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DİFERANSİYEL GÜÇ ANALİZİNE DAYANIKLI RSA KRİPTO SİSTEMİNİN 

DONANIM İLE GERÇEKLENMESİ 

ÖZET 

Bu çalışmada, RSA kripto sistemi donanımsal olarak gerçeklenmiş ve daha sonra 
bir yan kanal analizi çeşidi olan Diferansiyel Güç Analizi (DGA) ile yapılacak 
saldırılara karşı dayanıklı hale getirilmiştir. RSA kripto sisteminde şifreleme ve şifre 
çözme, M mesaj, E açık anahtar, N sistem parametresi olmak üzere, ME (mod N) 
şeklindeki modüler üs alma işlemi ile yapılır. Bu çalışmadaki RSA kripto sisteminde, 
Xilinx Sahada Programlanabilir Kapı Dizisi (SPKD (FPGA)) donanım olarak 
kullanılmıştır. Modüler üs alma işlemi, art arda çarpmalar ile yapılır. Bu 
gerçeklemede kullanılan Montgomery modüler çarpıcı, Elde Saklamalı Toplayıcılar 
ile gerçeklenmiştir. Donanım gerçeklemelerinde kullanılan Elde Saklamalı 
Toplayıcılar, 3 adet k-bitlik toplananı, 2 adet k-bitlik toplam haline düşürerek, uzun 
sayıların hızlı çalışma frekanslarında toplanabilmasını sağlarlar. RSA şifreleme 
algoritmasının işlemleri boyunca Elde Saklamalı gösterilim kullanılmıştır. Böylece 
çarpıcının işlem hacminin yüksek olması hedeflenmiştir. Çarpıcının 512-bit anahtar 
uzunluğu kullanarak 140,41 Mbit/s işlem hacmi ile çalıştığı görülmüştür. RSA 
şifreleme veya şifre çözme işleminin, 512-bit anahtar uzunluğu için, Xilinx 
XC2V1500 üzerinde ortalama 150,5 Kbit/s işlem hacmine sahip olduğu ve 10240 
dilim yer kapladığı görülmüştür. Saldırgan, güç tüketim bilgisinden yararlanarak 
kripto sistemin gizli anahtarını bulabilir. Bu saldırılara Güç Analizi saldırıları denir ve 
iki türü vardır: Basit Güç Analizi ve Diferansiyel Güç Analizi saldırıları. Basit Güç 
Analizi saldırıları tek ölçüm ve gözle tanıma ile yapılırken, Diferansiyel Güç Analizi 
saldırıları, çok sayıda ölçüm ve istatiksel analiz ile yapılır. Güç Analizi saldırıları, 
CMOS teknolojisinin günümüzdeki yaygın kullanımından doğan, lojik kapılardaki 
0→1 geçişindeki güç tüketimini temel alır. Bu tezde gerçekleştirilen ilk RSA 
devresinin mimarisi, Basit Güç Analizi saldırılarından gizli anahtarın elde edilmesini 
engellerken, anahtarın Hamming ağırlığının öğrenilmesine veya Diferansiyel Güç 
Analizi ile anahtarın kendisinin elde edilmesine karşı duramaz. Diferansiyel Güç 
Analizine karşı durma yöntemleri arasında donanımsal ve algoritmik çözümler 
bulunmaktadır. Itoh ve diğ. tarafından önerilen Rastgele Tablolu Pencere Yöntemi 
(RT-WM) algoritması ile RSA şifreleme algoritmasına getirilen değişiklik, algoritmik 
karşı durma yöntemlerinden biridir ve donanım üzerinde gerçeklenmemiştir. Bu 
tezde yapılan ikinci gerçeklemede, ilk gerçeklemenin üzerine bu algoritmanın 
getirdiği değişiklikler uygulanmıştır. 512-bit anahtar uzunluğu, 2-bit pencere genişliği 
ve 3-bitlik bir rastgele sayı kullanılarak, Xilinx XCV2600E üzerinde ortalama 18,43 
Kbit/s işlem hacmine ve 22712 dilim sayısına ulaşılmaktadır. DGA’ya karşı 
korumasız ve korumalı her iki mimari, mevcut ölçüm düzeneğinde test edilebilir hale 
gelmeleri için birer kez de XCV1000E üzerinde gerçeklenmiştir. Korumasız 
gerçeklemede 81,06 MHz saat frekansı, 104,85 Kb/s işlem hacmi ve 4,88 ms toplam 
üs alma süresi elde edilmiş ve 9037 dilimlik alan kullanılmıştır. Korumalı 
gerçeklemede ise 66,66 MHz saat frekansı, 84,42 Kb/s işlem hacmi ve 6,06 ms 
toplam üs alma süresi elde edilmiş; XCV1000E içinde hazır bulunan blok 
SelectRAM yapısı ile birlikte 10986 dilimlik alan kullanılmıştır. Korumalı gerçekleme, 
korumasız ile karşılaştırıldığında, toplam sürenin %24,2 arttığı, işlem hacminin 



 x 

de %19,5 azaldığı görülmektedir. Tüm donanımsal gerçeklemeler VHDL dili 
kullanılarak yapılmış; fonksiyonel doğrulama için C/C++ dilleri kullanılmıştır. 
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DIFFERENTIAL POWER ANALYSIS RESISTANT HARDWARE 

IMPLEMENTATION OF THE RSA CRYPTOSYSTEM 

SUMMARY 

In this study, RSA cryptosystem was implemented on hardware and afterwards it 
was modified to be resistant against Differential Power Analysis (DPA) attacks, 
which are a type of side channel attacks. The encryption and decryption in an RSA 
cryptosystem is modular exponentiation, ME (mod N), where M is the message, E is 
the public key, and N is a system parameter. In this study, Xilinx Field 
Programmable Gate Array (FPGA) devices have been used as hardware. Modular 
exponentiation is realized with sequential multiplications. The Montgomery modular 
multiplier in this implementation has been realized with Carry-Save Adders. Carry-
Save Adders, which are used in hardware implementations, ensure that long 
numbers are added with fast working frequencies, by reducing 3 k-bit summands to 
2 k-bit sums. Carry-Save representation has been used throughout the RSA 
encryption algorithm. Thus, the throughput of the multiplier is aimed to be high. The 
multiplier, implemented on XC2V1500 using 512-bit key length, is observed to be 
working with a throughput of 140,41 Mb/s. RSA encryption or decryption process for 
512-bit key length on Xilinx XC2V1500 takes an average of 150,5 Kb/s throughput 
and occupies an area of 10240 slices. The attacker can find the secret key of the 
cryptosystem using the power consumption information. This kind of attacks are 
called Power Analysis attacks and has two types: Simple Power Analysis and 
Differential Power Analysis attacks. While Simple Power Analysis attacks are 
performed with a single measurement and visual recognition, Differential Power 
Analysis attacks are performed with many measurements and statistical analysis. 
Power Analysis attacks, are based on the power consumption of 0→1 transitions of 
the logic gates, which results from the presently common usage of CMOS 
technology. In this thesis, the primarily implemented RSA circuit’s architecture 
prevents the extraction of the secret key using Simple Power Analysis (SPA) attacks, 
while it cannot prevent the extraction of the Hamming weight of the key or the 
extraction of the key using Differential Power Analysis attacks. There are hardware 
and algorithmic solutions among the countermeasures against Differential Power 
Analysis. The modification to the RSA encryption algorithm that comes with the 
Randomized Table Window Method (RT-WM) proposed by Itoh et al. is one of the 
algorithmic countermeasures and has not been implemented on hardware. In the 
second implementation of this thesis, the changes within this algorithm have been 
applied over the first implementation. Realized with 512-bit key length, 2-bit window 
length, and, a 3-bit random number, on Xilinx XCV2600E, it takes an average of 
18,43 Kb/s throughput and an area of 22712 slices is achieved. Both the 
unprotected and the DPA resistant architectures have been implemented also on 
XCV1000E, in order for them to become testable with the available measurement 
setup. The unprotected implementation has resulted in 81,06 MHz of clock 
frequency, 104,85 Kb/s of throughput, and 4,88 ms of total exponentiation time and 
occupied an area of 9037 slices. The protected implementation resulted in 66,66 
MHz of clock frequency, 84,42 Kb/s of throughput, and 6,06 ms of total 
exponentiation time and occupied an area of 10986 slices together with the use of 
the built-in block SelectRAM structure inside XCV1000E. When comparing the 
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protected implementation with the unprotected, it can be seen that the total time has 
increased by 24,2%, while the throughput has decreased by 19,5%. All hardware 
implementations were realized using the VHDL language; and C/C++ have been 
used for functional verification. 
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1. INTRODUCTION 

1.1 Motivation 

RSA is a widely used public-key cryptosystem. RSA encryption is a one-way 

function, which is not possible to reverse without knowing the private key [1]. RSA is 

realized with large operands, such that the key length and the operands are greater 

than or equal to 512 bits. The encryption and decryption in an RSA cryptosystem is 

modular exponentiation: ME (mod N). Custom implementations in hardware are 

more appropriate for the RSA cryptosystem in order to be efficient in area and 

speed [2].  

In this study, a hardware architecture of the RSA cryptosystem has been proposed 

and implemented on Xilinx FPGA families. In this implementation a Montgomery 

Modular Multiplier [3] with Carry Save Adder [4] based logic and representation has 

been used to speed up the calculations. 

Side-channel attacks [5] are attacks, based on the information that is retrieved from 

the device, but is neither the plaintext nor the ciphertext. Power Analysis (PA) 

attacks [5] are a type of passive side-channel attacks. In these attacks, the power 

consumption of the circuit is measured while the device is performing an encryption 

or decryption. The private key or information about the private key is retrieved after 

an analysis. PA attacks have two types: Simple Power Analysis (SPA) attacks and 

Differential Power Analysis (DPA) [6] attacks. SPA attacks require a single 

measurement, while DPA attacks require many measurements followed by a 

statistical analysis to retrieve information about the private key. There are hardware 

and algorithmic countermeasures against PA attacks. Itoh et al. have proposed an 

algorithmic countermeasure, Randomized Table Window Method (RT-WM), against 

Differential Power Analysis (DPA) attacks in [7]. 

The first implementation in this study prevents the extraction of the private key itself, 

while it cannot prevent the leakage of the Hamming weight information of the private 

key when Simple Power Analysis (SPA) attack is implemented. The former 

protection is due to the architectural design of the circuit. However, the 

implementation is unprotected against DPA attacks. As the second implementation 

of this study, RT-WM algorithm [7] has been implemented upon the former 

unprotected implementation. 
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1.2 Organization of Thesis 

This thesis presents a differential power analysis resistant hardware implementation 

of the RSA cryptosystem. 

Chapter 2 presents the basics of cryptographic systems and explains about the 

main types of cryptosystems. 

Chapter 3 explains the mathematical background behind the RSA cryptosystem. 

Chapter 4 gives the fundamentals of RSA architecture both algorithmic and 

hardware based. This section is the basis to the architectural choices in the 

implementation. 

Chapter 5 presents the basics of side-channel attacks and gives detail about power 

analysis attacks and the countermeasures against them. 

Chapter 6 explains the implementation done within this study: first the unprotected 

implementation of the RSA cryptosystem, and then the DPA resistant 

implementation. 

Chapter 7 is a review of the thesis and the conclusion is given. 
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2. CRYPTOGRAPHIC SYSTEMS 

The word cryptography comes from the Greek words kryptos meaning hidden and 

graphein meaning writing. Cryptography is the study of hidden writing, or the 

science of encrypting and decrypting text [8]. The history of cryptography goes back 

to Egyptians – about 4000 years ago. In the twentieth century it played a crucial role 

in both of the world wars. The predominant practitioners of the art were people 

associated with the military, the diplomatic service and government in general. 

Cryptography was used as a tool to protect national secrets and strategies [9]. 

There are two types of cryptosystems: symmetric and public key. 

2.1 Symmetric Key Cryptosystems 

In symmetric key cryptosystems, Alice and Bob secretly share the key using a 

secure channel. The exposure of the encryption key or the decryption key renders 

the system insecure [10]. 

 

Figure 2.1: Symmetric key cryptosystem communication channel 

There are two main problems in symmetric key cryptosystems [10]. The first is the 

unsafe key exchange. The secure channel between Alice and Bob, which has to be 

established prior to any communication, might in practice, be very difficult to achieve. 

Someone can extract the secret key during the key exchange. The second problem 

is that digital signature is not available in secret key cryptosystems. Since both Alice 

and Bob share the same secret key, it will be ambiguous who has signed the 
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plaintext [10]. To overcome these problems, Diffie and Hellman proposed the public 

key cryptosystems in 1976 [11]. 

2.2 Public Key Cryptosystems 

Diffie and Hellman state in [11] that in a network of n  users, where ( ) 22
nn −  pairs 

can be arranged, it is unrealistic to assume either that all users will be able to wait 
for a key to be sent by some secure physical means or that keys for all ( ) 22

nn −  

pairs can be arranged in advance. They proposed that it was possible to develop 

systems of the type in which two parties communicating solely over a public channel 

and using only publicly known techniques can create a secure connection. They had 

two approaches to the problem, called public key cryptosystems and public key 

distribution systems. 

As proposed by [11], a public key cryptosystem is a pair of families { } { }KKKE
∈

 and 

{ } { }KKKD
∈

 of algorithms representing invertible transformations, 

{ } { }MMEK →:  (2.1) 

{ } { }MMDK →:  (2.2) 

on a finite message space { }M , such that 

1. for every { }KK ∈ , KE  is the inverse of KD , 

2. for every { }KK ∈  and { }MM ∈ , the algorithms KE  and KD  are easy to 

compute, 

3. for almost every { }KK ∈ , each easily computed algorithm equivalent to KD  

is computationally infeasible to derive from KE , 

4. for every { }KK ∈ , it is feasible to compute inverse pairs KE  and KD  from 

K . 

The third property enables the user to make the encryption algorithm KE  public 

without compromising the security of his secret decryption algorithm KD . The 

cryptographic system now is divided into two as encryption and decryption 

operations, that given a member of one family of one, it is infeasible to find the 

corresponding member of the other. The fourth property guarantees that there is a 

feasible way of computing corresponding pairs of inverse transformations. In 

practice there must be a true random number generator for generating K , out of 
which KE  and KD  pair is generated.  

With this system, the problem of key distribution is simplified: Each user generates a 

pair of inverse transformations, E  and D  and keeps D  as secret. The encryption 
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key E  is made public. This means that anyone can encrypt the messages and send 

them to Bob, while no one else but Bob can decipher the messages intended for 

him. 

In a public key cryptosystem, specifying E  specifies a complete algorithm for 

transforming input messages into output cryptograms. As such a public key system 

is really a set of trap-door one-way functions, which are not really one-way in that 

simply computed inverses exist. It is computationally infeasible to find the inverse 

function out of the forward function. The inverse function can only be easily found 

with the knowledge of certain trap-door information [11]. 

In 1977, an public key cryptosystem example, which meets the criteria defined by 

Diffie and Hellman was proposed by Rivest, Shamir, and Adleman: the RSA 

cryptosystem [1]. 

2.3 The RSA Cryptosystem 

The RSA cryptosystem [1] uses the same algorithm for both encryption and 

decryption algorithms. Eq.(2.3) shows the encryption algorithm, where M  is the 
message (plaintext), ( )NE,  are the public key pair, and C  is the ciphertext. Eq.(2.4) 

shows the decryption algorithm where D  is the private key. 

( )NMC
E mod=   (2.3) 

( )NCM
D mod=  (2.4) 

The detailed description and the theory behind the RSA algorithm is given in 

Chapter 3. 
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3. THE RSA CRYPTOSYSTEM 

The RSA cryptosystem was developed by Rivest, Shamir, and Adleman in 1977 [1]. 

RSA is a public-key cryptosystem that serves both for encryption-decryption and 

digital signature. Modular encryption is used as encryption and decryption operation 

in RSA. Modular encryption is a trap-door function, which means that it is easy to 

compute in one direction, but impossible to calculate its inverse function, which 

leaves the attacker no choice but to find out the private keys. RSA is used widely in 

cryptography because of its mathematically strong background. 

3.1 Mathematical Background 

Let p  and q  be two distinct large primes, whose product makes up the k -bit 

modulus N . 

pqN = , qp ≠ , 122 1 −<<− kk
N . (3.1) 

We select a number E , which will be the public exponent, such that the greatest 
common divisor of E  and )(NΦ is 1 and E  is smaller than N  [10], 

1))(,gcd( =Φ NE , }{ 1,,1 −⋅⋅⋅∈ NE , (3.2) 

where )(NΦ  is Euler’s totient function of N  given by 

( ) ( )11)( −⋅−=Φ qpN . (3.3) 

Afterwards we compute the private key D  with 

( ))(mod1
NED Φ= − . (3.4) 

Usually a small public exponent is selected. The modulus N  and E  are published, 

while, D , p , and q  are kept secret. RSA encryption is performed by a modular 

exponentiation operation as shown by Eq.(3.5) where M  is the message and C  is 

the ciphertext and { }1,,1,0,, −∈ NEMC L  [1]. 

NMC
E mod= , { }1,,1,0,, −∈ NEMC L . (3.5) 

And RSA decryption is realized through the same function as RSA encryption as 

shown by Eq.(3.6), 

NCM
D mod= , { }1,,1,0,, −∈ NEMC L , (3.6) 
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where M  is the plaintext, C  is the ciphertext, N  and E  are the public keys, and 

D  is the private key. Let us combine Eq.(3.5) and Eq.(3.6): 

NMNC
EDD modmod = . (3.7) 

Since we have Eq.(3.8) 

( )( )NED Φ= mod1 , (3.8) 

for some integer K , we can write 

( )NKED Φ+= 1 . (3.9) 

When we substitute ED  in Eq.(3.7) with Eq.(3.9), we derive Eq.(3.10) and Eq.(3.11) 

respectively. 

( )
NMNC

NKD modmod 1 Φ+= , (3.10) 

NC
D mod ( )( ) NMM

KN modΦ⋅= . (3.11) 

From Euler’s theorem we know that, Eq.(3.12) holds for two positive and relatively 

prime integers a  and b  

( )
ba

b mod1=Φ . (3.12) 

Using Eq.(3.11) and (3.12), we finally write Eq.(3.13) and (3.14) respectively. 

NMNC
KD mod1mod ⋅= , (3.13) 

MNC
D =mod , ( ) 1,gcd =NM . (3.14) 
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4. RSA ARCHITECTURE 

An RSA encryption is basically a modular exponentiation [1]. When looked with a 

general perspective, the hardware should include multipliers, adders, dividers, and 

counters. Even small algorithmic and architectural improvements in the 

implementation of RSA, which is realized with large operands (> 512 bits), are of big 

importance. Below are some important points in RSA implementation. 

4.1 Exponentiation Methods 

The simplest method to realize the modular exponentiation operation 

NMC
E mod= , is to start with NMC mod:=  and keep on multiplying the result 

with M continuously for 1−E  times [2]. This is obviously the most time consuming 

and infeasible way to do the exponentiation. 

4.1.1 The Binary Method 

The “binary method”, which is also called the “square and multiply method”, scans 

the bits of exponent E  one by one [2]. This scanning can be performed either from 

left to right or vice a versa. Let E  be a k -bit number. The binary method algorithm 

is given in Algorithm 4.1. 

Algorithm 4.1: The Binary Method – left to right 

Inputs: ( )1 1 0 2kN n n n−= L , ( )1 1 0 2kE e e e−= L , ( )1 1 0 2kM m m m−= L . 

Output: NMC
E mod=  

1.if 11 =−ke  then MC =:  else 1:=C  

2.for 2−= ki  down to 0 do 

3.   NCCC mod: ⋅=  

4.   if 1ie =  then NMCC mod: ⋅=  

5.return C  

If 11 =−ke , the binary method requires 1−k  squarings and 1)( −EH  multiplications, 

where )(EH  is the Hamming weight of E . Assuming 0>E , which is a must for 

RSA, this holds for the Hamming weight: 

1)(0 −≤≤ kEH  (4.1) 
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This gives us an average )(EH  of ( )1
2

1
−k . The total number of multiplications – 

assuming the squaring is performed with the same algorithm as multiplication – for 

the binary method is given in Table 4.1. 

Table 4.1: The multiplications required by the binary method 

The Binary Method Multiplications 

Maximum ( )12 −k  

Minimum 1−k  

Average ( )1
2

3
−k  

 

The number of average multiplications for k=512 bit key length is 767. 

4.1.2 The m-ary Method 

The m-ary method [12] reduces the number of multiplications processed in an 

exponentiation. This method is what the binary method would turn into, if we were 

using m-ary representation instead of the binary representation. The exponent E  is 

scanned here r -bits at a time, where r
m 2= , and ksr = . A preprocessing is 

necessary for the exponentiation process, in which the powers of NM mod  from 2 

to 1−m  are calculated [2]. This method is more specifically called the “quaternary 

method” when 2=m  and the “octal method” when 3=m . The m-ary method is 

given in Algorithm 4.2. 

Algorithm 4.2: The m-ary Method 

Inputs: ( )1 1 0 2kN n n n−= L , ( )1 1 0 2kE e e e−= L , ( )1 1 0 2kM m m m−= L . 

Output: NMC
E mod=  

1.Compute and store NM
w mod  for 1,,4,3,2 −= mw L  

2.Decompose E  into r -bit words iF  for 1,,2,1,0 −= si L , ksr =  

3. NMC sF
mod: 1−=  

4.for 2−= si  down to 0 do 

5.   NCCC
r

mod:
2⋅=  

6.   if 0≠iF  then NMCC iF
mod: ⋅=  

7.return C  

Table 4.2 shows the average number of multiplications (including squarings) 

required by the m-ary method. For the hardware implementation, the m-ary method 
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requires more area when compared to the binary method; an extra of 2−m  k-bit 

registers. 

Table 4.2: The average multiplications required by the m-ary Method 

m-ary Method Average multiplications 

Preprocessing 22 −r  

Squarings rk −  

Multiplications ( )r

r

k −−







− 211  

Total ( )rr

r

k
rk

−−







−+−+− 21122  

4.1.3 The Sliding Window Technique 

In the m-ary method, a zero word makes us skip the multiplication. In order to 

increase the number of skipped operations and reduce the number of total 

operations executed, the sliding window technique has been suggested in [12,13]. A 

sliding window exponentiation algorithm decomposes E  into zero and nonzero 

words, which are called windows. In this technique, nonzero words cannot end with 

0. Therefore the multiplications in the preprocessing step are only done to evaluate 
the odd numbers: 1-m, 3,5,7,L . The preprocessing multiplications are almost 

halved. 

Two algorithms using this technique are “Constant Length Nonzero Window” 

(CLNW) proposed by Knuth [12], and “Variable Length Nonzero Window” (VLNW) 

by Bos and Coster [13]. Both algorithms scan the exponent bits from right to left. In 

CLNW, the algorithm checks the first bit of the window, if it is a 0, then it becomes a 

zero window (ZW) and keeps that way until a 1 comes. A 1 starts a nonzero window 

(NW) and keeps that way for a constant length of d-bits. In VLNW algorithm, d is the 

maximum nonzero window length, which means that, during the formation of a NW, 

we switch to Z when all the remaining bits are all zero. Another variable q defines 

the minimum number of zeros required to switch to ZW. The ZWs are where 

repetitive squarings are performed, and the NWs require preprocessing at the 

beginning of the algorithm.  
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For example, the exponent ( )2011110010100=E  is partitioned differently with the 

mentioned algorithms. The output of CLNW is ( )
2

001,0,101,00,111=E  whilst the 

output of VLNW is ( )
2

1,000,101,00,111=E .  

The analysis performed in [14] shows that the VLNW algorithm requires 5-8% fewer 

multiplications than the m-ary method, namely 6,37% for 512-bit key length. 

4.2 Montgomery Multiplication 

In 1985 Montgomery introduced a new method for modular multiplication [3]. The 

approach of Montgomery avoids the time consuming trial division that is a bottleneck 

for most other algorithms. His method is very efficient and is the basis of many 

implementations of modular multiplication, both in software and hardware [15]. 

The modular exponentiation in RSA obviously requires repeated modular 

multiplications. In 1985, Montgomery introduced an algorithm for computing 

NabR mod= , which is in total, more efficient than first multiplying and afterwards 

finding the N  residue, which would have required k  times k -bit additions for the 

multiplication, and k  times k -bit subtractions and comparisons for the division [3]. 

The Montgomery algorithm computes the result by replacing the division operation 

with k  times the division by a power of 2, where a , b , and n  are k -bit binary 

numbers. Thus, not only computation time, but also area is reduced in hardware 

implementations. Montgomery multiplication is defined as  

NrbaR mod1−′′=′ ,  (4.2) 

where kr 2= , and the real multiplicands a  and b  are needed to be transformed 

into their N -residues such as 

Nraa mod⋅=′ .  (4.3) 

When Eq.(4.2) and (4.3) are combined, we get 

NabrNarbrrR modmod1 ==′ − .  (4.4) 

Eq.(4.3) is the preprocessing of Montgomery Multiplication. As R′  is not the final 

result of the multiplication, we need a post-processing, where R′  and 1 are the 

multiplicands of the Montgomery Multiplication, shown in Eq.(4.5). 

( ) NabNrabrR modmod1 1 =⋅⋅= −  (4.5) 

The division process is replaced with multiplying by k−2 . Algorithm 4.3 shows how 

this division is done, which can be realized by simply 1 bit shifting in k  steps.  

As the processing and preprocessing steps are multiplication processes themselves, 

the overhead in this multiplication procedure is meaningful only when the 
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Montgomery Multiplication is done a number of times – for an exponentiation, for 

example. This makes Montgomery Multiplication suitable for RSA. 

In Algorithm 4.3, kT  is inside the interval ( )N2,0 ; and therefore a final subtraction is 

needed if kT  is greater than 1−N . In [16] this comparison and subtraction operation 

is omitted by slightly modifying the algorithm. Our implementation uses the 

Montgomery Multiplication algorithm that has no final subtraction as given in 

Algorithm 4.4. It saves us from using additional hardware for the comparison and 

subtraction, by spending two more rounds in the for loop, adding and dividing by 2. 

Also it will be differential timing attack resistant given in [17]. The operands except 

the public key N  are extended by 1 bit, with a ‘0’ is added as the most significant bit. 
In Algorithm 4.4, kT  is inside the interval ( )N,0 ; and therefore a final subtraction is 

not needed. 

Algorithm 4.3: Montgomery Modular Multiplication with Final Subtraction (MonPro) 

Inputs: ( )1 1 0 2kN n n n−= L , ( )1 1 0 2kX x x x−= L , ( )1 1 0 2kY y y y−= L , 2 modk
r N= , 

0 1n = . 

Output: MonPro ( ) 1, , mod 2 modkX Y N XYr N XY N− −= =  

1. 0 : 0T =  

2.for i  from 0 to 1k −  do 

3.   if ( )0 iT x Y+  is even then 

4.      ( )1 : / 2i i iT T x Y+ = +  

5.   else ( )1 : / 2i i iT T x Y N+ = + +  

6.if kT N≥  then :k kT T N= −  

7.return kT  

Algorithm 4.4: Montgomery Multiplication with No Final Subtraction (MonPro_NFS) 

Inputs: ( )1 1 0 2kN n n n−= L , ( )1 0 2kX x x x= L , ( )1 0 2kY y y y= L , 
22 modk

r N
+= , 

0 1n = . 

Output: MonPro_NFS ( ) ( )21, , mod 2 mod
k

X Y N XYr N XY N
− +−= =  

1. 0 : 0T =  

2.for i from 0 to 1k +  do 

3.   if ( )0 iT x Y+  is even then 

4.      ( )1 : / 2i i iT T x Y+ = +  

5.   else ( )1 : / 2i i iT T x Y N+ = + +  

6.return kT  

The exponentiation is realized by squaring and multiplications, while the bits of the 

exponent E  are scanned. The number E  can be k  bits, but it can be less. 

Therefore the multiplications do not start until the actual most significant bit of E , 

where the first ‘1’ is seen. Afterwards a squaring is done for every bit of E , and a 

multiplication is done if the scanned bit is ‘1’. 
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When the exponentiation operation uses Montgomery Multiplication Algorithm, it 

needs a preprocessing, where the N  residue of the base number is calculated 

shown in Eq.(4.3); and a post-processing where the result transferred from the N  

residue to normal state. A constant number has to be calculated for the 

preprocessing to evaluate the N  residue of the plaintext as shown in Eq.(4.3). This 

constant number is N
k mod22  when using MonPro algorithm, which becomes 

N
k mod2 42 +  when using MonPro_NFS. This constant number can be provided as 

an input to the function, as it can be calculated directly from the public key N . 

Algorithm 4.5: Montgomery Exponentiation with No Final Subtraction 

(MonExp_NFS) 

Inputs: ( )1 1 0 2kN n n n−= L , ( )1 1 0 2kE e e e−= L , ( )1 1 0 2kM m m m−= L . 

Output: modE
M N  

 1.
2 4: 2 modkConst N+=  

 2. ( ): MonPro_NFS ,M M Const′ =  

 3. MR ′=′ :  

 4. 0:=Start  

 5.for 1i k= −  down to 0 do 

 6.   if 1=Start  then 

 7.      ( )RRNFSoMonR ′′=′ ,_Pr:  

 8.      if 1ie =  then ( )MRNFSoMonR ′′=′ ,_Pr:  

 9.   else if 1ie =  then 1:=Start  

10. ( ): MonPro_NFS ,1R R′=  

11.return R  

4.3 Carry Save Adder 

Adders are necessary for the realization of multiplication operations. Adders are 

necessary for Montgomery multiplication also, namely for step 4 and 5 of Algorithm 

4.4. Carry save addition is suitable especially for large operands [4]. It is an 

appropriate way of reducing 3 k -bit operands to 2 k -bit operands. As a result of 

this property, Carry Save Adders (CSAs) are used when there are too many inputs 

to be added, like in the case of multiplication of large operands. CSA has been used 

in the implemented Montgomery Multiplier within this thesis work. As seen in Figure 

4.1, a CSA consists of full adders unconnected with each other. Instead of 

connecting the carry output of one full adder to the next, like in Carry Ripple Adder, 

here all carry bits form a line, shifted 1 bit left. The carry input ports are used for the 

third summand. Thus every time one summand is added to the previous 2 results, a 

new set of 2 results is formed. 

In CSA, there are no horizontal connections, and thus the maximum frequency of 

the adder is determined by the delay of one full adder, no matter what the size of the 



 14 

adder is. Thus when a k -bit times k -bit multiplication operation is processed, the 

result is evaluated at the end of k  cycles. CSAs are favorable for Montgomery 

Multiplication in RSA, where working frequency is important. However it has to be 

indicated that the result is in carry save representation (C,S). One final addition has 

to be done to reduce the result from 2 k -bit operands to 1 k -bit operand – to 

convert back to normal number representation. Carry Ripple Pipelined Adder 

(CRPA) has been given as an example to this needed adder in the next chapter. 

FA0

X0 Z0Y0

C0

FA1

S0

X1 Y1

S1

Z1

FAk-2

Xk-2Yk-2

Ck-1

FAk-1
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Yk-1

Sk-1

Zk-1

Ck

Xk-1 Zk-2

C1

FA2

X2 Y2

S2

Z2

C2  

Figure 4.1: Carry Save Adder (CSA) 

4.4 Carry Ripple Pipelined Adder 

Carry Ripple Adders (CRA) and Carry Look Ahead Adders (CLAA) bring reasonably 

much delay for large operands [18]. The latter also brings a noteworthy hardware. A 

CRA of w-bit operand size includes w  Full Adders (FA) in which the carry output of 

the ith Full Adder is the carry input of the (i+1)th Full Adder (Figure 4.2). The delay 

of the Carry Ripple Adder is the delay of w  times the carry delay of one Full Adder, 

which makes ( )XORORANDw ++  gate delays (See Figure 4.3). 

 

Figure 4.2: Carry Ripple Adder (CRA) 

Carry Ripple Pipelined Adder (CRPA) has been used in the implementation of this 

thesis to add the carry save pair at the end of Montgomery exponentiation and 

finalize the result. CRPA is a kind of adder constructed by pipelining Carry Ripple 

Adders (CRA). A CRA of w -bit operand size includes w  Full Adders (FA) in which 
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the carry output of the ith Full Adder is the carry input of the (i+1)th Full Adder. The 

delay of the Carry Ripple Adder is the delay of w  Full Adders. Therefore it is not 

suitable for large operands. 

The adder to be used with large operands will increase the maximum frequency of 

the circuit if the execution is done in one clock cycle. Pipelining the addition 

operation into words is therefore a solution to this problem. 

 

Figure 4.3: Full Adder (FA) 

A Carry Ripple Pipelined Adder (CRPA) is a kind of adder constructed by pipelining 
CRAs. It processes k-bit operands word by word by in wk  clock cycles using a w -

bit CRAs (Figure 4.4). The carry output of the last FA in the chain, wC , is registered, 

and is given to the carry input of the first FA. 

 

Figure 4.4: Carry Ripple Pipelined Adder (CRPA) 
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5. SIDE-CHANNEL ATTACKS 

In cryptography, an attack based on side channel information is called a “side-

channel attack”. Side-channel information is the information that can be retrieved 

from the encryption device that is neither the plaintext to be encrypted nor the 

ciphertext resulting from the encryption process [5]. 

Active attacks, also referred as tampering attacks, require access to the internal 

circuitry of the attacked device [5]. There are two types: 

• Probing attack [19] 

• Fault induction attack [20,21] 

In passive attacks, the effects of the processing device are measured and used to 

retrieve the private key. These have mainly four types according to the type of the 

revealed output: 

• Timing Analysis [22] 

• Power Analysis [23] 

• Electromagnetic Analysis [23] 

• Acoustic Analysis [24] 

All passive attacks can be either simple or differential. The difference is that, while in 

simple analysis attacks, the attacker needs only one measurement, he needs 

numerous measurements and statistics of these measurements in differential 

analysis attacks. 

5.1 Timing Analysis Attacks 

For RSA, the square and multiply method is completed with k squarings and the 
number of Hamming weight of the exponent ( ( )EH ) multiplications in total. The 

attacker can calculate the Hamming weight of the exponent by measuring the 

exponentiation time [22]. One countermeasure to prevent this attack is to always 

perform a multiplication after each squaring, but not to store the result of the 

multiplication for the 0 bits. The implementation of this countermeasure gives us a 

constant of k multiplications and k squarings, which makes k2  multiplications in 

total. 



 17 

5.2 Power Analysis Attacks 

Power Analysis (PA) attacks are based on analyzing the power consumption of the 

cryptographic device while it performs encryption or decryption [6]. The physical 

supporting point of these attacks is that today Complementary Metal Oxide 

Semiconductor (CMOS) technology is the one to be used most commonly for digital 

integrated circuit implementations. The power consumption during transitions of a 

CMOS gate is not the same for 10 →  transitions and 01 →  transitions. As shown 

in Figure 5.1, 10 →  transitions are using more power than the other. This gives the 

attacker a good starting point, where he uses Hamming weight information leaks. By 

this way, the amount of current being discharged can be calculated. 

 

Figure 5.1: The output of a CMOS inverter and the dissipated current 

A small (e.g., 50 ohm) resistor inserted in series with the power input of the circuit, in 

order to measure the change in its power consumption. 

5.2.1 Simple Power Analysis Attacks 

Simple Power Analysis (SPA) attacks are generally based on looking at the visual 

representation of the power consumption of a unit while an encryption operation is 

being performed [6]. SPA is a technique that involves direct interpretation of power 

consumption measurements collected during cryptographic operations. SPA can 

yield information about a device’s operation as well as key material.  

The attacker observes the power consumption of the cryptosystem directly. In RSA, 

SPA can reveal the difference between multiply and square operations. For this 

attack to be available on RSA, the system has to either involve a microprocessor, or 

use different modules for multiplication and squaring if using a Field Programmable 

Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC). 

5.2.2 Differential Power Analysis Attacks 

Differential Power Analysis (DPA) attacks consist not only of visual, but also 

statistical analysis and error correction statistical methods, to obtain the secret keys 
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[6]. The attacker monitors the power consumption of the cryptographic device for 

many inputs, and afterwards analyzes the collected power signal data statistically. 

Using the result of the statistical analysis, the attacker extracts the secret key. DPA 

attacks can be used against both secret and private key cryptosystems, stated by 

Kocher et al [6]. 

There are two types of power consumption leakage that can be observed: the 

transition leakage and the Hamming weight leakage. The transition count 

information leaks when the dominant source of the current is due to switching of the 

gates. The power dissipated increases with the number of switching gates. The 

power consumption seen by the measurement from the total power source of a 

hardware will depend on the total number of gates that switch their states. 10 →  

transitions have a greater effect than 01 →  transitions on the total power 

consumption [5]. This is taken into account in predictions and mostly, the 01 →  

transitions are ignored in the calculation. 

A Hamming weight leakage occurs when a pre-charged bus design is used. In this 

case, the number of zeros driven onto the pre-charged bus directly determines the 

amount of current that is being discharged. This effect can be seen on the falling 

edges of the output of an inverter. As in the pre-charged bus, if the previous states 

of the outputs of some gates in the circuit are known and constant for every data, 

then the power consumption measured from the total power source will give 

information about the Hamming weight of the current state of these gates [5]. 

5.3 Countermeasures against Power Analysis Attacks 

Countermeasures against PA attacks have two main groups: hardware and software 

countermeasures [5,25].  

5.3.1 Hardware Countermeasures 

Hardware countermeasures are usually independent from the encryption or 

decryption algorithm. They provide a hardware modification to the circuit. 

5.3.1.1  Noise Generator 

Kocher et al. have proposed adding a Random Number Generator (RNG) to 

increase and randomize the measurement noise [6]. This solution is relatively simple 

and efficient against attacks, but expensive to implement and not energy efficient. It 

might be disabled through tampering. 
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5.3.1.2 Power signal filtering 

Coron et al. have proposed the power signal filtering method to obscure the 

measurements [26,27]. While the design might be relatively simple and efficient 

against attacks, it requires a change to the hardware and might be disabled through 

tampering. There are two types of filters proposed: active and passive. 

5.3.1.3 Novel circuit designs 

There are also novel circuit designs which are more specifically targeted to solve the 

DPA attack problem. Shamir has proposed detachable power supplies [27]. While 

the design may be relatively simple and efficient against attacks, it may be 

susceptible to tampering attacks. 

5.3.2 Software Countermeasures 

Software countermeasures propose an algorithmic solution to the problem.  

5.3.2.1 Time randomization  

In time randomization method, the order of the operations, or the intervals of 

operations in an execution are randomized [7,26,28-30]. This method increases the 

difficulty to attack. It might be cheap to implement in software, however it might be 

expensive to implement in hardware. 

5.3.2.2 Masking techniques 

Duplication was proposed by Goubin and Patari in [31] and by Messerges in [32]. 

This method eliminates the threat of 1st-order DPA, however the device is still 

susceptible to 2nd-order DPA attacks. Besides, some cryptographic functions may 

be hard to mask. 

5.4 Countermeasures for RSA against Power Analysis Attacks 

Throughout this study, the literature has been investigated for countermeasures. 

Most of the countermeasures for DPA attacks against RSA focus on changing the 

method of exponentiation from square and multiply to another algorithm that 

includes some randomness in it. PA countermeasures have some penalties [7]: 

• The performance penalty: Especially in exponent splitting, computation time 

increases. In hardware implementations area can also be a performance 

penalty [28,30,33]. 

• Some countermeasures are applicable for RSA, but not all implementations 

of RSA [29].  
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• Some countermeasures require additional parameters, such as ( )nφ  [26], 

which belong to the secret key calculation process that is more likely not to 

be included in the main device. 

Walter has proposed in [28] an algorithm called MIST, which generates randomly 

different addition chains for performing an exponentiation. MIST, making use of a 

random divisor, makes power attacks which require averaging over a number of 

exponentiation power traces impossible, and attacks based on recognizing repeated 

use of the same pre-computed multipliers during an individual exponentiation 

infeasible. However the algorithm is suited to implementations of software – 

embedded systems and smart cards. The MIST exponentiation requires a k-bit 

(k=key length) divider for the hardware implementation, which gives both the 

quotient and the remainder as an output. The divider consumes too much area and 

also time as a result of repeated usage within the proposed algorithm.  

In [30], Chevallier-Mames proposes self-randomized algorithms, which use a 

random number, but also the exponent itself to create randomness. Here an addition 

chain is created in the preprocessing step. Parts of the exponent are subtracted 

from itself in each step of the preprocessing. However, the subtracted bits’ position, 

the subtracted range, and the compared parts change in each step. This gives the 

algorithm too much randomness; which brings security against DPA attacks, whilst it 

makes it inefficient to be implemented on hardware. The preprocessing time for the 

hardware implementation also would be infeasible. 

The width-w NAF method proposed by Okeya and Takagi in [29] depends on the 

Nonadjacent Form (NAF) representation stated in [34] by Solinas. The width-w NAF 

method is an efficient window method with small memory, which requires 22 −w  

points of table. In [29] it is converted to an SPA-resistant addition chain. The 

proposed construction is optimal in the sense of both efficiency and memory. The 

memory requirement of scheme is smaller than that of [35], which is based on the 

signed w2 -ary method. Unlike the previously explained algorithms, this method does 

not create only positive members on the addition chain. The NAF representation 
takes ( )132 −  instead of 31 for example. Therefore, we could simply say that using 

NAF representation, the calculation of 31M  requires 5 squarings plus 1 

multiplication with 1−M  instead of 4 squaring and 4 multiplications. On the other 

hand, the need for inversion is required for RSA. Modular inversing is an area and 

time consuming operation, which would be a major offset for the preprocessing. This 

makes it an infeasible solution for RSA. This method can be feasible for the 

implementation of Elliptic Curve Cryptography (ECC) [36]. As the squaring 

corresponds to doubling and multiplication corresponds to addition in ECC, the 
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division will correspond to a subtraction. This algorithm requires no major extra 

hardware for the ECC. Also in [35,37,38] similar methods which are infeasible for 

RSA, but can be feasible for ECC have been used. 

Itoh et al. in [7] have proposed three algorithms as DPA countermeasures which are 

applicable to both RSA and ECC cryptosystems. All three countermeasures are 

based on the window method mentioned earlier in Chapter 4.1.3. In the first 

algorithm introduced, “Overlapping Window Method” (O-WM), two continuous 
windows iω and 1+iω  overlap each other at the same bit position of E , the exponent. 

Here, iω  is a random number. An intermediate exponent value is created using 

iω series and the random size of the non overlapped part of the window, ih . In 

comparison with the m-ary method, the overhead for table making is the same, but 

the number of repeating the table look-up operations is larger. Besides the 

processing time penalty of the algorithm, the preprocessing operations have too 

much randomness, which makes it hard to implement in hardware. The size of the 

operands in the preprocessing steps is even random. 

The second algorithm proposed by Itoh et al. [7] is “Randomized Table Window 

Method” (RT-WM). This algorithm needs a b-bit random number r . The exponent is 

re-calculated using the random number and some intermediate values are formed in 

return, which are used to form a table. In comparison with the m-ary method, the 

number of repeating table look-up operations are the same, but the overhead for the 

computation of table-making and normalization are larger. 

The third algorithm proposed by Itoh et al. [7] is “Hybrid Randomizing Window 

Method” (HR-WM) is a hybrid technique of the first two, O-WM and RT-WM.  

In this study, RT-WM algorithm was implemented as a countermeasure against DPA 

attacks The RT-WM algorithm is explained in detail in Chapter 5.4.1. 

5.4.1 Randomized Table Window Method (RT-WM) 

The “Randomized Table Window Method” (RT_WM) algorithm proposed by Itoh et 

al. is given in Algorithm 5.1. This algorithm is a DPA countermeasure both for RSA 

and ECC based on the window method mentioned earlier in Chapter 4.1.3. The 

main difference from the window method is that, RT-WM uses randomized data 

inside the table instead of sequential powers of M. 

The subtrahend containing the random number is shifted left in every step by t-bits 

( bt < ), which creates an overlapping part of ( )tb − -bits. The subtractions are 

repeated as long as the result will remain positive. The subtractions result with an 
intermediate value of Ew  which is the concatenation of an array [ ]iω  and a 

normalization value dm . 
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Algorithm 5.1: RT-WM (Randomized Table Window Method) 

Inputs: ( )1 1 0 2kN n n n−= L , ( )1 1 0 2kE e e e−= L , ( )1 1 0 2kM m m m−= L   

        NConst
k mod2: )2(2 +=  

Output: NM
E mod  

 1. =:r (b-bit random number); /* Generate random number */ 

 2. ( ) tbkcount −=:_ω         /* Pre-computation Phase 1 starts */ 

 3. rsubt =:  

 4.for 0=i  to 1_ −countω  do 

 5.   if subtdw ≥  then 

 6.      Edwdw −=:  

 7.   
t

subtsubt 2: ⋅=  

 8. ( )0121: dwdwdwdwdm bb L−−=  

 9. ( )( )
btcountkk dwdwdw +⋅−−−= 1_210 : ωω L  

10.for 1=i  to 1_ −countω  do 

11.   ( ) ( )( )
bticountbticounti dwdw +⋅−−−+⋅−= 1_1_: ωωω L   

12. ( )ConstMNFSoMonM ,_Pr=′ /*  Enter MonPro Domain */ 

13. ': MQ =                     /* Pre-computation Phase 2 starts */ 

14. ':0 MV =  

15.if 0=dm  then 

16.   0:=Q  

17.for 1=i  to 12 −b
 do 

18.   ( )MRNFSoMonR ′′=′ ,_Pr:  

19.   if 1−= dmi  then 

20.      RQ ′=:  

21.   else if 1−= ri  then 

22.      RVo
′=:  

23. RU ′=:  

24.for 1=i  to 12 −t
 do       /* Pre-computation Phase 3 */ 

25.   ( )UVNFSoMonV ii ,_Pr: 1−=  

26. 0:=Start                    /* Modular Exponentiation Process */ 

27.for 0=i  to 1_ −countω  do 

28.   if 1=Start  then 

29.      
i

VR ω=′ :  

30.      for j to 1−t  do 

31.         ( )RRNFSoMonR ′′=′ ,_Pr:  

32.      if 0≠iω  then  

33.          ( )
i

VRNFSoMonR ω,_Pr: ′=′  

34.   else if 0≠iω  then 1:=Start  

35. ( )QRNFSoMonR ,_Pr: ′=′     /* Normalize Data */ 

36. ( )1,_Pr: RNFSoMonR ′=       /* Exit MonPro Domain */ 

37.return R  
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Figure 5.2 shows the steps in the first part of the pre-processing of the RT-WM 
algorithm – how the exponent E  turns into an array [ ]iω  and dm .  

11 1 0 00

10001 1 0011 111 11000

01 1 1 1 11 1 110 000 00

100001 1101 1 10 1 10

11 1 0 00

11 1 0 00 0000

0000

0000

10001 1 00100 11 1 10

dm

ω0

ω1

ω2

r

r

r

b-bit

t-bit

E

Ew

b-bitt-bit

k-bit

t-bitt-bit  

Figure 5.2: Evaluating intermediate values out of the exponent 

The recalculation of E  determines how the table and the rest of the algorithm works. 
Eq. 5.1 shows how [ ]iω , dm , r , b , and t  make up the exponent E . 

( )( )( ) dmrrrE
b

s

ttbtb ++⋅+⋅⋅+⋅+⋅+⋅= 222222 10 ωωω LL  (5.1) 

The calculation for the table values are given in Eq. 5.2 and computed in pre-

computation phases 2 and 3.  

r

i

b
iMV

+= 2ω  (5.2) 

Using the values in the table, the rest of the algorithm becomes like “square for t2  

times and multiply with a table value” until the mentioned equation is evaluated. This 

algorithm brings a preprocessing time, and additional memory for the table is 

required. An extra subtraction module is not necessary if an adder is already being 

used within the RSA. 
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6. IMPLEMENTATION 

On the way to achieve a DPA resistant implementation of the RSA cryptosystem, 

the first step is to implement an unprotected one. The aim of this first step is for the 

RSA cryptosystem to be functionally correct. The second step is to prove that this 

implementation cannot stand against DPA attacks. The third step is to choose a 

countermeasure against DPA attacks and implement upon the unprotected 

implementation. In this document, the implementations will be called “the 

unprotected implementation” and “the protected implementation” respectively. 

6.1 Unprotected RSA Cryptosystem Implementation 

In order to implement the RSA cryptosystem, Montgomery Multiplication block has 

been realized with MonPro_NFS_CSA algorithm, which is given as Algorithm 6.1. 

This algorithm does no final subtraction like in the previously explained Algorithm 

4.4. When Montgomery multiplication is realized using normal number 

representation, the operands look like in Figure 6.1. When it is realized using Carry 

Save representation then the multiplicand, multiplier and the result are doubled as 

Carry and Save, shown in Figure 6.2. 

 

Figure 6.1: Operands of a standard Montgomery multiplier 

 

Figure 6.2: Operands of a Montgomery multiplier using Carry Save Representation 

The RSA Encryption/Decryption algorithm, which uses Montgomery Multiplication, 

also changes accordingly and it is named MonExp_NFS_CSA [39], given in 
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Algorithm 6.2. The adder required by the encryption process is realized as CRPA, 

explained in Chapter 4.4. 

Algorithm 6.1: Montgomery Multiplication with No Final Subtraction using Carry 

Save Adder Representation (MonPro_NFS_CSA) 

Inputs: ( )
2011 xcxcxcXC k L+= , ( )

2011 xsxsxsXS k L+= , 

( )
2011 ycycycYC k L+= , ( )

2011 ysysysYS k L+= , ( )
2011 nnnN k L−= , 

Nr
k mod2 2+= , 10 =n . 

Output: ( ) ( ) ( ) NrYSYCXSXCRSRC mod,,, 1−⋅⋅=   

 1. ( )
2011 tctctcTC k L+= , ( )

2011 tststsTS k L+=  

 2. 0:0 =TC ; 0:0 =TS  

 3.for i from 0 to 1+k  do 

 4. iii xsxcx +=:  

 5. ( ) 0:1,1 YCxTSTCSC iiiii ⋅++=  

 6. ( ) 011:2,2 YSxSCSC iiiii ⋅++=  

 7.if 02 0 =is  then 

 8 .   ( ) ( ) 2/022:, ++= iiii SCTSTC  

 9.else ( ) ( ) 2/22:, NSCTSTC iiii ++=   

10.return ( )11, ++ kk TSTC  

Algorithm 6.2: RSA Encryption with Montgomery Multiplication with No Final 

Subtraction using Carry Save Adder Representation (MonExp_NFS_CSA) 

Inputs: ( )1 1 0 2kN n n n−= L , ( )1 1 0 2kE e e e−= L , ( )1 1 0 2kM m m m−= L   

        NConst
k mod2: )2(2 +=  

Output: modE
M N  

 1. 0:=Start  

 2. ( ) ( )NConstMCSANFSoMonSMCM ,0,,0,__Pr:, =′′  

 3. ( ) ( )SMCMSRCR ′′=′′ ,:,  

 4.for 1−= ki  down to 0 do 

 5.   if 1=Start  then 

 6.      ( ) ( )NSRCRSRCRCSANFSoMonSRCR ,,,,__Pr:, ′′′′=′′  

 7.      if 1=ie  then  

 8.          ( ) ( )NSMCMSRCRCSANFSoMonSRCR ,,,,__Pr:, ′′′′=′′  

 9.   else if 1=ie  then 1:=Start  

10. ( ) ( )NSRCRCSANFSoMonRSRC ,0,1,,__Pr:, ′′=  

11. RSRCR +=:  

12.return R  

Two modules have been used inside the top level module: MonExp_NFS_CSA and 

a communication module PC2FPGA. Inside MonExp_NFS_CSA there is 

MonPro_NFS_CSA and CRPA. Inside CRPA, there is a CRA. Figure 6.3 shows the 

I/O ports, blocks, and connections, and important registers inside the RSA 

implementation. 
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Figure 6.3: RSA module and its blocks 

6.1.1 Hardware Implementation 

Figure 6.4 shows the main processing element of the hardware implementation 

using CSA representation, which was functionally described in Algorithm 6.2, 

MonPro_NFS_CSA. There are three levels of CSAs, which determine the 

multiplier’s delay. 
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Figure 6.4: HW implementation of the Montgomery Multiplication unit using CSAs 
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Figure 6.5: State machine of RSA main block 
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MonExp_NFS_CSA is implemented with a finite state machine as given in Figure 

6.5. This algorithm has four inputs as M, E, N, and the constant number. E, N, and 

Const= N
k mod2 42 +  do not change for every encryption, only M does. Hence there 

are two loading options: load all inputs or load M only. Afterwards a Start signal is 

waited. Then the algorithm enters the Montgomery domain and calculates (M’C,M’S) 

from M and Const using MonPro_NFS_CSA. It scans until the leftmost nonzero bit 

of the exponent and continues with squaring. The square and multiply process is 

continued until all the bits of E are scanned. Then the MonPro domain is to be exited 

by doing Montgomery multiplication on the current result (R’C,R’S) and 1. The result 

is still a carry save pair (RC,RS) afterwards. RC and RS are added using the CRPA. 

The exponentiation result is ready when this final addition is over. 

6.1.2 Software for Verification 

The software model which was used for verification has been realized exactly to 

match the steps implemented in hardware. The software code, like the hardware 

code, has been written using generic sizes. This has given the chance to test the 

implementation with 32 bit key size on the first hand. The large operand sizes have 

been realized with arrays of 32 bit element size. The software supports the multiples 

of 32 as the key size: 32, 64, 128, 256, 512, 1024, etc.  

The verification of the software model itself has been checked by decrypting the 

encrypted data and comparing the plaintext with the decrypted text. The software 

takes plaintext input files, encrypts them, verifies them with decryption and creates a 

ciphertext output file. The steps can be seen in Figure 6.6. These files are to be 

used for simulation and measurements. 

RSA 

SW model

Original

Random 

plaintext

Calculated 

ciphertext

Calculated 

ciphertext

Calculated 

plaintext

?=

Calculated 

plaintext

Original

Random 

plaintext

Calculated 

ciphertext is 

verified!

Step 1 Step 2 Step 3

RSA 

SW model

 

Figure 6.6: Software verification of input and output pairs 
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The software model is written with C/C++ language and it was compiled using Visual 

Studio .NET 2003. 

6.1.3 Measurement 

This unprotected implementation is expected be resistant to revealing the secret key 

in an SPA attack, because there are no different modules for squaring and 

multiplication. However this implementation is expected to be unprotected against 
SPA attacks that reveal the ( )EH  and DPA attacks that reveal the secret key. 

Figure 6.7 summarizes the steps of the measurement flow. 

One plaintext and one measurement is enough for an SPA attack. For implementing 

an SPA attack in an RSA cryptosystem, the square and multiply power consumption 

patterns have to be distinguished. This is done by looking at a single measurement 

output. 

On the other hand, tens of thousands of random plaintext inputs are given to an 

RSA cryptosystem to make a DPA attack and retrieve the private-key. 
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Figure 6.7: Measurement of DPA resistancy 



 30 

We have tried to perform the measurements described here. Since the 

measurement setup was not ready, this step took more time than expected. In order 

to complete the rest of the thesis work, this step has eventually been skipped. 

6.1.4 Implementation Results 

MonPro_NFS_CSA takes 2+k  clock cycles. The maximum frequency of the 

implementation with Xilinx XC2V1500 for 512=k  is 140,96 MHz, which takes 3,65 

µs resulting in a throughput rate of 140,41 Mb/s. When implemented on Xilinx 

XC2V4000 for k=1024, the maximum frequency achieved becomes 129,05 MHz; the 

total time 7,95 µs, and the throughput rate 128,80 Mb/s. As shown in Table 6.1, the 

resulting throughput rates are faster than [40-42], and almost the same speed as 

[43], which are also architectures using CSAs to realize Montgomery multipliers. 

Table 6.1: Montgomery Multiplier implementations in comparison to previous works 

Design Device Bit 

length 

(k) 

Clock  

speed  

(MHz) 

Area  

(Slices) 

Throughput 

Rate  

(Mb/s) 

XC2V1500 512 140,96 4339 140,41 This 

work 
XC2V4000 1024 129,05 5509 128,80 

[40] XC2V1500 512 72,1 3125 71,82 

[41] XC2V1500 512 105,57 4962 105,36 

[42] XC2V1500 512 126,71 5170 126,46 

[43] FPGA 1024 129,1 3611 129 

Addition with CRPA takes wk /  clock cycles. The decision to choose the word 

length w  was done according to the optimum frequency of the synthesis results 

(See Table 6.2). In order not to make the exponentiation slower than the 

Montgomery Production block, w=16 was chosen. 

The whole RSA module, MonExp_NFS_CSA takes ( )2/32 +++ wkkk  clock cycles 

for the best case where the exponent is 12 −= kE , and ( )wkkk /42 2 ++  clock 

cycles for the worst case where the exponent is 12 −= kE . The average for the 

exponentiation is 







+++ 4/5

2

3 2
wkkk  clock cycles. Table 6.3 shows the 
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implementation results of the Montgomery multiplier modules, and the top level RSA 

modules. 

Table 6.2: Synthesis results of the CRPA module on XC2V1500 

Key length 

(bits) 

Word size 

(bits) 

Time 

(clock 

cycles) 

Area 

(Slices) 

Clock  

Speed 

(MHz) 

512 32 16 976 145,73 

512 16 32 932 179,87 

Table 6.3: Implementation results for Montgomery and RSA (top level) modules 

Design 

module 

Para- 

meters 

Time 

(Clock 

cycles) 

Time 

(Clock 

cycles) 

Area 

(Slices) 

Clock  

Speed 

(MHz) 

Through-

put rate 

(b/s) 

MonPro 

(XC2V1500) 
k=512 k+2 514 4339 140,96 140,41 M 

MonPro 

(XC2V4000) 
k=1024 k+2 1026 5509 129,05 128,80M 

RSA 

(XC2V2000) 

k=512,  

w=16 

3/2k2 +5k 

+k/w +4 

(average) 

395812 10240 116,35 150,50 K 

RSA 

(XC2V6000) 

k=1024, 

w=16 

3/2k2 +5k 

+k/w +4 

(average) 

1578020 25193 84,33 54,72 K 

For our first unprotected RSA implementation with k=512 and w=16, we get an 

average of 395812 clock cycles. The maximum frequency of the implementation 

with Xilinx XC2V2000 is 116,35 MHz, which takes an average of 3,4 ms for the 

whole exponentiation process, giving us a throughput rate of 150,50 Kb/s for the 

average case. For the best case, the exponentiation takes 263712 clock cycles 

resulting in 2,27 ms. The unprotected RSA implementation has been repeated for 

1024 bits. 
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Using the parameters as k=1024 and w=16, we get an average of 1578020 clock 

cycles. Implemented on Xilinx XC2V6000, the maximum frequency becomes 84,33 

MHz, whilst the average time for exponentiation becomes 18,71 ms resulting in a 

throughput rate of 54,72 Kb/s. For the best case, the exponentiation takes 1051712 

clock cycles which is 12,47ms. 

6.2 RSA Cryptosystem Implementation Immune to Power Analysis Attacks 

For the RT-WM algorithm (Chapter 5.4.1), which is applied as a countermeasure 
against DPA attacks in this study, the number of items in the [ ]iω  array is: 

( ) tbkcount −=_ω  (6.1) 

This gives us the number of count_ω comparisons and subtractions in 

preprocessing phase 1. 

One comparison takes one clock cycle and since the existing CRPA is used in 

subtractions, one subtraction costs w  (word count of CRPA) clock cycles.  

The 2nd phase of the preprocessing calculates NM
r mod , NM

dm mod , and 

NM
b

mod
2 . It takes ( )12 −b  MonPro calculations for this phase. 

The 3rd phase of the preprocessing finalizes the table. The table has t2  k -bit items 

and it takes ( )12 −t  MonPro calculations to finish the table. Since one MonPro 

calculation takes ( )2+k  clock cycles in the proposed design, the total time spent in 

the preprocessing calculations becomes  

( )  ( ) ( ) ( )22221__ +⋅−+++⋅− kcountwordCRPAtbk
tb  clock cycles as shown 

in Table 6.4. 

Table 6.4: Preprocessing time equations of RT-WM algorithm 

Preprocessing Time (clock cycles) 

Prep. Phase 1 ( )  ( )1+⋅− wtbk  

Prep. Phase 2 ( ) ( )212 +⋅− k
b  

Prep. Phase 3 ( ) ( )212 +⋅− k
t  

Total ( )  ( ) ( ) ( )22221 +⋅−+++⋅− kwtbk
tb  

The RT-WM parameters selected for this study and the resulting additional time are 

shown in Table 6.5. The exponentiation method which replaces the square and 

multiply method now becomes like t times square and multiply once with a table 
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value. A final multiplication is needed for the normalization. Therefore, accepting 
that 00 ≠ω  for k-bit exponents, the exponentiation time achieved is  

( ) ( ) ( )  ( ) 11111_ ++⋅−=++⋅− ttbktcountω  Montgomery multiplications.  

Table 6.5: Preprocessing time of RT-WM for the implementation values 

RT-WM algorithm Key 

length 

(bits) 

b  

(bits) 

t 

(bits) 

CRPA 

word 

count 

Time  

(clock 

cycles) 

Pre- 

processing 

512 3 2 16 9492 

Since the zero windows are not skipped here, which is different than the m-ary 

method, the best case, the average case and the worst case exponentiation time in 

RT-WM method are the same. In addition to the mentioned preprocessing, 2 

multiplications are needed for entering and exiting the MonPro domain (Algorithm 

5.1) and wk /  clock cycles are needed for CRPA addition. Table 6.6 shows the 

exponentiation time and the total time spent in RT-WM algorithm.  

The total time required by the new algorithm, realized with 512-bit key length, 2-bit 

window length, and a 3-bit random number, needs 404276 clock cycles and brings 

an overhead of 11,8% in total time (in clock cycles), when compared to the m-ary 

method. The m-ary method needs an average of 703,25 multiplications (See Table 

4.2), which makes 361471 clock cycles. The reason why we compare this result with 

the results of the m-ary exponentiation method, is that both methods use t size 

windows, where t
m 2= . This preprocessing brings an overhead of 2,1% in total 

time when compared to the binary method. 

Table 6.6: RT-WM exponentiation and total time 

Exp. Time (clock cycles) 

(parametric) 

Exp. Time  

(clk cycles)  

(k=512, b=3, t=2) 

Total Time 

(clk 

cycles) 

( )  ( )( ) ( ) wkkttbk /231 ++⋅++⋅−  394784 404276 
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6.2.1 Hardware Implementation 

Figure 6.8 shows the state machine of the RT-WM implementation of the RSA 

cryptosystem. As it can be seen, new states have been added: Preprocess 1, 

Preprocess 2, Preprocess 3, and Normalize – which are shown on the right side of 

the figure. The time spent, in these additional states has been explained in Chapter 

6.2. Preprocessing Phase 1, where Ew  is calculated, is done before entering the 

MonPro domain. Preprocessing Phases 2 and 3 are done in order to fill in the 

randomized table. RSA_Multiply and RSA_Square states have changed with 

respect to the former implementation.  

Now RSA_Square does t times squaring consecutively, once the state is entered. 

RSA_Multiply is not done with M; the corresponding table entry is used instead. 
There is a final multiplication state after the [ ]iω  array is scanned. This multiplication 

applies to the normalization step. Afterwards the state machine enters the 

Exit_MonPro state, and the rest is followed as stated in the former state machine, 

shown in Figure 6.5. 

6.2.2 Implementation Results 

The implementation results of the RT-WM algorithm, realized with 512-bit key length, 

2-bit window length, and, a 3-bit random number, on Xilinx XCV2600E, are shown in 

Table 6.7. An exponentiation time of 18,43 Kb/s throughput and an area of 22712 

slices are achieved. The maximum clock frequency is 14,55 MHz. The total 

encryption process takes 27,79 ms, which was 3,4 ms for the unprotected 

implementation. 

Table 6.7: Implementation results for RSA with RT-WM 

Design 

module 
Parameters 

Time 

(Clock 

cycles) 

Area 

(Slices) 

Clock  

Speed 

(MHz) 

Throughput 

rate (Kb/s) 

RSA 

(XCV2600E) 

k=512, w=16, 

b=3, t=2 
404276 22712 14,55 18,43 

The unprotected implementation fits into XCV1000E, occupying 9037 slices, which 

is 73% of the available slices. When implementing the protected architecture, a 

major modification is done in the state machine (Figure 6.8); but the main hardware 

need is 6 pair of k-bit registers due to the RT-WM algorithm (Algorithm 5.1). 
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Figure 6.8: State Machine of RT-WM implementation of RSA 
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As there are two registers in each slice of Virtex-E family, this need causes an 

inefficient use of the slices which prevents fitting into the same device. The number 

of slices are 2,5 times the unprotected implementation. Thus the routing also 

becomes inefficient causing a great decrease in the speed (Table 6.7). 

6.3 Optimization of Hardware Implementation 

The measurement setup includes the FPGA XCV1000E, from the Xilinx Virtex-E 

family. The previously mentioned implementation results of the unprotected design 

were realized on FPGA devices from the Xilinx Virtex-II family, to be able to 

compare with the previous designs in the literature, which were also implemented on 

Xilinx Virtex-II family.  

Table 6.8: All implementation results on Virtex-E family devices 

Design  Unprotected RSA  Protected RSA  Protected RSA 

Device XCV1000E XCV2600E XCV1000E 

Parameters k=512, w=16 
k=512, w=16, 

b=3, t=2 

k=512, w=16, 

b=3, t=2 

Block RAM 

(CountxEntryxWidth) 
No No 2x4x513  

Area (slices) 9037 22712 10986 

Time (clock cycles) 395812 404276 404276 

Clock Speed (MHz) 81,06 14,55 66,66 

Throughput rate 

(Kbit/s) 
104,85 18,43 84,42 

Exponentiation time 

(ms) 
4,88 27,79 6,06 

In order to ensure future measurements of the unprotected and protected designs 

accomplished throughout this study, these designs were implemented on Xilinx 

Virtex 1000E, too. The unprotected design fit into the XCV1000E occupying 9037 

slices, which is 73% of the available slices. Meanwhile, the protected design needed 
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22712 slices which could fit into the XCV2600E. Therefore the protected design 

needed an optimization to become measurable with the available measurement 

setup. 

Virtex-E family FPGAs incorporate large block SelectRAM memories, where the 

data widths of the ports can be configured, and the routing is optimized. Hence we 

used these built-in block RAM structures for the protected design in order to fit into 

the XCV1000E. The RT-WM algorithm needs 8x513 bits to be used as the 

“randomized table” values for the chosen parameters (Chapter 6.2), which were 

realized with registers. One needs to separate the carry and save pairs in different 

RAM blocks in order to have read/write access to them at the same clock cycle. 

Therefore two RAM blocks of 513-bit data length and 4 entries have been defined. 

The resulting implementation fit into the device occupying 10986 slices, as 89% of 

the available slices. All implementation results on Virtex-E family devices are given 

in Table 6.8. Comparing the protected RSA implementations, we see that the clock 

speed increased from 14,55 MHz to 66,66 MHz, making the average case 

throughput increase from 18,48 Kb/s to 84,42 Kb/s. Total exponentiation time is 

reduced from 27,11 ms to 6,06 ms. The time and area cost of the protected design 

is reduced with block SelectRAM usage. 
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7. RESULTS AND FUTURE WORK 

We have implemented RSA cryptosystem by using Montgomery multiplier and all 

the additions in the Montgomery multiplier are performed by Carry Save Addition 

(CSA). CSA is an appropriate way of reducing 3-k bit operands to 2-k bit operands. 

Hence, throughout the algorithm, each number is represented by a pair as sum and 

carry. At the end of the square and multiply algorithm the numbers in the resulting 

pair are added to form the result. We give the comparisons with the previous 

Montgomery multiplier architectures, which also used CSAs. Our implementation is 

faster than the compared architectures except one, which is almost the same speed 

as ours [39]. 

The second architecture of this study has made the cryptosystem resistant against 

DPA attacks. With the final optimization using block SelectRAM structures, the total 

time has increased by 24,2% with respect to the unprotected implementation, while 

the throughput rate decreased by 19,5%. Thus, the final protected implementation 

became DPA resistant, still fitting into the same device, but slower.  

The aim of the optimization was in fact, to enable the future work mentioned below. 

Following the implementation results described in this thesis, a number of projects 

could be taken up to accomplish the following: 

• The measurement setup completion of the unprotected implementation 

• Implementing an SPA attack on the unprotected implementation to prove 

that the Hamming weight of the exponent can be extracted 

• Applying “Always Square & Multiply Method” upon the unprotected 

implementation against SPA attacks and implementing a DPA attack on the 

implementation in the previous item to prove that the secret key can be 

extracted 

• Implementing a DPA attack against the protected implementation to prove 

that the secret key cannot be extracted 

• The design will be improved according to the attack results. 
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