

İSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Keklik ALPTEKİN BAYAM, B.Sc.

Department: Computer Engineering

Programme: Computer Engineering

JUNE 2007

DIFFERENTIAL POWER ANALYSIS RESISTANT
HARDWARE IMPLEMENTATION OF THE RSA

CRYPTOSYSTEM

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/62729142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

İSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Keklik ALPTEKİN BAYAM, B.Sc.

(504031518)

 Date of submission: 7 May 2007

 Date of defence examination: 11 June 2007

Supervisor (Chairman): Prof. Dr. M. Bülent ÖRENCİK

Co-Supervisor (Chairman): Assistant Prof. Dr. S. Berna ÖRS YALÇIN

Members of the Examining Committee Assistant Prof. Dr. Turgay ALTILAR

 Assistant Prof. Dr. Feza BUZLUCA

 Prof. Dr. Ece Olcay GÜNEŞ

JUNE 2007

DIFFERENTIAL POWER ANALYSIS RESISTANT
HARDWARE IMPLEMENTATION OF THE RSA

CRYPTOSYSTEM

İSTANBUL TEKNİK ÜNİVERSİTESİ ���� FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

Müh. Keklik ALPTEKİN BAYAM

(504031518)

Tez Danışmanı: Prof. Dr. M. Bülent ÖRENCİK

Tez Eş Danışmanı: Yrd. Doç. Dr. S. Berna ÖRS YALÇIN

Diğer Jüri Üyeleri Yrd. Doç. Dr. Turgay ALTILAR

 Yrd. Doç. Dr. Feza BUZLUCA

 Prof.Dr. Ece Olcay GÜNEŞ

HAZİRAN 2007

DİFERANSİYEL GÜÇ ANALİZİNE DAYANIKLI RSA
KRİPTO SİSTEMİNİN DONANIM İLE

GERÇEKLENMESİ

Tezin Enstitüye Verildiği Tarih : 7 Mayıs 2007
 Tezin Savunulduğu Tarih : 11 Haziran 2007

 iii

ACKNOWLEDGEMENT

First I would like to thank my supervisors Assistant Prof. Dr. Berna Örs and Prof. Dr.
Bülent Örencik for their guidance and support during this thesis work.

I also would like to thank my husband, Fidel, for his love and endless support.

May 2007 Keklik ALPTEKİN BAYAM

 iv

CONTENTS

TABLE LIST vı
FIGURE LIST vıı
ALGORITHM LIST vııı
ÖZET ıx
SUMMARY xı

1. INTRODUCTION 1
1.1 Motivation 1

1.2 Organization of Thesis 2

2. CRYPTOGRAPHIC SYSTEMS 3
2.1 Symmetric Key Cryptosystems 3

2.2 Public Key Cryptosystems 4

2.3 The RSA Cryptosystem 5

3. THE RSA CRYPTOSYSTEM 6
3.1 Mathematical Background 6

4. RSA ARCHITECTURE 8
4.1 Exponentiation Methods 8

4.1.1 The Binary Method 8

4.1.2 The m-ary Method 9

4.1.3 The Sliding Window Technique 10

4.2 Montgomery Multiplication 11

4.3 Carry Save Adder 13

4.4 Carry Ripple Pipelined Adder 14

5. SIDE-CHANNEL ATTACKS 16
5.1 Timing Analysis Attacks 16

5.2 Power Analysis Attacks 17

5.2.1 Simple Power Analysis Attacks 17

5.2.2 Differential Power Analysis Attacks 17

5.3 Countermeasures against Power Analysis Attacks 18

5.3.1 Hardware Countermeasures 18

5.3.1.1 Noise Generator 18

5.3.1.2 Power signal filtering 19

5.3.1.3 Novel circuit designs 19

5.3.2 Software Countermeasures 19

5.3.2.1 Time randomization 19

5.3.2.2 Masking techniques 19

5.4 Countermeasures for RSA against Power Analysis Attacks 19

5.4.1 Randomized Table Window Method (RT-WM) 21

6. IMPLEMENTATION 24

 v

6.1 Unprotected RSA Cryptosystem Implementation 24

6.1.1 Hardware Implementation 26

6.1.2 Software for Verification 28

6.1.3 Measurement 29

6.1.4 Implementation Results 30

6.2 RSA Cryptosystem Implementation Immune to Power Analysis Attacks 32

6.2.1 Hardware Implementation 34

6.2.2 Implementation Results 34

6.3 Optimization of Hardware Implementation 36

7. RESULTS AND FUTURE WORK 38

REFERENCES 39

BIOGRAPHY 43

 vi

TABLE LIST

 Page No

Table 4.1: The multiplications required by the binary method9

Table 4.2: The average multiplications required by the m-ary Method....................10

Table 6.1: Montgomery Multiplier implementations in comparison to previous

 works ..30

Table 6.2: Synthesis results of the CRPA module on XC2V150031

Table 6.3: Implementation results for Montgomery and RSA (top level) modules ..31

Table 6.4: Preprocessing time equations of RT-WM algorithm32

Table 6.5: Preprocessing time of RT-WM for the implementation values33

Table 6.6: RT-WM exponentiation and total time...33

Table 6.7: Implementation results for RSA with RT-WM.......................................34

Table 6.8: All implementation results on Virtex-E family devices36

 vii

FIGURE LIST

 Page No

Figure 2.1: Symmetric key cryptosystem communication channel............................3

Figure 4.1: Carry Save Adder (CSA) ...14

Figure 4.2: Carry Ripple Adder (CRA) ..14

Figure 4.3: Full Adder (FA) ...15

Figure 4.4: Carry Ripple Pipelined Adder (CRPA)...15

Figure 5.1: The output of a CMOS inverter and the dissipated current17

Figure 5.2: Evaluating intermediate values out of the exponent..............................23

Figure 6.1: Operands of a standard Montgomery multiplier....................................24

Figure 6.2: Operands of a Montgomery multiplier using Carry Save

 Representation ...24

Figure 6.3: RSA module and its blocks ..26

Figure 6.4: HW implementation of the Montgomery Multiplication unit using

 CSAs..26

Figure 6.5: State machine of RSA main block..27

Figure 6.6: Software verification of input and output pairs28

Figure 6.7: Measurement of DPA resistancy ..29

Figure 6.8: State Machine of RT-WM implementation of RSA35

 viii

ALGORITHM LIST

 Page No

Algorithm 4.1: The Binary Method – left to right...8

Algorithm 4.2: The m-ary Method ...9

Algorithm 4.3: Montgomery Modular Multiplication with Final Subtraction

 (MonPro)...12

Algorithm 4.4: Montgomery Multiplication with No Final Subtraction

 (MonPro_NFS) ..12

Algorithm 4.5: Montgomery Exponentiation with No Final Subtraction

 (MonExp_NFS)..13

Algorithm 5.1: RT-WM (Randomized Table Window Method)22

Algorithm 6.1: Montgomery Multiplication with No Final Subtraction using Carry

 Save Adder Representation (MonPro_NFS_CSA)25

Algorithm 6.2: RSA Encryption with Montgomery Multiplication with No Final

 Subtraction using Carry Save Adder Representation

 (MonExp_NFS_CSA) ...25

 ix

DİFERANSİYEL GÜÇ ANALİZİNE DAYANIKLI RSA KRİPTO SİSTEMİNİN

DONANIM İLE GERÇEKLENMESİ

ÖZET

Bu çalışmada, RSA kripto sistemi donanımsal olarak gerçeklenmiş ve daha sonra
bir yan kanal analizi çeşidi olan Diferansiyel Güç Analizi (DGA) ile yapılacak
saldırılara karşı dayanıklı hale getirilmiştir. RSA kripto sisteminde şifreleme ve şifre
çözme, M mesaj, E açık anahtar, N sistem parametresi olmak üzere, ME (mod N)
şeklindeki modüler üs alma işlemi ile yapılır. Bu çalışmadaki RSA kripto sisteminde,
Xilinx Sahada Programlanabilir Kapı Dizisi (SPKD (FPGA)) donanım olarak
kullanılmıştır. Modüler üs alma işlemi, art arda çarpmalar ile yapılır. Bu
gerçeklemede kullanılan Montgomery modüler çarpıcı, Elde Saklamalı Toplayıcılar
ile gerçeklenmiştir. Donanım gerçeklemelerinde kullanılan Elde Saklamalı
Toplayıcılar, 3 adet k-bitlik toplananı, 2 adet k-bitlik toplam haline düşürerek, uzun
sayıların hızlı çalışma frekanslarında toplanabilmasını sağlarlar. RSA şifreleme
algoritmasının işlemleri boyunca Elde Saklamalı gösterilim kullanılmıştır. Böylece
çarpıcının işlem hacminin yüksek olması hedeflenmiştir. Çarpıcının 512-bit anahtar
uzunluğu kullanarak 140,41 Mbit/s işlem hacmi ile çalıştığı görülmüştür. RSA
şifreleme veya şifre çözme işleminin, 512-bit anahtar uzunluğu için, Xilinx
XC2V1500 üzerinde ortalama 150,5 Kbit/s işlem hacmine sahip olduğu ve 10240
dilim yer kapladığı görülmüştür. Saldırgan, güç tüketim bilgisinden yararlanarak
kripto sistemin gizli anahtarını bulabilir. Bu saldırılara Güç Analizi saldırıları denir ve
iki türü vardır: Basit Güç Analizi ve Diferansiyel Güç Analizi saldırıları. Basit Güç
Analizi saldırıları tek ölçüm ve gözle tanıma ile yapılırken, Diferansiyel Güç Analizi
saldırıları, çok sayıda ölçüm ve istatiksel analiz ile yapılır. Güç Analizi saldırıları,
CMOS teknolojisinin günümüzdeki yaygın kullanımından doğan, lojik kapılardaki
0→1 geçişindeki güç tüketimini temel alır. Bu tezde gerçekleştirilen ilk RSA
devresinin mimarisi, Basit Güç Analizi saldırılarından gizli anahtarın elde edilmesini
engellerken, anahtarın Hamming ağırlığının öğrenilmesine veya Diferansiyel Güç
Analizi ile anahtarın kendisinin elde edilmesine karşı duramaz. Diferansiyel Güç
Analizine karşı durma yöntemleri arasında donanımsal ve algoritmik çözümler
bulunmaktadır. Itoh ve diğ. tarafından önerilen Rastgele Tablolu Pencere Yöntemi
(RT-WM) algoritması ile RSA şifreleme algoritmasına getirilen değişiklik, algoritmik
karşı durma yöntemlerinden biridir ve donanım üzerinde gerçeklenmemiştir. Bu
tezde yapılan ikinci gerçeklemede, ilk gerçeklemenin üzerine bu algoritmanın
getirdiği değişiklikler uygulanmıştır. 512-bit anahtar uzunluğu, 2-bit pencere genişliği
ve 3-bitlik bir rastgele sayı kullanılarak, Xilinx XCV2600E üzerinde ortalama 18,43
Kbit/s işlem hacmine ve 22712 dilim sayısına ulaşılmaktadır. DGA’ya karşı
korumasız ve korumalı her iki mimari, mevcut ölçüm düzeneğinde test edilebilir hale
gelmeleri için birer kez de XCV1000E üzerinde gerçeklenmiştir. Korumasız
gerçeklemede 81,06 MHz saat frekansı, 104,85 Kb/s işlem hacmi ve 4,88 ms toplam
üs alma süresi elde edilmiş ve 9037 dilimlik alan kullanılmıştır. Korumalı
gerçeklemede ise 66,66 MHz saat frekansı, 84,42 Kb/s işlem hacmi ve 6,06 ms
toplam üs alma süresi elde edilmiş; XCV1000E içinde hazır bulunan blok
SelectRAM yapısı ile birlikte 10986 dilimlik alan kullanılmıştır. Korumalı gerçekleme,
korumasız ile karşılaştırıldığında, toplam sürenin %24,2 arttığı, işlem hacminin

 x

de %19,5 azaldığı görülmektedir. Tüm donanımsal gerçeklemeler VHDL dili
kullanılarak yapılmış; fonksiyonel doğrulama için C/C++ dilleri kullanılmıştır.

 xi

DIFFERENTIAL POWER ANALYSIS RESISTANT HARDWARE

IMPLEMENTATION OF THE RSA CRYPTOSYSTEM

SUMMARY

In this study, RSA cryptosystem was implemented on hardware and afterwards it
was modified to be resistant against Differential Power Analysis (DPA) attacks,
which are a type of side channel attacks. The encryption and decryption in an RSA
cryptosystem is modular exponentiation, ME (mod N), where M is the message, E is
the public key, and N is a system parameter. In this study, Xilinx Field
Programmable Gate Array (FPGA) devices have been used as hardware. Modular
exponentiation is realized with sequential multiplications. The Montgomery modular
multiplier in this implementation has been realized with Carry-Save Adders. Carry-
Save Adders, which are used in hardware implementations, ensure that long
numbers are added with fast working frequencies, by reducing 3 k-bit summands to
2 k-bit sums. Carry-Save representation has been used throughout the RSA
encryption algorithm. Thus, the throughput of the multiplier is aimed to be high. The
multiplier, implemented on XC2V1500 using 512-bit key length, is observed to be
working with a throughput of 140,41 Mb/s. RSA encryption or decryption process for
512-bit key length on Xilinx XC2V1500 takes an average of 150,5 Kb/s throughput
and occupies an area of 10240 slices. The attacker can find the secret key of the
cryptosystem using the power consumption information. This kind of attacks are
called Power Analysis attacks and has two types: Simple Power Analysis and
Differential Power Analysis attacks. While Simple Power Analysis attacks are
performed with a single measurement and visual recognition, Differential Power
Analysis attacks are performed with many measurements and statistical analysis.
Power Analysis attacks, are based on the power consumption of 0→1 transitions of
the logic gates, which results from the presently common usage of CMOS
technology. In this thesis, the primarily implemented RSA circuit’s architecture
prevents the extraction of the secret key using Simple Power Analysis (SPA) attacks,
while it cannot prevent the extraction of the Hamming weight of the key or the
extraction of the key using Differential Power Analysis attacks. There are hardware
and algorithmic solutions among the countermeasures against Differential Power
Analysis. The modification to the RSA encryption algorithm that comes with the
Randomized Table Window Method (RT-WM) proposed by Itoh et al. is one of the
algorithmic countermeasures and has not been implemented on hardware. In the
second implementation of this thesis, the changes within this algorithm have been
applied over the first implementation. Realized with 512-bit key length, 2-bit window
length, and, a 3-bit random number, on Xilinx XCV2600E, it takes an average of
18,43 Kb/s throughput and an area of 22712 slices is achieved. Both the
unprotected and the DPA resistant architectures have been implemented also on
XCV1000E, in order for them to become testable with the available measurement
setup. The unprotected implementation has resulted in 81,06 MHz of clock
frequency, 104,85 Kb/s of throughput, and 4,88 ms of total exponentiation time and
occupied an area of 9037 slices. The protected implementation resulted in 66,66
MHz of clock frequency, 84,42 Kb/s of throughput, and 6,06 ms of total
exponentiation time and occupied an area of 10986 slices together with the use of
the built-in block SelectRAM structure inside XCV1000E. When comparing the

 xii

protected implementation with the unprotected, it can be seen that the total time has
increased by 24,2%, while the throughput has decreased by 19,5%. All hardware
implementations were realized using the VHDL language; and C/C++ have been
used for functional verification.

 1

1. INTRODUCTION

1.1 Motivation

RSA is a widely used public-key cryptosystem. RSA encryption is a one-way

function, which is not possible to reverse without knowing the private key [1]. RSA is

realized with large operands, such that the key length and the operands are greater

than or equal to 512 bits. The encryption and decryption in an RSA cryptosystem is

modular exponentiation: ME (mod N). Custom implementations in hardware are

more appropriate for the RSA cryptosystem in order to be efficient in area and

speed [2].

In this study, a hardware architecture of the RSA cryptosystem has been proposed

and implemented on Xilinx FPGA families. In this implementation a Montgomery

Modular Multiplier [3] with Carry Save Adder [4] based logic and representation has

been used to speed up the calculations.

Side-channel attacks [5] are attacks, based on the information that is retrieved from

the device, but is neither the plaintext nor the ciphertext. Power Analysis (PA)

attacks [5] are a type of passive side-channel attacks. In these attacks, the power

consumption of the circuit is measured while the device is performing an encryption

or decryption. The private key or information about the private key is retrieved after

an analysis. PA attacks have two types: Simple Power Analysis (SPA) attacks and

Differential Power Analysis (DPA) [6] attacks. SPA attacks require a single

measurement, while DPA attacks require many measurements followed by a

statistical analysis to retrieve information about the private key. There are hardware

and algorithmic countermeasures against PA attacks. Itoh et al. have proposed an

algorithmic countermeasure, Randomized Table Window Method (RT-WM), against

Differential Power Analysis (DPA) attacks in [7].

The first implementation in this study prevents the extraction of the private key itself,

while it cannot prevent the leakage of the Hamming weight information of the private

key when Simple Power Analysis (SPA) attack is implemented. The former

protection is due to the architectural design of the circuit. However, the

implementation is unprotected against DPA attacks. As the second implementation

of this study, RT-WM algorithm [7] has been implemented upon the former

unprotected implementation.

 2

1.2 Organization of Thesis

This thesis presents a differential power analysis resistant hardware implementation

of the RSA cryptosystem.

Chapter 2 presents the basics of cryptographic systems and explains about the

main types of cryptosystems.

Chapter 3 explains the mathematical background behind the RSA cryptosystem.

Chapter 4 gives the fundamentals of RSA architecture both algorithmic and

hardware based. This section is the basis to the architectural choices in the

implementation.

Chapter 5 presents the basics of side-channel attacks and gives detail about power

analysis attacks and the countermeasures against them.

Chapter 6 explains the implementation done within this study: first the unprotected

implementation of the RSA cryptosystem, and then the DPA resistant

implementation.

Chapter 7 is a review of the thesis and the conclusion is given.

 3

2. CRYPTOGRAPHIC SYSTEMS

The word cryptography comes from the Greek words kryptos meaning hidden and

graphein meaning writing. Cryptography is the study of hidden writing, or the

science of encrypting and decrypting text [8]. The history of cryptography goes back

to Egyptians – about 4000 years ago. In the twentieth century it played a crucial role

in both of the world wars. The predominant practitioners of the art were people

associated with the military, the diplomatic service and government in general.

Cryptography was used as a tool to protect national secrets and strategies [9].

There are two types of cryptosystems: symmetric and public key.

2.1 Symmetric Key Cryptosystems

In symmetric key cryptosystems, Alice and Bob secretly share the key using a

secure channel. The exposure of the encryption key or the decryption key renders

the system insecure [10].

Figure 2.1: Symmetric key cryptosystem communication channel

There are two main problems in symmetric key cryptosystems [10]. The first is the

unsafe key exchange. The secure channel between Alice and Bob, which has to be

established prior to any communication, might in practice, be very difficult to achieve.

Someone can extract the secret key during the key exchange. The second problem

is that digital signature is not available in secret key cryptosystems. Since both Alice

and Bob share the same secret key, it will be ambiguous who has signed the

 4

plaintext [10]. To overcome these problems, Diffie and Hellman proposed the public

key cryptosystems in 1976 [11].

2.2 Public Key Cryptosystems

Diffie and Hellman state in [11] that in a network of n users, where () 22
nn − pairs

can be arranged, it is unrealistic to assume either that all users will be able to wait
for a key to be sent by some secure physical means or that keys for all () 22

nn −

pairs can be arranged in advance. They proposed that it was possible to develop

systems of the type in which two parties communicating solely over a public channel

and using only publicly known techniques can create a secure connection. They had

two approaches to the problem, called public key cryptosystems and public key

distribution systems.

As proposed by [11], a public key cryptosystem is a pair of families { } { }KKKE
∈

 and

{ } { }KKKD
∈

 of algorithms representing invertible transformations,

{ } { }MMEK →: (2.1)

{ } { }MMDK →: (2.2)

on a finite message space { }M , such that

1. for every { }KK ∈ , KE is the inverse of KD ,

2. for every { }KK ∈ and { }MM ∈ , the algorithms KE and KD are easy to

compute,

3. for almost every { }KK ∈ , each easily computed algorithm equivalent to KD

is computationally infeasible to derive from KE ,

4. for every { }KK ∈ , it is feasible to compute inverse pairs KE and KD from

K .

The third property enables the user to make the encryption algorithm KE public

without compromising the security of his secret decryption algorithm KD . The

cryptographic system now is divided into two as encryption and decryption

operations, that given a member of one family of one, it is infeasible to find the

corresponding member of the other. The fourth property guarantees that there is a

feasible way of computing corresponding pairs of inverse transformations. In

practice there must be a true random number generator for generating K , out of
which KE and KD pair is generated.

With this system, the problem of key distribution is simplified: Each user generates a

pair of inverse transformations, E and D and keeps D as secret. The encryption

 5

key E is made public. This means that anyone can encrypt the messages and send

them to Bob, while no one else but Bob can decipher the messages intended for

him.

In a public key cryptosystem, specifying E specifies a complete algorithm for

transforming input messages into output cryptograms. As such a public key system

is really a set of trap-door one-way functions, which are not really one-way in that

simply computed inverses exist. It is computationally infeasible to find the inverse

function out of the forward function. The inverse function can only be easily found

with the knowledge of certain trap-door information [11].

In 1977, an public key cryptosystem example, which meets the criteria defined by

Diffie and Hellman was proposed by Rivest, Shamir, and Adleman: the RSA

cryptosystem [1].

2.3 The RSA Cryptosystem

The RSA cryptosystem [1] uses the same algorithm for both encryption and

decryption algorithms. Eq.(2.3) shows the encryption algorithm, where M is the
message (plaintext), ()NE, are the public key pair, and C is the ciphertext. Eq.(2.4)

shows the decryption algorithm where D is the private key.

()NMC
E mod= (2.3)

()NCM
D mod= (2.4)

The detailed description and the theory behind the RSA algorithm is given in

Chapter 3.

 6

3. THE RSA CRYPTOSYSTEM

The RSA cryptosystem was developed by Rivest, Shamir, and Adleman in 1977 [1].

RSA is a public-key cryptosystem that serves both for encryption-decryption and

digital signature. Modular encryption is used as encryption and decryption operation

in RSA. Modular encryption is a trap-door function, which means that it is easy to

compute in one direction, but impossible to calculate its inverse function, which

leaves the attacker no choice but to find out the private keys. RSA is used widely in

cryptography because of its mathematically strong background.

3.1 Mathematical Background

Let p and q be two distinct large primes, whose product makes up the k -bit

modulus N .

pqN = , qp ≠ , 122 1 −<<− kk
N . (3.1)

We select a number E , which will be the public exponent, such that the greatest
common divisor of E and)(NΦ is 1 and E is smaller than N [10],

1))(,gcd(=Φ NE , }{ 1,,1 −⋅⋅⋅∈ NE , (3.2)

where)(NΦ is Euler’s totient function of N given by

() ()11)(−⋅−=Φ qpN . (3.3)

Afterwards we compute the private key D with

())(mod1
NED Φ= − . (3.4)

Usually a small public exponent is selected. The modulus N and E are published,

while, D , p , and q are kept secret. RSA encryption is performed by a modular

exponentiation operation as shown by Eq.(3.5) where M is the message and C is

the ciphertext and { }1,,1,0,, −∈ NEMC L [1].

NMC
E mod= , { }1,,1,0,, −∈ NEMC L . (3.5)

And RSA decryption is realized through the same function as RSA encryption as

shown by Eq.(3.6),

NCM
D mod= , { }1,,1,0,, −∈ NEMC L , (3.6)

 7

where M is the plaintext, C is the ciphertext, N and E are the public keys, and

D is the private key. Let us combine Eq.(3.5) and Eq.(3.6):

NMNC
EDD modmod = . (3.7)

Since we have Eq.(3.8)

()()NED Φ= mod1 , (3.8)

for some integer K , we can write

()NKED Φ+= 1 . (3.9)

When we substitute ED in Eq.(3.7) with Eq.(3.9), we derive Eq.(3.10) and Eq.(3.11)

respectively.

()
NMNC

NKD modmod 1 Φ+= , (3.10)

NC
D mod ()() NMM

KN modΦ⋅= . (3.11)

From Euler’s theorem we know that, Eq.(3.12) holds for two positive and relatively

prime integers a and b

()
ba

b mod1=Φ . (3.12)

Using Eq.(3.11) and (3.12), we finally write Eq.(3.13) and (3.14) respectively.

NMNC
KD mod1mod ⋅= , (3.13)

MNC
D =mod , () 1,gcd =NM . (3.14)

 8

4. RSA ARCHITECTURE

An RSA encryption is basically a modular exponentiation [1]. When looked with a

general perspective, the hardware should include multipliers, adders, dividers, and

counters. Even small algorithmic and architectural improvements in the

implementation of RSA, which is realized with large operands (> 512 bits), are of big

importance. Below are some important points in RSA implementation.

4.1 Exponentiation Methods

The simplest method to realize the modular exponentiation operation

NMC
E mod= , is to start with NMC mod:= and keep on multiplying the result

with M continuously for 1−E times [2]. This is obviously the most time consuming

and infeasible way to do the exponentiation.

4.1.1 The Binary Method

The “binary method”, which is also called the “square and multiply method”, scans

the bits of exponent E one by one [2]. This scanning can be performed either from

left to right or vice a versa. Let E be a k -bit number. The binary method algorithm

is given in Algorithm 4.1.

Algorithm 4.1: The Binary Method – left to right

Inputs: ()1 1 0 2kN n n n−= L , ()1 1 0 2kE e e e−= L , ()1 1 0 2kM m m m−= L .

Output: NMC
E mod=

1.if 11 =−ke then MC =: else 1:=C

2.for 2−= ki down to 0 do

3. NCCC mod: ⋅=

4. if 1ie = then NMCC mod: ⋅=

5.return C

If 11 =−ke , the binary method requires 1−k squarings and 1)(−EH multiplications,

where)(EH is the Hamming weight of E . Assuming 0>E , which is a must for

RSA, this holds for the Hamming weight:

1)(0 −≤≤ kEH (4.1)

 9

This gives us an average)(EH of ()1
2

1
−k . The total number of multiplications –

assuming the squaring is performed with the same algorithm as multiplication – for

the binary method is given in Table 4.1.

Table 4.1: The multiplications required by the binary method

The Binary Method Multiplications

Maximum ()12 −k

Minimum 1−k

Average ()1
2

3
−k

The number of average multiplications for k=512 bit key length is 767.

4.1.2 The m-ary Method

The m-ary method [12] reduces the number of multiplications processed in an

exponentiation. This method is what the binary method would turn into, if we were

using m-ary representation instead of the binary representation. The exponent E is

scanned here r -bits at a time, where r
m 2= , and ksr = . A preprocessing is

necessary for the exponentiation process, in which the powers of NM mod from 2

to 1−m are calculated [2]. This method is more specifically called the “quaternary

method” when 2=m and the “octal method” when 3=m . The m-ary method is

given in Algorithm 4.2.

Algorithm 4.2: The m-ary Method

Inputs: ()1 1 0 2kN n n n−= L , ()1 1 0 2kE e e e−= L , ()1 1 0 2kM m m m−= L .

Output: NMC
E mod=

1.Compute and store NM
w mod for 1,,4,3,2 −= mw L

2.Decompose E into r -bit words iF for 1,,2,1,0 −= si L , ksr =

3. NMC sF
mod: 1−=

4.for 2−= si down to 0 do

5. NCCC
r

mod:
2⋅=

6. if 0≠iF then NMCC iF
mod: ⋅=

7.return C

Table 4.2 shows the average number of multiplications (including squarings)

required by the m-ary method. For the hardware implementation, the m-ary method

 10

requires more area when compared to the binary method; an extra of 2−m k-bit

registers.

Table 4.2: The average multiplications required by the m-ary Method

m-ary Method Average multiplications

Preprocessing 22 −r

Squarings rk −

Multiplications ()r

r

k −−







− 211

Total ()rr

r

k
rk

−−







−+−+− 21122

4.1.3 The Sliding Window Technique

In the m-ary method, a zero word makes us skip the multiplication. In order to

increase the number of skipped operations and reduce the number of total

operations executed, the sliding window technique has been suggested in [12,13]. A

sliding window exponentiation algorithm decomposes E into zero and nonzero

words, which are called windows. In this technique, nonzero words cannot end with

0. Therefore the multiplications in the preprocessing step are only done to evaluate
the odd numbers: 1-m, 3,5,7,L . The preprocessing multiplications are almost

halved.

Two algorithms using this technique are “Constant Length Nonzero Window”

(CLNW) proposed by Knuth [12], and “Variable Length Nonzero Window” (VLNW)

by Bos and Coster [13]. Both algorithms scan the exponent bits from right to left. In

CLNW, the algorithm checks the first bit of the window, if it is a 0, then it becomes a

zero window (ZW) and keeps that way until a 1 comes. A 1 starts a nonzero window

(NW) and keeps that way for a constant length of d-bits. In VLNW algorithm, d is the

maximum nonzero window length, which means that, during the formation of a NW,

we switch to Z when all the remaining bits are all zero. Another variable q defines

the minimum number of zeros required to switch to ZW. The ZWs are where

repetitive squarings are performed, and the NWs require preprocessing at the

beginning of the algorithm.

 11

For example, the exponent ()2011110010100=E is partitioned differently with the

mentioned algorithms. The output of CLNW is ()
2

001,0,101,00,111=E whilst the

output of VLNW is ()
2

1,000,101,00,111=E .

The analysis performed in [14] shows that the VLNW algorithm requires 5-8% fewer

multiplications than the m-ary method, namely 6,37% for 512-bit key length.

4.2 Montgomery Multiplication

In 1985 Montgomery introduced a new method for modular multiplication [3]. The

approach of Montgomery avoids the time consuming trial division that is a bottleneck

for most other algorithms. His method is very efficient and is the basis of many

implementations of modular multiplication, both in software and hardware [15].

The modular exponentiation in RSA obviously requires repeated modular

multiplications. In 1985, Montgomery introduced an algorithm for computing

NabR mod= , which is in total, more efficient than first multiplying and afterwards

finding the N residue, which would have required k times k -bit additions for the

multiplication, and k times k -bit subtractions and comparisons for the division [3].

The Montgomery algorithm computes the result by replacing the division operation

with k times the division by a power of 2, where a , b , and n are k -bit binary

numbers. Thus, not only computation time, but also area is reduced in hardware

implementations. Montgomery multiplication is defined as

NrbaR mod1−′′=′ , (4.2)

where kr 2= , and the real multiplicands a and b are needed to be transformed

into their N -residues such as

Nraa mod⋅=′ . (4.3)

When Eq.(4.2) and (4.3) are combined, we get

NabrNarbrrR modmod1 ==′ − . (4.4)

Eq.(4.3) is the preprocessing of Montgomery Multiplication. As R′ is not the final

result of the multiplication, we need a post-processing, where R′ and 1 are the

multiplicands of the Montgomery Multiplication, shown in Eq.(4.5).

() NabNrabrR modmod1 1 =⋅⋅= − (4.5)

The division process is replaced with multiplying by k−2 . Algorithm 4.3 shows how

this division is done, which can be realized by simply 1 bit shifting in k steps.

As the processing and preprocessing steps are multiplication processes themselves,

the overhead in this multiplication procedure is meaningful only when the

 12

Montgomery Multiplication is done a number of times – for an exponentiation, for

example. This makes Montgomery Multiplication suitable for RSA.

In Algorithm 4.3, kT is inside the interval ()N2,0 ; and therefore a final subtraction is

needed if kT is greater than 1−N . In [16] this comparison and subtraction operation

is omitted by slightly modifying the algorithm. Our implementation uses the

Montgomery Multiplication algorithm that has no final subtraction as given in

Algorithm 4.4. It saves us from using additional hardware for the comparison and

subtraction, by spending two more rounds in the for loop, adding and dividing by 2.

Also it will be differential timing attack resistant given in [17]. The operands except

the public key N are extended by 1 bit, with a ‘0’ is added as the most significant bit.
In Algorithm 4.4, kT is inside the interval ()N,0 ; and therefore a final subtraction is

not needed.

Algorithm 4.3: Montgomery Modular Multiplication with Final Subtraction (MonPro)

Inputs: ()1 1 0 2kN n n n−= L , ()1 1 0 2kX x x x−= L , ()1 1 0 2kY y y y−= L , 2 modk
r N= ,

0 1n = .

Output: MonPro () 1, , mod 2 modkX Y N XYr N XY N− −= =

1. 0 : 0T =

2.for i from 0 to 1k − do

3. if ()0 iT x Y+ is even then

4. ()1 : / 2i i iT T x Y+ = +

5. else ()1 : / 2i i iT T x Y N+ = + +

6.if kT N≥ then :k kT T N= −

7.return kT

Algorithm 4.4: Montgomery Multiplication with No Final Subtraction (MonPro_NFS)

Inputs: ()1 1 0 2kN n n n−= L , ()1 0 2kX x x x= L , ()1 0 2kY y y y= L ,
22 modk

r N
+= ,

0 1n = .

Output: MonPro_NFS () ()21, , mod 2 mod
k

X Y N XYr N XY N
− +−= =

1. 0 : 0T =

2.for i from 0 to 1k + do

3. if ()0 iT x Y+ is even then

4. ()1 : / 2i i iT T x Y+ = +

5. else ()1 : / 2i i iT T x Y N+ = + +

6.return kT

The exponentiation is realized by squaring and multiplications, while the bits of the

exponent E are scanned. The number E can be k bits, but it can be less.

Therefore the multiplications do not start until the actual most significant bit of E ,

where the first ‘1’ is seen. Afterwards a squaring is done for every bit of E , and a

multiplication is done if the scanned bit is ‘1’.

 13

When the exponentiation operation uses Montgomery Multiplication Algorithm, it

needs a preprocessing, where the N residue of the base number is calculated

shown in Eq.(4.3); and a post-processing where the result transferred from the N

residue to normal state. A constant number has to be calculated for the

preprocessing to evaluate the N residue of the plaintext as shown in Eq.(4.3). This

constant number is N
k mod22 when using MonPro algorithm, which becomes

N
k mod2 42 + when using MonPro_NFS. This constant number can be provided as

an input to the function, as it can be calculated directly from the public key N .

Algorithm 4.5: Montgomery Exponentiation with No Final Subtraction

(MonExp_NFS)

Inputs: ()1 1 0 2kN n n n−= L , ()1 1 0 2kE e e e−= L , ()1 1 0 2kM m m m−= L .

Output: modE
M N

 1.
2 4: 2 modkConst N+=

 2. (): MonPro_NFS ,M M Const′ =

 3. MR ′=′ :

 4. 0:=Start

 5.for 1i k= − down to 0 do

 6. if 1=Start then

 7. ()RRNFSoMonR ′′=′ ,_Pr:

 8. if 1ie = then ()MRNFSoMonR ′′=′ ,_Pr:

 9. else if 1ie = then 1:=Start

10. (): MonPro_NFS ,1R R′=

11.return R

4.3 Carry Save Adder

Adders are necessary for the realization of multiplication operations. Adders are

necessary for Montgomery multiplication also, namely for step 4 and 5 of Algorithm

4.4. Carry save addition is suitable especially for large operands [4]. It is an

appropriate way of reducing 3 k -bit operands to 2 k -bit operands. As a result of

this property, Carry Save Adders (CSAs) are used when there are too many inputs

to be added, like in the case of multiplication of large operands. CSA has been used

in the implemented Montgomery Multiplier within this thesis work. As seen in Figure

4.1, a CSA consists of full adders unconnected with each other. Instead of

connecting the carry output of one full adder to the next, like in Carry Ripple Adder,

here all carry bits form a line, shifted 1 bit left. The carry input ports are used for the

third summand. Thus every time one summand is added to the previous 2 results, a

new set of 2 results is formed.

In CSA, there are no horizontal connections, and thus the maximum frequency of

the adder is determined by the delay of one full adder, no matter what the size of the

 14

adder is. Thus when a k -bit times k -bit multiplication operation is processed, the

result is evaluated at the end of k cycles. CSAs are favorable for Montgomery

Multiplication in RSA, where working frequency is important. However it has to be

indicated that the result is in carry save representation (C,S). One final addition has

to be done to reduce the result from 2 k -bit operands to 1 k -bit operand – to

convert back to normal number representation. Carry Ripple Pipelined Adder

(CRPA) has been given as an example to this needed adder in the next chapter.

FA0

X0 Z0Y0

C0

FA1

S0

X1 Y1

S1

Z1

FAk-2

Xk-2Yk-2

Ck-1

FAk-1

Sk-2

Yk-1

Sk-1

Zk-1

Ck

Xk-1 Zk-2

C1

FA2

X2 Y2

S2

Z2

C2

Figure 4.1: Carry Save Adder (CSA)

4.4 Carry Ripple Pipelined Adder

Carry Ripple Adders (CRA) and Carry Look Ahead Adders (CLAA) bring reasonably

much delay for large operands [18]. The latter also brings a noteworthy hardware. A

CRA of w-bit operand size includes w Full Adders (FA) in which the carry output of

the ith Full Adder is the carry input of the (i+1)th Full Adder (Figure 4.2). The delay

of the Carry Ripple Adder is the delay of w times the carry delay of one Full Adder,

which makes ()XORORANDw ++ gate delays (See Figure 4.3).

Figure 4.2: Carry Ripple Adder (CRA)

Carry Ripple Pipelined Adder (CRPA) has been used in the implementation of this

thesis to add the carry save pair at the end of Montgomery exponentiation and

finalize the result. CRPA is a kind of adder constructed by pipelining Carry Ripple

Adders (CRA). A CRA of w -bit operand size includes w Full Adders (FA) in which

 15

the carry output of the ith Full Adder is the carry input of the (i+1)th Full Adder. The

delay of the Carry Ripple Adder is the delay of w Full Adders. Therefore it is not

suitable for large operands.

The adder to be used with large operands will increase the maximum frequency of

the circuit if the execution is done in one clock cycle. Pipelining the addition

operation into words is therefore a solution to this problem.

Figure 4.3: Full Adder (FA)

A Carry Ripple Pipelined Adder (CRPA) is a kind of adder constructed by pipelining
CRAs. It processes k-bit operands word by word by in wk clock cycles using a w -

bit CRAs (Figure 4.4). The carry output of the last FA in the chain, wC , is registered,

and is given to the carry input of the first FA.

Figure 4.4: Carry Ripple Pipelined Adder (CRPA)

 16

5. SIDE-CHANNEL ATTACKS

In cryptography, an attack based on side channel information is called a “side-

channel attack”. Side-channel information is the information that can be retrieved

from the encryption device that is neither the plaintext to be encrypted nor the

ciphertext resulting from the encryption process [5].

Active attacks, also referred as tampering attacks, require access to the internal

circuitry of the attacked device [5]. There are two types:

• Probing attack [19]

• Fault induction attack [20,21]

In passive attacks, the effects of the processing device are measured and used to

retrieve the private key. These have mainly four types according to the type of the

revealed output:

• Timing Analysis [22]

• Power Analysis [23]

• Electromagnetic Analysis [23]

• Acoustic Analysis [24]

All passive attacks can be either simple or differential. The difference is that, while in

simple analysis attacks, the attacker needs only one measurement, he needs

numerous measurements and statistics of these measurements in differential

analysis attacks.

5.1 Timing Analysis Attacks

For RSA, the square and multiply method is completed with k squarings and the
number of Hamming weight of the exponent (()EH) multiplications in total. The

attacker can calculate the Hamming weight of the exponent by measuring the

exponentiation time [22]. One countermeasure to prevent this attack is to always

perform a multiplication after each squaring, but not to store the result of the

multiplication for the 0 bits. The implementation of this countermeasure gives us a

constant of k multiplications and k squarings, which makes k2 multiplications in

total.

 17

5.2 Power Analysis Attacks

Power Analysis (PA) attacks are based on analyzing the power consumption of the

cryptographic device while it performs encryption or decryption [6]. The physical

supporting point of these attacks is that today Complementary Metal Oxide

Semiconductor (CMOS) technology is the one to be used most commonly for digital

integrated circuit implementations. The power consumption during transitions of a

CMOS gate is not the same for 10 → transitions and 01 → transitions. As shown

in Figure 5.1, 10 → transitions are using more power than the other. This gives the

attacker a good starting point, where he uses Hamming weight information leaks. By

this way, the amount of current being discharged can be calculated.

Figure 5.1: The output of a CMOS inverter and the dissipated current

A small (e.g., 50 ohm) resistor inserted in series with the power input of the circuit, in

order to measure the change in its power consumption.

5.2.1 Simple Power Analysis Attacks

Simple Power Analysis (SPA) attacks are generally based on looking at the visual

representation of the power consumption of a unit while an encryption operation is

being performed [6]. SPA is a technique that involves direct interpretation of power

consumption measurements collected during cryptographic operations. SPA can

yield information about a device’s operation as well as key material.

The attacker observes the power consumption of the cryptosystem directly. In RSA,

SPA can reveal the difference between multiply and square operations. For this

attack to be available on RSA, the system has to either involve a microprocessor, or

use different modules for multiplication and squaring if using a Field Programmable

Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC).

5.2.2 Differential Power Analysis Attacks

Differential Power Analysis (DPA) attacks consist not only of visual, but also

statistical analysis and error correction statistical methods, to obtain the secret keys

 18

[6]. The attacker monitors the power consumption of the cryptographic device for

many inputs, and afterwards analyzes the collected power signal data statistically.

Using the result of the statistical analysis, the attacker extracts the secret key. DPA

attacks can be used against both secret and private key cryptosystems, stated by

Kocher et al [6].

There are two types of power consumption leakage that can be observed: the

transition leakage and the Hamming weight leakage. The transition count

information leaks when the dominant source of the current is due to switching of the

gates. The power dissipated increases with the number of switching gates. The

power consumption seen by the measurement from the total power source of a

hardware will depend on the total number of gates that switch their states. 10 →

transitions have a greater effect than 01 → transitions on the total power

consumption [5]. This is taken into account in predictions and mostly, the 01 →

transitions are ignored in the calculation.

A Hamming weight leakage occurs when a pre-charged bus design is used. In this

case, the number of zeros driven onto the pre-charged bus directly determines the

amount of current that is being discharged. This effect can be seen on the falling

edges of the output of an inverter. As in the pre-charged bus, if the previous states

of the outputs of some gates in the circuit are known and constant for every data,

then the power consumption measured from the total power source will give

information about the Hamming weight of the current state of these gates [5].

5.3 Countermeasures against Power Analysis Attacks

Countermeasures against PA attacks have two main groups: hardware and software

countermeasures [5,25].

5.3.1 Hardware Countermeasures

Hardware countermeasures are usually independent from the encryption or

decryption algorithm. They provide a hardware modification to the circuit.

5.3.1.1 Noise Generator

Kocher et al. have proposed adding a Random Number Generator (RNG) to

increase and randomize the measurement noise [6]. This solution is relatively simple

and efficient against attacks, but expensive to implement and not energy efficient. It

might be disabled through tampering.

 19

5.3.1.2 Power signal filtering

Coron et al. have proposed the power signal filtering method to obscure the

measurements [26,27]. While the design might be relatively simple and efficient

against attacks, it requires a change to the hardware and might be disabled through

tampering. There are two types of filters proposed: active and passive.

5.3.1.3 Novel circuit designs

There are also novel circuit designs which are more specifically targeted to solve the

DPA attack problem. Shamir has proposed detachable power supplies [27]. While

the design may be relatively simple and efficient against attacks, it may be

susceptible to tampering attacks.

5.3.2 Software Countermeasures

Software countermeasures propose an algorithmic solution to the problem.

5.3.2.1 Time randomization

In time randomization method, the order of the operations, or the intervals of

operations in an execution are randomized [7,26,28-30]. This method increases the

difficulty to attack. It might be cheap to implement in software, however it might be

expensive to implement in hardware.

5.3.2.2 Masking techniques

Duplication was proposed by Goubin and Patari in [31] and by Messerges in [32].

This method eliminates the threat of 1st-order DPA, however the device is still

susceptible to 2nd-order DPA attacks. Besides, some cryptographic functions may

be hard to mask.

5.4 Countermeasures for RSA against Power Analysis Attacks

Throughout this study, the literature has been investigated for countermeasures.

Most of the countermeasures for DPA attacks against RSA focus on changing the

method of exponentiation from square and multiply to another algorithm that

includes some randomness in it. PA countermeasures have some penalties [7]:

• The performance penalty: Especially in exponent splitting, computation time

increases. In hardware implementations area can also be a performance

penalty [28,30,33].

• Some countermeasures are applicable for RSA, but not all implementations

of RSA [29].

 20

• Some countermeasures require additional parameters, such as ()nφ [26],

which belong to the secret key calculation process that is more likely not to

be included in the main device.

Walter has proposed in [28] an algorithm called MIST, which generates randomly

different addition chains for performing an exponentiation. MIST, making use of a

random divisor, makes power attacks which require averaging over a number of

exponentiation power traces impossible, and attacks based on recognizing repeated

use of the same pre-computed multipliers during an individual exponentiation

infeasible. However the algorithm is suited to implementations of software –

embedded systems and smart cards. The MIST exponentiation requires a k-bit

(k=key length) divider for the hardware implementation, which gives both the

quotient and the remainder as an output. The divider consumes too much area and

also time as a result of repeated usage within the proposed algorithm.

In [30], Chevallier-Mames proposes self-randomized algorithms, which use a

random number, but also the exponent itself to create randomness. Here an addition

chain is created in the preprocessing step. Parts of the exponent are subtracted

from itself in each step of the preprocessing. However, the subtracted bits’ position,

the subtracted range, and the compared parts change in each step. This gives the

algorithm too much randomness; which brings security against DPA attacks, whilst it

makes it inefficient to be implemented on hardware. The preprocessing time for the

hardware implementation also would be infeasible.

The width-w NAF method proposed by Okeya and Takagi in [29] depends on the

Nonadjacent Form (NAF) representation stated in [34] by Solinas. The width-w NAF

method is an efficient window method with small memory, which requires 22 −w

points of table. In [29] it is converted to an SPA-resistant addition chain. The

proposed construction is optimal in the sense of both efficiency and memory. The

memory requirement of scheme is smaller than that of [35], which is based on the

signed w2 -ary method. Unlike the previously explained algorithms, this method does

not create only positive members on the addition chain. The NAF representation
takes ()132 − instead of 31 for example. Therefore, we could simply say that using

NAF representation, the calculation of 31M requires 5 squarings plus 1

multiplication with 1−M instead of 4 squaring and 4 multiplications. On the other

hand, the need for inversion is required for RSA. Modular inversing is an area and

time consuming operation, which would be a major offset for the preprocessing. This

makes it an infeasible solution for RSA. This method can be feasible for the

implementation of Elliptic Curve Cryptography (ECC) [36]. As the squaring

corresponds to doubling and multiplication corresponds to addition in ECC, the

 21

division will correspond to a subtraction. This algorithm requires no major extra

hardware for the ECC. Also in [35,37,38] similar methods which are infeasible for

RSA, but can be feasible for ECC have been used.

Itoh et al. in [7] have proposed three algorithms as DPA countermeasures which are

applicable to both RSA and ECC cryptosystems. All three countermeasures are

based on the window method mentioned earlier in Chapter 4.1.3. In the first

algorithm introduced, “Overlapping Window Method” (O-WM), two continuous
windows iω and 1+iω overlap each other at the same bit position of E , the exponent.

Here, iω is a random number. An intermediate exponent value is created using

iω series and the random size of the non overlapped part of the window, ih . In

comparison with the m-ary method, the overhead for table making is the same, but

the number of repeating the table look-up operations is larger. Besides the

processing time penalty of the algorithm, the preprocessing operations have too

much randomness, which makes it hard to implement in hardware. The size of the

operands in the preprocessing steps is even random.

The second algorithm proposed by Itoh et al. [7] is “Randomized Table Window

Method” (RT-WM). This algorithm needs a b-bit random number r . The exponent is

re-calculated using the random number and some intermediate values are formed in

return, which are used to form a table. In comparison with the m-ary method, the

number of repeating table look-up operations are the same, but the overhead for the

computation of table-making and normalization are larger.

The third algorithm proposed by Itoh et al. [7] is “Hybrid Randomizing Window

Method” (HR-WM) is a hybrid technique of the first two, O-WM and RT-WM.

In this study, RT-WM algorithm was implemented as a countermeasure against DPA

attacks The RT-WM algorithm is explained in detail in Chapter 5.4.1.

5.4.1 Randomized Table Window Method (RT-WM)

The “Randomized Table Window Method” (RT_WM) algorithm proposed by Itoh et

al. is given in Algorithm 5.1. This algorithm is a DPA countermeasure both for RSA

and ECC based on the window method mentioned earlier in Chapter 4.1.3. The

main difference from the window method is that, RT-WM uses randomized data

inside the table instead of sequential powers of M.

The subtrahend containing the random number is shifted left in every step by t-bits

(bt <), which creates an overlapping part of ()tb − -bits. The subtractions are

repeated as long as the result will remain positive. The subtractions result with an
intermediate value of Ew which is the concatenation of an array []iω and a

normalization value dm .

 22

Algorithm 5.1: RT-WM (Randomized Table Window Method)

Inputs: ()1 1 0 2kN n n n−= L , ()1 1 0 2kE e e e−= L , ()1 1 0 2kM m m m−= L

 NConst
k mod2:)2(2 +=

Output: NM
E mod

 1. =:r (b-bit random number); /* Generate random number */

 2. () tbkcount −=:_ω /* Pre-computation Phase 1 starts */

 3. rsubt =:

 4.for 0=i to 1_ −countω do

 5. if subtdw ≥ then

 6. Edwdw −=:

 7.
t

subtsubt 2: ⋅=

 8. ()0121: dwdwdwdwdm bb L−−=

 9. ()()
btcountkk dwdwdw +⋅−−−= 1_210 : ωω L

10.for 1=i to 1_ −countω do

11. () ()()
bticountbticounti dwdw +⋅−−−+⋅−= 1_1_: ωωω L

12. ()ConstMNFSoMonM ,_Pr=′ /* Enter MonPro Domain */

13. ': MQ = /* Pre-computation Phase 2 starts */

14. ':0 MV =

15.if 0=dm then

16. 0:=Q

17.for 1=i to 12 −b
 do

18. ()MRNFSoMonR ′′=′ ,_Pr:

19. if 1−= dmi then

20. RQ ′=:

21. else if 1−= ri then

22. RVo
′=:

23. RU ′=:

24.for 1=i to 12 −t
 do /* Pre-computation Phase 3 */

25. ()UVNFSoMonV ii ,_Pr: 1−=

26. 0:=Start /* Modular Exponentiation Process */

27.for 0=i to 1_ −countω do

28. if 1=Start then

29.
i

VR ω=′ :

30. for j to 1−t do

31. ()RRNFSoMonR ′′=′ ,_Pr:

32. if 0≠iω then

33. ()
i

VRNFSoMonR ω,_Pr: ′=′

34. else if 0≠iω then 1:=Start

35. ()QRNFSoMonR ,_Pr: ′=′ /* Normalize Data */

36. ()1,_Pr: RNFSoMonR ′= /* Exit MonPro Domain */

37.return R

 23

Figure 5.2 shows the steps in the first part of the pre-processing of the RT-WM
algorithm – how the exponent E turns into an array []iω and dm .

11 1 0 00

10001 1 0011 111 11000

01 1 1 1 11 1 110 000 00

100001 1101 1 10 1 10

11 1 0 00

11 1 0 00 0000

0000

0000

10001 1 00100 11 1 10

dm

ω0

ω1

ω2

r

r

r

b-bit

t-bit

E

Ew

b-bitt-bit

k-bit

t-bitt-bit

Figure 5.2: Evaluating intermediate values out of the exponent

The recalculation of E determines how the table and the rest of the algorithm works.
Eq. 5.1 shows how []iω , dm , r , b , and t make up the exponent E .

()()() dmrrrE
b

s

ttbtb ++⋅+⋅⋅+⋅+⋅+⋅= 222222 10 ωωω LL (5.1)

The calculation for the table values are given in Eq. 5.2 and computed in pre-

computation phases 2 and 3.

r

i

b
iMV

+= 2ω (5.2)

Using the values in the table, the rest of the algorithm becomes like “square for t2

times and multiply with a table value” until the mentioned equation is evaluated. This

algorithm brings a preprocessing time, and additional memory for the table is

required. An extra subtraction module is not necessary if an adder is already being

used within the RSA.

 24

6. IMPLEMENTATION

On the way to achieve a DPA resistant implementation of the RSA cryptosystem,

the first step is to implement an unprotected one. The aim of this first step is for the

RSA cryptosystem to be functionally correct. The second step is to prove that this

implementation cannot stand against DPA attacks. The third step is to choose a

countermeasure against DPA attacks and implement upon the unprotected

implementation. In this document, the implementations will be called “the

unprotected implementation” and “the protected implementation” respectively.

6.1 Unprotected RSA Cryptosystem Implementation

In order to implement the RSA cryptosystem, Montgomery Multiplication block has

been realized with MonPro_NFS_CSA algorithm, which is given as Algorithm 6.1.

This algorithm does no final subtraction like in the previously explained Algorithm

4.4. When Montgomery multiplication is realized using normal number

representation, the operands look like in Figure 6.1. When it is realized using Carry

Save representation then the multiplicand, multiplier and the result are doubled as

Carry and Save, shown in Figure 6.2.

Figure 6.1: Operands of a standard Montgomery multiplier

Figure 6.2: Operands of a Montgomery multiplier using Carry Save Representation

The RSA Encryption/Decryption algorithm, which uses Montgomery Multiplication,

also changes accordingly and it is named MonExp_NFS_CSA [39], given in

 25

Algorithm 6.2. The adder required by the encryption process is realized as CRPA,

explained in Chapter 4.4.

Algorithm 6.1: Montgomery Multiplication with No Final Subtraction using Carry

Save Adder Representation (MonPro_NFS_CSA)

Inputs: ()
2011 xcxcxcXC k L+= , ()

2011 xsxsxsXS k L+= ,

()
2011 ycycycYC k L+= , ()

2011 ysysysYS k L+= , ()
2011 nnnN k L−= ,

Nr
k mod2 2+= , 10 =n .

Output: () () () NrYSYCXSXCRSRC mod,,, 1−⋅⋅=

 1. ()
2011 tctctcTC k L+= , ()

2011 tststsTS k L+=

 2. 0:0 =TC ; 0:0 =TS

 3.for i from 0 to 1+k do

 4. iii xsxcx +=:

 5. () 0:1,1 YCxTSTCSC iiiii ⋅++=

 6. () 011:2,2 YSxSCSC iiiii ⋅++=

 7.if 02 0 =is then

 8 . () () 2/022:, ++= iiii SCTSTC

 9.else () () 2/22:, NSCTSTC iiii ++=

10.return ()11, ++ kk TSTC

Algorithm 6.2: RSA Encryption with Montgomery Multiplication with No Final

Subtraction using Carry Save Adder Representation (MonExp_NFS_CSA)

Inputs: ()1 1 0 2kN n n n−= L , ()1 1 0 2kE e e e−= L , ()1 1 0 2kM m m m−= L

 NConst
k mod2:)2(2 +=

Output: modE
M N

 1. 0:=Start

 2. () ()NConstMCSANFSoMonSMCM ,0,,0,__Pr:, =′′

 3. () ()SMCMSRCR ′′=′′ ,:,

 4.for 1−= ki down to 0 do

 5. if 1=Start then

 6. () ()NSRCRSRCRCSANFSoMonSRCR ,,,,__Pr:, ′′′′=′′

 7. if 1=ie then

 8. () ()NSMCMSRCRCSANFSoMonSRCR ,,,,__Pr:, ′′′′=′′

 9. else if 1=ie then 1:=Start

10. () ()NSRCRCSANFSoMonRSRC ,0,1,,__Pr:, ′′=

11. RSRCR +=:

12.return R

Two modules have been used inside the top level module: MonExp_NFS_CSA and

a communication module PC2FPGA. Inside MonExp_NFS_CSA there is

MonPro_NFS_CSA and CRPA. Inside CRPA, there is a CRA. Figure 6.3 shows the

I/O ports, blocks, and connections, and important registers inside the RSA

implementation.

 26

Figure 6.3: RSA module and its blocks

6.1.1 Hardware Implementation

Figure 6.4 shows the main processing element of the hardware implementation

using CSA representation, which was functionally described in Algorithm 6.2,

MonPro_NFS_CSA. There are three levels of CSAs, which determine the

multiplier’s delay.

x
iy
c
1

ts
1

tc
1

FA

x
iy
c
0

ts
0

tc
0

c
1
0

s
1
0

c
1
1

s
1
1

c
2
0

s
2
0

FA

c
2
1

s
2
1

o
n
0

o
n
1

x
iy
s
1

FA

HA
x
iy
s
0

FA

c
2
0

s
2
0 c
3
0

Q Q
s
E
T

c
LR

D

Q Q
sE
T

cL
R

D

Q Q
sE
T

cL
R

D

tc
0

ts
0

tc
1

ts
k
+
1

tc
k
+
1

FA

x
iy
c
k

ts
k

tc
k

c
1
k

s
1
k

c
1
k
+
1

s
1
k
+
1

c
2
k

s
2
k

HA

c
2
k
+
1

s
2
k
+
1

o
n
k
-1

HA

FA

x
iy
s
k

HA

c
3
k
+
1

s
3
k

Q Q
sE
T

cL
R

D

Q Q
s
E
T

c
L
R

D

tc
k

ts
k

HA

Q Q
s
E
T

c
L
R

D

Q Q
sE
T

cL
R

D

tc
k
+
1

Q Q
s
E
T

c
L
R

D

ts
k
+
1

FA

x
iy
c
k
-1

ts
k
-1

tc
k
-1

c
1
k
-1

s
1
k
-1

c
2
k
-1

s
2
k
-1

FA

x
iy
s
k
-1

Q Q
s
E
T

c
LR

D

FA

Q Q
sE
T

cL
R

D

s
3
k
+
1

c
3
k

s
3
k
-1

c
3
k
-1

s
3
k
-2

tc
k
-1

ts
k
-1

ts
k
-2

1

00

ni
oni

s20 xi

xiyci
yci

xiysi
ysi1

0

1

00 0

xi

 k: Key length

Figure 6.4: HW implementation of the Montgomery Multiplication unit using CSAs

 27

Figure 6.5: State machine of RSA main block

 28

MonExp_NFS_CSA is implemented with a finite state machine as given in Figure

6.5. This algorithm has four inputs as M, E, N, and the constant number. E, N, and

Const= N
k mod2 42 + do not change for every encryption, only M does. Hence there

are two loading options: load all inputs or load M only. Afterwards a Start signal is

waited. Then the algorithm enters the Montgomery domain and calculates (M’C,M’S)

from M and Const using MonPro_NFS_CSA. It scans until the leftmost nonzero bit

of the exponent and continues with squaring. The square and multiply process is

continued until all the bits of E are scanned. Then the MonPro domain is to be exited

by doing Montgomery multiplication on the current result (R’C,R’S) and 1. The result

is still a carry save pair (RC,RS) afterwards. RC and RS are added using the CRPA.

The exponentiation result is ready when this final addition is over.

6.1.2 Software for Verification

The software model which was used for verification has been realized exactly to

match the steps implemented in hardware. The software code, like the hardware

code, has been written using generic sizes. This has given the chance to test the

implementation with 32 bit key size on the first hand. The large operand sizes have

been realized with arrays of 32 bit element size. The software supports the multiples

of 32 as the key size: 32, 64, 128, 256, 512, 1024, etc.

The verification of the software model itself has been checked by decrypting the

encrypted data and comparing the plaintext with the decrypted text. The software

takes plaintext input files, encrypts them, verifies them with decryption and creates a

ciphertext output file. The steps can be seen in Figure 6.6. These files are to be

used for simulation and measurements.

RSA

SW model

Original

Random

plaintext

Calculated

ciphertext

Calculated

ciphertext

Calculated

plaintext

?=

Calculated

plaintext

Original

Random

plaintext

Calculated

ciphertext is

verified!

Step 1 Step 2 Step 3

RSA

SW model

Figure 6.6: Software verification of input and output pairs

 29

The software model is written with C/C++ language and it was compiled using Visual

Studio .NET 2003.

6.1.3 Measurement

This unprotected implementation is expected be resistant to revealing the secret key

in an SPA attack, because there are no different modules for squaring and

multiplication. However this implementation is expected to be unprotected against
SPA attacks that reveal the ()EH and DPA attacks that reveal the secret key.

Figure 6.7 summarizes the steps of the measurement flow.

One plaintext and one measurement is enough for an SPA attack. For implementing

an SPA attack in an RSA cryptosystem, the square and multiply power consumption

patterns have to be distinguished. This is done by looking at a single measurement

output.

On the other hand, tens of thousands of random plaintext inputs are given to an

RSA cryptosystem to make a DPA attack and retrieve the private-key.

Random

plaintext
Data in a1

1

a2
2

3
a34
a4

b1

b2

b3

b4

5

6

7

8

Vcc1

0 Measured

ciphertext
Data out

Oscilloscope

FPGA

Power

Power

data

Calculated

ciphertext

?=

Power

Analysis

Can we

extract the

private key?

Make the RSA

implementation Power

Analysis Resistant!

Valid power analysis

Comparison OK?

Y

Y

Figure 6.7: Measurement of DPA resistancy

 30

We have tried to perform the measurements described here. Since the

measurement setup was not ready, this step took more time than expected. In order

to complete the rest of the thesis work, this step has eventually been skipped.

6.1.4 Implementation Results

MonPro_NFS_CSA takes 2+k clock cycles. The maximum frequency of the

implementation with Xilinx XC2V1500 for 512=k is 140,96 MHz, which takes 3,65

µs resulting in a throughput rate of 140,41 Mb/s. When implemented on Xilinx

XC2V4000 for k=1024, the maximum frequency achieved becomes 129,05 MHz; the

total time 7,95 µs, and the throughput rate 128,80 Mb/s. As shown in Table 6.1, the

resulting throughput rates are faster than [40-42], and almost the same speed as

[43], which are also architectures using CSAs to realize Montgomery multipliers.

Table 6.1: Montgomery Multiplier implementations in comparison to previous works

Design Device Bit

length

(k)

Clock

speed

(MHz)

Area

(Slices)

Throughput

Rate

(Mb/s)

XC2V1500 512 140,96 4339 140,41 This

work
XC2V4000 1024 129,05 5509 128,80

[40] XC2V1500 512 72,1 3125 71,82

[41] XC2V1500 512 105,57 4962 105,36

[42] XC2V1500 512 126,71 5170 126,46

[43] FPGA 1024 129,1 3611 129

Addition with CRPA takes wk / clock cycles. The decision to choose the word

length w was done according to the optimum frequency of the synthesis results

(See Table 6.2). In order not to make the exponentiation slower than the

Montgomery Production block, w=16 was chosen.

The whole RSA module, MonExp_NFS_CSA takes ()2/32 +++ wkkk clock cycles

for the best case where the exponent is 12 −= kE , and ()wkkk /42 2 ++ clock

cycles for the worst case where the exponent is 12 −= kE . The average for the

exponentiation is 







+++ 4/5

2

3 2
wkkk clock cycles. Table 6.3 shows the

 31

implementation results of the Montgomery multiplier modules, and the top level RSA

modules.

Table 6.2: Synthesis results of the CRPA module on XC2V1500

Key length

(bits)

Word size

(bits)

Time

(clock

cycles)

Area

(Slices)

Clock

Speed

(MHz)

512 32 16 976 145,73

512 16 32 932 179,87

Table 6.3: Implementation results for Montgomery and RSA (top level) modules

Design

module

Para-

meters

Time

(Clock

cycles)

Time

(Clock

cycles)

Area

(Slices)

Clock

Speed

(MHz)

Through-

put rate

(b/s)

MonPro

(XC2V1500)
k=512 k+2 514 4339 140,96 140,41 M

MonPro

(XC2V4000)
k=1024 k+2 1026 5509 129,05 128,80M

RSA

(XC2V2000)

k=512,

w=16

3/2k2 +5k

+k/w +4

(average)

395812 10240 116,35 150,50 K

RSA

(XC2V6000)

k=1024,

w=16

3/2k2 +5k

+k/w +4

(average)

1578020 25193 84,33 54,72 K

For our first unprotected RSA implementation with k=512 and w=16, we get an

average of 395812 clock cycles. The maximum frequency of the implementation

with Xilinx XC2V2000 is 116,35 MHz, which takes an average of 3,4 ms for the

whole exponentiation process, giving us a throughput rate of 150,50 Kb/s for the

average case. For the best case, the exponentiation takes 263712 clock cycles

resulting in 2,27 ms. The unprotected RSA implementation has been repeated for

1024 bits.

 32

Using the parameters as k=1024 and w=16, we get an average of 1578020 clock

cycles. Implemented on Xilinx XC2V6000, the maximum frequency becomes 84,33

MHz, whilst the average time for exponentiation becomes 18,71 ms resulting in a

throughput rate of 54,72 Kb/s. For the best case, the exponentiation takes 1051712

clock cycles which is 12,47ms.

6.2 RSA Cryptosystem Implementation Immune to Power Analysis Attacks

For the RT-WM algorithm (Chapter 5.4.1), which is applied as a countermeasure
against DPA attacks in this study, the number of items in the []iω array is:

() tbkcount −=_ω (6.1)

This gives us the number of count_ω comparisons and subtractions in

preprocessing phase 1.

One comparison takes one clock cycle and since the existing CRPA is used in

subtractions, one subtraction costs w (word count of CRPA) clock cycles.

The 2nd phase of the preprocessing calculates NM
r mod , NM

dm mod , and

NM
b

mod
2 . It takes ()12 −b MonPro calculations for this phase.

The 3rd phase of the preprocessing finalizes the table. The table has t2 k -bit items

and it takes ()12 −t MonPro calculations to finish the table. Since one MonPro

calculation takes ()2+k clock cycles in the proposed design, the total time spent in

the preprocessing calculations becomes

()  () () ()22221__ +⋅−+++⋅− kcountwordCRPAtbk
tb clock cycles as shown

in Table 6.4.

Table 6.4: Preprocessing time equations of RT-WM algorithm

Preprocessing Time (clock cycles)

Prep. Phase 1 ()  ()1+⋅− wtbk

Prep. Phase 2 () ()212 +⋅− k
b

Prep. Phase 3 () ()212 +⋅− k
t

Total ()  () () ()22221 +⋅−+++⋅− kwtbk
tb

The RT-WM parameters selected for this study and the resulting additional time are

shown in Table 6.5. The exponentiation method which replaces the square and

multiply method now becomes like t times square and multiply once with a table

 33

value. A final multiplication is needed for the normalization. Therefore, accepting
that 00 ≠ω for k-bit exponents, the exponentiation time achieved is

() () ()  () 11111_ ++⋅−=++⋅− ttbktcountω Montgomery multiplications.

Table 6.5: Preprocessing time of RT-WM for the implementation values

RT-WM algorithm Key

length

(bits)

b

(bits)

t

(bits)

CRPA

word

count

Time

(clock

cycles)

Pre-

processing

512 3 2 16 9492

Since the zero windows are not skipped here, which is different than the m-ary

method, the best case, the average case and the worst case exponentiation time in

RT-WM method are the same. In addition to the mentioned preprocessing, 2

multiplications are needed for entering and exiting the MonPro domain (Algorithm

5.1) and wk / clock cycles are needed for CRPA addition. Table 6.6 shows the

exponentiation time and the total time spent in RT-WM algorithm.

The total time required by the new algorithm, realized with 512-bit key length, 2-bit

window length, and a 3-bit random number, needs 404276 clock cycles and brings

an overhead of 11,8% in total time (in clock cycles), when compared to the m-ary

method. The m-ary method needs an average of 703,25 multiplications (See Table

4.2), which makes 361471 clock cycles. The reason why we compare this result with

the results of the m-ary exponentiation method, is that both methods use t size

windows, where t
m 2= . This preprocessing brings an overhead of 2,1% in total

time when compared to the binary method.

Table 6.6: RT-WM exponentiation and total time

Exp. Time (clock cycles)

(parametric)

Exp. Time

(clk cycles)

(k=512, b=3, t=2)

Total Time

(clk

cycles)

()  ()() () wkkttbk /231 ++⋅++⋅− 394784 404276

 34

6.2.1 Hardware Implementation

Figure 6.8 shows the state machine of the RT-WM implementation of the RSA

cryptosystem. As it can be seen, new states have been added: Preprocess 1,

Preprocess 2, Preprocess 3, and Normalize – which are shown on the right side of

the figure. The time spent, in these additional states has been explained in Chapter

6.2. Preprocessing Phase 1, where Ew is calculated, is done before entering the

MonPro domain. Preprocessing Phases 2 and 3 are done in order to fill in the

randomized table. RSA_Multiply and RSA_Square states have changed with

respect to the former implementation.

Now RSA_Square does t times squaring consecutively, once the state is entered.

RSA_Multiply is not done with M; the corresponding table entry is used instead.
There is a final multiplication state after the []iω array is scanned. This multiplication

applies to the normalization step. Afterwards the state machine enters the

Exit_MonPro state, and the rest is followed as stated in the former state machine,

shown in Figure 6.5.

6.2.2 Implementation Results

The implementation results of the RT-WM algorithm, realized with 512-bit key length,

2-bit window length, and, a 3-bit random number, on Xilinx XCV2600E, are shown in

Table 6.7. An exponentiation time of 18,43 Kb/s throughput and an area of 22712

slices are achieved. The maximum clock frequency is 14,55 MHz. The total

encryption process takes 27,79 ms, which was 3,4 ms for the unprotected

implementation.

Table 6.7: Implementation results for RSA with RT-WM

Design

module
Parameters

Time

(Clock

cycles)

Area

(Slices)

Clock

Speed

(MHz)

Throughput

rate (Kb/s)

RSA

(XCV2600E)

k=512, w=16,

b=3, t=2
404276 22712 14,55 18,43

The unprotected implementation fits into XCV1000E, occupying 9037 slices, which

is 73% of the available slices. When implementing the protected architecture, a

major modification is done in the state machine (Figure 6.8); but the main hardware

need is 6 pair of k-bit registers due to the RT-WM algorithm (Algorithm 5.1).

 35

Figure 6.8: State Machine of RT-WM implementation of RSA

 36

As there are two registers in each slice of Virtex-E family, this need causes an

inefficient use of the slices which prevents fitting into the same device. The number

of slices are 2,5 times the unprotected implementation. Thus the routing also

becomes inefficient causing a great decrease in the speed (Table 6.7).

6.3 Optimization of Hardware Implementation

The measurement setup includes the FPGA XCV1000E, from the Xilinx Virtex-E

family. The previously mentioned implementation results of the unprotected design

were realized on FPGA devices from the Xilinx Virtex-II family, to be able to

compare with the previous designs in the literature, which were also implemented on

Xilinx Virtex-II family.

Table 6.8: All implementation results on Virtex-E family devices

Design Unprotected RSA Protected RSA Protected RSA

Device XCV1000E XCV2600E XCV1000E

Parameters k=512, w=16
k=512, w=16,

b=3, t=2

k=512, w=16,

b=3, t=2

Block RAM

(CountxEntryxWidth)
No No 2x4x513

Area (slices) 9037 22712 10986

Time (clock cycles) 395812 404276 404276

Clock Speed (MHz) 81,06 14,55 66,66

Throughput rate

(Kbit/s)
104,85 18,43 84,42

Exponentiation time

(ms)
4,88 27,79 6,06

In order to ensure future measurements of the unprotected and protected designs

accomplished throughout this study, these designs were implemented on Xilinx

Virtex 1000E, too. The unprotected design fit into the XCV1000E occupying 9037

slices, which is 73% of the available slices. Meanwhile, the protected design needed

 37

22712 slices which could fit into the XCV2600E. Therefore the protected design

needed an optimization to become measurable with the available measurement

setup.

Virtex-E family FPGAs incorporate large block SelectRAM memories, where the

data widths of the ports can be configured, and the routing is optimized. Hence we

used these built-in block RAM structures for the protected design in order to fit into

the XCV1000E. The RT-WM algorithm needs 8x513 bits to be used as the

“randomized table” values for the chosen parameters (Chapter 6.2), which were

realized with registers. One needs to separate the carry and save pairs in different

RAM blocks in order to have read/write access to them at the same clock cycle.

Therefore two RAM blocks of 513-bit data length and 4 entries have been defined.

The resulting implementation fit into the device occupying 10986 slices, as 89% of

the available slices. All implementation results on Virtex-E family devices are given

in Table 6.8. Comparing the protected RSA implementations, we see that the clock

speed increased from 14,55 MHz to 66,66 MHz, making the average case

throughput increase from 18,48 Kb/s to 84,42 Kb/s. Total exponentiation time is

reduced from 27,11 ms to 6,06 ms. The time and area cost of the protected design

is reduced with block SelectRAM usage.

 38

7. RESULTS AND FUTURE WORK

We have implemented RSA cryptosystem by using Montgomery multiplier and all

the additions in the Montgomery multiplier are performed by Carry Save Addition

(CSA). CSA is an appropriate way of reducing 3-k bit operands to 2-k bit operands.

Hence, throughout the algorithm, each number is represented by a pair as sum and

carry. At the end of the square and multiply algorithm the numbers in the resulting

pair are added to form the result. We give the comparisons with the previous

Montgomery multiplier architectures, which also used CSAs. Our implementation is

faster than the compared architectures except one, which is almost the same speed

as ours [39].

The second architecture of this study has made the cryptosystem resistant against

DPA attacks. With the final optimization using block SelectRAM structures, the total

time has increased by 24,2% with respect to the unprotected implementation, while

the throughput rate decreased by 19,5%. Thus, the final protected implementation

became DPA resistant, still fitting into the same device, but slower.

The aim of the optimization was in fact, to enable the future work mentioned below.

Following the implementation results described in this thesis, a number of projects

could be taken up to accomplish the following:

• The measurement setup completion of the unprotected implementation

• Implementing an SPA attack on the unprotected implementation to prove

that the Hamming weight of the exponent can be extracted

• Applying “Always Square & Multiply Method” upon the unprotected

implementation against SPA attacks and implementing a DPA attack on the

implementation in the previous item to prove that the secret key can be

extracted

• Implementing a DPA attack against the protected implementation to prove

that the secret key cannot be extracted

• The design will be improved according to the attack results.

 39

REFERENCES

[1] Rivest, R.L., Shamir, A., and Adleman, L., 1978. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems, Communications of the
ACM, 21, 120-126.

[2] Koç, Ç.K., 1994. High-Speed RSA Implementation, RSA Laboratories Technical
Report, Redwood City, California, USA.

[3] Montgomery, P.L., 1985. Modular Multiplication without Trial Division,
Mathematics of Computation, 44, 519-521.

[4] Tinder, R.F., 2000. Engineering Digital Design: Revised Second Edition
Academic Press, San Diego.

[5] Örs, S.B., 2005. Hardware Design of Elliptic Curve Cryptosystems and Side-
Channel Attacks, PhD Thesis, Katholieke Universiteit Leuven, Leuven.

[6] Kocher, P., Jaffe, J., and Jun, B., 1999. Differential Power Analysis,
Proceedings of Advances in Cryptography-CRYPTO'99, Lecture
Notes in Computer Science, Santa Barbara, USA, 1666, pp. 388-397,
Springer-Verlag.

[7] Itoh, K., Yajima, J., Takenaka, M., and Torii, N., 2003. DPA Countermeasures
by Improving the Window Method, Cryptographic Hardware and
Embedded Systems (CHES), Lecture Notes in Computer Science,
California, USA, August 2003, 2523, pp. 303-317, Springer-Verlag.

[8] Pawlan, M., 1998. Cryptography: The Ancient Art of Secret Messages, Sun
Developer Network, http://java.sun.com/developer/technicalArticles/

 Security/Crypto.

[9] Menezes, A.J., Van Oorschot, P.C., and Vanstone, S.A., 1996. Handbook of
Applied Cryptography, CRC Press.

[10] Stinson, D.R., 2002. Cryptography Theory and Practice, Chapman & Hall/CRC,
Waterloo, Ontario.

[11] Diffie, W. and Hellman, M.E., 1976. New Directions in Cryptography, IEEE
Transactions on Information Theory, 22, 644-654.

[12] Knuth, D.E., 1981. The Art of Computer Programming: Seminumerical
Algorithms, Addison-Wesley, Reading.

[13] Bos, J. and Coster, M., 1989. Addition Chain Heuristics, Advances in
Cryptology - CRYPTO 89, Lecture Notes in Computer Science, Santa
Barbara, California, USA, 435, pp. 400-407, Ed. Brassard, G.,
Springer-Verlag.

[14] Koç, Ç.K., 1995. Analysis of Sliding Window Techniques for Exponentiation,
Computers and Mathematics with Applications (CANDM), 30, 17-24.

[15] Batina, L., Örs, S.B., Preneel, B., and Vandewalle, J., 2003. Hardware
Architectures for Public Key Cryptography, The VLSI Journal
Integration, 34, 1-64, Elsevier Science Publishers B. V.

 40

[16] Walter, C.D., 1999. Montgomery Exponentiation Needs No Final Subtraction,
Electronic Letters, 35, 1831-1832.

[17] Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestre, P., Quisquater, J.-J., and
Willems, J.-L., 1998. A Practical Implementation of the Timing Attack,
Universit'e Catholique de Louvain Crypto Group Technical Report,
Belgium.

[18] Brown, S.D. and Vranesic, Z.G., 2003. Fundamentals of Digital Logic with
Verilog Design, McGraw-Hill, Toronto.

[19] Kömmerling, O. and Kuhn, M.G., 1999. Design Principles for Tamper
Resistant Smartcard Processors, Proceedings of the USENIX
Workshop on Smartcard Technology, Chicago, Illinois, USA, May
1999, pp. 9-20.

[20] Boneh, D., DeMillo, R.A., and Lipton, R.J., 1997. On the importance of
checking cryptographic protocols for faults, International Conference
on the Theory and Application of Cryptographic Techniques
(EUROCRYPT '97), Lecture Notes on Computer Science, Konstanz,
Germany, 1233, pp. 37-51, Springer-Verlag.

[21] Joye, M., Lenstra, A.K., and Quisquater, J.-J., 1999. Chinese remaindering
based cryptosystem in the presence of faults, Journal of Cryptology:
The journal of the International Association for Cryptologic Research,
12, 241-245.

[22] Kocher, P., 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems, Advances in Cryptology - CRYPTO ’96,
Lecture Notes on Computer Science, 1109, pp. 104-113, Springer-
Verlag.

[23] Peeters, E., Standaert, F.-X., and Quisquater, J.-J., 2007. Power and
Electromagnetic Analysis: Improved Model, Consequences and
Comparisons, in The VLSI Journal Integration, Special Issue of
Embedded Cryptographic Hardware, 40, Elsevier Science Publishers
B. V., Amsterdam, The Netherlands.

[24] Shamir, A. and Tromer, E., 2004. Acoustic Cryptanalysis on Nosy people and
Noisy Systems: Preliminary proof-of-concept presentation,
http://www.wisdom.weizmann.ac.il/~tromer/acoustic.

[25] Messerges, T.S., 2000. Power analysis attack countermeasures and their
weaknesses, Communications, Electromagnetics, Propagation and
Signal Processing Workshop, Illinois, USA, October 2000.

[26] Coron, J.S., 1999. Resistance against Differential Power Analysis for Elliptic
Curve Cryptosystems, Cryptographic Hardware and Embedded
Systems: First International Workshop, CHES'99, Lecture Notes in
Computer Science, Worcester, MA, USA, August 1999, 1717, pp.
292-302, Eds. Koç, Ç.K. and Paar, C., Springer-Verlag.

[27] Shamir, A., 2000. Protecting smart cards from passive power analysis with
detached power supplies, Cryptographic Hardware and Embedded
Systems (CHES), Lecture Notes in Computer Science, Worcester,
Massachusetts, USA, 1965, pp. 71-77, Eds. Koç, Ç.K. and Paar, C.,
Springer-Verlag.

[28] Walter, C.D., 2002. MIST: An Efficient, Randomized Exponentiation Algorithm,
Topics in Cryptology - CT-RSA 2002: The Cryptographer's Track at
the RSA Conference 2002, Lecture Notes in Computer Science, San

 41

Jose, CA, USA, February 2002, 2271, pp. 53-66, Ed. Preneel, B.,
Springer-Verlag.

[29] Okeya, K. and Takagi, T., 2003. The Width-w NAF Method Provides Small
Memory and Fast Elliptic Scalar Multiplications Secure Against Side
Channel Attacks, Topics in Cryptology - CT-RSA 2003: The
Cryptographers' Track at the RSA Conference, Lecture Notes on
Computer Science, San Francisco, CA, USA, April 2003, 2612, pp.
328-342, Springer-Verlag.

[30] Chevallier-Mames, B., 2004. Self-Randomized Exponentiation Algorithms,
Topics in Cryptology – CT-RSA 2004, 2964, 236-249, Lecture Notes
in Computer Science, Springer-Verlag.

[31] Goubin, L. and Patari, J., 1999. DES and differential power analysis the
"duplication" method, Cryptographic Hardware and Embedded
Systems (CHES), Lecture Notes in Computer Science, Worcester,
Massachusetts, USA, 1717, pp. 158-172, Eds. Koç, Ç.K. and Paar, C.,
Springer-Verlag.

[32] Messerges, T.S., 2002. Securing the AES finalists against power analysis
attacks, Proceedings of the 7th International Workshop on Fast
Software Encryption (FSE), Lecture Notes in Computer Science, New
York, NY, USA, April 2000, 1978, pp. 150-164, Ed. Schneier, B.,
Springer-Verlag.

[33] Clavier, C. and Joye, M., 2001. Universal Exponentiation Algorithm,
Cryptographic Hardware and Embedded Systems CHES 2001: Third
International Workshop, Lecture Notes in Computer Science, Paris,
France, May 2001, 2162, pp. 300-308, Eds. Koç, Ç.K., Naccache, D.,
and Paar, C., Springer-Verlag.

[34] Solinas, J.A., 2000. Efficient Arithmetic on Koblitz Curves, in Design, Codes
and Cryptography, Special issue on Towards a quarter-century of
public key cryptography, 19, pp. 195-249, Kluwer Academic
Publishers, Norwell, MA, USA.

[35] Möller, B., 2001. Securing Elliptic Curve Point Multiplication against Side-
Channel Attacks, Proceedings of the 4th International Conference on
Information Security, Lecture Notes on Computer Science, 2200, pp.
324-334, Eds. Davida, G.I. and Frankel, Y., Springer-Verlag.

[36] Miller, V.S., 1985. Use of Elliptic Curves in Cryptography, Advances in
Cryptology - CRYPTO 85, Lecture Notes in Computer Science, Santa
Barbara, California, USA, August 1985, 218, pp. 417-426, Ed.
Williams, H.C., Springer-Verlag.

[37] Yen, S.-M., Chen, C.-N., Moon, S., and Ha, J., 2004. Improvement on Ha-
Moon Randomized Exponentiation Algorithm, Information Security
and Cryptology (ICISC 2004), Lecture Notes on Computer Science,
Seoul, Korea, 3506, pp. 154-167, Springer-Verlag.

[38] Izu, T., Möller, B., and Tsuyoshi, T., 2002. Improved Elliptic Curve
Multiplication Methods Resistant against Side Channel Attacks,
Proceedings of Indocrypt 2002, Lecture Notes on Computer Science,
Hyderabad, India, December 2002, 2551, pp. 296-313, Springer-
Verlag.

[39] Alptekin Bayam, K., Örs, S.B., and Örencik, B., 2007. A Hardware
Implementation of RSA, International Conference on Security of

 42

Information and Networks - SIN2007, Gazimagusa, North Cyprus,
May 2007.

[40] Manochehri, K. and Pourmozafari, S., 2005. Modified Radix-2 Montgomery
Modular Multiplication to Make It Faster and Simpler, International
Conference on Information Technology: Coding and Computing, Las
Vegas, Nevada, USA, 1, pp. 598 - 602, IEEE.

[41] McIvor, C., McLoone, M., and McCanny, J.V., 2003. Fast Montgomery
modular multiplication and RSA cryptographic processor architectures,
37th Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, California, USA, November 2003, 1, pp. 379-384, IEEE.

[42] McIvor, C., McLoone, M., and McCanny, J.V., 2004. Modified Montgomery
modular multiplication and RSA exponentiation techniques,
Proceedings of Computers and Digital Techniques, 151, 402-408.

[43] Fournaris, A.P. and Koufopavlou, O., 2005. A new RSA encryption
architecture and hardware implementation based on optimized
Montgomery multiplication, International Symposium on Circuits and
Systems (ISCAS 2005), Kobe, Japan, May 2005, 5, pp. 4645-4648,
IEEE.

 43

BIOGRAPHY

Keklik Alptekin Bayam was born in Giresun, Turkey in 1980. She graduated from
Bursa Anatolian High School in 1998. In 2002, she received B.Sc. degree in
Electronics and Communication Engineering from Istanbul Technical University. In
2003, she started the Computer Engineering M.Sc. program in Istanbul Technical
University. She is currently working as a digital design engineer in
STMicroelectronics. Her research interests are digital design, cryptography, and
programming.

