can harm people. The criticality of a typical system may not be as immediately

obvious, but it's likely that the impact of a defect could cause the business using the

software considerable expense in lost revenue and possibly legal costs. In this

92



information age, with increasing demands on providing electronically delivered
services over the internet, many systems are now considered mission-critical; that is,
companies cannot fulfill their functions and they experience massive losses when

failures occur.

A continuous approach to quality, initiated early in the software lifecycle, can lower
the cost of completing and maintaining your software significantly. This greatly

reduces the risk associated with deploying poor quality software.
Concepts:

In Figure 4.34, “Test” concepts are shown.

Configuration Disciplines

[ Test Testing is applied to different types of targets, in different stages or levels of work effort. These levels are
D Intraduction distinguished typically by those roles that are best skilled to design and conduct the tests, and where
0 C.once_pté' techniqu;s arz;ﬂoal appripr\;te for testing at each level. It's important to ensure a balance of focus is retained
@ [ Workflow across these di erer.n work efforts.
[ Activities Developer Testina
[ Attact Developer testing denotes the aspects of test design and implementation most appropriate for the team of
ifacts

developers to undertake. This is in contrast to Independent Testing. In most cases, test execution initially
occurs with the developer testing group who designed and implemented the test, but it is a good practice for
the developers to create their tests in such a way so as to make them available to independent testing groups
for execution.

Independent Testing

Independent testing denotes the test design and implementation most appropriately performed by someone
who is independent from the team of developers. You can consider this distinction a superset, which includes
Independent Verification & Validation. In most cases, test execution initially occurs with the independent
testing group that designed and implemented the test. but the independent testers should create their tests to
make them available to the developer testing groups for execution.

Unit Testina

Unit testing focuses on verifying the smallest testable elements of the software. Typically unit testing is appliec
to components represented in the implementation model to verify that control flows and data flows are covered,
and that they function as expected. The Implementer performs unit testing as the unit is developed. The details)
of unit testing are described in the Implementation discipline.

Integration Testing

Integration testing is performed to ensure that the components in the implementation model operate properly
when combined to execute a use case. The target-oftest is a package or a set of packages in the
implementation model. Often the packages being combined come from differant development organizations.
Integration testing exposes incompleteness or mistakes in the package's interface specifications.

System Testing

Traditionally system testing is done when the software is functioning as a whole. An iterative lifecycle allows
system testing to occur much earlier-as soon as well-formed subsets of the use-case behavior are
implemented. Usually the target is the system’s end-to-end functioning elements.

Acceptance Testing

User acceptance testing is the final test action taken before deploying the software. The goal of acceptance
testing is to verify that the software is ready, and that it can be used by end users to perform those functions,

Figure 4.34: Test — Concepts
Workflow:

The main flowchart of this discipline is shown on this menu item. There are two

ways to see the details. Project members could work on the flowchart by clicking on

93



the activities listed on the screen or selecting from the submenu. In Figure 4.35,

wokflow details are shown.

Configuration  Disciplines
[ Test .
D Introduction |
v
D Concepts
§ O workflow|
D Define Evaluation Missiol Define Evauation
Mission
D Yarify Test Approach
[y validate Build Stability l
D Test and Evaluate »L vL
[} achieve acceptable Missi o =
D Improve Test Assets 3 E'Jﬂ @ =
D Activities “erity Test Approach  Validate Build Stability
[ artitacts -
[Ancther
Test and Achigve
Evauate Acceptable
Mssion
———
Improwve Test Assats
: [Anaother
“'. Test Cyele]
®

Figure 4.35: Test — Workflow

In Figure 4.36, “Define Evaluation Mission” wokflow details are shown.

94



Configuration  Di
[ Test
D Intraduction
D Concepts
@ [ Warkflow
0 Deﬂne Evaluation Missio
D Yarify Test Approach
D Walidate Build Stahility
D Test and Evaluate
D Achieve Acceptable Missi
D Improve Test Assets
[ activities
[ artitacts

Q

|

Test Mana,

Q
[]

Test Analyst

— B
Identity Test D evelopment Test Stategy

Plan

Agree onth
Motivatars Mission
. \\ |
B B

lteration /' Test Plan

ger

Test Automation
Architecture

/4
— )
Define Test
Approach

» DHM

Plan Test Designer

L
B

|dentify
Targets
of Test

X

- gt
S Ja
Use-Case Desi

Todel el

Define Assessment Id e ity
and Traceability Meeds Testldeas

o

Test |deas
List

Project Specific
Guidelines
(Test Ideas Catalog)
9

o

Deployment
Kdodel

Figure 4.36: Test — Workflow — Define Evaluation Mission

For each iteration, this work is focused mainly on:

o Identifying the objectives for, and deliverables of, the testing effort

o Identifying a good resource utilization strategy

o Defining the appropriate scope and boundary for the test effort

e QOutlining the approach that will be used

e Defining how progress will be monitored and assessed.

It should be noted that this work is performed in each iteration. The main value in
performing this work is to think through the various concerns and issues that will
impact testing over the course of the iteration, and consider the appropriate actions

you should take. As a general rule, don't spend excessive amounts of time on the

presentation of the documentation for these aspects of the test effort.

95




Although most of the roles involved in the Test discipline play a part in performing
this work, the effort is primarily centered around the Test Manager and Test Analyst
roles. The most important skills required for this work include negotiation,

elicitation, strategy and planning.

While most of the resource for this work will be expended in Construction,
significant resources will need to be allocated to this work from Inception to
Transition.

As a relative indication of test resource use for this workflow detail by phase, typical
percentages are: Inception - 50%, Elaboration - 25%, Construction - 10% and

Transition - 10%.

In Figure 4.37, “Verify Test Approach” workflow details are shown.

Cunf guratlnn Dlsmplmes

lj Esltntmduction % !?

Project 5 pecific

Concepts Pl Test Automation Test Flan Test Ideas
D 3 i ] Architecture v List
© Clworkilow [Test Guidelines] iy S 7
D Define Evaluation Missio \* // \ \\ / \\‘ ,,/
[ erify Test Approach| @ % @)
D Walidate Build Stahility D b D 2 D B
[} Test and Evaluate 4 Define |dentify Define Define
D Achieve Accaptable Missi Test Designer  TestEnvironment  Testability Tes tahility Test Details  1estrnalyst
Configurations ~ Mechanisms Elements Y
D Improve Test Assets / ‘ // / "! / \
D Activities 5 + / i .
[ Artitacts = = =
ot @ = T
e = k| =
Test Environment Test Automation TatScrlpt Test Interface TestCase Workload
[+ onﬁgurahon Architecture SDe cification s Analysis

[\// /O
DDD §y

Implement Implement Obtain Testability

Tester Test Manager

Test Sulte Test Commitment
\
/5 /'
v SOy
5 '_h
=
Test Suite Test Seript Testlnterface TestPlan

Specification [revisad]

Figure 4.37: Test — Workflow - Verify Test Approach

The objective is to gain an understanding of the constraints and limitations of each

technique as it will be applied in the given project context, and to either:

96



o find an appropriate implementation solution for each technique or
o find alternative techniques that can be used.

This helps to mitigate the risk of discovering too late in the project lifecycle that the

test approach is unworkable. For each iteration, this work is focused mainly on:

Early verification that the intended test strategy will work and produces

results of value
o Establishing the basic infrastructure to enable and support the test strategy

e Obtaining commitment from the development team to develop the software to
meet testability requirements necessary to achieve the test strategy, and to

provide continued support for those testability requirements.

o Identifying the scope, boundaries, limitations and constraints of each

technique

This work is somewhat independent of the test cycles, often involving the
verification of techniques that will not be used until subsequent Iterations. This work
normally begins after the evaluation mission has been defined for the current
Iteration, although it can begin earlier. In some cases, finding the best

implementation approach to a technique may take multiple Iterations.

The test implementation and execution activities that form a part of this work are
performed for the purpose of obtaining demonstrable proof that the techniques being
verified can actually work. As such, you should limit your selection of tests to a
small, representative subset; typically focusing on areas with substantial quality risk.
You should try to include a selection of tests that you expect to fail to confirm that

the technique will successfully detect these failures.

While failures with the target test items will be identified and these incidents logged
accordingly, this focus of this work is not directly on attempting to identify failures
in the target test items as it's main objective. Again, the objective is to verify that the

approach is appropriate (it produces results that complement the Iteration objectives),

97



is achievable (it can be implemented with given resource constraints), and that it will

work.

For this work to produce timely results, it is often necessary to make use of
incomplete, "unofficial" Builds, or to perform this work outside of a recognized Test
Environment Configuration. Although these are appropriate compromises, be aware
of the constraints, assumptions and risks involved in verifying your approach in

under these conditions.

As the lifecycle progresses through its Phases, the focus of the test effort typically
changes. Potentially this requires new or additional approaches, often requiring the

introduction of new types of tests or new techniques to support the test effort.

In situations where the combination of domain, the test environment and other
critical aspects of the strategy are unprecedented, you should allow more time and
effort to complete this work. In some cases-especially where automation is a
requirement-it may be more economic to obtain the use of resources with specialized
skills that have proven experience in the unprecedented aspects of the strategy for a
limited period of time (such as on contract) to define and verify the key technical

needs of the test strategy.

Although most of the roles involved in the Test discipline play a part in performing
this work, the effort is primarily centered around the Test Designer and Tester roles.
The most important skill areas required for this work include software architecture,

software design and problem solving.

It is typical for this work to require more resource in iterations from the late
Inception to early Construction phases, often requiring minimal resource late in the
Construction and in the Transition phases. However, be aware that as the project
progresses, new objectives or deliverables may be identified that require new test

strategies to be defined and verified.

As a heuristic for relative resource allocation by phase, typical percentages of test
resource use for this workflow detail are: Inception - 30%, Elaboration - 20%,

Construction - 10% and Transition - 05%.

98



In Figure 4.38, “Validate Build Stability” workflow details are shown.

Cunf guratlnn Dlsmplmes
Ij Test
[} Introduction
D Concepts
@ [ Warkflow
D Define Evaluation Missio
D Yerify Test Approach
[ Walidate Build Stabilty
D Test and Evaluate

Build Test Suite
v ¥

o> [

Implement

[

Analze
Test Failure

Execute
Test Suite

D Achieve Acceptable Missi \ \ // l
[ Imprave Test Assets hJ & &5
[ ot = o]
Crvities %
D P % é Test Evaluation  TestEvaluation
ITacls s
Testldeas TestCase Change Test Log Change u[;r:arr:]ary [Sb:;nelr\‘;:?;
List L Requests / R equests/l' 3, 4
Ty
- )
\ / = . /
O : \ v / Q 4
§ = &g O
;i Assess and Advocate
D efine Determinge Test M i
el Btahe Test Details TestResults st anager et
\\\

Figure 4.38: Test — Workflow — Validate Build Stability
For each build to be tested, this work is focused on:
e Making as assessment of the stability and testability of the Build

e Gaining an initial understanding-or confirming the expectation-of the

development work delivered in the Build

e Making a decision to accept the Build as suitable for use-guided by the
evaluation mission-in further testing, or to conduct further testing against a

previous Build.

This work is potentially conducted once per Build-note however that it's typical not
to test every Build. Once the Build is determined suitably stable, focus turns to

“Workflow Detail: Test and Evaluate”. Where it is determined that the build is

99



sufficiently unsuitable to conduct further testing against, Test and Evaluation work

typically recommences against a previous suitable Build.

The work is primarily centered around the Tester and Test Analyst roles. The most
important skills required for this work include providing timely results, thoroughness
and applying reasonable judgment to assessing the usefulness of the Build for further

testing.

It is appropriate to allocate a subset of the test team to perform this work; the other
team members ignore the new build until it is validated as stable, devoting their
efforts instead to either additional tests against the build from the previous test cycle,

or improving test assets as appropriate.

The sophistication and availability of test automation tools and the necessary
prerequisite skills to use them will have an impact on the resourcing of this work.
Where automation tools are used, much of this work can be performed fast and

efficiently: without automation significantly more effort is required.

In Figure 4.39, “Test and Evaluate” workflow details are shown.

100



Cunf guratlnn D|

] Test [ \
D Intraduction
D Cancepts Glossary
@ T3 'workflow
D Define Evaluation Missio }& = % =
. Supplementary
[} werify Test Approach Speciications S0 ?9& — = 8
[ validate Build Stahility R A ] Software E ot
: 5 (preliminary} Architecture Gt Architectural
[} Test and Evaluate| Architecturally Significant | | Documert - Relcraree Proof of- Concept Business

[ artitacts

[} Achieve Acceptable Missi \Reguiremants
D Improve Test Assets \ /
D Activities { O ’/’/ ,/

CO“"‘Ud Assas Wiability
Archltectural
Software Analys i Architectural of Architectural

ArchrteV \ Proof- oTc oncept Proof—of—Cloncept

l/' . o P
Project 'Il g |
Specific

Guiddines
= {initial) Dﬁasdge‘ Archltedure Deplg}éz}eﬂl Review
(overview) %3;&“;&&3 (overview) Record
Architactural Des ign
Overview

Figure 4.39: Test — Workflow — Test and Evaluate

Typically performed once per test cycle, this work involves performing the core

tactical work of the test and evaluation effort: namely the implementation, execution

and evaluation of specific tests and the corresponding reporting of incidents that are

encountered [35].

For each test cycle, this work is focused mainly on:

o Providing ongoing evaluation and assessment of the Target Test Items

e Recording the appropriate information necessary to diagnose and resolve any

identified Issues

e Achieving suitable breadth and depth in the test and evaluation work

o Providing feedback on the most likely areas of potential quality risk

As noted, this work is typically performed multiple times during an iteration; the

actual number of times often equating to once per Build. It should be noted however

101



that it's typical not to test every Build. Build schedule will often result in this work
increasing in frequency during the course of the iteration. The need for additional
cycles is governed by assessing when appropriate breadth and depth of testing is
achieved within a test cycle, which is the focus of the Workflow Detail: Achieve

Acceptable Mission.

For iterations prior to and including those early in the Construction phase, additional
effort is usually required to address tactical problems encountered for the first time
during test implementation and execution. These issues often detract from the
number of actual tests successfully implemented and executed and limit either the

breadth or depth of the testing.

The sophistication and availability of test automation tools and the necessary
prerequisite skills to use them effectively will have an impact on the resourcing of
this work. It may be appropriate to strategically deploy specialized contract resource
for some part of this work to improve the likelihood of success. It may also be more
economical to lease the automation tools and contract appropriately skilled people to
use the tools, especially to help mitigate the risks in getting started. The benefits of
this approach with the necessity to develop in-house skills to maintain automation

assets into the future should be balanced.

The work is primarily centered around the Tester and Test Analyst roles. The most
important skills required for this work include investigative and analytical skills,
tenacity, thoroughness, good technical knowledge and good verbal and written

communication skills (documentation of incidents, change requests and so on).

As a heuristic for relative resource allocation by phase, typical percentages of test
resource use for this workflow detail are: Inception - 05%, Elaboration - 25%,

Construction - 40% and Transition - 35%.

Where the requirement for test automation is particularly important, it may be useful
to assign the creation and maintenance of automation assets to a separate sub-team,
allowing them to specialize on automation concerns. This allows the other team

members to focus on the improvement of non-automation test assets.

In Figure 4.40, “Achieve Acceptable Mission” workflow details are shown.

102



Cunf guratlnn D|
Ij Test
D Intraduction
D Concepts
@ [ Warkflow
D Define Evaluation Missio
D Yarify Test Approach
D Walidate Build Stahility
D Testand Evaluate
D Achleve Acceplable Missi
D Improve Test Assets
[ activities
[ artitacts

=3
5L - &

Aszess and Improve Assess and
TatEﬂort Advocate Quality

L7 VR
WEEE

Request
TestPlan  TestEvaluation Change
[updated] Summary Requests

®)

]

Test Manager

Summary

Test
Results

[draf] / E
' o
/
VL

2 \

. =

Test Log

«—

D eterming
Test Res ults

Test Analyst

Figure 4.40: Test — Workflow — Achieve Acceptable Mission

For each test cycle, this work is focused mainly on:

e Actively prioritizing the minimal set of necessary tests that must be

conducted to achieve the Evaluation Mission

e Advocating the resolution of important issues that have a significant negative

impact on the Evaluation Mission

e Advocating appropriate quality

o Identifying regressions in quality introduced between test cycles

o Where appropriate, revising the Evaluation Mission in light of the evaluation

findings so as to provide useful evaluation information to the project team

Given that providing focused evaluation feedback and achieving test-cycle closure
are the objectives of this work, ongoing prioritization of the work and strategic

management of the test resources is required. Focus continually on identifying and

103

Test Evaluation

[baselined/refined]




executing the minimum set of specific tasks to achieve the evaluation mission.
Ongoing involvement by the stakeholders in the test and evaluation effort is critical
to ensure the appropriate focus is maintained and, ultimately, that the work is

successful.

Notice that for some iterations it may not be possible to achieve the Evaluation
Mission as originally defined. Rather than simply abandoning the test and evaluation
effort, it is important to find an appropriate and agreeable revision of the original
Evaluation Mission based on the current situation, and attempt to provide useful

evaluation information to the stakeholders of the test effort.

This work typically starts toward the end of each test cycle as suitable breadth and
depth is achieved in the testing effort. For test cycles earlier in the project lifecycle,
there is typically less work to be managed, therefore less effort is required to address
this workflow detail. In later iterations-especially those toward the end of the
Elaboration phase and throughout the Construction phase-this work becomes more

important and typically requires more focused effort.

The availability of analysis tools that provide accurate and timely results has an
impact on resourcing this work. Without the use of appropriate tools, this task
quickly becomes unmanageable as the test effort progresses and increasingly more

detail needs to be analyzed and assessed manually.

This work is primarily centered around the Test Manager and Test Analyst roles,
although success relies heavily on the work of the Tester. The most important skills
required for this work include problem and results analysis, communication and

negotiation, as well as the ability to identify and focus on the most important items.

As a heuristic for relative resource allocation by phase, typical percentages of test
resource use for this workflow detail are: Inception - 10%, Elaboration - 00%,

Construction - 20% and Transition - 30%.

In Figure 4.41, “Improve Test Assests” workflow details are shown.

104



Configuration Disciplines

[ improve Test Assats|

T Test % EI
D Intraduction ﬂ 3 y i
i Test Strat estldeas Test D
D Concepts TeétOE'ri\;:roar;in;:m esl strategy Tatjcnpt gy est Data
@ [ Warkflow '\ / /
D Define Evaluation Missio i
D Yarify Test Approach P >
[ validate Build Stability @) e |_> Define Q
[} Test and Evaluate E Jestfpproch D LR D
D efine :
i issi ; Identify > ;
D Achieve Acceptahle Missi e D Testability Elements i el Test Analyst

Structure the g Define Ass essment
[ activities Test Implamentation and Traceability Needs
. e o ~
[ artifacts o
// ¢, / e
s e & 3 >
= E - e
_ Project- Specific  ProjectSpecific
Test Suite Test Automation Test Evaluation  Test Plan Guidelines Guidelines
Architecture . Summary [Test-ldeas Catalog] [Test Automation]
g o D—a@ L, N
Prepare G uidelines
Implement Implement Test Seript . Process
Tester Test Sutte Test BST Sorip for the Project Eraiiy

Figure 4.41: Test — Workflow — Improve Test Assets

For each test cycle, this work is focused mainly on:

e Adding the minimal set of ad
subsequent Builds
L]
uneconomic to maintain
L]
maintainability of test automation
L]
o Exploring opportunities for reuse
e Maintaining test environment con

ditional tests to validate the stability of

Removing test assets that no longer serve a useful purpose or have become

Conducting general maintenance of and making improvements to the

assets

Assembling test scripts into additional appropriate test suites

and productivity improvements

figurations and test data sets

105




e Documenting lessons learned-both good and bad practices discovered during

the test cycle.

This work typically occurs at the end of each test cycle, however some teams
perform aspects of this work only once per Iteration. A common practice is to focus
the work in each test cycle on adding and maintaining only those tests necessary to
assess the stability for the build in the subsequent test cycle. After the final build for
the iteration has been tested, other aspects of test asset improvement may also be

explored.

Although most of the roles in the Test discipline play a part in performing this work,
the effort is primarily centered around the Test Designer and Tester roles. The most
important skills required for this work include focus on test asset coverage, an eye
for potential reuse, consistency of test assets and an appreciation of architectural

issues.

As a heuristic for relative resource allocation by phase, typical percentages of test
resource use for this workflow detail are: Inception - 05%, Elaboration - 20%,

Construction - 10% and Transition - 10%.

Where the requirement for test automation is particularly important, this work may
take more effort and, therefore, more time or more resource. In some cases it may be
useful to assign the creation and maintenance of automation assets to a separate sub-
team, allowing them to specialize on automation concerns. This allows the other

team members to focus on the improvement of non-automation test assets.
Activities:

In Figure 4.42, acitivites of the “Test” discipline are shown. The details are
explained in the workflow details meuitem. This view is added to the menuitems to

list the roles’s responsibilities in a clear way.

106



Configuration Disciplines
[ Test
D Intraduction Q E ) D D
f A Obtain Assess and Improve
D Concepts ﬂ thgg:\:i:s?;n ’..____/\ Testability Test Effart
9 T workiiow TestManager Identify Test ~ Commitment  Assess and
[} Define Evaluation Missio filciizaios A= QL
D Yarify Test Approach
[ validate Build Stabilty & [ [ > [
D Test and Evaluate g Identify Targets i Rl Tk > D etermine
: el of Test Details Test Results
D Achieve Accaptable Missi Test Analyst Identify Test Define Assessment
D Irigrove Test Assets ldeas and Traceability needs
[ ictivities|
[ artitacts 2 D D
D efine Test D Identify Define
:prreoa:: Testability D Testability
D efine Mechanis ms Elements
Test Designer Test Enviranment Structure the Test
Configurations AR R
ﬂ Implement Implement Execute Analyze
Tester Test Test Suite Test Suite TestF ailure
. .
Figure 4.42: Test — Activities
.
Artifacts:

In Figure 4.43, artifacts of the “Test” discipline are shown. The workflow details are
explained in the workflow details menu item. This view is added to the menu items

to list the produced artifacts.

107



Configuration Disciplines

[ Test
D Introduction Q o @ Q
D Concepts g . |
§ Dl workflow TastMansgat | mh S Evmeoran oo, TestSci Test Lag
D Define Evaluation Missio Summary

D Yarify Test Approach
[ validate Build Stahility ) . )
[} Test and Evaluate ﬂ {1 [

i Sz Test Ideas Test Case Wokload Test Data Test
D Achieve Acceptable Missi

Test Analyst Analysis Results
D Improve Test Assets Mode]
[y activities
[ jartifacts| O . E 5
ﬂ Test Test TBHMEF"EDE Tst Enviranment  TestSuite
Test Designer  STAtegy ket

Figure 4.43: Test — Workflow - Artifacts

4.1.3.5 Deployment:
Introduction:

In Figure 4.44 “Deployment” discipline purpose is explained.

108



Configuration Disciplines

O] Deployment Purpose
[ Intraduction| s : : y : ;
0O Concepts ) The Deployment Discipline describes the activities associated with ensuring that the software product
is available for its end users.
@ [ wiorkflow
[ activities
[ artitacts

The Deployment Discipline describes three modes of product deployment:

B the custom install
B the "shrink wrap” product offering
B 3ccess to software over the internet

In each instance, there is an emphasis on testing the product at the development site, followed by
beta-testing before the product is finally released to the customer.

Although deployment activities peak in the Transition Phase, some of the activities occur in earlier
phases to plan and prepare for deployment.

Figure 4.44: Deployment - Introduction

The “Deployment” discipline describes the activities associated with ensuring that

the software product is available for its end users.

The “Deployment” discipline describes three modes of product deployment:
e the custom install
o the product offering
e access to software over the internet

In each instance, there is an emphasis on testing the product at the development site,

followed by beta-testing before the product is finally released to the customer.

Although deployment activities peak in the transition phase, some of the activities

occur in earlier phases to plan and prepare for deployment.

109



Concepts:

In Figure 4.45, “Deployment” concepts are shown.

Configuration Disciplines

[ Deployment Deployment is about making the software product available to the end-user, and is the culmination of
[ introduction the software development effort.
D ‘C-Uncepté; Deployment planning starts early in the project lifecycle and addresses not only

& T Workilow the production of the deliverable software, but also the development of training material and system

support material to ensure that the end-user can successfully use the delivered software product.
Support material covers the full range of information that will be required

D Arlifacts by the end-user to install, operate, use and maintain the delivered system_ It also includes training
material for all the various positions that will be required to effectively use the new system

The Deployment Discipline places a areat emphasis on ensuring the product is well tested prior to its
release to the customer base. Firstly the build needs to be sufficientlv tested in the development test
environment, and then re-tested at the target site The ‘test environment’ should be an ‘instance’

of the target environment. :

Once the product has been tested at the development site it needs to be prepared for delivery to the
customer. The release can created for the purposes of beta-testing, a test deployment to the final
users, or depending on it level of maturity for the final product.

[ activities

Figure 4.45: Deployment - Concepts
Workflow:

The main flowchart of this discipline is shown on this menuitem. There are two ways
to see the details. Project members could work on the flowchart by clicking on the
activities listed on the screen or selecting from the submenu. In Figure 4.43

workflow is shown.

110



Configuration Disciplines

D Intraduction

D Concepts

¢ O3 Workiow|
D Plan Deployment nepr.-_l.Tmam

D Develop Support Material ‘L

D Manage Acceptance Test

D Fraduce Deployment Uni

D Eeta Test Product

D Fackage Praduct

D Provide Access to Downl Dm,lf::;:pm

[ Activities J

[ Deployment ’
v

-
m [Change Requests]

Manage Acceptance Test
<4t Development Site=

[ arifacts Eagprevecl]

Produce
Deployment Unit

[Beta Release]
[Customer Release]

Product

[Custom [Shrinkwrap  |[Downloadable
Install] Product] Soft ware]
Manage Package Provide Accessto

Acceptance Test Product Diovwnload Site

<At \nstal:rlion Site= |
! !

Figure 4.46: Deployment — Workflow

In Figure 4.47, “Plan Deployment” workflow details are shown.

111



LEX

Configuration Disciplines

=2 Deployment By E
[ introduction =

Product

[ concepts Heration e Acesptance
@ [ Warkflow = i R
0 Plan Deployment l l l

D Develop Support Material O D D

D Manage Acceptance Tesi =
Develop Define
D Fraduce Deployment Uni Deployment  Deployment Plan il of Materials
Manager

D Eeta Test Product l l

D Fackage Praduct —, 4

D Provide Access to Downl
[ activities Deployment Bill of Materials
[ arlifacts Kl

Figure 4.47: Deployment — Workflow — Plan Deployment

Deployment planning requires a high degree of customer collaboration and
preparation. A successful conclusion to a software project can be severely impacted
by factors outside the scope of software development such as the building, hardware
infrastructure not being in place, and the staff being ill-prepared for cut-over to the

new system.

To ensure successful deployment, and transition to the new system and ways of
doing business, the Deployment Plan needs to address not only the deliverable
software, but also the development of training material and system support material

to ensure that end users can successfully use the delivered software product.

A deployment manager needs to be someone who is aware of the operational needs
of the end user and capable of pulling together all the items that go into making the
product. The deployment manager runs the beta test and, in the case of "shrink wrap"
products, deals with the manufacturers to ensure that adequate quality is achieved in

the product.

112



The deployment manager "gets the product out there" and, as such, needs to be well
versed in the required infrastructure, and user needs, to ensure that the product is

available for the users.

In Figure 4.48, “Develop Support Material” workflow details are shown.

=]
Configuration Disciplines
=2 Deployment
D Introduction

Q
D Concepts D

@ [ Warkflow Course

Developer

D Flan Deplayment -
[ Develop Support Material == _ / [

e Styl nug}j Develop Trainin
Al Requirements EQUICE i
[} Manage Acceptance Test eduire et Fraining N erias

D Praduce Deployment Uni Materiak
D Eeta Test Product
[} Package Product "r) b
%
[ Provide Access to Downl “agtepme = D —+
Brotaiype Build Develop

[y Activities Suppert Materials

[ artitacts Q

[]

Technical
W riter

End-User
Support Material

Figure 4.48: Deployment — Workflow — Develop Support Material

Support material covers the full range of information that will be required by the
end-user to install, operate, use, and maintain the delivered system. It also includes
training material for all of the various positions that will be required to effectively

use the new system.

Both the Technical Writer and Course Developer need to be articulate and adept at
creating information, written or otherwise, that is relevant from an end-user

perspective.

In Figure 4.49, “Manage Acceptance Test” workflow details are shown.

113



Cunf guratlnn Dlsmplmes
Ij Deployment
D Intraduction
D Concepts
@ [ Warkflow
D Flan Deplayment
D Develop Support Material
[} Manage Acceptance Test
D Produce Deployment Uni p eployment
D Eeta Test Product i \
D Fackage Praduct
D Provide Access to Downl .
Product

D Activities Acceptance
[ Ariitacts Fln

@] 8 @

=}
§ o

System Developrnent
Adrrinistrator o«
4

Development
Infrastructure
[Test Environment]

/ g

i S
ey -

TestEnviranment Execute
Gonfiguration Test Suite

FL

%

Change
Requst

"*D*—.

Manage
Acceptance
¥ Tests

P

Deterrmne
Test Resufts

Test Evaluation
Summary

TestAnalyst

&

Testlog

Deployment

Custo
RS IManager

Figure 4.49: Deployment — Workflow — Manage Acceptance Test

The Deployment Manager organizes the installation of the product on one or more
Test Environment Configurations that represents an environment acceptable to the
customer as specified in the Product Acceptance Plan. In some cases, this

environment will actually be the production deployment environment itself.

In some cases, the installation process itself may involve be subject to an acceptance

test, as may any preceding hardware upgrades and configurations.

Once installed, the Tester typically runs through a preselected set of tests-usually
based on a selected subset of the existing Test Suites-and determines the Test
Results. The Deployment Manager and other stakeholders review the Test Results
for anomalies. If there are "show stoppers", the Deployment Manager raises Change
Requests that require immediate attention and resolution, and may delay or postpone

subsequent plans for deployment to a wider user base.

In Figure 4.50, “Produce Deployment Unit” workflow details are shown.

114



LEX

Configuration Disciplines

3 Deployment
D Introduction ﬁ D E D
hirite D evelol
15" Fin o T e i
D Flan Deplayment + /’ ‘
D Develop Support Material —b . L
D Manage Acceptance Tesi = B Ca
[ Produce Deployment Uni T (Produsion Basdine) A Tae

D Eeta Test Product \‘ ‘ l

D Fackage Praduct »

D Provide Access to Downl B‘Z‘;m;i?.{ ﬁ O D Fe-—
[ Activities 2 = D — I:I I

o [
- L Training i i
[ artitacts Maerias cmﬁ‘;;'f" TepEfen tng Deployment
Unit
T
ES|'|d-Us§r
Uppo!
Material

Figure 4.50: Deployment — Workflow — Produce Deployment Unit
The purpose of this workflow detail is to:

e Create a deployment unit that consists of the software, and the necessary

accompanying artifacts required to effectively install and use it.

e The deployment unit can be created for the purposes of beta testing a test
deployment to the final users or, depending on it level of maturity, for the

final product.

This workflow detail relies on the skill set of described roles to create the product,
installation scripts, and associated user support material, in a form that can be

effectively delivered to the end users.

In Figure 4.51, “Beta Test Product” workflow details are shown.

115



Configuration Disciplines

3 Deployment i =
[ introduction | :
D Concepts Deployment Unit
@ [ Warkflow \A O N
[} Plan Deployment D D T
D Develop Support Materialnepﬁ;mem A Ermant EMZ‘HTget ml
D Manage Acceptance Tesi Manager Hidal B, Request
[submitted]

D Fraduce Deployment Uni
[} Beta Test Procuct|
D Fackage Praduct
D Provide Access to Downl
[ activities
[ artitacts

Figure 4.51: Deployment — Workflow - Beta Test Product

Feedback from the Beta Program is treated as Stakeholder Requests and factored into

the developing product features in subsequent iterations.

In Figure 4.52, “Package Product” workflow details are shown.

116



LEX

Configuration Disciplines

[ Deployment . = [ ]
[ introduction o]
[ concepts Deploy ment Unit Fredin
@ [ Warkflow L / $
[} Plan Deployment D &)

D Develop Support Material

Werify Manufactured
Rekease
[} Manage Acceptance Test / Msritanhig LI et

D Fraduce Deployment Uni \ Manager

D Eeta Test Product

H

3ill of Materials

v 1 RS
[} Package Product| ~
D Provide Access to Downl \" O S— E
[y acthities D Crst  hrwsrt
[ arlifacts Graphip  Fraduct

Artist

Figure 4.52: Deployment — Workflow — Package Product

The idea is to take the deployment unit, installation scripts, and user manuals, then

package them for mass production-as in a consumer product.

Apart from the software logistics people like the Deployment Manager, this
workflow detail calls for the product image-makers such as the technical "copy"
writers and graphic artists to lend their talents to add to the product's visual appeal as
it competes for consumer attention. Also required is handing off of the product to

manufacturing, who will produce the product in massive quantities.

In Figure 4.53, “Provide Access to Download Site” workflow details are shown.

117



LEX

Configuration Disciplines

[ Deployment =
D Introduction I:E
D Concepts Deployment Unit
& O workfow i
D Plan Deployment O
D Develop Support Material — D E
[} Manage Acceptance Tesi"=P %= Provide Access  peployment
D Fraduce Deployment Uni g REBEECE
D Eeta Test Product
D Fackage Praduct
0 Provide Access to Dawnl
[ Activities
[ artitacts

Figure 4.53: Deployment — Workflow — Provide Access to Download Site

The appeal of the Internet as a software distribution channel is obvious. The product
is entirely accessible through the software environment via browsers and web-sites.
The challenge for the provider is to make sure the product is reliably available at all
times to a global marketplace, even through varying that could choke the host

hardware and communication bandwidths.

Setting up the hardware infrastructure to host the corporate web presence is beyond
the scope of a software development process. However, the deployment manager
needs to know how to add the product offering to the list of products available over

the web and that the product is available for purchase and delivery on demand.
Activities:

In Figure 4.54, acitivites of the “Deployment” discipline are shown. The details are
explained in the workflow details meuitem. This view is added to the menuitems to

list the roles’s responsibilities in a clear way.

118



Configuration Disciplines
=2 Deployment
D Intraduction D D D D
Q Develop Manage Provide Access Werify
D Concepts Depl o ot N o r b
Flan Test Site Product
@ [ Warkflow l' 2
Deployment
[} Plan Deployment My |;> MD RQ = I>
i elease to
[ Develop Support Material Bil oiMaterias  Beta Test  Manufacting  Hotes
D Manage Acceptance Tesi
D Froduce Deployment Lini Q D Q D
D Eeta Test Product B ﬂ
Create Support
D Package Product Configuration Deployment System  Development
: Nlanager Unit Administ ator
D Provide Access to Downl
[ Activities
[ Ariitacts Q [ > Q > o | 2
g Develap Develop Zj Execute
Implementer “’:ﬁ'a?éo" T?mi;.i;m a:&iﬂ Tester Test Suite
U 'E.:redatit g Develop Q Determine
i rodu c Traini Test Resufts
b RR hm R g e
Figure 4.54: Deployment — Activities
Artifacts:

In Figure 4.55, artifacts of the “Deployment” discipline are shown. The workflow

details are explained in the workflow details meuitem. This view is added to the

menuitems to list the produced artifacts.

119



Configuration Disciplines

=2 Deployment
D Intraduction

I

D Concepts
& O workfow Diﬁ’a'ﬁgé“:_"‘ Deﬂ::g:' =
D Flan Deplayment
D Develop Support Material
D Manage Acceptance Tesi
D Fraduce Deployment Uni g
Implemert er In::taif:t";n

D Eeta Test Product
D Fackage Praduct
D Provide Access to Downl

Q
Configuration Deployment
nager Unit

System Development

Administrator  Infrastructure

Bill of Release
Materials Hotes
B Training
Course
Developer Materials
Graphic Product
Artist Artwork
Tester Test Log Test
Andyst

Froduct

Q

Technica
Writer

End- User
Support
Material

Test
Evaluaion
Summary

Figure 4.55: Deployment — Artifacts

4.1.3.6 Configuration Management:

Introduction:

In Figure 4.56 “Change Management” discipline purpose are explained.

120




Configuration Disciplines

=2 Change Management
D i_ntr.od_qctiﬁ.n;
D Concepts
& [ Workflow
[ activities
[ artitacts

Purpose

A CM System is essential for controlling the numerous artifacts produced by the many people who
wark on a commen project. Control helps avoid costly confusion, and ensures that resultant artifacts
are nat in conflict due to some of the following kinds of problems:

Simultaneous Update

When two or more team members work separately on the same artifact, the last one to
make changes destroys the work of the former. The basic problem is that if a system
does not support simultaneous update this leads to serial changes and slows down the
development process. However, with simultaneous update, the challenge is to detect that
updates have occurred simultaneously and to resclve any integration issues when these
changes are incorporated

Limited Motification

When a problem is fixed in artifacts shared by several developers, and some of them are
not notified of the change.

Multiple Versions

Most large programs are developed in evolutionary releases. One release could be in
customer use, while another is in test, and the third is still in development. If problems
are found in any one of the versions, fixes need to be propagated between them.
Confusion can arise leading to costly fixes and re-work unless changes are carefully
controlled and monitored.

A CM System is useful for managing multiple variants of evolving software systems, tracking which
versions are used in given software builds, performing builds of individual programs or entire releases
according to user-defined version specifications, and enforcing site-specific development policies.

Figure 4.56: Change Management - Introduction

Change Management(CM) involves:

The methods, processes, and tools used to provide change and configuration

management for an organization can be considered as the organization's CM System.

An organization's CM System holds key information about its product development,

promotion , deployment and maintenance processes, and retains the asset base of

identifying configuration items,
restricting changes to those items,
auditing changes made to those items, and

defining and managing configurations of those items.

potentially re-usable artifacts resulting from the execution of these processes.

121




The CM System is an essential and integral part of the overall development

processes.

A CM System is essential for controlling the numerous artifacts produced by the
many people who work on a common project. Control helps avoid costly confusion,
and ensures that resultant artifacts are not in conflict due to some of the following

kinds of problems [35]:

o Simultaneous Update: When two or more team members work separately on
the same artifact, the last one to make changes destroys the work of the
former. The basic problem is that if a system does not support simultaneous
update this leads to serial changes and slows down the development process.
However, with simultaneous update, the challenge is to detect that updates
have occurred simultaneously and to resolve any integration issues when

these changes are incorporated

o Limited Notification: When a problem is fixed in artifacts shared by several

developers, and some of them are not notified of the change.

e Multiple Versions: Most large programs are developed in evolutionary
releases. One release could be in customer use, while another is in test, and
the third is still in development. If problems are found in any one of the
versions, fixes need to be propagated between them. Confusion can arise
leading to costly fixes and re-work unless changes are carefully controlled

and monitored.

A CM System is useful for managing multiple variants of evolving software systems,
tracking which versions are used in given software builds, performing builds of
individual programs or entire releases according to user-defined version

specifications, and enforcing site-specific development policies.
Some of the direct benefits provided by a CM System are that it:
o supports development methods,

e maintains product integrity,

122



o ensures completeness and correctness of the configured product,

e provides a stable environment within which to develop the product,

o restricts changes to artifacts based on project policies, and

e provides an audit trail on why, when and by whom any artifact was changed.

In addition, a CM System stores detailed 'accounting' data on the development
process itself: who created a particular version (and when, and why), what versions

of sources went into a particular build, and other relevant information.

Concepts:

In Figure 4.57, “Change Management” concepts are shown.

Configuration  Disciplines
[ change Management The major aspects of a CM System include all of the following:
Intraduction
A : Change Request Management
B3] Concepts| -
& [ wWorkflow
[ activities
[ artitacts
Measurement
Configuration M t
Change Request Management (CRM) - addresses the organizational infrastructure required to assess
the cost, and schedule, impact of a requested change to the existing product. Change Request
Management addresses the workings of a Change Review Team or Change Control Board.
Configuration Status Accounting (Measurement) - is used to describe the state’ of the product based
on the type, number, rate and severity of defects found, and fixed, during the course of product
development. Metrics derived under this aspect, either through audits or raw data, are useful in
determining the overall completeness status of the project.
Configuration Manag t (CM) - describes the product structure and identifies its constituent
configuration items that are treated as single versionable entities in the configuration management
process. CM deals with defining configurations, building and labeling, and collecting versioned artifacts
into constituent sets and maintaining traceability between these versions.
Change Tracking - describes what is done to elements for what reason and at what time. It serves as
history and rationale of changes. It is quite separate from assessing the impact of proposed changes as
described under 'Change Request Management”.
Version Selection - the purpose of good version selection’ is to ensure that right versions of
configuration items are selected for change or implementation. Version selection relies on a solid
foundation of ‘configuration identification’.
Software Manufacture - covers the need to automate the steps to compile, test and package software
for distribution.
Figure 4.57: Change Management — Concepts
Workflow:

123



The main flowchart of this discipline is shown on this menu item. There are two
ways to see the details. Project members could work on the flowchart by clicking on

the activities listed on the screen or selecting from the submenu.

In Figure 4.58, “Change Management” workflow is shown.

Configuration Disciplines

=2 Change Management

D Introduction L
D Concepts ¥
o Warkfiow|
[ activities :
[ arifacts
Plan Project

Configuration
and Change Control

Ea
.?- @
Manage Cliange

Requests Create Project
€M Environments

b B &

Monitor & Report Change and Deliver Manage Baselines
Configuration Status  Configuration tems and Releases

L 4

Figure 4.58: Change Management— Workflow

In Figure 4.59, “Plan Project Configuration & Change Control” workflow details are

shown.

124



LEX

Configuration Disciplines

=2 Change Management o
D Intraduction [—>
D Concepts E EQ 3
Configuration LR W e GAAFtan
9 Cworkdow AT M Policies
D ZPIan Project Configuratia
D Create Praject Canfigura

D Manage Baselines & Rel O D -
; —* =
D Change and Deliver Con U

Establish

[} Manitar & Report Configu change Control Change Cortral Carfiguration
Manager Process Managemert
D Manage Change Regues Flan
[y activities
[ artitacts

Figure 4.59: Change Management— Workflow — Plan Project Configuration
The workflow detail focuses on:
o Establishing project configuration management policies
o Establishing policies and processes for controlling product change
e Documenting this information in the configuration management plan

“Configuration Management” policies refer to the ability to identify and report on the
artifacts that have been approved for use in a project. Identification is simplified and
enabled through the use of proper tools to control project artifacts, and the systematic
labeling of those artifacts over time to identify their relative maturity and their
relationships with each other at given points in time. Systematic identification
practices are a key enabler for the safeguarding of project artifacts through archiving

and baselining techniques.

125



Standard, documented change control processes help to ensure that changes are made
within a project in a consistent manner, and the appropriate stakeholders are
informed of the current state of the product, requested changes to it and the impact of

these changes on cost, schedule and so forth.

The configuration management plan documents how product related activities are to

be planned, implemented controlled and organized.

A person playing the configuration manager role needs to be organized by nature, yet
flexible enough to plan configuration and change control to suit the needs of the
project team. The configuration manager role supports the team by ensuring that the
project change policies are reflected within the projects change management tools,
enabling software developers to easily transition artifacts through state changes in
accordance with the defined development and approval practices. The configuration
manager role is required to put measures in place to monitor that the CM Plan is
being followed as intended, that audit reporting is occurring on a regular basis, and to
work with the System Administrator role to ensure that backups of CM assets are in

safekeeping.

The change control manager is a key arbitration role. In this capacity, the decision
for the inclusion of any given change in a software build is ultimately made by the
change control manager on a project. In practice, only those changes of significant
potential impact typically warrant monitoring, and any potential impact on the
inclusion-or exclusion-of changes to the product should be carefully considered with
regard to project factors such as the political climate, the need to establish trust

between developer and customer and so forth.

In Figure 4.60, “Create Project Configuration Management (CM) Environments”

workflow details are shown.

126



Eo®

Configuration Disciplines

=2 Change Management

D Introduction o O
D Concepts D Se@ Q D
& O workfow Configuration  CM Tt v'u"::(g';;'g:s Inte gratar
D Plan Project Configuratio M’""Qer/ S ~ \
(3 Create Project Configura L
D Manage Baselines & Rel g
[ Change and Deliver Corr~ EMP1an Cly 4
[} manitar & Report Configu R Workspace
D Manage Change Regues rtearsten]
[y activities
[ artitacts

Figure 4.60: Change Management— Workflow — Create Project Configuration

This work is done by making sure the essential artifacts are available to developers
and integrators in the various private and public workspaces as they need them, and
then are adequately baselined and stored for subsequent use. Setting up the CM
environment involves creating the product directory structure, repositories,
workspaces (developer and integration) and allocating machine resources (servers

and disk space).

To set up an appropriate environment, a person playing the configuration manager
role needs to have a good understanding of the component structures of the overall
product, and will need to work closely with the software architect to ensure that

adequate "place holder" CM items are established.

A person playing the integrator role in this work needs to ensure that artifacts
delivered from the developer workspaces are sufficiently tested such that they can be
incorporated into a testable build. The integrator role needs to be familiar with

project configuration management policies, build and test practices.

127



In Figure 4.61, “Manage Baselines & Releases” workflow details are shown.

Configuration Disciplines

=2 Change Management

LEX

O ==
[} Introduction B D =
Create
D Goncepts Deployment Unit Deployment Lnit
@ T wiorkflow Canfiguration
- : Manager
[} Plan Project Configuratio A T
D Create Project Configura f( .

D.Manage Bazelines & Rel 3

D Change and Deliver Con :

[} monitar & Report Configy Bl of Materids Rgg{;tcgry
D hanage Change Reques / "(

[ activities Q ¥ \
[ artitacts B D D

Create Fromote
Integrator Baselines Baselines

Figure 4.61: Change Management— Workflow — Manage Baselines and Releases

The frequency and formality in which baselines are created are described in the CM
Plan. The degree of formality is clearly much higher for a product being released to a
customer than for executable releases within the internal project team. When the
combined set of artifacts reach certain stages or levels of maturity, baselines are

created to assist managing availability for release, reuse and so forth.

This work is primarily driven by the configuration manager role, where the typical
need is to be able to assemble a product for release. The released product requires a
Bill of Materials (BOM) that serves as a complete checklist of what is to be delivered
to the customer. The released product will inevitably require release notes and

training material as described in the deployment activities.

128



The integrator role contributes to this work by ensuring that artifacts delivered from
the developer workspaces are integrated such that they can be incorporated into a

independently testable build.

In Figure 4.62, “Change and Deliver Configuration Items” workflow details are

shown.

LEX

Configuration Disciplines

@ [ Warkflow
D Flan Praject Configuratio
D Create Praject Canfigura

[ change Management )
[ introduction
D Concepts

W
Develomment

SRR

g
D Manage Baselines & Rel . D D > e
Qcnangeandoeivercon [ GOl Gl e T
D Monitor & Report Configu Development Changes Changes  Workspace

Any Role Waotks pace
D Manage Change Regues / | T
(3 Activities 5 "

" F 3
[ artitacts Invck es " ¥
e & 8.

Work Order  Work Order

U Create Promote

Adtivities Bazelines Bazelines
gfrom other Eisdplinesf Infegratas

Perfom

Figure 4.62: Change Management— Workflow — Change and Deliver Configuration

Items
This workflow detail is focused on:

e The creation of workspaces, accessing project artifacts, making changes to
those artifacts, delivering the changes for inclusion in the overall product, by

any role in the project team.

e The building of the product, creation of baselines and promotion of the

baselines for availability to the rest of the development team.

129



In Figure 4.63, “Monitor & Report Configuration Status” workflow details are

shown.

EEX
Configuration Disciplines
=2 Change Management
D Introduction

@)
D Concepts U D D

T workflow - " Report on Perform

9 . X Canfiguration  onfiguration  anfiguration
D Flan Praject Configuratio Manager Status Audit
D Create Praject Canfigura 4‘

v
D Manage Baselines & Rel

D Change and Deliver Con ! ¥
e b S R N SRR Project Cor!h%yrajlon
D Monitar & Report Configu Measurements Audit Findings
D Manage Change Regues
[y activities
[ artitacts

Figure 4.63: Change Management— Workflow — Monitor & Report Configuration
This workflow detail is focused on:
o Ensuring that artifacts and their associated baselines are available.

e Determining if required artifacts are stored in a controlled library and

baselined.
e Supporting project Configuration Status Accounting activities.

o Facilitating reporting of change request information, especially the activities

related to work performed against defect and enhancement requests.

o Ensuring that data is "rolled-up" and reported for the purposes of tracking

progress and trends.

130



In Figure 4.64, “Manage Change Requests” workflow details are shown.

[} Introduction

: " ©
[ concents . SubD D & D

énitchatnge Update Change S e e
Bgues R st
@ T wiorkflow Any Role 4 ELE Project Assign Worl

D Flan Praject Configuratio \ / Manager
D Create Project Configura \ \ //

D Manage Baselines & Rel X /

D Chanoe and Deliver Con > 2 S .

Q ¥
i “B— g D
[} manitar & Report Configu D Re“;"g‘qg:‘;"ge ~— D
| Werify Changes
[ Manage Change Redues Change Sontrol /m;ge Reduest  Loommast e
D Activities p1 (From Test D s cipling)

" Confrm Duplicate
[ arifacts or R ejected GR

Figure 4.64: Change Management— Workflow — Manage Change Request

Having a standard, documented change control process ensures that changes are
made within a project in a consistent manner and the appropriate stakeholders are
informed of the state of the product, changes to it and the cost and schedule impact of

these changes.
Activities:

In Figure 4.65, activites of the “Change Management” discipline are shown. The
details are explained in the workflow details menu item. This view is added to the

menuitems to list the roles’s responsibilities in a clear way.

131



Configuration Disciplines
[ change Management Q
D Intraduction D D D p D b D
[ concents el SetUp CM ci‘stsbll_is_h Write Create Report an Perform
o onfiguraion Environment alicies CMPlan Deployment  Configuration  Configuration
%W_U[@_D.\'X Wanager Unit Status Audts
Activities|
G P
[ artitacts Q D D D ) D
E Establish Review Canfirm Duplicate D c}":r'"f“es
Change Control  gpange Contral  Change or Rejected CR TestAnalyst et
Manager Process Request
U Create Integration Create Fromote U S;Shseid:lﬁ,gr';(d
Integrator Workspaces Baselines Baselines Project a
Manager
. [.:leate Make Changes  Deliver Update Submit Update
D evelopment Changes Workspace Change Change
Any Raole Workspace Request Request
. e
Figure 4.65: Change Managemen - Activities
.
Artifacts:

In Figure 4.66, artifacts of the “Change Management” discipline are shown. The
workflow details are explained in the workflow details menu item. This view is

added to the menu items to list the produced artifacts.

132



Configuration Disciplines
=2 Change Management

D Intraduction Q = Q
[]

D Concepts Configuration
Lo Wiorkflow Configuration Audit Change Cortrol
lj Manager Findings Manager

[ activities

[ rtifacts|

Configuration —
Management Proje
Plan Repository

)

‘Waorkspace

Integrator  Workspace any Role
{integration) [development )

Chge
Request

Figure 4.66: Change Management— Artifacts

4.1.3.7 Project Management:

Introduction:

In Figure 4.67 “Project Management” discipline purpose is explained.

133



/ et Purpose
D Introduction

D bgnc‘e‘pts Our goal with this section is to make the task easier by providing some context for Project
Management. It is not a recipe for success, but it presents an approach to managing the project that

@ ] Warkfl : : E T
= o.r. _DW will markedly improve the odds of delivering successful software.
D Activities
[ artitacts The purpose of Project Management is:

B To provide a framework for managing software-intensive projects.
B To provide practical guidelines for planning, staffing. executing, and monitoring projects.
B To provide a framework for managing risk.

This discipline focuses mainly on the important aspects of an iterative development process:
B Risk management

B Planning an iterative project, through the lifecycle and for a particular iteration
B Monitoring progress of an iterative project, metrics

Figure 4.67: Project Management - Introduction

Software project management is the art of balancing competing objectives, managing
risk, and overcoming constraints to successfully deliver a product which meets the
needs of both customers (the payers of bills) and the users. The fact that so few

projects are unarguably successful is comment enough on the difficulty of the task.

Our goal with this section is to make the task easier by providing some context for
project management. It is not a recipe for success, but it presents an approach to
managing the project that will markedly improve the odds of delivering successful

software.
The purpose of “Project Management” is:
e To provide a framework for managing software-intensive projects.

e To provide practical guidelines for planning, staffing, executing, and

monitoring projects.

134



e To provide a framework for managing risk.

This discipline focuses mainly on the important aspects of an iterative development

process:
e Risk management

e Planning an iterative project, through the lifecycle and for a particular

iteration

e Monitoring progress of an iterative project, metrics

Concepts:

In Figure 4.68, “Project Management” concepts are shown.

Configuration Disciplines

(3 Project Wanagement What s an lteration?
[} Introduction Iraditionally, projects have been organized to go through each discipline in sequence, once and
[ Concepts| only once. This leads to the waterfall lifecycle:
& Cwiordiow -
D Achivities Business Irral Tedt Deployment
[ artitacts Iodleling tation
time.

This often results in an integration ‘pile-up’ late in implementation when, for the first time, the
product is built and testing begins. Problems which have remained hidden throughout Analysis,
Design and Implementation come boiling to the surface, and the project grinds to a halt as a
lengthy bug-fix cycle begins.
This often results in an integration ‘pile-up’ late in implementation when, for the first time, the
product is built and testing begins. Problems which have remained hidden throughout Analysis,
Design and Implementation come beiling to the surface, and the project grinds to a halt as a
lengthy bug-fix cycle begins.

7 -

k| . |

Business  Requitements  Analysk &  Implement- Test Deployment
Modeling Design ation .
¢
|35 I
|
= | |
_____ i L

Bus\ngss Requirements  Analysis & Implement Test Deployment
Mo deling Design ation
&
Y 1 f
i 5 |
i 1 i
Business Requirements  Analysis & Implement Test Deployment
o deling Design ation

Therefore, from a development perspective the software lifecycle is a succession of iterations,
through which the software develops incrementally. Each iteration concludes with the release of an
executable product. This product mav be a subset of the complete vision, but useful from some
engineering or user perspective.

Figure 4.68: Project Management - Concepts
Workflow:

In Figure 4.69, “Project Management” workflow is shown.

135



Configuration Disciplines

=2 Project Management
D Intraduction
D Concepts
§ O wark:

Conc-ewe Mew Project
D Evaluate Project Scope a
[ Plan the Project

D Plan for Mext lteration

D Manage lteration

D Manitar & Cantrol Project
D Close-Out Phase

D Clase-Out Praject

[Start of Project
Only]

Conceive New
Project

|

Evaluate Project
Scope and Risk

[All Subsequent

terations]

Plan for Mext tteration
[ Remainder of Initial
teration in Inception )

B

Manage

teration

[Project
canceled]

. Canceed
Project

[teration
successful]

Evaluate Project

[ Activities [@ Scope and Risk
[ Arifacts Plan the [Praject End] [Phase End]
Project -
Lerati
[E:rd] o Monitor & Cortral
Project
Project Plans Close- Out
[Eraject it ¥ Close-Out
canceled] L E Phase
[Project [Project
Gomelcte) cancJ:eIed]
= End . .
fanesled  project [Failed [Phas= o
el acceptance ancele
ptance] Complete] s
[Optiond, depending on
= q degree of change]

e B0

Plan for Mext Plan the

teration Project

|
'3

Figure 4.69: Project Management— Workflow

In Figure 4.70,

136

“Conceive New Projects” workflow details are shown.




Eo®

Configuration Disciplines

[ Project Managernent
[ Introduction /’ E
D Concepts O i g:\éq;\g
@ [ Warkflow D

1CEHCEN9 News Project| Project
D J Management Approval

D Evaluate Project Scope a Reviewer R eview
[ Plan the Project

s
//

D Plan for Mext lteration b L, =, b

D Manaoe lteration

[} manitar & Control Project Vision Risk Business  Software "feorff"“ﬂcg 'z:oa:

(Initjal) ~~_ List Case, Development (for Incepti
i e, Pl initial iteration)
[} close-out Phase \\\ \\ (frstadTrr‘aﬂ) /

D Clase-Out Praject

[ activities O ]
[ artitacts E D D D

Project |dentify Develop Initiate

Manager Business Project

nd
Assess Rishs Case

Figure 4.70: Project Management— Workflow — Conceive New Project

On the basis of the initial vision, risks are assessed and an economic analysis, the
business case, is produced. If the “Activity:Project Approval Review” finds these
satisfactory, the project is formally set up (in Activity: Initiate Project), and given
limited sanction (and budget) to begin a complete planning effort. This latter activity

adds substance to the initial Vision, validates and refines it.

In the Business Case, the Project Manager should describe at least two approaches to
realizing the Vision, and analyze these in terms of risk impact, and economic
outcomes. During the “Activity:Project Approval Review”, one of the offered
choices will be selected, if the project is to continue. There is a considerable body of
management knowledge and theory to assist the Project Manager and the Project
Reviewer in risk and decision analysis, and it is valuable to have a few of the project
management and review staff well versed in these techniques - especially if the

project is large, unprecedented, complex or otherwise risky.

In Figure 4.71, “Evaluate Project Scope and Risk” workflow details are shown.

137



LEX

Cunf guratlnn Dlsmplmes

Ij Project Management

D Intraduction
D Concepts
@ T3 'workflow % "
D Conceive MNew Project é E
[ Evaluate Praject Scope 2 o Risk  Business

List
[ Plan the Project

D Plan for Mext lteration
D Manage lteration

V

\\{1 ¢

[} manitar & Control Project D D
D Close-Out Phase .
Project Idenhfy' De\relop
D Clase-Out Praject Manager Business
.ﬂssess Rxsks Cae
[ activities
[ artitacts

Figure 4.71: Project Management— Workflow — Evaluate Project Scope and Risk

The purpose of this workflow detail is to reappraise the project's intended capabilities
and characteristics, and the risks associated with achieving them. As the capabilities
and risks are better understood, the business case should be updated, to ensure that
the project continues to be worth investing in, in its current form, or if a change in

direction is needed.

This workflow detail updates and refines the Risk List and Business Case.
Techniques such as those described in Workflow Detail: Conceive New Project:
Guidelines may be used for risk and decision analysis. The Risk List and Business
Case should be subjected to internal walkthroughs and reviews to ensure there is a

general consensus, before the next round of detailed planning is begun.

In Figure 4.72, “Plan the Project” workflow details are shown.

138



Cunf guratlnn D|

Ij Pro]ectManagement
D Intraduction

EEE § g B B

D Concepts
Vision  Risk List Business Measurement Product Problem
9 C Workdlow Cas= Plan Management Acceptance  Resolution
[} conceive New Praject /" i Plan F'a"
D Evaluate Project Scope a v / /‘
Evaluate Pro 0 . . i
[} Plan the Project U P
; Develop Develap Develop Develop
D Plan for Next fteration Project Measurement Risk Product Frablem
[} Manage teration Menagin o Manpalgemeﬂt Acceptance Resolut\on
) ) L Plan
D Manitar & Cantrol Project
D Close-Out Phase D D D D D
. Develop Quality Define Project D efine Plan Phases  Compile Software
D Close-Out Project AssurancePlan  Qrganization Mgncwlngl and Iterations  Development Plan
L o Staffi and Control
[ activities i Process es
_ N
D Arifacts

\\‘\. /’;/
Quality Measure ment Software
Assurance Plan Plan Develop mert
Plan
\ Review
Record
D iject?\annlng

Management Review
Reviewer

Figure 4.72: Project Management— Workflow — Plan the Project

The major effort in creating these artifacts comes early in the inception phase;
thereafter, when this workflow detail is invoked at the beginning of each iteration, it
is to revise the Software Development Plan (and its enclosures) on the basis of the
previous iteration's experience and the Iteration Plan for the next. The Project
Manager will also collate all other contributions to the Software Development Plan

and assemble them in “Activity: Compile Software Development Plan”.

Estimation should ideally be based in the organization's own experience, which is
then used to calibrate an estimation model, such as COCOMO. If the Project
Manager is starting from scratch, using default values for model coefficients, it will
be important to use other methods to validate the estimates. Just as important is to
obtain staff and other stakeholder agreement that the estimates are realistic and
achievable. However, the Project Manager has to take into account the experience of
staff giving feedback about estimates. More junior staff may be just guessing
numbers and then adding large margins for error; conversely, their effort estimates

may be naively low. The Project Manager must be circumspect when dealing with

139



estimates from junior staff, and be prepared to counsel them when necessary, and

offer the assistance of a more experienced peer.

All enclosed plans and sections of the Software Development Plan should be
evaluated through internal walkthroughs and reviews before the “Activity:Project

Planning Review” occurs.

In Figure 4.73, “Plan for Nex Iteration” workflow details are shown.

Cunf guratlnn Dlsmplmes

Ij Project Management

[ Introduction -
D Concepts E:‘cﬂoer‘év
@ [ warkflow

[} conceive New Praject Q . . . .
D Evaluate Project Scope a g e
D Plan the Project Ma;;gi:::r"t Itar:g::'\ezlan lte'gla;on “ision Elsk BUCS:;ZSS
D Plan for Mext \teratmn \ k
0 Manage leration x

|
D Manitar & Cantrol Project }
D Clage-Out Phase D D D

i Develop Develop
D Close-Out Projest l\:‘;?'\]:::r Iteration Business
[y activities > Plan Case
Artifacts b \ b
D =
=
Software Software
Architecture Develop ment

Document Plan

Figure 4.73: Project Management— Workflow — Plan for Next Iteration

The Iteration Plan should be reviewed by the customer and other stakeholders, and, if
satisfactory, should be approved through the “Activity:Iteration Plan Review”. This
review also gives the customer visibility of the project's expectations of customer
participation and resources-particularly if the iteration is intended to deliver artifacts

or deploy software-so the customer can make appropriate plans.

The Project Manager should work closely with the Software Architect to define the

iteration's contents. The Iteration Plan should be evaluated internally, through

140



walkthrough and review, before being presented for the “Activity:Iteration Plan

Review”, in particular:
e to assess the clarity of expression of the evaluation criteria for the iteration

e to reach agreement internally that the planned artifacts can be built with the

effort and time available

e to ensure that the results of the iteration will be testable or otherwise

demonstrable; that is, the iteration will have a tangible outcome

In Figure 4.74, “Manage Iteration” workflow details are shown.

i isciplines
ject Manageme = 3
[ Introduction %
D Concepts Test Plan 5235‘3'
@ [ warkflow

T
D Conceive New Project ﬁ D D

D Evaluate Project Scope a
Iteration Iteration

D Plan the Project Managemem Evaluation Criteria Acceptance
Review Review
D Plan for Mex lteration 1 s
D Manage Iteranon
D Monitar & Control Project Iteratlon Software .
De\elop mert lssues
D Close-Out Phase Plan L|st Measuremant A
Both artifacts are used by Elus\ness
D Close-Out Project the referenced activities \’iSIOH

Activities teration
D \ \ l Assessment
[ Artitacts O
Ac uire \nltlate Assess \ Change
G;:.J:;; SHat / Iteratian Ile;hon \Request
Test Plan ASSEsment
Work Test E\.a\uatlon

Crder Summary
Developmaﬂt
Case

Figure 4.74: Project Management— Workflow — Manage Iteration

This workflow detail contains the activities that begin, end and review an iteration.
The purpose is to acquire the necessary resources to perform the iteration (in
“Activity: Acquire Staff” and “Activity: Initiate Iteration”), allocate the work to be

done (in “Activity: Initiate Iteration”), and finally, to assess the results of the

141



iteration in “Activity: Assess Iteration”. An iteration concludes with an
“Activity:Iteration ~ Acceptance  Review” which determines, from the

“Activity:Iteration Assessment”, whether the objectives of the iteration were met.

Optionally, in a lengthy iteration, the project manager may think it prudent to
resynchronize the expectations of management, technical staff, customer and other
stakeholders, by holding an “Activity:Iteration Evaluation Criteria Review” mid-way
through the iteration. At this review, which is based mainly around the test plan, the
project reveals the planned contents of the iteration in a very concrete way. This
gives an opportunity for a 'mid-course correction', should misunderstandings have

arisen over the intent of the iteration plan.

The evaluation criteria for an iteration should have been set objectively and clearly,
so the assessment of an iteration requires the project manager to be analytic and

equally objective.

Failing the iteration on this count alone would not be sensible. Far better for the
project manager and management reviewer to agree to relax this requirement, and as
compensation, to add capability elsewhere. The management reviewer (and Pproject
manager) need the experience and confidence to make these kinds of trades, which

do not compromise the Vision for the product.

In figure 4.75, “Monitor and Control Project” workflow details are shown.

142



Configuration Disciplines

=2 Project Management 4
D Intraduction O , I Q
[ concepts \ lta'glatlon . D 3
an
@ T worklow D ‘: D FRA Review
i T Management Project Record
D Conceive New Project Review C'lganlze g J!
i R eviewer Review W
Coordinatar Review
D Evaluate Project Scope a Ee\ie\g
eCor
[ Plan the Project . .
D Flan for Mext [teration @ | E E
. Review 1y, it Issues Stat
%:Manage lteration Man?’lg:nmem Record eas,%l’;,me" "f_'l;k Me?sPLcl"J:rSa'\ts list Assecsment
Monitor & Control Project -
[ close-Out Phase H}« / / // .
[ close-out Project “—h——-—______’ > RZQ%‘?L?.“Sn
[ activities b

Maonitar Report
. Project Stats
[ artitacts U s =
i, Project | ‘\ 4 \
M Manager y o
=

Handle
s Schedule Exceptions and

Change and Assign

Request / Wark / Problems \ . —
$ ! _/ 5
Wark E— = 4577,
Ord f— E Both atifacts are used
K by the referenced

terstion  Software activities
Flan Devdopment
Plan

)

Figure 4.75: Project Management— Workflow — Monitor and Control Project

This workflow detail captures the daily, continuing, work of the project manager,

covering:

o dealing with change requests that have been sanctioned by the change control

manager, and scheduling these for the current or future iterations;

e continuously monitoring the project in terms of active risks and objective

measurements of progress and quality;

o regular reporting of project status, in the status assessment, to the project
review authority (PRA), which is the organizational entity to which the

project manager is accountable;

e dealing with issues and problems as they are discovered, through the
“Activity: Monitor Project Status” or otherwise, and driving these to closure

according to the Problem Resolution Plan. This may require that change

143



requests be issued for work that cannot be authorized by the project manager

alone.

The project manager should put in place mechanisms to automate, as far as possible,
the collection and reduction of information (metrics, for example) about the project.
Time should be spent in analyzing trends, not in collection and calculation. The
responsibility for solution of problems that arise on a project obviously ultimately
rests with the project manager. However, there is a class of technical problems that
should be delegated to the software architect, for example, for solution. The project
manager's role is then to implement the suggested solution - which may give rise to a
secondary problem, say, lack of resources, which does have to be solved by the
project manager. This demonstrates the kind of trust that must exist between the
project manager and the technical staff - the project manager expects the software
architect to devise sound technical solutions, and the software architect expects the
project manager to put in place the infrastructure and resources to implement them,

contractual and financial constraints permitting.

In Figure 4.76, “Close-Out Phase” workflow details are shown.

Configuration Disciplines

=] Project Management

[ Introduction ﬁ D i “'

[ Concepts Lifecyele Revew
& Clworkiow anagenen  Misbna  Feoor
[y Conceive Mew Projact REGIRE / vﬂ\ ~ =5
D Evaluate Project Scope a =t I =
g 5 | Business
[ Plan the Project = =
) Plan far Rest Iteration Sus  Softvare - eration

Assessment Development Acsacsment
* Flan
[ manage Hteration B

*
D Monitor & Control Project O \ ;‘ b
[ Close-outPhase U -
[ Close-Out Project D s3ues
e Project Prepare for
[ Activities Wanagsr  PhaseClose-Out
[ antitacts

Figure 4.76: Project Management— Workflow — Close Out Phase

144



In this workflow detail, the Project Manager brings the phase to closure by ensuring

that:
e all major issues from the previous iteration are resolved
e the state of all artifacts is known (through configuration audit)
e required artifacts have been distributed to stakeholders

e any deployment (for example, installation, transition, training), problems

are addressed

e the project's finances are settled, if the current contract is ending (with the

intent to recontract for the next phase)

A final phase status assessment is prepared for the lifecycle milestone review, at
which point the phase artifacts are reviewed and, if the project state is satisfactory,

sanction is given to proceed to the next phase.

In Figure 4.77, “Close Out Project” workflow details are shown.

145



Configuration Di

=2 Project Management

D Intraduction O .
D Concepts U D " S

|j Project Ewe\g
ecar
Q Workdlow Management Ac}_\c.:s:::‘ce
D Conceive New Project Reviewer /‘ >

D Evaluate Project Scope a &

[ Plan the Project I%

D Plan for Mext lteration Status Software tteration
Assessmpent DE"’E'L‘OPT“EM Assessment

D Manage lteration T i

[} manitar & Contral Project O I / "

D Close-Out Phase E

(3 Close-0ut roject| 8 D “ha

e Project Prepare far
D Activities Manager  ProjestClose-Out
[ artitacts

Figure 4.77: Project Management— Workflow — Close Out Project

A final status assessment is prepared for the “Activity: Project Acceptance Review”,
which, if successful, marks the point at which the customer formally accepts
ownership of the software product. The Project Manager then completes the close-
out of the project by disposing of the remaining assets and reassigning the remaining
staff.

Activities:

In Figure 4.78, acitivites of the “Project Management” discipline are shown. The
details are explained in the workflow details menu item. This view is added to the

menuitems to list the roles’s responsibilities in a clear way.

146



Configuration Disciplines

=2 Project Management
D Intraduction

o
B’D

[

g

Develop Q uality

Project
[ concepts Develop Mansger D efine Plan Phases  Mmnar  Assurance Plan >
Q IjWorkﬂow o Business Manitoring and lterations Develo
Project Case and Control Mezuremer?tPlan
D Conceive New Project Manager Processes
i Initiate Develop Product
D Evaluate Project Scope a D Project D D A D
D Rlanihe Riojatt Compile Software Define Project MG Ll
[ Pan for Mext teration ety DevelopmentPlan  Organzation Res olutian Plan
e E“dR " and Staffing Develop Risk
i Se55 REKS
D Manage lteration Managemert Plan
[} monitor & Contral Project Project Start Development Planning Other Plans
D Close-Out Phase
9]
[ close-out Project & D D D D
1 ity Praject : - Praect I
D Activities Manager Develop Acquire Initiate Assess I nager
D .'.“\ﬂifaClS z Iteration Plan Saff Iteration lteration Wontar i Report st
I Project  andAssign  Status  Exceptions and
Iteration B e Pranm T bt Status Work Prablems
repare for ase repare for Fraje .
Start-End Close-Out Close-Out Routine Management
B Project Project lteration Plan PRA Iter ation Iteration Lifecycle Project
Management Appraval Planning Review Plnj_ed Evaluati pt Iilest ,f
Reviewer Review Rewview R eview Criteria Review Review Review
. Review
Reviews
. . e
Figure 4.78: Project Management— Activities
.
Artifacts:

In Figure 4.79, artifacts of the “Project Management” discipline are shown. The

workflow details are explained in the workflow details menu item. This view is

added to the menu items to list the produced artifacts.

147



Configuration Disciplines

=2 Project Management
D Intraduction
D Concepts
@ [ Warkflow
D Conceive New Project
D Evaluate Project Scope a
[ Plan the Project
D Plan for Mext lteration
D Manage lteration
D Manitar & Cantrol Project
D Close-Out Phase
D Clase-Out Praject
[ activities

Software Business lteration teraion
Dewvel t Pl
evelopment Flan  Case Plan Assessment Rt myar
Status Problem Risk RiskList
Assessment  Reselution  Management
Project Flan Flan
Manager & L . Rewiew
Record
Wark Product Quality
Order Acceptance Measl.lnr;‘mant Assurance
Plan Flan
Issues =
3 Praoject
List Measurements

Figure 4.79: Project Management— Artifacts

148




4.2 Traceability Relations

The implementation tool sould not to be seen just as a document management tool.

There are three main areas, where the tool is very strong and be a pioneer.

First, the implementation tool acts a tutorial, which has a deep knowledge on
sofftware engineering. It tolds the user, how a process area work, what the main
concepts are, which artifacts should be prepared. It also gives teplate and guidelines

of those artifacts.

Second, it has a strong configuration management framework. More then just a a
fileserver, it keeps track of all the artifacts. It has a self version control mechanism to

fulfill this CMMI requirement.

Third, the tracebility issue on main artifacts are the strongets part of this tool. There
are lots of discipline spesific tools, which have a deep expertise on the spesific area.
But CMMI impresses, that the power of software engineering comes from the overall
integrity of all the disciplines. The implementation tool has the both way tracebility,

and control properties on the seven disciplines.

149



wng \ / Project Management\ / Analysis and Desigr\ / Implementation \ / Testing \

Start Defining Create HLD . Define TestCases
= Start Analyzing Work or "
Features for a Compopents fromr Requirements Implementation depending or
Product Requirements UseCases
Define Timgéi?\t: s Create UseCases Define Classes
R R from HLD depending or depending on HLD Execute Tests
a Requirements and UseCases
Components
Map Features with Synchronize Define Effort anc
Requirements Timeschedule Complete Usage
Automatically from
Class
Implementations

N\ N\

Requirements Change Management

S ) i E=3
/ Deployment

Deploy the
Product

Approve

hYa

D2 VAN

Figure 4.80: Traceability Relation

The traceability starts with requirements management discipline as seen in Figure
4.80. In requirements management discipline, it is required to define requirements.
First of all, there should be main ideas, which have to be collected. They are not the
real requirements but features. The traceability begins with features. After features
are defined, it is time to transfer them as real requirements for products. There could
be one to one relationship between features and requiremets, or the feature will not
be implementedon this product, or the last scenario there could be many to many
relationship. All the relation types are supported from the implementation tool. After
approving requirements from development team, the team started to create High
Level Design components. These components will also be main steps for activities in
implementation phase. The implementation tool has the ability to prepare
automatically a project plan using HLD components. The Automation has a lot of
advantages like, time saving from preparing the artifact,no mismatches or human
error, both way traceability. The plan can be updated on MSProjet side or the HLD
can be updated inside the implementation tool. From both ways, the implementation

tool could make synchronisation to be consistent.

150



This plan will also be updated when developers start to begin implementation. They
give inputs to the implementation tool, how much effort do they use before
committing a class or a component. The implementation tool gives the project
manager the information by updating their plan, and putting completing percentages
into the plan. So every person, especially project manager could be aware from the

flow of the project , whenever they want.

Usecases and testcases are also directly in a relationship with requirements. Every
functional requirement is also a usecase in implementation tool. Again a time saving
and tracebility advantange appears here between Requirements Management
discipline and Test discipline. In Analysis and Design discpline, the classes also

defined based on usecase realizations.

The detailed explanation on the spesific disciplines and artifacts are in Discipline

Step of this document.

Traceability Flow:

The usage cycle begins with creating a new project in implementation tool. Entering
an unique project name and a description is enough information for project

authentication.

151



Configuration Disciplines

[T Administration Create Project:
[y Login to Project
D Create Project Project Name :

[ Edit Project
D List Projects
D Remoave Project

|VideoConferencing

Description :

Revenue from traditional voice services has stagnated and subsc
tiher numbers have peaked, leaving operators to search for new r
evenue sources. In their search for new revenue streams, operato
rs are seeking to fully exploitthe increasing capahilities of handse
ts and netwarks and offer even richer senvices.

continue | [ CANCEL

Figure 4.81: Traceability — Create Project

After clicking “Continue” button on the window in Figure 4.79, the implementation
tool continues creating users for your project. An user could be in more then one role

in the project. It is mandatory to fullfill all the roles for a project.

152



Configuration Disciplines

[T Adrinistration

Create User:
[ Login to Project

D Create Project Username  |lgyento
[} Edit Project
[ UistProjects il Levent | Lastn Ozoigin_ |
[} Remave Project Email [leventog@omail.cam |
Select Role:
[v] System Analyst [C] Designer [C] Implementor

[¥] Requirements Specifier [_] User Interface Designer
[v] Technical Reviewer [C] capsule Designer
[v] Integrator [[] Database Designer

[C] Software Architect

[C] Deployment Manager
[v] Configuration Manager
[C] Change Control Manager

[ Test Designer

[_] Test Manager [[] Course Developer [[] Project Manager
[[] Test Analyst [ Graphic Artist [C] Management Reviewer
[ Tester
[ createmnotheruser | [ Fnish | [ camce

Figure 4.82: Traceability — Create Project - User

To complete creating the user and continue with a new user, it must be clicked the
“Create Another User ” button o the window shown in Figure 4.82. To complete and
finish the user, it must be clicked “Finish” buton. To cancel the creation, it must be
clicked “CANCEL” button. It could be then continuing creating user using “Edit

Project” menu.

153



Configuration Disciplines

[T Adrinistration Succesfully created!
[ Login to Project

D Create Project
[} Edit Project

D List Projects

D Remave Project

Figure 4.83: Traceability — Create Project - Confirmation

The implementation tool displays the confirmation message “Succesfully created”,
when the project is created on the database side. It is shown on Figure 4.83. To list
projects created before, “List Projects” menuitem could be selected. If a project is no
longer alive, and need not to be listed on the “List Project” menuitem, then it could

be removed using “Remove Project” menuitem.

154



CEX

Configuration Disciplines

3 Adrministration Projects :
[ Login to Project
) D [ PROJECTHAME | DESCRIPTION I
[ Create Froject 1 [videnCanferencing |Revenue from traditional vaice s...
D Edit Project 2 IVideoRElT ICanvas CoolRings (Audio & Vide..
D List Projects

D Remave Project

Figure 4.84: Traceability — List Projects

To begin working on a project, users have to login to the project. From “Login to
Project” menu item, users select the project using dropdown menu and click

“LOGIN” button.

155



Configuration Disciplines

[ Administration Select Project :
[ Login to Project
[ Creats Project VideoConferencing v ‘ | LOGIN
[ EditPraject

D List Projects
D Remave Project

Figure 4.85: Traceability — Login

After loging to the project shown in Figure 4.85, project members can begin working
on disciplines selecting from “Disciplines”menu. There are seven disciplines listed
on the “Disciplines” menu shown in Figure 4.86. The traceability cycle begins with
the concept “defining requirements”. Requirements Management will be the first

discipline therefore.

156



Configuration Disciplines|

3 Administrat. REquirements Management
D Logintg Project Planning
[ Create | Analysis and Design rencing v | LoGi
[} EditPrd Implementation
D ListProf Change Mahagement
D Remove Test

Deployment

ct:

Figure 4.86: Traceability — Disciplines

The discipline detail will be explained later. Every discipline has five menuitems,
which are “Introduction”, “Concepts”, “Workflow”, “Activities” and “Artifacts”.
The main work on disciplines is to produce some artifacts to be more predictable.
The first tracebility property is to keep track of this artifacts. Using “Workflow
Details” menuitems or “Artifacts” menuitem, artifacts will be produced or seen.

Every artifact document will be kept on the server in a versioned way.

157



Configuration Disciplines

=2 Requirements Management
D Intraduction
D Concepts

tteration Mision Glossary _ Softwars Requirements

Devel . Ma it
§ Clworkiow Fian . EVERETRrL. MRrmemE

D Analyze the Prablem
D Understand StakeHolder

O B
[} Defing the System ' |:> D'e-v_eT;/p

4 Capture a R equirements
D Manage the Scope ofthe  customer i ;

Q Comman Management
[} Refine the System Defini U Yessalan: £l / Mision
D Manage Changing Requi ’ System D D
[y activities ' At A Develop 11.._,_\“ @

Visian

) 4 dlse G
D Arifacts EndUser an/:e S \ Business
\ Rule

® \
Other “Msion Use-Case Model  Sakeholder
Stakeholder (actors only) Requests

Figure 4.87: Traceability — Artifact

Clicking on a document shown on the Figure 4.87 will guide to another window,
where a new document or a new version of a document will be created. Documents
latest version, document template could be seen on this window shown in Figure
4.86. If it is the first time, “Latest Version” will be “v0”. The user could view the
template (shown in 4.87) document download it and fill the template depending on

his project.

158



Document Name : |\risi0n.doc

| Latest Version Xyision_v0.doc |

View Template : ‘ \iew Document Template

Download Template : ‘ Download Document Template |

Older Versions : |

v| | View | | Dowvenload |

Upload Hew Version : |

| Upload ‘

Look In: ‘ ] My Documents

v = 8] o BelE]

[ Bluetooth Exchange Folder ] My Data Sources [ My Shapes [ My Videos
3 GomPlayer 3 My Music [ My Skype Content [T My Virtual Machines
7 Goagle Talk Received Files T3 My Pictures [ My Skype Pictures I RUPBilder
CIm ] My Received Files (L3 My Skype Received Files [} .cvsrc
[»

File Name: | |
Files of Type: | Al Files v

| Open | | Cancel |

CLOSE

Figure 4.88: Traceability — Versioning

All the view activities opens documents using their original programs.

159




5 vision.doc - Microsoft Word

! File Edit View Insert Format Tools Table Window Help

RN s N f= Wl s N EER W A I R N2r W=

i 44 Title +Right v Arfal -1 ~|[B]s U = =[F]
R R

E--l‘l-l-‘)‘l-t&‘l-s 158 1+9 1-10"

Type & question for help = %
| &1 1 125%  ~ @)\,ug.ead!
i= = &= 5E | [ -=£7-A-!

=
b TR R T = ORI 7 S TSR T v GRS T IR e Y. 7

6

i<Project Name>
Vision

Version <1.0>

Revision History

Date Version Description

Anthor

<dd/mmm/yy> <XX® <details> <name>

Table of Contents

1. Introduction
9 ose

1.2 Scope
1.3 Definitions. Acronyms. and Abbreviations

1.4 References
1.5 Overview

2. Positioning

2.1 Business Opportunity

7 7 Prohlem Statemant
| [®

[BEle = w <
iDraw- g |Autoshapes- N\ W IO M A& G @ & - L - A- == @ Lj!

vision.doc: 23.125 characters (an approximate value).

“« o w|e

Figure 4.89: Traceability — Template

To create the first version “v1”, the browse utility should be used. To confirm the
selection the user clicks on the document twice or clicks on Open button. Then click
on “Upload” button, to send the file to the server. Figure 4.90. Older versions could

be viewed, when selected from “Older Versions” combobox.

160



Document Name : |\risi0n.doc

| Latest Version Xyision_v1.doc |

View Template : ‘ View Document Template |
Download Template : ‘ Download Document Template |
Older Yersions : |visinn_u1.dac - | | View | | Download |

Upload New Version : |\rideo_\risiun.doc

| Upload ‘

Look In: ‘ ] Desktop

CIEE]

D tstpin_itn.doc

[y TTT1-1.mpp

[ UML_AYKDS_130307.zip
D update-deps.sh

[ video_RBT_PRD_V3.doc
D video_vision.doc

D VideoConferencingPRD_V3.doc

[ videoMail_HLD_1.3.doc

1]

File Name: |\rideu_\tisi0n.d0c

Files of Type: | Al Files

| Open || Cancel |

CLOSE

Figure 4.90: Traceability — Select Artifact

All the artifacts used in this project cycle will be versioned. This window is availale

for all the artifacts in the process framework.

The next tracebility item on this process improvement framework is the db icon. All

the requirements will be kept in a repository. So, every single requirement could be

traced till the project plan.

To start requirement definition, click on the repository icon on Figure 4.91.

161



Configuration Disciplines

=2 Requirements Management
D Intraduction
D Concepts
@ [ Warkflow
D Analyze the Prablem
D Understand StakeHolder
[} Define the System
D Manage the Scope ofthe
D Refine the System Defini

[y activities
[ artitacts

Gossary

terdion
Plan

Customer Q

Capture a
Common
‘Wocahulary

System

D Manage Changing RequiEnd User Analyst
Q Elicit Stakehalder

Requests

Other
Stakeholder

rd

f

Requirements
Managemert
.~ Flan

x

Develop
Wision

Find Actars
and Use Cases

L2

Manage

D Dependencies
~,

Reguire ments
Attributes
(refined)

————

Vision
(refined)

O

Use-Case Madd

VNN =S

&
Requirements Supplementary
Change I Spedifica
Storyboard Request Mision St akeholder ributes p?gxutl‘%“\:)ms
fapproved) Requests

Figure 4.91: Traceability — Requirements

A new repository query window will be opened shown in Figure 4.91. There are

three main types of requirements:

e Features,
e Requirements,
e High Level Design(HLD) components

The first step is define features for the product. All the fields are mandatory.
Headline should be unique. Clicking on “OK ” button will save the reocrd to the

project repository.

Features are not real requirements for the product. They represents ideas, market

analysis items, customer whishes, etc..

162



Select Requirement Type

Headline :
FEATURE - ‘

|Canvas CoolRings (Videa) properties |
Select Action ‘ €D

CREATE NEW = Description :

Canvas CoolRings (video) application should be branded under “Canvas” product portfolio, and use
current “Canvas CoolRings” name.

Wideo capability along with additional features, should be considered as an add-on to current CoolRi
ngs application

Reports
[Z] High Priority Require... Source | Product Management - ‘
[T Approved Requirements -

GO Priority | High - |

[ validated Requirements

Risk | Medium - ‘

| 0K ‘ | CANCEL

Figure 4.92: Traceability — Ceate Feature

A requirement is defined as "a condition or capability to which a system must
conform". Requirements should be in a relation with features. A requirement
spesific design is a customer centric approach to the issue. The Requirement creation

screen could be seen on Figure 4.93.

The attributes assigned to each requirement will be used to manage the software

development and to prioritize the features for each release.

The objective of requirements traceability is to reduce the number of defects found
late in the development cycle. Ensuring all product requirements are captured in the

software requirements, design, and test cases improves the quality of the product.

163



Status:

Set after the analysis has drafted the use cases. Tracks progress of the development
of the use case from initial drafting of the use case through to final validation of the

use case.

Proposed: Use Cases which have been identified though not yet reviewed and

approved.

Approved:Use Cases approved for further design and implementation.
Validated:Use Cases which have been validated in a system test.
Priority

Set by the Project Manager. Determines the priority of the use case in terms of the
importance of assigning development resources to the use case and monitoring the
progress of the use case development. Priority is typically based upon the perceived
benefit to the user, the planned release, the planned iteration, complexity of the use

case (risk), and effort to implement the use case.

High: Use Case is a high priority relative to ensuring the implementation of the use

case is monitored closely and that resources are assigned appropriately to the task.
Medium:Use Case is medium priority relative to other use cases.

Low:Use Case is low priority. Implementation of this use case is less critical and

may be relayed or rescheduled to subsequent iterations or releases.
Technical Risk:

Set by development team based on the probability the use case will experience
undesirable events, such as effort overruns, design flaws, high number of defects,
poor quality, poor performance, etc. Undesirable events such as these are often the
result of poorly understood or defined requirements, insufficient knowledge, lack of

resources, technical complexity, new technology, new tools, or new equipment.

164



High:The impact of the risk combined with the probability of the risk occurring is
high.

Medium:The impact of the risk is less severe and/or the probability of the risk

occurring is less.

Low:The impact of the risk is minimal and the probability of the risk occurring is

low.

Select Requirement Type Headline :
REQUIREMENT b ‘ |Canvas CoolRings (videa) application login |
Select Action ‘ GO Description :
CREATE NEW o Canvas CoolRings (Yideo) application should pravide a simple and short introduction to CoolRings {vid
eo) for the first time users atthe time of first login from VP interface.
The system should provide a defaultinfroduction file and also operators should he ahle to upload their fi
les (second phase)
Priority| High - Status fPROPOSED
Reports

[Z] High Priority Require... Technical Risk M

[_] Approved Requirements
GO Related Feaiur4 Canwas CoolRings (Video) properties ot ‘ | A.. |
[T validated Requirements

Related Feature List :

Canwas CoolRings (Video) properties

| 0K | CANCEL

Figure 4.93: Traceability — Requirement Create

Requirements explains what the product have to do. In order to built the right
product, they are very important. In every phase of the development, there are

practices, that have directly relationship to requirements.

165



From requirements, first the activity items should be prepared. Activity items are
High Level Design components. Choosing HLD Component from “Select

Requirement Box” Combobox, new HLD Components could be createted.

Select Requirement Type

HLD COMPONENT " |Subscribers reachahility activity |

Headline

Select Action ‘ GO Description

CREATE NEW £ Subscribers may reach the service from their own mobile, another mohile or PSTH by calling short code
provided by operator or their VideoMail access numbers.
The password check can he skipped only if subscriber calls the service from his mobile and password
check is disabled. Otherwise, password is required. If password checking is set as active from his profi

le settings or subscriber GOS8 setings defined by operator, login screen will also be displayed forthe su
hecribers calling his own mabile phone.

Developer | didembo ~| aop |
Reports Selected Develope... |didem|-(0; |
[ High Priority Require...
Estimated Effort 500 hrs
] Approved Requirements =
[] Validated Requirements Phase |Inceptinn v| lteration |1.Iteratiun '|
Requirements |camras CoolRings (video) applicat... " | GO |
Selected Requirements List

Canvas CoolRings (Video) application login

Predecessor: | INITIAL - |

Relation Type bt Start Date |24/04/2007 CddMMAY")

0K | | CANCEL

Figure 4.94: Traceability — Create HLD Component

Every HLD Component should cover one or more Requirements. One or more
developers should be assigned to a HLD Component shown in Figure 4.94. The
Phase and iteration number should be specified. HLD components will be used as
acitivities when preparing automatically the project plan. So the predecessor
combobox(if initial selected, then StartDate have to be filled), relation type property

and estimated effort should not leave empty.

166



Select Requirement Type

HLD COMPONENT i ‘ |L0gin Screen activity |

Headline

Select Action ‘ GO Description
CREATE NEW i The Videul\.ﬂawl.app.licatiun pruviﬂeaalugin screenfursubscnbersthruughIVP.TheV\dEUMéHapplicétm
n's login screen has;

- MSISON
- Password
- Help

Developer |yusuf vH ADD |

Reports Selected Develope... |vusuf; |

[ZJ High Priority Require...
Estimated Effort 100 hrs

GO
Phase |Inceptinn v| lteration |1.Iteratiun '|

[T Approved Requirements

[ validated Requirements

Requirements |camras CoolRings (video) applicat... " | GO |

Selected Requirements List

Canvas CoolRings (Video) application login

Predecessor : | Subscribers reachability activity - |

Relation Type | Finish to Start FS v| Start Date (ddMMAY")

0K | | CANCEL

Figure 4.95: Traceability — Create HLD

In case that a predecessor is selected, then the user could leave startdate empty like

shown in Figure 4.93.

167



Select Requirement Type

REQUIREMENT hd ‘

Select Action ‘ GO
LIST v

Reparts
[] High Priority Require...

[T Approved Requirements -

[ validated Requirements

Projects Requirements
18] HEADLINE PRIORITY RISK STATUS EUILDNUMEER
3 operation ey |Medium Medium PROPOSED 1
2 OCanvasO pro... Medium Medium PROFPOSED 1
Canvas CoolRi... High High PROFOSED 1

Figure 4.96: Traceability — List Requirements

For all three types of requirements, there are list and update screens. In Figure 4.96 a

HLD component update screen is shown 4.97. After selecting a component from the

first combobox, all the responsible fields are filled with the values from repository.

The values could be changed using the update property.

168



Select Requirement Type

Select High Level Design Component :
HLD COMPONENT b ‘

‘ Login Screen activity - | 60 |
Select Action ‘ £2

Headline
UPDATE hd o

|L0gm Screen activity |

Description

The YideaMail application pravides a login screen for subscribers thraugh IVP. The Vide
ahfail applicationds login screen has;

u} MSISDN
O Password
[u] Help

Reparts
[ZJ High Priority Require...

Developer | '| | ADD | Estimated Effort [100 hrs
[T Approved Requirements =
Selected Develope... 3
[ validated Requirements p |yusuf,, |
Phase |Inception .o Iteration | 1.iteration X
Requirements | v| 50 ‘

Selected Requirements List

Canvas CoolRings (Video) application login

o

Predecessar : | Subscribers reachability activity b |

Relation Type : | Finish to Start-FS - Start Date ("ddMMAnyy...

| OK | ‘ CANCEL

Figure 4.97: Traceability — HLD Update

The next step for tracesbility is to create automatically the project plan. From the
HLD components created in “Requirements Management” discipline, a project plan
in Microsoft Project will be created. All the HLD Components will be activities for
project plan. Their relationships, developers, effort estimates are inputs for project
plan. The responsible document for this relation is “Software Development Plan” as

shown in Figure 4.98.

169



Configuration Disciplines

[ Project Managernent
D Intraduction
Rewview
D Concepts Record
& [ Workflow O /
[ activities

[ artifacts g D T

Iteration Plan tteration Wision Risk Business
Management e Plan List Case

R

Develop Develop

e lteration Business
Manager Plan Case

- —
BN

Software
Architecture Develop ment
Document Plan

Figure 4.98: Traceability — Plan

Similar to version control window, the project plan window also helps to create
project plan. Clicking “GO” button from “Create Initial Software Development Plan
TimePlan/Schedule” will create a new project plan, depending on values from
repository. If it is the first time, then the project plan created and the Latest version
will display the “mssdpln_v1”. To view the plan, select it from “Older Versions” and
click on “View ” button. I is possible to download and make modifications on hat
plan. After finishing the modifications, it could be uploaded using “Upload and
Synchronize with HLD Components Database” as shown in Figure 4.99.

170



Software Development Plan :

Software Development Plan Document
Related Plan Documents :
Problem Resolution ... Product Acceptance Plan Measurement Plan QaPl. Risk Plan

Create Initial Software Development Plan TimePlan | Schedule Latest Version |mssdpln_vi .mpr
s i

OIderVersinn{ mssdpin_vi.mpx ¥ ‘ View ‘ | Download ‘

Upload Hew Versian‘ ‘ ‘ Upload and Symchronize with HLD Component Database ‘

Look In: ‘Ijl‘.lhtDacuments '| @ @ @ EE

[ Bluetooth Exchange Folder (] Google Talk Received Files [ My Data Sources ] My Pictures

3 GomPlayer COm CJ My Music ] My Received Files
IC

File Name: | |

& |

Files of Type: | AllFiles

| Open || Cancel |

Figure 4.99: Traceability — Create Project

In Figure 4.100, the first version of project plan is created depending on repository

values.

B Microsoft Project - mssdpln_v3-1

) Fle Edit View Insert Format Tools Project Window Help Type a question for help  ~ & X
PN EH S8V B9 |8 e dE| 8 | NoGroup MECE ARG !\J % | Arial -8 xB I U 2
im | - | Resources - | Track - |Report - !

@ [Tasklame Duration Stat |  Finish | Pre|Resource Na

21 July 01 August -
SIM[T[W[T[F|s[s[M[TW][T[F[S[S[M]T [W[T[F[S[S[M][T]W][T]F
didemko

1 :l Subscribers reachabiity a. 500 frs| Tue24.0607 Thu18.07.07 | didemko
2 yusuf

Login Screen activity 100 hrs| Thu 18.07.07 Mon 06.08.07(1 | yusuf

Gantt Chart

‘ . i Jf}

Ready

Figure 4.100: Traceability — Open MS Project

171



Traceability is in both ways. If there is modification in project plan, then it could be

saved in MS Project format.

B Microsoft Project - mssdpln_v3-1
@ﬂ File Edit View Insert Format Tools Project Window Help Type a question for help 8 X
L0 05 3 T 3 B 0 | 8] = 58] 5 4 | o Grouwp (2@ Bis s *8 +BZU

iT | - | Resources | Track - | Report v!

50 hrs
9  TaskName | Duration Start Finizsh  |Pre|Resource Na [ril [ 01 May 11 May -
| | | W7 [TIFIS[S[M[TIW[T|F[S[S[M]TW[T[F]S]
Subscribers reachabity a Tue 24.04.07 Wed 02.05.07| | didemko : didemko
Login Screen activity 100 hrs| Wed 02.05.07 Fri18.0507 1 | yusuf

Figure 4.101: Traceability — Update MS Project

Ready )

Changes in MS Project side like in Figure 4.101, could be uploaded using the
“Upload and Synchronize with HLD Component Database” button. This option
creates new version of the plan on server and updates related repository values as

shown in Figure 4.102.

172



e
=]

o =]
Software Development Plan :

Software Development Plan Document

Related Plan Documents :

Problem Resolution ... Product Acceptance Plan Measurement Plan QaPl. Risk Plan

Create Initial Software Development Plan TimePlan | Schedule GO Latest Version |mssdpln vﬁ.mpr
| I
Older VEFSiﬂ“{ mssdpln_vo.mpz ¥ ‘ View ‘ | Dowenload ‘

Upload New Version ‘msgdpln_\t3-1 mpp ‘ ‘ Uploa

I

HLD Component Database

Look In: ‘IjDesktnp v| @. @ @ EE

3 mssdpln_v1-1.mpx D mssdpln_v16-1.mpx

[ mssdpin_v1-111.mpp [] mssdpin_v3-1.mpp

0 i I
File Name: |mssdpln_\r3—1.mpp |
Files of Type: | AllFiles v|

| Open || Cancel |

Figure 4.102: Traceability — Update Database

The update could also be traced from Requirement side. So both ways traceability

could be established as seen on Figure 4.103.

173



Select Requirement Type

HLD COMPONENT A ‘

Select Action ‘ @
LIST -

Reports
[ High Priarity Require...

[C] Approved Requirements -

[T validated Requirements

Projects High Level Design Components

D [ HEADLINE | STATUS | EFFORTESTIM.]  PHASE | [TERATION |
1 |Subscribers re... |1 |50 |Inception |
B |Login Screen a... |1 100 lInception |

Figure 4.103: Traceability — List HLD

174



RESULTS AND DISCUSSIONS

The ultimate goal of software engineering is to develop a high quality product in
time and at reasonable costs. But since the time software is developed a phenomenon
called “software crisis” exists subsuming wrong schedules and cost estimates, low
productivity of people as well as low product quality. A promising approach out of
this crisis is now growing up in the software engineering community. The underlying
assumption of this approach is that the quality of a software product to a high degree
relies on the quality of the software process. Therefore quite a few software process

improvement (SPI) approaches were developed during the last years.

Usually, todays software processes are supported and partly automated by tools. The
umbrella stands for a large number of applications ranging from simple editing tools
to environments supporting the whole software life cycle [3]. In point of view there
are important interdependencies between an organization’s software development
environment consisting of tools and people and a software process improvement
approach. The configuration of the software development environment may
influence progress and success of the implementation of a SPI approach to a high

degree. Two viewpoints have to be distinguished.

The first one is concerned with human factors in SPI. People affected by changes
have to be informed about activities planned as well as their goals and intents.
Beyond that, they have to be motivated to actively participate in the improvement
process and they have to be trained to be able to positively influence the SPI efforts.
The implementation tool and underlying process framework is not enaugh for the SPI
succes of a company or project. There should be users, which understand the needs

and benefitsof the improvement process.

Second, the tool environment of a software development organization has to be
adapted to the new way of software engineering driven by a SPI approach. Tools thus

not only have to support production process activities like developing an analysis

175



document or coding a module, but also meta process support like process
management or process monitoring. The important question for an organization is
how to choose the right tools environment in order to promote the implementation of
a software process improvement approach. The implemetation solution provided in
this thesis is a right solution for the middle and small scale companies,which aren’t
yet so far institutionalized. With the concept institutionalization, the companies have
had some processes, which could be hardly changed. What the thesis offers is an end

to end solution. So the compaines should adapt their old processes to the tool.

176



CONCLUSION

Different advances have been made in the development of software process
improvement (SPI) standards and models, e.g.capability maturity model (CMM),
more recently CMMI, and ISO’s SPICE. However, these advances have not been
matched by equal advances in the adoption of these standards and models in software
development which has resulted in limited success for many SPI efforts. The current
problem with SPI is not a lack of standard or model, but rather a lack of an effective
strategy to successfully implement these standards or models. The importance of SPI

implementation demands that it be recognised as a

complex process in its own right and that organizations should determine their SPI
implementation maturity through an organized set of activities. In the literature,
much attention has been paid to ‘‘what activities to implement’’ instead of ‘“how to
implement’’ these activities. We believe that identification of only ‘‘what’’ activities
to implement is not sufficient and that knowledge of ‘“how’’ to implement is also

required for successful implementation of SPI programmes.

Automated tool support is a productive way to enhance the visibility of processes, to
identify processes weakness and to better understand the processes. A tool can also
be used to observe the behaviour of different activities and their interactions. The
participants suggested that this tool will speed up the process of SPI implementation

assessment.

Despite all the differences, company type, application domain and CMM maturity
levels, companies should get real benefits using process improvement framework and
implementation tool. The framework acts as a guidence, which all the practitioners
need during interpretation and implementation of the SPI models. Practical
implementation of the things, which were explained in the models, could be easily

done with the help of the implementation tool. This meta-support structure appears to

177



be practice introduction, refinement and extension, standardization, enforcement,
measurement of results, analysis of measurements and trainibg of its users. When
implemented as a whole package, the need for iterative improvementmay be

eliminated alltgether, thus shortening the time to process improvement.

178



REFERENCES

[1] “IEEE Standard Glossary of Software Engineering Terminology,” 1990 IEEE,
Piscataway, NJ std 610.12-1990,.

[2] P.C. Paulk, B. Curtis, M.B. Christie, C.V. Weber, 1993, Capability Maturity
Model for Software, version 1.1, Software Engineering Institute,
Camegie Mellon University, CMU/SEI- 93-TR-24

[3] L,. Kerschberg, H. Gomaa, R.G. Mohan, G.A. Farmkh, Feb 1996, “PROGEN:
A Knowledge-based System for Process Model Generation, Tailoring
and Reuse”, ISSE-TR96-05, Information and software Systems

Engineering, George Mason University

[4] Victor R. Basili, H.Dieter Rombach., Sep. 1991, ”Support for Comprehensive
Reuse” Software Engineering Journal 6.5, pp 303-3116.

[5] Sergio Bandinelli, Elisabetta Di Nitto, Alfonso Fuggetta, 1994 | “Policies and
Mechanisms to Support Process Evolution in PSEEs”, Proceedings of

the 3rd intemational Conference on the software process.

[6] V.R. Basili, H.D. Rombach, June 1988, “The TAME project : Toward
improvement-oriented software environment,” IEEE Trans. On
Software Engineering, Vol SE-14, pp 758-773,

[7] Aaen, 1. Aalborg Univ., Denmark; 2003, Software Process Improvement:
Blueprints versus recipes, Software, IEEE. ISSN: 0740-7459 INSPEC
Accession Number: 7728301.Digital Object Identifier:
10.1109/MS.2003.1231159. 86-93.

[8] Limerick, Ireland., 2000 On page(s): 626-633 Meeting Date: 06/04/2000 -
06/11/2000 Location: ISBN: 1-58113-206-9 References Cited: 11
INSPEC Accession Number: 6727624 Digital Object Identifier:
10.1109/ICSE.2000.870456

[9] Ngwenyama, O. Nielsen, P.A., 2002, Dept. of Inf. Syst., Virginia
Commonwealth Univ., Richmond, VA, USA; Competing values in

179



software process improvement: an assumption analysis of CMM from
an organizational culture perspective; Engineering Management, [EEE
Transactions on Publication Date: Feb. 2003 Volume: 50, Issue: 1 On
page(s): 100- 112 ISSN: 0018 9391 INSPEC Accession Number:
7709789 Digital Object Identifier: 10.1109/.808267

[10] M. Fritsch, Monika Meschede, 2000, Product innovation, process innovation,

and size, Technical University Bergakademie Freiberg.

[11] Brodman, J.G. Johnson, D.L., 1994. Proceedings. ICSE-16., 16th
International Conference on Publication Date: 16-21 May 1994 On
page(s): 331-340 Meeting Date: 05/16/1994 - 05/21/1994 Location:
Sorrento, Italy ISBN: 0-8186-5855-X References INSPEC Accession
Number: 4711538

[12] www.software.org/quagmire

[13] By Philippe Kruchten Published 2003 Addison-Wesley professional 320 pages
ISBN 0321197704

[14] CMMI® Distilled, 2003, A Practical Introduction to Integrated Process
Improvement, Second Edition By Dennis M. Ahern, Aaron Clouse,
Richard Turner Publisher: Addison Wesley Pub Date: September 23,
2003 ISBN: 0-321-18613-3

[15] Software Engineering Enstitute, CMMI for Development, Version 1.2 CMMI-
DEV, V1.2 CMU/SEI-2006-TR-008 ESC-TR-2006-008

[16] Ojelanki Ngwenyama and Peter Axel Nielsen. , Feb 2003, Competing Values
in Software Process Improvement: An Assumption Analysis of CMM
From an Organizational Culture Perspective. IEEE Transactions On
Engineering Management, VOL. 50, NO. 1

[17] Proceedings of 1st International Conference on Information and
Communication Technology, ICICT 2005, v 2005, Proceedings of
Ist International Conference on Information and Communication
Technology, ICICT 2005, 2005, p 296-301 Implementation and
analysis of CMMI's configuration management process area;
Applicable to "defined" Level - 3

180



[18] Rassa, Robert C. (Systems Supportability, Raytheon Electronic Systems

Company, MS R1/B510); Garber, Vitalij; Etter, Delores, 2002, 1
Capability maturity model integration (CMMI): A view from the
sponsors. Source: Systems Engineering, v 5, n 1, February, 2002, p 3-
6

[19] Niazi, Mahmood (Faculty of Information Technology, University of

Technology Sydney); Wilson, David; Zowghi, Didar., 2005, A
maturity model for the implementation of software process
improvement: An empirical study, Journal of Systems and Software, v
74, n 2 SPEC. ISS., p 155-172

[20] Niazi, Mahmood (National ICT Australia, Empirical Software Engineering,

[21] Ellmer,

[22] Bilotta,

Bay 15 Locomotive Workshop); Wilson, David; Zowghi, Didar, A
framework for assisting the design of effective software process
improvement implementation strategies, Journal of Systems and
Software, v 78, n 2, p 204-222

E. (Dept. of Inf. Eng., Wien Univ., Austria); Merkl, D., 1996,
Defining a set of criteria for the assessment of tool support for CMM-
based software process improvement, Proceedings of the Fourth

International Symposium on Assessment of Software Tools (Cat.
No.96TB100054), p 77-86

J.G. (Charles Schwab & Co. Inc., San Francisco, CA, USA);
McGrew, J.E., 1998, A Guttman scaling of CMM Level 2 practices:
investigating the implementation sequences underlying software
engineering maturity, Empirical Software Engineering, v 3, n 2, p
159-77.

[23] Miller, M.J.; Pulgar-Vidal, F.; Ferrin, D.M.; 2002, Achieving higher levels

of CMMI maturity using simulation Simulation Conference.
Proceedings of the Winter Volume 2, Page(s):1473 - 1478 vol.2

[24] Fredrik Ekdahl; Stig Larsson; 2006, Experience Report: Using Internal

CMMI Appraisals to Institutionalize Software Development
Performance Improvement; Software Engineering and Advanced
Applications, 2006. SEAA '06. 32nd EUROMICRO Conference,
Page(s):216 — 223

181



[25] David E. Drehmer and Sasa M. Dekleva., 2001, A note on the evolution of
software engineering practices; Journal of Systems and Sofiware,
Volume 57, Issue 1, Pages 1-7

[26] Yu-Whoan Ahn (Software Eng. Dept., Syst. Eng. Res. Inst., Taejeon, South
Korea); Gil-Jo Kim; Ja-Kyong Koo; Hyun-Min Park; In-Geol
Chun; 1998, Design of knowledge-based integrated software process
improvement tools, SMC'98 Conference Proceedings. 1998 IEEE
International Conference on Systems, Man, and Cybernetics (Cat.
No0.98CH36218), pt. 3, p 2132-7 vol.3

[27] Sharp, H.; Woodman, M.; Hovenden, F.; Robinson, H.;., The role of
“culture' in successful software process improvement , EUROMICRO
Conference, 1999. Proceedings. 25th Volume 2, 8-10 Sept. 1999
Page(s):170 - 176 vol.2

[28] James YLThong An integrated model of information systems adoption in
small businesses ; Journal of Management Information Systems;
Spring 1999; 15, 4; ABI/INFORM Global Pages. 187

[29] Margaret K. Kulpa, Kent A. Johnson., 2003, Interpreting the CMMI,
Auerbach Publications ISBN:0-8493-1654-5

[30] Michael West, 2004, Real Process Improvement using the CMMI, Auerbach
Publications ISBN: 0-8493-2109-3

[31] Dean Leffingwell, Don Widrig., May 05 2003 , Managing Software
Requirements: A Use Case Approach, Second Edition Publisher:
Addison Wesley Pub ISBN: 0-321-12247-X Pages: 544

[32] Karl E. Wiegers., 2003, Software Requirements, Second Edition,
ISBN:0735618798Microsoft Press Pages:400-410

[33] Howard Podeswa., UML for the IT Business Analyst: A Practical Guide to
Object-Oriented Requirements Gathering, Thomson Course

Technology

[34] David E. Bellagio, Tom J. Milligan., May 23, 2005, Software Configuration
Management Strategies and IBM® Rational® ClearCase® Second
Edition A Practical Introduction. Publisher: Addison Wesley
Professional Print ISBN: 0-321-20019-5 Pages: 384

182



[35] Paul Goodman, 2004, Software Metrics: Best Practices for Successful IT
Management, ISBN:1931332266 Rothstein Associates Pages: 120-
125

183



BIOGRAPHY

Didem Kokten earned her BS degree in Computer Engineering in 2000 from Istanbul
Technical University (ITU). Her professional career started as a technical assistant in
ITU computer labs, and continued in TUBITAK (Turkish National Science &
Research Institute) throughout school years. After college, Didem started in
KocBryce as a certified Sun Microsystems trainer on subjects such as Java, Solaris
operating system and Network Administration. She resumed her professional career
as a software support specialist, focusing on training as well as implementation of
software engineering methodologies and process management practices. She is
currently with Telenity, an international telecommunications software vendor,
managing the company-wide CMMI initiative. Didem continues her masters degree
in Istanbul Technical University on CMMI. She is also a part-time consultant on
process management and CMMI with Mentor Project Management, Training and

Consultancy.

184



