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Abstract

Surgical Robotics is an expanding area, contributing to the increased precision and accuracy

of surgical procedures, besides producing more reliable and reproducible results, minimizing

the invasiveness, reducing complications and improving patient safety, compared with conven-

tional techniques. Navigation within the operating room is fundamental to the success of robotic

systems. In this context a new navigation system, used in the control loop, to co-manipulate a

robotic system developed to assist orthopaedic surgeons, is proposed. Although it may have

other applications, the system is designed to perform a hole in the femur head, necessary to im-

plant the initial guide wire used in Hip Resurfacing surgery. During the surgery, the bone position

and orientation is obtained through a registration process between a set of US images acquired

in real time and the CT femur model, preloaded pre-operatively. Contrary to current surgical

systems, it does not use any type of implant in the bone, to localize the femur, but passive mark-

ers, of an optical measurement system, placed on the probe and the robot to measure their 3D

poses. Experimental validation tests were performed on a human’s femur phantom, validating

the proposed system.

Keywords: Hip Arthroplasty , Surgical Robotics , Image-guided surgery , Ultrasound imaging

, Medical image processing , Image Segmentation , 3D Surface Reconstruction , Surface-based

Registration , Visual Servoing , Image-based tracking
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Resumo

A
Robótica cirúrgica é uma área em expansão, contribuindo para o aumento da precisão e

exatidão dos procedimentos cirúrgicos, além de produzir resultados mais confiáveis e re-

produtı́veis, minimizando a invasividade, reduzindo as complicações e melhorando a segurança

dos pacientes, comparativamente com as técnicas convencionais. A navegação dentro da sala

de operações é primordial para o sucesso dos sistemas robóticos. Neste contexto é proposto um

novo sistema de navegação, usado na malha de controlo, de um sistema robótico co-manipulado,

dedesenvolvido para auxiliar os cirurgiões ortopédicos. Embora possa ter outras aplicações, o

sistema foi desenvolvido para realizar um furo na cabeça do fémur, necessário ao implante do

fio guia na cirurgia de substituição parcial da anca. Durante a cirurgia, a posição e orientação

do osso é obtida através de um processo de registo entre as imagens de US adquiridas em

tempo real e o modelo CT do fémur, previamente carregado no pré-operatório. Contrariamente

aos sistemas cirúrgicos atuais, não usa nenhum tipo de implante no osso para localizar o fémur,

mas sim marcadores passivos colocados na sonda e no robô, e um sistema de medição óptico

para medir as suas posições 3D. Os testes experimentais de validação foram realizados num

phantom de um fémur humano.

Palavras-chave: Artroplastia da anca, Robôs de cirurgia, Cirurgia guiada por imagem, Ultra-

sonografia, Processamento de imagens médicas, Segmentação de imagem, Reconstrução de

Superficie 3D, Registo baseado em superficie, Controlo visual, Seguimento baseado em imagem
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Glossary

Computed Tomography

Although also based on the variable absorption of X-rays by different tissues, computed

tomography (CT) imaging, also known as ”CAT scanning” (Computerized Axial Tomogra-

phy), provides a different form of imaging known as cross-sectional imaging. CT scans

of internal organs, bone, soft tissue and blood vessels provide greater clarity and reveal

more details than regular X-ray exams. Radiographs are two dimensional representations

of three dimensional objects and CT provides images that show all three dimensions.

Hip Resurfacing

Hip Resurfacing arthroplasty is a bone-preserving procedure that helps restore comfort and

function to patients’ hips damaged by degenerative joint disease (osteoarthritis rheumatoid

arthritis and traumatic arthritis) avascular necrosis or developmental hip dysplasia. It is

viewed as an alternative to traditional hip replacements for helping patients return to their

active lifestyles.

Total Hip Replacement

Hip replacement surgery involves replacing components of the hip joint with a synthetic

implant, to repair the damaged bearing surfaces that are causing pain. In a total hip re-

placement both the thigh bone (femur) and the socket are replaced with synthetic implant

materials.

Ultrasound

Medical sonography (ultrasonography) is an ultrasound-based diagnostic medical imaging

technique that use of high-frequency sound waves to create images of organs and systems

within the body. Unlike with an X-ray or CT scan, there is no ionizing radiation exposure with

this test. In diagnostic sonography, the ultrasound is usually between 2 and 18 MHz. Higher

frequencies provide better quality images, but are more readily absorbed by the skin and

other tissue, so they cannot penetrate as deeply as lower frequencies. Lower frequencies

can penetrate deeper, but the image quality is inferior.

Acronyms

ANFIS Adaptive Neural Fuzzy Inference Systems

xvii



CAOS Computer-Assisted Orthopaedic Surgical

CAS Computer-Assisted Surgery

CPD Coherent Point Drift

CT Computed Tomography

DICOM Digital Imaging and Communications in

Medicine

FMS Fast Marching Segmentation

FOV Field of View

GACS Geodesic Active Contour Segmentation

HD Hausdorff Distance

HR Hip Resurfacing

ICP Iterative Closest Point

IGSTK Image-Guided Surgery Toolkit

ITK Insight Segmentation and Registration Toolkit

MAP Maximum a Posteriori

MHD Modified Hausdorff Distance

MIP Maximum Intensity Projection

MIS Minimally Invasive Surgery

MISO Multiple-input and Single-output

PCL Point Cloud Library

RMSE Root Mean Squared Error

ROI Region of Interest

SDS Shape Detection Segmentation

SPF Signed Pressure Force

THR Total Hip Replacement

xviii



TLSS Threshold Lever Set Segmentation

TV Total Variation

UDP User Datagram Protocol

US Ultrasound

USB Universal Serial Bus

VTK Visualization Toolkit

List of symbols

α Alpha indicates a balloon force.

βi is the degree of activation of the ith rule.

δ Delta indicates an variation.

△ △ is the difference operator.

ε ε indicates the motion errors.

f f is a collection of fuzzy if-then rules.

J indicates the Jacobian.

λ Lambda is a trade-off parameter.

Max Max indicates the maximum value.

min min indicates the minimum value.

µAij
(xj) is the membership function of the fuzzy set Aij .

∇ Nabla indicates the Gradient Operator.

norm indicates the norm of a vector.

Ω Omega indicates the region boundary.

Pk(zk) is the potential of the data point zk.

φ Phi indicates the (x,y) contour coordinates.

q̇(k) indicates the robot joint velocities.

q(k) indicates the robot joint positions.

Ri is the ith rule.

σ Sigma indicates the standard deviation.

x indicates the data input vector.

yi indicates the data output vector.
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Chapter 1

Introduction

Health is the most important asset that the human being can have. The significant improve-

ments of the humans life quality, over the years is only achieved because researchers con-

stantly seek new solutions and new methods. The use of new technologies to assist medicine al-

lows, to improve classical techniques and develop new solutions. These technologies also allows

clinicians to improve clinical diagnosis, and assist them in clinical practice, e.g., during surgery.

The main objective of the work presented in this thesis is the development of new techniques

to assist surgeons, in orthopaedics, while improving accuracy and diminish surgical procedures

time. For that, is proposed a new navigation system for a robot-assisted orthopaedic surgery,

developed to be used in Hip Resurfacing (HR).

The surgical navigation is based on the patient’s own CT imaging data to prepare surgical pro-

cedures before operation, i.e., to obtain the desired drilling point. During surgery, to achieve an

accurate system to drill the femur head, the robot’s surgical drill and femur movements must be

tracked. The surgical drill is tracked through an opto-tracker system, while the femur movements

are tracked also using US images. This real-time feedback allows to compensate the femur

movements, during the robotic drilling, without incisions in the femur.

1.1 Background and Motivation

The research developed during this thesis addresses a current problem identified by the or-

thopaedic surgeons who perform HR surgeries. This problem consists in the amount of time

spent, during surgery, to obtain the correct alignment to perform an implant in the femur head,

with the current techniques. To find a solution to this problem is the main focus all the research

1



2 CHAPTER 1. INTRODUCTION

undertaken in this thesis. This issue was also the motivation to improve the state of the art, and

contribute for the developments in this scientific area, improving humans life quality.

An high number of patients with damaged hip have degenerative joint disease (osteoarthritis

rheumatoid arthritis and traumatic arthritis) avascular necrosis or developmental hip dysplasia,

Berry & Lieberman (2013). In most cases, the patient’s quality of life improves significantly with

an hip surgery.

Total Hip Replacement (THR) is one of the most successful orthopaedic interventions used. The

femoral head is removed and replaced by a prosthesis. According to the surgeon Derrek McMinn,

McMinn (2009), the THR procedure is reasonably successful in elderly, relatively inactive pa-

tients. However, replacement hip joints wear out quickly in younger, more active patients, leading

to the revision surgery and associated complications.

HR is a bone preserving alternative method to THR, Muirhead-Allwood et al. (2008), which main-

tains the anatomical loading situation of the hip almost unaffected. It is viewed as an alternative

to traditional THR for helping patients return to their active lifestyles. Observing Figure 1.1,

significant differences are noted between the prostheses used in HR and THR. HR is a bone-

conserving hip procedure contrary to THR. However, the HR surgical technique is considerably

more demanding than THR. Retaining the neck and head of the femur, for instance, makes it

much harder for the surgeon to expose the socket. Shaping the femoral head appropriately also

takes practice and if the surgeon does that poorly, the patient is far more likely to suffer a femoral

neck fracture.

Figure 1.1: Prosthesis used in Hip Resurfacing and Total Hip Replacement.

In the Birmingham Hip Resurfacing surgery (designed in Birmingham by Derrek McMinn), the

implant alignment is the most important pre-operative consideration for correct implant position-

ing. According to the surgical procedures, described in, Smith&Nephew (2008), and illustrated

in figure 1.2, the correct positioning is obtained pre-operatively (step 1), and intra-operatively, the

alignment is made from a very time consuming mechanically procedure (step 5), through a align-

ment guide (named McMinn Alignment Guide). A guide wire is inserted when the desired position
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of the alignment guide has been achieved (step 6). The guide wire ensures that the spherical

metal cap is positioned correctly on the femoral head. The success of the surgery depends on

the correct positioning of the guide wire.

Figure 1.2: smith&nephew, BIRMINGHAM HIP Resurfacing System (Extracted from Smith&Nephew
(2008)).

Several studies have identified the malpositioning as a risk factor for femoral neck fracture af-

ter HR, Shimmin & Back (2005), Shimmin et al. (2005), Tapaninen et al. (2012), Matharu et al.

(2013). Computer navigation systems, are an increasingly alternative to allow accurate place-

ment of the femoral implant. Several studies comparing HR procedures performed using me-

chanical jigs and computer navigation systems, demonstrate that the computer navigation sys-

tems allows more accuracy, Davis et al. (2007), Hodgson et al. (2007), Ganapathi et al. (2009),

Bailey et al. (2009). Improve the navigation systems and assist surgeons in the HR procedures

is the greatest motivation of this thesis, i.e., to find a robotic solution that increase the accuracy

and reduce post-operative complications associated with the technique.

1.2 State of the Art

Increasing advances in robotics have allowed the emergence of new systems dedicated to surgery,

which began to be a valid option in surgical procedures. The computer-assisted surgery (CAS),

Adams et al. (1990), and particularly the robot-assisted orthopaedic surgery, Kather et al. (2010),

Mantwill et al. (2005), improves accuracy and precision of surgical procedures, besides produc-

ing more reliable and reproducible outcomes, minimizing the invasiveness of surgical procedures

and to improve patient outcomes, by reducing complications and improving patient safety, com-

pared with conventional orthopaedic techniques.

The use of robots to automate medical tasks increases its reliability, accuracy and are an excel-

lent contribution to Minimally Invasive Surgery (MIS). MIS is becoming more and more common
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nowadays in hospitals. Surgical procedures are performed through tiny incisions instead of one

large opening. Because the incisions are small, patients trend to have quicker recovery times and

less discomfort than with conventional surgery. Last thirty years have been marked by the devel-

opment of robotic systems for MIS. In 1985 a robot, the PUMA 560, Satava (2002), was used to

place a needle for a brain biopsy using CT guidance. Three years later the same machine was

used to perform a transurethral resection. In 1987 robotics was used in the first Laparoscopy

surgery, a cholescystecotomy. In 1988, the PROBOT, Harris et al. (1997) developed at Imperial

College London, was used to perform prostate surgery.

More recently appeared the ZEUS, DaVinci and DLR MIRO surgical systems. The ZEUS robotic

surgical system, initially developed in 1995 for endoscopic microsurgery (including general surgery,

thoracic surgery, gynaecology, urology), was the robotic system used in the first transatlantic sur-

gical intervention performed on a human, in 2001 between New York and Strasbourg, France, at

15000 km of distance, Marescaux et al. (2001). The DaVinci Surgical System enables surgeons

to operate through a few tiny incisions with dramatically enhanced vision, precision and con-

trol. State-of-the-art DaVinci Surgery helps surgeons to minimize the pain and risk associated

with traditional surgery, while increasing the chances for a fast recovery and excellent clinical

outcomes. DLR MIRO, Konietschke et al. (2009), Hagn et al. (2008), Matharu et al. (2013), is

a compact, slim and lightweight (LWR) robotic system versatile for various existing and future

medical robotic procedures. Can be used in orthopaedics to setting holes for bone screws, robot-

assisted endoscope guidance and on to the multi-robot concept for (endoscopic) minimal invasive

surgery.

In orthopaedics several solutions have emerged, such as ROBODOC, Kazanzides et al. (1995),

for the planning and performance of total hip and knee replacement, CASPAR, Beasley (2012),

developed for the same purpose of ROBODOC, Acrobot Sculptor, Cobb et al. (2006), Davies

et al. (2007), used in knee surgery, or the RIO robotic arm (MAKOplasty), Pearle et al. (2009),

the latest developed system for orthopaedics. The Robodoc surgical system consisted of the

Orthodoc, Paul et al. (1992), pre-surgical planner and the Robodoc as the surgical tool. The

Robodoc system comprises a five-axis Sankyo-Seiki industrial robot with a six degree-of-freedom

force-sensor. The Orthodoc describes the three-dimensional geometry of the femur from CT data

and the geometry of the implant.

The MAKO system consists of the well known general purpose WAM - Whole Arm Manipulator

from Barrett Technology, Rooks (2006), for bone deburring, and an optical navigation system

consisting of stereo infra-red cameras, and marker arrays attached to the tibia and femur. On the

other hand, the Acrobot system uses their special purpose robot manipulator, where the tibia and

femur are immobilized with bone clamps which are fixed through small skin incisions.
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The increasing evolution of surgical robotic systems has also been accompanied for signifi-

cant evolution in the surgical navigation systems, Stiehl et al. (2007). Of the several systems

that have appeared in the market are highlighted the OrthoPilot, Miehlke et al. (2004), (http:

//www.orthopilot.com) and the BrainLAB systems, Gumprecht et al. (1999), (https://

www.brainlab.com). Both systems employ markers placed on the femur for tracking the bone

movements, Schulz et al. (2007).

Surgical navigation systems allow the surgeon to perform surgical actions in real time using infor-

mation conveyed through a virtual world, which consist of computer-generated models of surgical

instruments and the virtual representations of the anatomy being operated. Virtual representa-

tions can be generated from data obtained through Computer Tomography scans, ultrasound

images, amongst others. Image-guided surgical navigation is on the rise in many different ar-

eas of medicine, with strong growth in orthopaedic surgery. The use of visual information ob-

tained from medical images is widely used in Computer-Assisted Orthopaedic Surgical (CAOS)

(www.caos-international.org). CAOS systems are increasingly available, with several

commercial and research systems now well-established. These systems assist surgeons in pre-

operative planning and simulation, from the obtained bone model, and in intra-operative naviga-

tion, using tracking systems with fiducial markers attached to the patient bone, and in the robotic

execution of the surgical procedure. From the fiducial markers the position and orientation of the

bone, in the intra-operative scenario, relative to the robot frame is obtained in the state-of-the-art

systems, e.g., the BrainLab System or Orthopilot.

The incisions performed to place these markers, can leave serious injury to the patient. There

are many cases of complaints of pain at the implant site after Surgery. Studies on the patients

reported persistent severe pain at the site of pin implantation, after surgery, caused by the injuries

to the nerves, result of the fiducial markers’s implants, Nogler et al. (2001).

Recently, much scientific research work has been developed, with the purpose of eliminating

fiducial markers in orthopaedic surgery, Amiot & Poulin (2004), Nabeyama et al. (2004), and the

main guidelines of research focuses on the use of intra-operative US and pre-operative CT to pro-

vide real time surgical guidance. In Beitzel et al. (2012), it is presented a semi-automatic bone

detection approach for US via registration with CT datasets pre-operatively acquired. The CT

data is used to create a patient-specific bone model, and rigid transformation from US to CT are

estimate by ICP algorithm, from a initializing of three points in the datasets. The three correspon-

dence points, define the principal axis and orientation of the bone in both modalities. Moghari &

Abolmaesumi (2007), propose a point-based registration algorithm based on unscented Kalman

filter (UKF) to estimate the rigid transformation parameters between the bone surfaces obtained

from US and CT data, less sensitive to outliers compared with ICP. Both methods are based on

http://www.orthopilot.com
http://www.orthopilot.com
https://www.brainlab.com
https://www.brainlab.com
www.caos-international.org
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features of the datasets (feature-based), but there are also methods that use the image inten-

sity information (intensity-based) directly in order to avoid extraction of bone surfaces. Penney

et al. (2006), used normalized cross-correlation as a similarity metric for registering CT and US

images. Prior to registration, both datasets were converted to bone probability images using gra-

dient, bone intensity and US shadowing artefact information. More recently, in Hacihaliloglu et al.

(2013), is proposed a rigid registration method where the translation parameters are estimated

from the projections of local phase volumes in frequency domain. Bone surfaces were automati-

cally extracted directly from 3D US and CT volumes based on 3D local image features calculated

using 3D Log-Gabor filter.

Common drawbacks of these systems reside in the invasiveness of the bone tracking method.

The innovative contribution of this thesis emerge to overcome this drawback: a tracking system

for the femur which uses an optically tracked ultrasound probe, eliminating the extra skin and

bone incisions for marker placement as well as the inaccuracies associated with their placement.

After its incipient experiments, ultrasound based visual servoing has recently gained new interest

due to the establishment of visual servoing. Initial works consisted in the use of robot arms which

manipulated an ultrasound probe for medical diagnoses, Abolmaesumi et al. (2002), Krupa &

Chaumette (2006). The use of ultrasound also found its way into orthopaedics as a non-invasive

radiation-free navigation system for surgeon operated, interventions, Chen & Ellis (2005). This is

particularly valuable when the bones to be operated are so small, that it is not possible to attach

heavy tracking targets onto them. For interventions cooperated by robot arms, effective appli-

cations using ultrasound guidance are not yet available, but an intense race involving research

centers and industry is currently taking place.

Guiding a robot in positioning tasks through visual information using uncalibrated visual servoing

systems is a very active research topic due to the complexity of real applications and workspace

scenarios such as an operating room. The operating room can unpredictably change during a HR

surgery, causing calibration errors. In Gonçalves et al. (2008), uncalibrated visual servoing was

proposed, where the inverse system Jacobean was estimated on-line, thus immune to camera

miss-calibration. It presents a very promising solution for the operating room, where it is also

desired to minimize calibration time. Furthermore, this approach will give added robustness to

a medical setting where the environment is calibrated, but redundancy is necessary for safety

reasons. This work has been further extended to a more general case in, Gonçalves & Pinto

(2008), where the uncalibrated model can evolve during the tasks to be performed. In Gonçalves

& Fernandes (2008), tools for ultrasound based 3D Bone model reconstruction, registration and

visualization are presented, which are currently being developed by the research team, in order

to introduce ultrasound feedback in the visual control loop. In Gonçalves et al. (2009), was
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proposed and approach to obtain the position and orientation of a bone based in it’s 3D model

obtained from Computed Tomography images (in the preoperative scenario) and the registration

of ecographic images to it (in the intra-operative scenario).

1.3 HipRob project

The current thesis was developed in the scope of the HipRob Project, (http://www.echord.

info/wikis/website/hiprob), it emerges from the desire to develop a system that helps

surgeons to perform HR prosthesis surgery. It is designed to aid surgeon to perform the initial

drilling, necessary for guide wire implant. A co-manipulation robotic solution for HR surgery

based on variable impedance control for physical surgeon-robot interaction will be developed.

US images are used for non-invasive real-time bone tracking. The innovative co-manipulation

setting to the medical gesture brings together the higher geometric accuracy and precision of the

robot manipulator with the higher sensibility and decision making capability of the surgeon when

applying force, thus resulting in clear benefits for patients, medical doctors and hospitals. For

navigation, the system, during surgery, acquires a 3D US bone surface from a sequence of US

images. This bone surface will then be registered to the pre-operative bone model, for a precise

knowledge of the bone position and orientation. This registration is performed in two steps. The

first, a global registration before the surgical procedure, to exactly register the bone. The second

is to locally register the femur, which is faster and more suitable for tracking the bone movements.

The measured bone movement is used by the robot manipulator to update its drilling position and

orientation. Figure 1.3 shows an overview of the HipRob navigation system.

The avoidance of fiducial markers implies that the US probe is referenced to the optical mea-

surement system (NDI - Polaris), (http://www.ndigital.com/medical/). This referencing

is made by placing a marker in the US probe. From this moment, also the images and features

are referenced to the tracker. The pose of the robot end-effector also has to be referenced by

the Navigation system to inform the robot controller of its location. The ideal drilling point, is

obtained pre-operatively in the CT reference frame. Inside the operating room, a initial calibration

(CTTNDI ) between the tracker (NDI) and CT is needed to localize the femur. After calibration, the

main goal consists in to determine at each instant, the drilling point in the robot reference frame

(ROBPdrill) and track the bone movements with the robot.

http://www.echord.info/wikis/website/hiprob
http://www.echord.info/wikis/website/hiprob
http://www.ndigital.com/medical/
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Figure 1.3: Overview of the hardware setup and frames transformations of HipRob navigation system.

1.4 Objectives

In the doctoral plan three types of objectives were proposed, technical, sociological and multidis-

ciplinary. First, are presented the technical objectives related to specific points of the scientific

work which are outlined below:

• Position Based Visual Control of a robotic manipulator, using a high speed 3D optical track-

ing device - Polaris;

• Kinematic modelling between the imaging sensing devices, bone and robotic manipulator;

• Integration of the 3D Bone model based on CT in the navigation system;

• Ultrasound Based Visual Control of a robotic manipulator;

• Development of a laboratory prototype for experimental testing;

Secondly, are the sociological objectives related to the human factors of the project such as the

improvement in people’s health, particularly in the rehabilitation of patients with joint or bone

related pathologies, and the benefits of less invasive surgeries and higher precision procedures.

An example is the hip resurfacing surgical procedure stated in the State of the Art.
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Finally there are the multidisciplinary objectives: the bringing together of two disciplines, Me-

chanical Engineering and orthopaedics, in order to improve bone related surgery. The traditional

language used in both fields is different, and in this work will have to be brought together produc-

ing a common language that both fields may understand.

1.5 Contributions

During the development of this thesis some important contributions have been made:

• Two solutions are proposed to acquire, intra-operatively, US images spatially located. The

first is a freehand system, where it is used the NDI Polaris opto-tracker to measure the po-

sition and orientation of the US probe. The Image-Guided Surgery Toolkit (IGSTK) toolkit is

used to acquire and synchronize the images with the Polaris. The second solution is a non-

freehand system, where the US probe is placed on the end-effector of an anthropomorphic

robot arm. The robot is responsible to move the US probe along the leg and give a spatial

location for each US slice of the bone.

• A new region-based approach for US images segmentation based on an existing algorithm,

was proposed. Concretely was added a regulation term to block the contour’s evolution

to far from the initialization region, identifying only the desired object. Was also added

a new condition to stop the segmentation method, and was used the output of previous

segmentation as a mask to the next image, in the segmentation process. Both contributions

improve significantly the processing times.

• Were developed and implemented some software tools for image segmentation, registration

and visualization, useful both for surgical planning as for the intra-operative procedures.

• A new approach for US based robot navigation was developed. This approach uses regis-

tration algorithms to identify bone movements intra-operatively and updates at each instant

the desired target’s position and orientation. This approach is used to close the control loop

for robotic motion compensation, using the 3D point clouds extracted from the contours of

US images.
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7. P. J. S. Gonçalves, P. M. B. Torres, ”The ICP Method Applied to Register US Images to

3D Bone Models”, Proceedings of RECPAD 2010, 16th Portuguese Conference on Pattern

Recognition, Vila Real, Portugal, 29th October 2010;

1.7 Outline of the Thesis

The remainder of this thesis is organized as follows: In the following chapter, the CT and US

image acquisition procedures, are presented. The chapter describe the architecture of the free-

hand US acquisition system based on the optical tracker NDI Polaris Spectra and on the IGSTK

toolkit. Is also described the non-freehand system for US image acquisition with a robot.

Chapter 3 presents the image processing tasks performed to extract the 3D point clouds from

calibrated US and CT datasets. It is also described a new approach for medical imaging seg-

mentation, that improves the computational speed. The last part of the chapter describes the 3D

reconstruction and visualisation procedures form CT data, used in the pre-operative scenario.

In chapter 4 are presented the, multimodal point set registration procedures to register US with

CT data. The classical ICP is described as well as a more recent approach called CPD method.

These methods were compared regarding speed and accuracy, to justify the application in the

final experimental system.



1.7. OUTLINE OF THE THESIS 13

Chapter 5 describes the experiments performed with visual servoing to control a robot manipu-

lator. The Visual Control is addressed when the sensing information, need to close the loop, is

obtained from image features.

Chapter 6 describes the integration of all tasks previously presented in order to design a new

approach for surgical navigation. The navigation is entirely based on the information extracted

from image information. In real-time, the US point sets are registered with the model, constructed

from CT, to obtain the femur displacements during surgery. In the chapter is also presented the

experiments performed in a human femur phantom, which validate the proposed approaches in

this thesis.

The last chapter (Chapter 7) presents the general conclusions achieved during the thesis devel-

opment and proposals for future work.





Chapter 2

Image Acquisition

This chapter describes the important aspects of image acquisition, both ultrasound and CT.

It is a background chapter, which describes the details of the acquisitions that will be

subsequently considered in chapter 3, where is reported the image processing.

2.1 Ultrasound Image Acquisition

Ultrasound imaging provides a non-invasive and convenient technology that has recently bene-

fited from the development of three-dimensional (3D) reconstruction techniques. Volume recon-

struction of ultrasound images can be performed directly with 3D probes, more expensive, or by

spatial measurement systems coupled to the conventional 2D ultrasound probe. Freehand and

non freehand US acquisition systems, were developed in this work to perform 3D reconstruction

across US images acquired in B-mode trough 2D US probes.

2.1.1 Freehand Ultrasound Acquisition System

In this subsection is presented a Freehand Acquisition System developed for acquisition of US

images, properly referenced. This module is based on IGSTK (http://www.igstk.org/),

a free open source C++ toolkit, that provides a framework for rapid prototyping of customized

image-guided surgical applications. The toolkit provides a set of components common to general

purpose navigation systems, such as interface with tracking systems, image registration and

visualization though the Insight Segmentation and Registration Toolkit (ITK) (http://www.itk.

org/) and Visualization Toolkit (VTK) (http://www.vtk.org/). For the acquisition system

15
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proposed in this thesis the integration of the Open Computer Vision library, OpenCV (http:

//opencv.org/), was also done to allow ultrasound image acquisition and processing from

the US probe, through an Universal Serial Bus (USB) video capture. NDI Polaris Spectra is the

sensor used to measure the pose of passive targets. Three different markers are used, one

attached to the robot end-effector in order to measure the passive targets pose, presented in

left side of figure 2.2 (ref. 8700339), other, on the US probe to measure the pixels 3D position,

presented in right side of figure 2.2 (ref. 8700449), and the other free-hand (ref. 8700340), figure

2.2 c), to be used in marking some points of interest, e.g., perform palpation of the femur head.

Each point in US images can be referenced to the NDI frame (NDIP ), through the equation 1.

NDIP =NDI TMk ×Mk Tpr ×
pr Ti ×

i P (u, v) (1)

According to figure 2.1, NDITMk, represents the relationship between passive markers and Po-

laris system, MkTpr, represents the relationship between the US probe extremity and Marker,

prTi corresponds to the relationship between the image plane and US probe, and finally, iP (u, v)

represents a point in the US image. The transformations MkTpr and prTi, depicted in figure 2.1,

are previously calibrated off-line.

To obtain the marker’s position and orientation, the igstk::Transform class was used. This class

represents relative positions and orientations in 3D space. It is intended to be used for posi-

tioning objects in the scene, since it is a means of communication between trackers and spa-

tial objects. The Translational component is obtained from the function ” GetTranslation() ”

(igstk::Transform::GetTranslation()), and Rotational component is obtained from the function ”

GetRotation() ” (igstk::Transform::GetRotation()). 3D position of each point is obtained in [mm],

and orientation is provided in quaternion, format [Qx, Qy, Qz, Qw], or in the form of rotation ma-

trix. With the position and orientation components is defined the homogeneous transformation

matrix that relates the pose of the marker in 3D space, referenced in the Polaris frame, according

to the equation 2.

NDITMk =




NDIR3×3
NDIt3×1

03×3 1


 (2)

To obtain the matrix that relates the center of the US probe, to the passive marker reference

frame, it is important to know the translation offsets in X (px1), Y (py1) and Z (pz1). These offsets

http://opencv.org/
http://opencv.org/
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Figure 2.1: Optical Tracking System and coordinate frames used in image acquisition process.

are obtained thought metric measurements, and confirmed using the free-hand marker. The

matrix in equation 3, represents the calibration matrix, obtained, where px1, py1 and pz1 are

expressed in [mm]. The rotation component is defined by the identity matrix, because the US

probe is aligned with the marker and there is no rotation component.

MkTpr =




1 0 0 px1

0 1 0 py1

0 0 1 pz1

0 0 0 1




=




1 0 0 −35, 0000

0 1 0 65, 9800

0 0 1 41, 4878

0 0 0 1




(3)

Equation 4 (prTi), relates the US image plane to the US probe reference frame.
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(a) Marker 8700339 layout. (b) Marker 8700449 layout.

(c) Marker 8700340 layout.

Figure 2.2: Tools Specifications, extracted from the Polaris Spectra Tool Kit Guide.

prTi =




0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1




(4)

P (u, v) represents any point in US image, ui and vi are the pixel coordinates and u0, the co-

ordinate of the center, obtained from calibration. Sx and Sy are the scale factors, two of the

US imaging device intrinsic parameters, obtained from calibration. CIRS Ultrasound Calibra-

tion Phantom, model 555 (http://www.cirsinc.com) was used to obtain these scale factors.

This Phantom is a cube with a small egg and a large egg. There are two scanning surfaces and

the targets are centred within the background material. Knowing the dimensions of each egg, it

is possible to obtain the relationship pixels/mm for each level of depth of the US equipment and

calculate the scale factors.

http://www.cirsinc.com
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P (u, v) =




Sx(ui − u0)

Sy(vi)

0

1




(5)

2.1.2 Non Freehand Ultrasound Acquisition System

A significant amount of scientific work has been produced in order to acquire US images with the

aid of automatic mechanisms, such as robots, Abolmaesumi et al. (2000), Mebarki et al. (2010).

The concept of Ultrasound Visual Servoing, Mebarki et al. (2008), Bachta & Krupa (2006), is a

theme that has shown good results in the control of probe positioning, with practical application in

different areas, helping technicians and automating the diagnosis based on ultrasound images.

This subsection presents a non freehand US acquisition system, where the probe displacement

and position are accurately controlled by an anthropomorphic robot. The aim of this system is to

acquire a sequence of 2D parallel cross-sections evenly spaced along the displacement direction

in order to perform an accurate 3D reconstruction of the femur. The robotic system used, consists

of an Eurobtec IR52C robot manipulator. The probe is placed in the end effector of the robot,

responsible for positioning the probe in contact with the femur. The images were acquired and

the femur scanned with the best possible coupling at a constant speed. In the preparation of

each experiment is necessary to define the pose of the robot that guarantees the best coupling

between the probe and the femur, without hurting the patient. Initial and final points of acquisition

must be defined, to perform trajectory planning along the femur. Whenever possible, trying to

make linear trajectories. The estimation of the hand-eye and the robot-world transformations, to

know the positioning of the probe at every moment, is an important point of this work. These

estimations allow to perform a precise three-dimensional reconstruction of the bone. Each point

in US images can be referenced to the world frame (wP ), through the equation 6.

wP =w Tb ×
b Te ×

e Tpr ×
pr Ti ×

i P (u, v) (6)

According to figure 2.3(a), wTb represents the relationship between the base of the robot and

the position coordinates in the world frame (equation 7) , bTe is the relation between the robot

end-effector and its base, computed from the robot kinematics, eTpr represents the relationship

between the US probe extremity and the robot end-effector (equation 8), prTi corresponds to the
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relationship between the image plane and US probe (equation 4), and finally, iP (u, v) represents

a point in the US images, the same matrix used in the freehand system, equation 5.

(a) Robot with frames used in calibration. (b) Acquisition Details in a human femur.

Figure 2.3: Robotic 3D US system.

wTb =




0 0 1 0

0 1 0 0

0 −1 0 pz

0 0 0 1




(7)

where pz corresponds to robot movement, in mm, along to its linear axis.

eTpr =




0 1 0 0

0 0 1 0

1 0 0 135

0 0 0 1




(8)

With this system, various tests were performed in the laboratory, first with a cow femur bone

within a tank of water and after in human femurs. Figure 2.3(a) shows the experimental apparatus

during the scan of a cow femur and in Figure 2.3(b), where it can be seen in detail an acquisition

to a human femur.
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2.2 CT Image Acquisition

Two acquisitions of CT images were performed during the thesis, first with a cow femur bone

to preliminary tests and second with a human femur. Both acquisitions were performed with a

Siemens SOMATOM Sensation 16 CT scanner in a medical imaging center, with a slice thickness

of 0.75 [mm] and a spacial resolution of 512 × 512 pixels. The acquisition of human femur was

performed with a Field of View (FOV) of 185 [mm], pitch of 0.5 and reconstruction interval of

0.1 [mm]. In this acquisition, 4913 images were stored in Digital Imaging and Communications

in Medicine (DICOM) standard format, which is equivalent to 491.3 [mm] (4913 × 0.1) of femur.

This specifications are important to determine the reconstruction parameters. FOV represents

the maximum size of the object under study, in this case the femur. Since the image matrix size

is 512 × 512, the pixel size (ps), is obtained from the relation between FOV and matrix size (M),

according equation 9.

ps =
FOV

M
=

185

512
= 0.3613[mm] (9)





Chapter 3

Image Processing

Ultrasound and CT images of femur can be used to eliminate the bone incisions to attach

the fiducial markers in orthopaedic surgery, and to extract the position and orientation of

the bone for robotic navigation during the surgical procedure. For that, image processing is an

important task in this work. This chapter presents the US and CT image processing steps for

identify the bone contours from images and extract the point clouds for the registration process

presented in chapter 4.

3.1 Ultrasound Image Processing and Segmentation

Since the bone is a rigid anatomical structure, ultrasound signals are reflected, and the image

only captures the top layer of the bone. Processing this type of images is a challenging task, since

images are very noisy and blurred. The image quality decreases severely when approaching the

knee, because there is less muscle mass. When the bone gets closer to the probe, the US

reflections are more intense. Other issue is the difficulty of coupling the probe to the knee,

reducing the image quality.

Image Denoising was used to remove the noise that degrades the images, e.g., Speckle, the most

common noise in US images. The objective is to smooth homogeneous areas while preserving

the contours without distorting the images. The algorithm used is based on the Maximum a

Posteriori (MAP) criterion with a Total Variation (TV) edge-preserving Gibbs prior. The method

is formulated as an optimization task that is solved by the Sylvester equation, developed by

Sanches et al. (2008).

23
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To extract bone contours in all images, several tests were performed with energetic and proba-

bilistic methods, Gonçalves & Torres (2010), and Catarino et al. (2012). However it was extremely

difficult to extract the bone with significant precision. In 2010, Zhang et al. (2010), presented an

Active Contour method, that conjugates the benefits of edge-based methods (Geometric Active

Contour models, Sandhu et al. (2008)) and region-based methods (Chan-Vese algorithm, Chan &

Vese (2001)). Methods based on the contour (edge-based), have some limitations and fail when

the initialization is far from the object. The tests performed with this type of algorithms demon-

strates that less careful initialization, results in a poor bone segmentation. With region-based

methods, as the Chan-Vese and related, the statistical information inside and outside the contour

is used to control its evolution, making it less sensitive to the noise. This method presents good

results even for images with weak or blurred contours, besides being less sensitive to initializa-

tion. The method was applied to an image, after Denoising, but several objects were identified in

the image beyond the region of interest, i.e., the bone. In fact, several regions in the images with

pixel intensity similar to the bone, leading to similar values for known statistical metrics, even if

the initialization is a square around the bone contour of interest.

To obtain accurate results for the problem at hand, it is necessary to understand where is the

bone region and apply a regulation term to the forces function, that control the contour evolution,

and lock evolutions far from the original mask. The next subsection describes the algorithm

implemented and new contributions to segment ultrasound images of the femur.

3.1.1 Segmentation Method

The method proposed by Zhang et al. (2010), uses the statistical information inside and outside

the contour to construct a region-based Signed Pressure Force (SPF) function in order to define

the contour, described in equation 10. The signed pressure force modulates the signs of the

pressure forces inside and outside the region of interest so that the contour shrinks when outside

the object, or expands when inside the object.

spf(I(u, v)) =
I(u, v)− c1+c2

2

max(|I(u, v)− c1+c2
2 |)

(10)

where I(u, v) is the image with (u, v) coordinate pixels. c1 and c2 are two constants which are

the average intensities inside and outside the contour, respectively, obtained from minimization

of Chan-Vese energy function defined by equation 11.
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ECV = λ1

∫

inside(C)

|I(u, v)− c1|
2dudv + λ2

∫

outside(C)

|I(u, v)− c2|
2dudv (11)

λ are fixed parameters, determined by the user.

c1(φ) =

∫
Ω
I(u, v) ·H(φ)dudv∫

Ω
H(φ)dudv

(12)

c2(φ) =

∫
Ω
I(u, v) · (1−H(φ))dudv∫

Ω
(1−H(φ))dudv

(13)

H(φ) is the Heaviside function of the contour coordinates φ and Ω the region boundary. The

author also proposes a new level set formulation to extract the contour, formulated by equation

14 and explained in Zhang et al. (2010).

∂φ

∂t
= spf(I(u, v)) · α | ∇φ | (14)

where α is the balloon force, which controls the contour shrinking or expanding, and ∇ is the

gradient operator. The method present a high potential to segment the bone in US images,

but the low contrast between regions sometimes leads to errors and the segmentation of other

objects in image.

It is important to define a regulation term to the forces function, that control the contour, and lock

evolutions far from the original mask. Furthermore a new method to stop the contour evolution

was implemented. The intensities inside and outside the contour are controlled to maximize the

relations between them and the contour evolution stops only when the parameters converge,

eliminating the number of iterations to define when the algorithm stops, used by Zhang et al.

(2010). With this approach the processing time and the segmentation precision was improved,

since the images are different, e.g. one image may need 50 iterations to converge while another

requires only 5 iterations. The method converge when:

c2(i)− c1(i) = c2(i− 1)− c1(i− 1) (15)
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This means that, as from a given instant the values of c1 and c2 tend to stabilize and the contour

presents no evolution, the algorithm can be stopped because it will not change the contour, i.e.

the method converged. So it was improved the processing times and accuracy of segmentation.

Algorithm

1. Initialization (φ(u, v), t = 0): Define a square in the region of interest, where the values

inside are φ(u, v) = 1 and outside φ(u, v) = −1;

2. Compute c1(φ) and c2(φ), according equations 12 and 13;

3. Evolve the level set function according equation 14

4. Let φ(u, v) = 1 if φ(u, v) > 0; otherwise φ(u, v) = −1

5. Regularize the level set function with a Gaussian filter: φ(u, v) = φ(u, v) ∗Gσ

6. If method converge (condition term, 15) φ(u, v) represents the image segmentation; Else,

return to the step 2;

End Algorithm

φ(u, v) = φ(u, v) ∗ Gσ is the convolution of local segmentation with a Gaussian filter, where the

standard deviation (σ) influences the sensitivity of the algorithm for the noise. Flowchart of figure

3.1, helps to understand the method used to segment all US images.

3.1.2 Image Processing and Segmentation Results

Many experiments were performed with freehand and non freehand systems described in chapter

2, first with a cow femur bone in a water tank and after in human femurs. This subsection presents

the experimental image processing and segmentation results, obtained from the processing of

245 US images of a human femur, acquired with the non freehand system, but with the spatial

location of the probe performed by the Polaris optical tracking system. In this experiment a girl’s

leg was scanned, on the central part of the leg from the hip to the knee with an ALOKA prosound

2 echograph with a 5 MHz probe. All images were acquired with a resolution of 720× 576 pixels

with an image plane of 6 [cm] (R06 - mean that one scale division, on image is equal to 0.5 [cm]),

and a probe frequency of 7.5 MHz. Figure 3.2 a), represents an US image of the central part of

femur.

The first step is to identify the Region of Interest (ROI) and clean the images with the Denoising

method developed by Sanches et al. (2008). Figure 3.2(b) shows the region of interest defined
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Start

(1) Initialization

(2) Compute C1 and C2

(3) Evolve level

set equation

(4) Local Segmentation

(5) Regularize the

level set funcion

Converged?

END

no

yes

Figure 3.1: Segmentation Algorithm Flowchart.
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and the result after applying the Denoising algorithm for image 3.2(a). The processing time in

the images cleaning is relatively high, an average of 3.8181 seconds per ROI of image, however

facilitates the segmentation process and increases its accuracy. Previous laboratory tests without

applying this cleaning method show that it is extremely difficult to achieve bone segmentation in

an automated way.

(a) US Bone Image. (b) Denoising Result, in the region of interest.

Figure 3.2: Ultrasound image before and after denoising process.

The graph in Figure 3.3 represents the evolution processing time, for cleaning all 245 images. As

can be seen, the first image requires more time to converge. For the next images the processing

time is significantly lower, because the algorithm use information from previous result, as input to

the following images.

After cleaning, all the images are segmented using the method described in subsection 3.1.1. To

reduce segmentation processing time of a set of images, the output result of a previous image is

the input mask to the next image. Figure 3.4(a) shows the segmentation result of the image with

index 100 (figure 3.2(a)). The initialization is performed in the image with index 1. To evaluate

the results, the contour extracted is overlayed on the original image as seen in Figure 3.4(b). The

bone was identified, despite the segmentation being performed in blurred images. Similar results

are obtained to all images in the dataset. On average, 0.1779 seconds and 15.1265 iterations are

needed to segment each image in the dataset, with this method.

The graph in Figure 3.5 represents the segmentation time and the number of iterations performed

by the method to segment all 245 images. All experiments were performed in MATLAB, with an

Intel Core 2 Duo, 2.27 GHz computer, with 4 GB RAM.

To understand bone in segmented images and identify its bone boundary, some experiments
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Figure 3.3: Evolution of Processing time during Denoising.

(a) Bone segmentation. (b) Bone identification in the original image.

Figure 3.4: Result of segmentation in US image and contour overlay on the original image.
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Figure 3.5: Segmentation time evolution and number of iterations need in each image.
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were performed with a cow femur, a steak and a needle. As can seen in figure 3.6, when a

needle penetrates the steak on the bone, does not penetrates the stain, finding the bone in the

upper surface of image. Therefore, only the upper surface of the femur (open contour) is extracted

from images, after segmentation.

Figure 3.6: Surface detection in US images through a needle.

Root Mean Squared Error (RMSE) (equation 16) and Mahalanobis distance (MD) (equation 17)

were used to analyse the performance of the segmentation method, when applied to the upper

contours of all images.

RMSE(i) =

√∑
(vg − ve)2

n
(16)

MD(i) =
√
(vg − µg)TS−1(ve− µe) (17)

vg are the ground-truth values (obtained manually), ve are the estimated values (obtained thought

segmentation) and n is the number of points in each image contour. Since vg and ve can have

different sizes, a cubic spline was used to interpolate both contours, allowing them to have the

same size.

The quantification of segmentation errors, obtained with the proposed segmentation method are
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presented in table 3.1. The errors were calculated between the 245 segmented contours and

the correspondent contours manually extracted. Is taken into account that manual extraction of

contours in medical images requires expert knowledge and the extraction is influenced by the

variability of the human observer, which limits its reliability, then extracting also contains errors.

However, this is the way to compare the efficiency of the method. Figure 3.7 shows the point

cloud extracted from the upper contour through segmentation method (ve) and manually (vg) of

the ultrasound image of figure 3.2(a).
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Figure 3.7: Points of a contour extracted from a manual segmentation (green) and through the proposed
method (blue).

By comparison of tests performed with other algorithms published in, Catarino et al. (2012), and

presented in table 3.1, is concluded that the proposed method has better results, in terms of

accuracy. In all experiments presented in Catarino et al. (2012), the image cleaning process is

based on average filters, no considering the Denoising algorithm presented above.

RMSE is the average of root mean square error, calculated across equation 16, in all images.

σRMSE is the RMSE standard deviation. MD is the average of Mahalanobis distance, calculated

across equation 17. σMD
is the Mahalanobis standard deviation. Methods tested were:

• Fast Marching Segmentation (FMS) (Sethian (1996)) - This Level Set approach propagates

a contour from a user-provided initial level set. The contour advances with a speed com-

puted from the intensity of the input image gradient magnitude.

• Shape Detection Segmentation (SDS) (Malladi et al. (1995)) - This Level Set approach

propagates a contour from a user-provided initial level set. The contour evolution controlled
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by a partial differential equation using the gradient of the input image and also the contour

curvature.

• Geodesic Active Contour Segmentation (GACS) (V. Caselles & Sapiro (1997)) - The geodesic

approach for object segmentation allows to connect classical ”snakes” based on energy

minimization and geometric active contours based on the theory of curve evolution.

• Threshold Lever Set Segmentation (TLSS) (Ibáñez Luis & Josh (2005)) - The goal is to

define a range of intensity values that classify the bone of interest and then base the prop-

agation term on the level set equation for that intensity range. Using the level set approach,

the smoothness of the evolving surface can be constrained to prevent some of the ”leaking”

that is common in connected-component schemes.

• Minimization of Region-Scalable Fitting Energy for Image Segmentation (MRIS) (Li et al.

(2008)) - Is a region-based active contour model that draws upon intensity information

in local regions at a controllable scale. The proposed model is able to segment images

with intensity inhomogeneity, and has desirable performance for images with weak object

boundaries.

Table 3.1: Quantification of segmentation errors

Method RMSE[pixel] σRMSE MD[pixel] σMD

Proposed 2.8099 0.7140 1.4766 0.0448

FMS 6.9054 2.0732 1.5318 0.1614

SDS 7.9454 2.5378 1.6237 0.2202

GACS 10.6508 3.2568 1.8186 0.3132

TLSS 2.8494 0.8001 1.4784 0.0453

MRIS 2.9428 0.9123 1.4990 0.0465

3.1.3 Point Cloud Extraction

The point clouds are an important way of three-dimensional data representation. A representation

by point clouds simplifies the physical object and highlights the object’s shape, showing only the

most relevant information. To represent point clouds referring the reconstruction of 3D US images

is necessary to spatially locate each image pixel, for a given reference frame. This work presents

two ways for locating the ultrasound images, properly explained in chapter 2. Freehand system,

provides better accuracy, therefore has been widely used. To extract the points of interest in US
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images, the contour obtained in each slice and described in subsection 3.1.2, are related with

calibration equations, presented in section 2.1.1, to give the position in the NDI frame.

The only unknowns parameters, are the scale factors Sx and Sy, which are calculated according

to the specifications of the acquisitions. These parameters are obtained from a calibration phan-

tom, off-line, or by calculating the pixels/mm relation, knowing the size of image plane and the

number of pixels associated. For example, the acquisition used in section 3.1.2, was performed

with an image plane of 6 [cm] and this size corresponds to 420 pixels both in x and in y, so Sx

and Sy are equal to 0.1429 [mm]. Figure 3.8 shows the ultrasound point cloud, extracted from

the contours of all 245 images, with coordinates x, y and z oriented according to the referential

of NDI tracker.
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Figure 3.8: Point cloud extracted from ultrasound images, referenced to the polaris referential frame.

3.2 Processing and Segmentation of CT Images

The femur CT images have better quality than ultrasound images, however have a low contrast

and the femoral head overlapping the pelvic bone. It is important to adjust the image intensities

and automatically get the 2D femur contour of each slice and get a clear edge of the femur

head, eliminating the pelvic zone. Several methods was used to extract the femur head, such as

presented in wei Song et al. (2007), Baniasadipour et al. (2007) and Morar et al. (2012).

A popular method to extract such objects from a CT is global thresholding, in which the threshold

value is determined from the image histogram. However, accurate threshold selection is not
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straightforward, especially in the area of the head of the femur, where we have similar intensity

levels in various image objects.

In regions where two objects are identified clearly, as in Figure 3.9(a), the threshold method

works. In this example the figure represents the femur (left object) and pelvic area (right object).

After segmentation, it is necessary to identify the object that corresponds to the femur, this ex-

ample is relatively simple, but in images more complex as the head of the femur (figure 3.10(a))

is extremely difficult.

(a) CT image of the femur in the pelvic zone, after adjust-
ing intensity.

(b) Result of thresholding image segmentation.

(c) External contour of segmentation. (d) Final result.

Figure 3.9: Segmentation steps of CT images, on the head of the femur.

Applied the method proposed in section 3.1.1, with appropriate adjustments for such images,

the head of the femur is identified with precision, despite various objects present in the image

with similar levels of intensity. It is necessary to initialize the algorithm with a mask in the region

of the head of femur and adjust the regulation term, to control the evolution of contour. Figure

3.10(b) represents the identification of target obtained by the proposed method, figure 3.10(c) the

segmentation result and figure 3.10(d), the external contour used to extract the point clouds. The

remainder images of the femur don’t have the problem of having multiple objects with the same
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intensity, so the segmentation is performed by thresholding, with threshold values identified by

histogram, since it accelerates the processing time.

(a) CT image of the head of the femur. (b) Segmentation result.

(c) Head of femur. (d) Final result.

Figure 3.10: Segmentation steps of CT images, on the head of the femur, with the proposed method.

3.2.1 Point Cloud Extraction

To extract the point cloud of CT images, it is necessary to take into account the metric units

of each CT slice and the spacing between slices. According to section 2.2 the pixel size of

CT images refereed to the human femur is equal to 0.3613 [mm], this means that each pixel has

0.3613 [mm] of dimensions in x and y. The depth is given by the spacing between slices, which we

know to be 0.1 [mm], however one must keep in mind that images are recorded by CT datasets,

so the images do not appear followed and it is important extract the location of the DICOM file

(SliceLocation parameter ).

From the DICOM dataset, the point cloud extracted from segmented images, has a dimension

quite high, with 1567171 points (figure 3.12(a)), which leads to a subsequent process of down-

sampling, Marion et al. (2012), in order to process point cloud for registration and visualization.
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(a) CT image of the central part of the femur. (b) Segmentation Result.

Figure 3.11: Segmentation result of CT images in the central part of the bone.

With the downsampling process, the number of points are reduced to 42451 (figure 3.12(b)). The

reducing of the number of points decreases the accuracy of the point clouds, but facilitates the

registration process, insofar as improves the processing time. Figure 3.12 shows the point clouds

obtained, before and after downsampling.

3.3 3D Reconstruction and Visualization

Visualization of 3D volume data, obtained from reconstruction of 2D medical images is a very im-

portant concept in different areas, e.g., surgical robotics. Perception of anatomical structures of

the human body, without the use of evasive techniques, is an important aspect that can increase

the rate of precise diagnosis. The usage of CAOS techniques by surgeons is rapidly growing.

CAOS enhance the Hip Resurfacing or Hip Replacement process, since automatic systems in-

crease surgical tasks precision and accuracy.

The surgeon, to achieve a better implant alignment, should use a precise 3D bone visualization

tool. The work, presented in this section describes the techniques of volume rendering of US and

CT images of femur bones, essential for navigating a robot for orthopaedic surgery. This section

describes the techniques of Surface Rendering and Volume Rendering, used in this thesis.

Surface Rendering interprets the datasets by generating a set of polygons that represent the

anatomical surface, and displaying a three-dimensional model representation. Polygons rep-

resenting the outer surface of an object can be identified by running an isosurface detection

algorithm (e.g. a Marching Cubes algorithm, Lorensen & Cline (1987)). This method show 3D

relationships most effectively, but suffer from artefacts and fail to effectively display lesions hid-

den behind overlying bone or located beneath the bone cortex. It also does not display the
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(a) Point cloud extracted from CT
images.

(b) Point cloud extracted
from CT images, after
downsampling.

Figure 3.12: Point clouds of CT images.

most important information in the image dataset, because simplifies the data into a binary form,

classifying each pixel as either bone or not bone.

Volume Rendering represents 3D objects as a collection of cube-like building blocks called vox-

els, or volume elements. Each voxel is a sample of the original volume, a 3D pixel on a regular

3D grid. Each voxel has associated one or more values quantifying some measured or calcu-

lated properties of the original object, such as transparency, luminosity, density, flow velocity or

metabolic activity. The main advantage of this type of rendering is its ability to preserve the

integrity of the original data throughout the visualization process. Using this method is possi-

ble to show sub-cortical lesions, minimally displaced fractures, and hidden areas of interest with

few artefacts. Depending on the degree of surface shading and opacity, multiple overlying and

internal features can be shown, and the displayed intensity is related to the amount of bone

encountered along a line extending through the volume.

There are several techniques to perform volume rendering, as volume ray casting, Lee et al.

(2010), splating, Piccand et al. (2008), among others. The present work is focused in the Max-

imum Intensity Projection (MIP) Algorithm. This method, first introduced by Wallis et al. (1989),
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is a Volume Rendering method for 3D data, which projects in the visualization plane the voxels

with maximum intensity. The technique consists of projecting the highest intensity captured by

the rays perpendicular to the projection of the image, i.e. the method only displays the highest

intensity value seen through each pixel. This type of projection is used to highlight the important

parts of the image.

3.3.1 3D Reconstruction and Visualization Experimental Results

This subsection presents the bone reconstruction results, performed with VTK and MATLAB, for

CT and US images. The Visualization Toolkit (VTK) is an open-source, object-oriented software

system for 3D computer graphics, image processing and visualization. It is provided as a C++

library with interfaces to the interpreted languages such as Tcl, Python and Java. In this thesis,

Microsoft Visual Studio 2010, with VTK, is adopted to reconstruct the 3D images using the 2D CT

image sequence in DICOM format. Conventional 3D visualization tools usually have important

limitations such as low efficient code execution, poor computing capacity. VTK overcomes these

limitations, because has constantly evolved, has fast algorithms and computationally efficient.

3D reconstruction was performed with US and CT images of a cow femur bone and an human

femur, already described in previous sections. With the reconstruction is possible to visualize the

bone in 360◦, for complete visualization, in its total length and identify possible lesions, if existing.

To reconstruct the volume of the bone it is necessary to load images (vtkDICOMImageReader

class), rendering the images (vtkRenderer class) and finally create a volume (vtkVolume class).

Figures 3.13 and 3.14, represents the volume reconstruction of bone, performed with the MIP

algorithm for the CT images.

Figure 3.13: Femur Bone Reconstruction, with a high level of transparency (MIP).

The application developed allows to combine colors and opacity of the representation and thus

highlight the parts that are most interesting finding in the representation. Figure 3.14 presents
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an example where it intends to highlight more the bone definitions, giving less importance to the

interior, unlike the results of Figure 3.13, which is very transparent.

Figure 3.14: Femur Bone Reconstruction, with highlight bone definitions.

Figure 3.15 shows a section of the bone highlighting the cross section and view inside the bone.

These representations have a good image quality showing a perfect bone constitution, inside and

outside. It is visible the nodules of the femur in a perfect and realistic reconstruction.

(a) Cross section Femur Bone Recon-
struction.

(b) Cross section Femur Bone Recon-
struction.

Figure 3.15: Cross section Femur Bone Reconstruction.

The results obtained from the MATLAB implementation, for the volume reconstruction with the

CT images, have less quality than the results achieved with VTK and the computational cost is

much higher. Figure 3.16 shows the Volume Rendering of CT images (3.16(a)) and US images

(3.16(b)). As ultrasound does not penetrate the bone, in this type of image is only possible to

view the upper surface of the femur.

Surface Rendering technique was only implemented in order to compare the results with Vol-

ume Rendering technique. Figure 3.17 shows the results of surface rendering obtained with CT
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(a) volume of CT images. (b) volume of US images

Figure 3.16: Volume Rendering performed in Matlab.

(a) Reconstruction of CT images. (b) Reconstruction of US images

Figure 3.17: Surface Rendering performed in Matlab.



42 CHAPTER 3. IMAGE PROCESSING

images and US images. CT image reconstruction of the full dimension of the femur, was not pos-

sible because computational cost was very high and Matlab was not enough memory to process

so much data. Figure 3.18 shows two types of visualization of the volume reconstruction, with

CT images of the human femur.

(a) Visualization of the femur with high level of trans-
parency.

(b) Visualization of the femur with opacity.

Figure 3.18: Results of Visualization a human femur.



Chapter 4

Image Registration

This chapter describes the image registration tasks performed in order to find a relationship

between the set of US images acquired in the intra-operative scenario, with the images of

CT already pre-processed in the preoperative scenario. This relationship allows locating the fe-

mur into the operating room in order to contribute to the surgical navigation during hip resurfacing

surgery.

4.1 Introduction

As already described, in previous chapters, this thesis aims to demonstrate that it is possible to

navigate the surgical robotic system with information extracted from CT and ultrasound images.

Medical images used are obtained from different sources, CT scans and ultrasound. In practice,

images acquired have different coordinate systems. The process of transforming these images

into a single coordinate system is called image registration. As derived from different sources,

called Multimodal image registration, Maintz & Viergever (1998).

Registration of medical images allow to relate a group of images obtained in a pre-operative

scenario, with images obtained in the intra-operative scenario, assisting the surgeon in surgical

navigation, Dang et al. (2010).

Minimally invasive surgical interventions performed using Computer-Assisted Surgery (CAS),

Sugano (2003) systems require reliable registration methods for pre-operatively acquired patient

anatomy representations that are compatible with the minimally invasive paradigm.

In general, the image registration method can be classed into the methods based on the features

(feature-based) and the intensity information (intensity-based). The registration transformation

43
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considered will depend on the application addressed and the nature of the images involved.

The transformations can be categorized into affine transformations, rigid and nonrigid or elas-

tic. Affine transformations, NOPPADOL & KE (2009), preserves the operations of vector addition

and scalar multiplication, being a combination of translation, rotation, scaling, and shear com-

ponents. In rigid transformations, there is no distortion of the object, the transformations are

global, involves a linear rigid-body transformation, consisting of rotation and translation. Nonrigid

or elastic transformations, allows local deformations of image features.

3D multi-modal point set Registration of anatomical structures, such as bone, is complex because

the datasets arrive from different scans. Adequate feature extraction algorithms are essential to

accurately align the two datasets. Several methods have been developed in recent years to

perform the registration of bone ultrasound images, obtained in the intra-operative scenario, to

the 3D bone model, obtained from CT images, Winter et al. (2006). The approaches presented

by the research community are nowadays a active field of research, due to the need of a high

precision system. In fact, the following approaches can perform US images to 3D bone model

registration on several parts of the human body but still need to improve its overall accuracy. The

approaches tackle the Spine, Brendel et al. (2002), the shoulder, Tyryshkin et al. (2007) and the

nose, Descoteaux et al. (2006). The most commonly method used is the ICP, Granger et al.

(2010), Salvi et al. (2006). Recently, (Myronenko & Song, 2010) have proposed a new method,

that relies on a probabilistic framework to perform the registration.

In this thesis two feature-based registration methods, are used to perform the 3D point set regis-

tration, between US and CT datasets in order to compare results and draw appropriate conclu-

sions. The first method used is the ICP method, based on an iterative approach between two

rows of points in order to achieve the closest relationship between them. The second method,

CPD, recently proposed, is based on the probabilistic concept to relate two datasets.

4.2 Iterative Closest Point (ICP) Method

The Iterative Closest Point (ICP) method, presented by (Besl & McKay, 1992) is the standard

method used to perform registration between two set of 3D points. It transforms two sets of

points to a common coordinate frame. If the exact correspondences of the two data set could

be known, then the exact translation t and rotation R can be found. The main issue of the

method is then to find the corresponding points between the two data sets, Y = (y1, ..., yM )T and

X = (x1, ..., xM )T .

The assumption in the ICP method is that the closest points between the data sets correspond to
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each other, and are used to compute the best transformation, rotation and translation, between

them. The original method have been extended to line segment sets, implicit curves, parametric

curves, triangle sets, implicit surface and parametric surfaces.

To obtain the closest point of Y to a point in X, the Euclidean distance is applied:

d(Y,X) =
√
(Xx − Yx)2 + (Xy − Yy)2 + (Xz − Yz)2 (18)

When all points of the data set Y are associated to the point in X the transformation is estimated

by minimizing a mean square cost function:

EICP =
∑

i

‖R · xi + t− yi‖
2 (19)

From the obtained parameters, the points in the X data set are transformed and the error be-

tween them and the ones in Y calculated. If the error is above a pre-defined threshold then the

points must be re-associated and the previous steps again performed until the error is below the

threshold. Figure 4.1 helps us understand the alignment procedure.

Figure 4.1: Example of alignment for local minimum.
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4.3 Coherent Point Drift (CPD) Method

Coherent Point Drift is a probabilistic method for point set registration, described in Myronenko

& Song (2010). Given two n-dimensional point sets, where a given point set is expressed as

Y = (y1, ..., yM )T and should be aligned with the reference point set X = (x1, ..., xN )T . Points in

Y are considered the centroids of the Gaussian Mixture Model, and fit it to the data points X by

maximizing a likelihood function. Bayes theorem is used to find the parameters Y by maximizing

the posteriori probability, or minimizing the energy function:

ECPD(Y ) = −
N∑

n=1

log
M∑

m=1

e−
1

2
‖ xn−ym

σ
‖2

+
λ

2
φ(Y ) (20)

where E is the negative log-likelihood function, φ(Y ) is a regularization term, and λ is a trade-off

parameter.

4.4 Experimental Results

In this section are presented the Surface registration results obtained using the 3D point clouds,

extracted, from a US and CT images, described in section 3.3. To match the two surfaces, several

testes were performed, with datasets of a cow femur bone, and a human femur through affine

and rigid registration of ICP and CPD algorithms.

Table 4.1: Registration Errors Results, with a cow femur bone.

Registration Errors [mm]

Before After iter. time

CPD Affine

51.8662

44.1493 40 17m:22s

CPD Rigid 47.4229 26 11m:40s

ICP Rigid 47.7152 27 10m:86s

In Torres et al. (2011b), are presented the registration results between the US and CT surfaces,

of a cow femur bone, shown in figures 4.2(a), 4.2(b) and 4.2(c). Table 4.1 shows the results of

RMSE, according to equation 21, and the time consumed for each simulation.

Algorithms were tested in MATLAB, with an Intel Core 2 Duo, 2.27 GHz computer, with 4

GB RAM. Better results, were presented by affine registration performed by the CPD method,
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(a) ICP Rigid Registration of cow femur bone. (b) CPD Rigid Registration of cow femur bone.

(c) CPD Affine Registration of cow femur bone.

Figure 4.2: Registration Results of cow femur bone.

although it takes longer to converge. ICP Affine method, was also implemented and tested, but

failed to obtain an adequate registration, and the simulations lasted one full day, it was decided

to exclude this method, because its contribution was not valid for this study.

Despite the relation between the two point clouds, the errors obtained are quite high, essentially

because the two surfaces have different sizes and root mean squared error not reflect accurately

the registration error.

RMSE =

√
1

n

∑
(ŷi − yi)2 (21)

To overcome this limitation, the registration errors was measure by the Modified Hausdorff Dis-

tance (MHD), presented in Mémoli & Sapiro (2004). Hausdorff distance is the maximum distance

of a set to the nearest point in the other set. Given two finite datasets A = {a1, ..., an} and

B = {b1, ..., bn}, the Hausdorff Distance (HD) is defined as:
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HD(A,B) = maxmin ‖ a− b ‖ (22)

Modified Hausdorff distance (MHD) measure, defined in equation 23, give the best performance.

MHD(A,B) =
1

Na

∑
min ‖ a− b ‖ (23)

where Na is the number of points in A.

The registration results achieved with the point clouds extracted from the human femur are shown

in figures 4.3(a) and 4.3(b), with the quantitative results presented in the table 4.2.

(a) ICP Rigid Registration of human bone. (b) CPD Rigid Registration of human femur.

Figure 4.3: Registration Results of human femur.

Table 4.2: Registration Errors Results of the human femur.

Method MHD [mm] Before Registration MHD [mm] After Registration

ICP Rigid
1433,3

74,8061

CPD Rigid 15,9435

This chapter presented the work developed to register 3D surfaces, with data from US and CT
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images. The well known ICP and the recent CPD methods were tested to register the points

of US and CT images of a cow femur bone and a human femur. The results obtained validate

the approach for the femur application. CPD algorithm presents better results although with high

computational cost.





Chapter 5

Visual Control of Robotic

Manipulator using Fuzzy Models

Robotic Manipulators are highly complex dynamic systems that can use a large amount of

sensors to recognize its work environment. Laser, infrared or ultrasound sensors are used

to measure distances. Force sensors are used to recognize contact between the robot and other

objects. Cameras can be used to visualize the robot’s global work environment.

Nowadays, robotic manipulators are used in factories to perform tasks in a specially designed

work environment. Force and distance sensors are mainly used in these setups. Introducing

cameras in this setup could, in a hopefully near future, make robot manipulators completely au-

tonomous when performing tasks in unknown, or unable, to be precisely, modelled environments.

In the past decades, the use of computer vision and image processing methods has been con-

strained due to its high demanding computational costs. In the late 70’s dozens of seconds were

needed to extract simple object characteristics, e.g., edges. At that time, vision was used to

detect the object position in the 3D space. This position was then used by the robot controller to

drive the robot to it. Since the early 90’s, due to the increasing capacity of computers, the vision

sensor data can be used as sensor feedback to close the control loop. Nowadays the camera

manufacturers can supply fast cameras that can achieve sample times up to one millisecond, i.e.

comparable to distance or force sensors. This achievement, followed by the recent developments

in Visual Control, opens a wide area for robotic applications.

Visual Control, also called Visual Servoing, has as its main objective the increase of flexibility

and precision of the robot manipulator, when performing tasks. The vision sensor can give the

robot a general overview of its working environment, which can be used as control input. Visual

51
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Control aims to cancel the robot’s manipulator position error, using as feedback, in the control

loop, the data provided by the vision sensor.

The vision data can be directly or indirectly used in the control loop. The large majority of Visual

Servoing approaches use an inner robot controller, with joint variables feedback, to stabilize

the robot around the control action arriving from the outer visual control loop. The vision data,

i.e., visual features, that characterize the object to be manipulated can be used directly in the

control loop, e.g., the 2D pixels of the object or the object image moments. Visual features

can also be used indirectly, e.g., the 3D data points of the object that describes its pose. 2D

and 3D visual features can be combined to achieve the called hybrid features. The application

of the above presented visual features derives different control laws, which are called image-

based Visual Servoing, position-based Visual Servoing and hybrid Visual Servoing. In these

approaches, the model of the visual motor interaction is already known. More recently the visual

motor interaction has been estimated analytically or by learning, opening a new area for Visual

Control of uncalibrated robotics systems. Visual Servoing is also evolving to new types of images,

e.g., medical images. In this applications, surgical robotics, Ayadi et al. (2008); Ginhoux et al.

(2005); Krupa et al. (2003, 2004); Li et al. (2012); Mebarki et al. (2010), the visual loop is used to

position ultrasound probes, to track organs, and to assist surgeons performing surgical tasks.

5.1 Introduction

Visual Servo Control, visual servoing, Hill & Park (1979); Hutchinson et al. (1996), defines closed

loop robot control using cameras to extract visual information from the robot’s work environment.

From the desired robot position and the visual information obtained from the camera, the visual

servo control law gives the desired velocities that move the robot. The use of vision systems in

robotics aims to increase flexibility and precision of robots. One of the first works that used vision

to control a robot was presented by Shirai and Inoue Shirai & Inoue (1973), almost 40 years ago.

The role of computer vision is to provide the robot with information about its work environment,

to be used in the control loop.

Information from the robot’s work environment can be used in control by two ways. The first

approach called Open-Loop-Robot-Control, separates the vision part from the control part. The

start and final positions of the robot are obtained using computer vision (pose estimation algo-

rithms) and the robot’s movement is controlled only on the joint or cartesian space. This approach

needs camera calibration and the model of the object to manipulate. The second approach called

visual servoing, uses directly or indirectly visual information to close the robot control loop. In this
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approach it is often used an inner controller, with joint feedback, to stabilize the robot around the

control action that arrives from the outer vision control loop. The large majority of visual servoing

applications are based on this approach.

Direct visual information uses pixel information, e.g., 2D points describing features of interest on

the object to manipulate. Indirect visual information implies extraction of relevant object charac-

teristics from 2D coordinates in the image space, e.g., the 3D pose of the object related to the

camera frame.

Typical visual servoing applications can be classified as i) positioning the robot end-effector to an

object; ii) tracking an object, e.g., keeping a constant distance from the object to the robot.

The object to manipulate is an important part of the visual control loop and its characterization is

of special importance to formulate the control problem. This visual information can be obtained

from one or more cameras looking at the robot and the object eye-to-hand, or being placed in

the end-effector eye-in-hand. Object characteristics can be obtained: i) using 2D data expressed

directly in pixel coordinates from the image space, ii) using 3D data to obtain the object pose, iii)

fusing 2D and 3D data. To use these object characteristics, visual features, in the control loop,

it is mandatory to obtain a relation between the feature space and the world, or camera frames.

This relation (interaction model) has been over the years, an exciting field of research, and it is the

base of visual servoing approaches. The first and second approaches are called image-based

visual servoing and position-based visual servoing, respectively, Hutchinson et al. (1996). The

third approach is called hybrid visual servoing, Hashimoto (2003), being the first reported work

presented in, Malis et al. (1999).

Interaction models between the visual features of the object and camera coordinates frames can

be grouped in two. The models known a priori, using analytical relations are in the first group.

The models estimated numerically are in the second group. These models are used to generate

movement commands to the robot and are called, amongst other terms, Hashimoto (2003), by

image Jacobian. The other important relation is between the visual features and the robot joint

coordinates. To build this model, the robot Jacobian and the relation between the camera and

end-effector frames must be known.

In this chapter, the robot-camera model estimation by learning is addressed, using fuzzy tech-

niques, to obtain a controller capable of controlling the robotic system. An inverse fuzzy model

is used to derive the inverse robot-camera model, in order to compute the joints and end-effector

velocities in a straightforward manner. The inverse fuzzy model is applied directly as a real-time

controller.
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From the modeling techniques based on soft computing, fuzzy modeling is one of the most ap-

pealing. In visual servoing, fuzzy logic has been used to learn the robot-camera model, Suh

& Kim (1994, 2000). As the robotic manipulator together with the visual system is a nonlinear

system, which is only partly known, it is advantageous to use fuzzy modeling as a way to derive

a model (or an inverse model, as in this case) based only on measurements. Various techniques

can be applied to derive such models, fuzzy clustering, neural learning methods or orthogonal

least squares (see e.g. Guillaume (2001) for an overview). Fuzzy clustering is most often used to

derive fuzzy models based on the data obtained from measurements of dynamic systems. This

approach is used in this chapter and it is presented in detail in, Gonçalves et al. (2008). The next

subsections present the fuzzy modeling approach and how the uncalibrated fuzzy model was

obtained.

5.2 Fuzzy Modeling

5.2.1 Off-Line Fuzzy Modeling

Fuzzy modeling often follows the approach of encoding expert knowledge expressed in a verbal

form in a collection of if–then rules, creating the model structure. Parameters in this structure can

be adapted using input-output data. When no prior knowledge about the system is available, a

fuzzy model can be constructed entirely on the basis of systems’ measurements. In the following,

we consider data-driven modeling based on fuzzy clustering, which is described in, Sousa &

Kaymak (2002). This approach proved to be better than other well-known methods, such as

Adaptive Neural Fuzzy Inference Systems (ANFIS), which was presented in, Jang (1993).

Assume that data from an unknown Multiple-input and Single-output (MISO) system y = F (x)

is observed. The aim is to use this data to construct a deterministic function y = f(x) that can

approximate F (x). The function f is represented as a collection of fuzzy if–then rules. Depending

on the form of the propositions and on the structure of the rule base, different types of rule-based

fuzzy models can be distinguished.

For the robot under control, the direct robot-camera model states that the image features will

move between consecutive time steps k and k + 1, in the image space. This variation of the

image features is defined as δs(k + 1) = s(k + 1)− s(k). Given a predefined robot velocity q̇(k),

and knowing its actual position P(k) in the world coordinate frame at the current time step k, the

image features will move from s(k) to s(k + 1).

In this chapter, rule-based MISO models of first order Takagi-Sugeno, Takagi & Sugeno (1985)
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type are considered. This type of models is described next, followed by a brief description of the

identification procedure using fuzzy clustering.

5.2.2 Takagi–Sugeno fuzzy model

First order, MISO, Takagi-Sugeno rule-based models, are considered in this chapter. The models

have n inputs and one single output. For systems with more outputs, several MISO models are

needed to model the overall system, e.g., two MISO models are needed to model systems of two

outputs.

The fuzzy model is divided in rules. Each rule is applied to a sub-domain of the input variables.

This sub-domain is called a cluster and is obtained using clustering approaches, Gustafson &

Kessel (1979). In each cluster there is a rule that describes the input-output relation. In conclu-

sion, the rules of a Takagi-Sugeno fuzzy model describe local input-output relations, typically in

a linear form, where the output yi of each rule is a linear combination of the inputs x:

Ri : If x1 is Ai1and . . . and xn is Ain

then yi = aix+ bi , i = 1, 2, . . . ,K. (24)

Here Ri is the ith rule, x = [x1, . . . , xn]
T is the input (antecedents) variables. Ai1, . . . , Ain are

fuzzy sets defined in the antecedent space, that must be estimated. yi is the rule output variable.

ai and bi are the consequent parameters of the linear combination for each rule, that must be

estimated. K denotes the number of rules in the rule base. For each cluster i, the correspondent

rule Ri gives an output yi, that must be combined to obtain the only output of the MISO system.

The aggregated output of the model, ŷ, is calculated by taking the weighted average of the rule

consequents of each rule:

ŷ =

∑K

i=1 βiyi∑K

i=1 βi

, (25)

where βi is the degree of activation of the ith rule, stating for a given input what rules are the

most active.

βi = Πn
j=1µAij

(xj), i = 1, 2, . . . ,K, (26)

and µAij
(xj): R → [0, 1] is the membership function of the fuzzy set Aij in the antecedent of Ri.
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5.2.3 Fuzzy Model Parameters Identification by fuzzy clustering

To identify the first order Takagi-Sugeno model defined in (24), i.e., the antecedent and con-

sequent parameters, the regression matrix X and an output vector y are constructed from the

available input-output data:

XT = [x1, . . . ,xN ], yT = [y1, . . . , yN ]. (27)

Here N ≫ n, is the number of samples used for identification, taken at each time step. In this

chapter, N is the number of time samples needed by the robot to perform a predefined trajectory.

The objective of identification is to construct the unknown nonlinear function y = f(X) from the

data, where f is the first order Takagi-Sugeno model in (24).

The number of rules K and the antecedent fuzzy sets Aij are determined by means of fuzzy

clustering in the product space of the inputs and the output, [x1 × . . .× xn × y] . Hence, the data

set Φ to be clustered is composed from X and y:

ΦT = [X, y] . (28)

Given Φ, where the N input-output data samples are stored, and an estimated number of clusters

K, the Gustafson-Kessel clustering algorithm, Gustafson & Kessel (1979), is applied to compute

the fuzzy partition matrix U = [µik]K×N , stating the degree of membership of each sample data,

k = 1...N , to each cluster, i = 1...K.

Clustering provides a description of the system in terms of its local characteristic behavior in

regions of the input-output data, Φ, where each cluster defines a rule. Unlike the popular fuzzy

c-means algorithm, Bezdek (1981), the Gustafson-Kessel algorithm applies an adaptive distance

measure suited for highly non-linear systems like robotic manipulators. As such, it can find hyper-

ellipsoid regions in the input-output data, Φ, that can be efficiently approximated by hyperplanes

described by the first order Takagi-Sugeno fuzzy rules, i.e. with dimension n + 1 (n inputs and

one output).

The fuzzy sets in the antecedent of the rules are obtained from the partition matrix U, whose ikth

element µik ∈ [0, 1] is the membership degree of the data object zk = [xk
T yk]

T to the cluster i.

To be used in the first order Takagi-Sugeno model defined in (24), one-dimensional fuzzy sets

Aij must be obtained from the multidimensional fuzzy sets defined point-wise in the ith row of

the partition matrix by projections onto the space of each input variable xj , j = 1 . . . n:

µAij
(xjk) = projj(µik), (29)
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where proj is the point-wise projection operator, Kruse et al. (1994). The point-wise defined fuzzy

sets Aij are approximated by suitable parametric functions, like gaussian membership functions,

Sousa & Kaymak (2002), in order to compute µAij
(xj) for any value of xj . At this point the

antecedent parameters for each rule, Aij , of the first order Takagi-Sugeno model have been

estimated.

The consequent parameters for each rule are obtained as a weighted ordinary least-square es-

timate. In the following, are presented the steps to formulate the problem, following, Sousa &

Kaymak (2002).

The consequents for each rule are placed in the following vectorial form, θTi =
[
aTi ; bi

]
. The

input-output data is extended and defined by Xe = [X;1]. A diagonal matrix of weights in R
N×N ,

must be defined Wi, having the degree of activation βi(xk), as its kth diagonal element.

Assuming that the columns of Xe are linearly independent and βi(xk) > 0 for 1 ≤ k ≤ N , the

weighted least-squares solution of y = Xeθ + ǫ, where ǫ is a residue, becomes:

θi =
[
XT

e WiXe

]−1
XT

e Wiy . (30)

At this point the consequent parameters for each rule, ai and bi, of the first order Takagi-Sugeno

model have been estimated.

5.2.4 On-Line Fuzzy Modeling

The model obtained from the techniques presented in the previous section is assumed to be fixed,

since it is learned in off-line mode. Recently attention is focused in on-line learning, Angelov &

Filev (2004), where in a first phase, input-output data is partitioned using unsupervised cluster-

ing methods and in a second phase, parameter identification is performed using a supervised

learning method.

In On-Line Fuzzy Modeling and according to, Angelov & Filev (2004), also rule-based models

of the TS type, are considered. Typically in the affine form described in (24), where the input-

output data is acquired continuously. The new data, arriving at some time instant, can bring new

information from the system, which could indicate a change in its dynamics. This information may

change an existing rule, by changing the spread of the membership functions, or even introduce

a new one. To achieve this, the algorithm must be able to judge the informative potential and the

importance of the new data.

In the following are briefly presented the several steps of the algorithm used for on-line fuzzy

modeling, proposed in, Angelov & Filev (2004), evolving fuzzy systems. The first step is based
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on the subtractive clustering algorithm, Chiu (1994), where the input-output data is partitioned.

The procedure used must be initialized, i.e. the focal point of the first cluster is equal to the first

data point and its potential is equal to one. Starting from the first data point, the potential of the

next data point is calculated recursively using a Cauchy type function of first order:

Pk(zk) =
1

1 + 1
k−1

∑k−1
i=1

∑n+1
j=1 (d

j
ik)

2
, k = 2, 3, ... (31)

where Pk(zk) denotes the potential of the data point zk calculated at time k; djik = zji −zjk, denotes

projection of the distance between two data points (zji and zjk) on the axis zj .

When a new data point arrives it also influences the potential of the already defined center of the

K clusters (z∗i , i = 1, 2, ...,K). A recursive formula for the update of the cluster centers potential

is defined in, Angelov & Filev (2004):

Pk(z
∗
i ) =

(k − 1)P(k−1)(z
∗
i )

k − 2 + P(k−1)(z
∗
i ) + P(k−1)(z

∗
i ) +

∑n+1
j=1 (d

j
ik)

2
,

where Pk(z
∗
i ) is the potential at time k of the cluster center, related to the rule i.

The next step of the algorithm is to compare the potential of the actual data point to the potentials

of the existing cluster centers.

If the potential of a new data point is higher than the potential of the existing cluster centers, then

the new data point is accepted as a new cluster center and a new rule is formed. If in addition to

the previous condition the new data point is close to an old cluster center, the old cluster center

is replaced. The decision to create or remove rules was based on the following principles:

1)The sample has a high potential is legible to be a focal point of a fuzzy rule:

Pk(zk) > max(Pk(z
∗
i )) (32)

2)A sample that is over an area of spatial data are is not covered by other rules, is also eligible

to form a rule:

Pk(zk) < min(Pk(z
∗
i )) (33)

3)To avoid overlap and redundancy of information in creating new rules, the following condition is

also checked:

∃i, i = [1, R];µij(x(k)) > e−1; ∀j; j = [1, n] (34)
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R denotes the number of fuzzy rules up to the moment k. The membership function are gaussian,

with the form:

µij = e−r‖xj−x∗

ij‖
2

, (35)

The consequents of the fuzzy rules are obtained using the global parameter estimation procedure

based on the weighted recursive least squares, presented in, Angelov & Filev (2004).

5.2.5 Uncalibrated Fuzzy Visual Servoing

To obtain an accurate Jacobian, J, a perfect modelling of the camera, the chosen image features,

the position of the camera related to the world, and the depth of the target related to the camera

frame must be accurately determined. Even when a perfect model of the Jacobian is available,

it can contain singularities, which hampers the application of a control law. Remind that the

Jacobian must be inverted to send the joint velocities to the robot. When the Jacobian is singular,

the control cannot be correctly performed.

To overcome the difficulties regarding the Jacobian, a new type of differential relationship between

the features and camera velocities was proposed in, Suh & Kim (1994). This approach states

that the current joint variation, δq(k), depends on the image features variation that the robot must

perform at the next time step, δs(k + 1), and the current position of the robot manipulator, q(k):

δq(k) = F−1
k (δs(k + 1),q(k)). (36)

In visual servoing, the goal is to obtain a joint velocity, i.e., the joint variation δq(k), capable of

driving the robot according to a desired feature position, s(k + 1), with an also desired feature

variation, δs(k + 1), from any position in the joint spaces. This goal can be accomplished by

modelling the inverse function F−1
k , using inverse fuzzy modelling as proposed in this chapter

and presented in Section 5.2.1. This new approach to visual servoing allows to overcome the

problems stated previously regarding the Jacobian and the calibration of the robot-camera model.

5.3 Experimental Setup

In this section of the chapter are shown the results of the presented fuzzy modeling approach,

uncalibrated visual servoing applied to position-based visual servo control.
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To validate the proposed approach, a five-degree of freedom EurobTec IR52C Robotic Manipu-

lator was used. The visual features were obtained from the images using a stereo vision system,

with two U-Eye cameras, in eye-to-hand configuration, i.e., looking the robotic manipulator end-

effector.

The experimental setup is presented in figure 5.1. At the IR52C robot end-effector it is attached

an object with colored LEDs, depicted in figure 5.2, that is seen by the stereo vision system. For

each of the three LEDs, its 3D coordinates, cto, are obtained. Note that, during the servoing,

the LEDs are all in the same plane and therefore its rotation relative to the stereo vision frame

(located in the left camera), cRo, is the same. The visual processing is performed in the PC2,

that acquires and process, Morgado et al. (2009), the images from both cameras and sends the

3D visual features to the network, using User Datagram Protocol (UDP) protocol, at each time

step.

In PC1 is implemented the visual servoing control law, that receives the UDP packets coming from

the PC2. Computer PC2, as in, Morgado et al. (2009), acquires images from cameras, performs

color segmentation, and extracts the LEDs 3D coordinates,cto, in real-time, corresponding to the

3D position of the LED. Since three LEDs are used in this setup, nine features are obtained and

therefore cto is a (9×1) vector. Note that, as stated before, the rotation, cRo, is the same for all

three LEDs. In the experiments presented in the following sections, the rotation, cRo, was kept

constant and therefore was the same for all the robot trajectories performed. For these reasons

the (9×1), cto, is the feature vector, s, sent to the network.

5.3.1 Fuzzy Modeling Results

To obtain the first order Takagi-Sugeno model defined in (24), the regression matrix (27) must be

obtained from the input-output data of the robot. In section 5.2.5 was defined that the outputs of

the model are the robot joint variations δq(k). These joint variations should be capable of driving

the robot according to a desired feature position, s(k + 1). Since the robot has five joints, five

MISO models must be estimated, according to section 5.2.3.

To obtain the data for model identification, the robot was moved in its 3D workspace, within the

field of view of the cameras, making a 3D spiral with a center point, depicted in figure 5.3. The

variables needed for identification, δq(k) and δs(k + 1), were stored during the 3D spiral path,

i.e., the off-line training task. This procedure allows to cover a wide range of values for δq(k) and

δs(k + 1):
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Figure 5.1: The eye-to-hand experimental setup.

Figure 5.2: Configuration of the markers placed on the end-effector.
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Figure 5.3: 3D Spiral path used to collect the data for the fuzzy model identification, solid thin line. Task
linear trajectory used to test the visual servo control law, dash-dotted thick line.

δs(k + 1) = s∗ − s(k + 1) (37)

δq(k) =
q∗ − q(k)

∆t
(38)

where ∆t is the visual sample time (0.1 seconds) and in the training phase:

s∗ = [92.0 , 25.0 , 667.5 , 66.5 , 55.0 , 669.0 , 115.0 , 57.5 , 689.0](mm) are the 3D coordinates of the

LEDs, at the center of the 3D spiral;

q∗ = [−18.3545 , −72.2546 , −51.2007 , −53.5447 , −169.4038](◦) are the robot manipulator joint

values, at the center of the 3D spiral.

In figures 5.4, 5.5 and 5.6 are depicted, over time, the model inputs, δs(k + 1), and the model

outputs δq(k), respectively.

To estimate the model accuracy two descriptors are used: VAF (Variance Accounted For), defined

in (39), and MSE (Mean Squared Error), defined in (40). A perfect match occurs, when VAF is

100% and MSE is 0.

V AF = 1−
var(δq− δ̂q)

var(δq)
× 100% (39)
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Figure 5.4: The input data for model identification, δsxy(k + 1), i.e., in the x and y directions.

where δ̂q is the output of the estimated fuzzy model, and var(...) is the variance of a vector.

MSE =
1

n

∑
(δ̂q− δq)2 (40)

where n is the size of the vectors. The values for VAF and MSE must be obtained for each robot

joint using all the n samples of data collected for each joint, since five MISO fuzzy models are

estimated as stated previously.

In Table 5.1 are presented the values of VAF and MSE for the off-line fuzzy modeling for each

one of the five robot joints, i.e., one MISO model for each joint, using real data from the robot and

vision systems. With only three rules, excellent values of VAF and MSE were obtained, meaning

that is possible to obtain a good model for estimating the joint velocities, suitable to be used as

a model based inverse controller. Figure 5.6, shows how close the output of the model is to the

training data. In more detail, figure 5.7 depicts the result for joint 4, the worst VAF presented in

table 5.1.

In Off-Line Fuzzy Modeling the number of clusters (rules) must be defined a priori in order to

obtain a model. In On-Line Fuzzy Modeling, evolutionary algorithms are used that after initialized,

will estimate the number of rules required in accordance with the potential associated with each

data. The results from On-Line Fuzzy Modeling are presented in table 5.2. The variable Ω is the

initialization parameter of the algorithm, that varies with the type of data. The results presented

in table 5.2, show very good results with the exception of the last joint, but as the expense of a

high number of rules, which will hopefully be minimized in future works to allow adequate control
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Figure 5.5: The input data for model identification, δsz(k + 1), i.e., in the z direction.

Table 5.1: Results of the off-line fuzzy model, obtained for each joint.

Rules VAF MSE [(◦/s)2]

Joint 1 3 98,2% 0,23

Joint 2 3 97,3% 0,93

Joint 3 3 94,4% 2,81

Joint 4 3 93,2% 1,21

Joint 5 3 98,2% 0,23

Table 5.2: Results of the on-line fuzzy model, obtained for each joint.

Ω VAF MSE Rules

Joint 1 400 97,9% 0,04 82

Joint 2 215 94,1% 0,37 74

Joint 3 250 95,6% 0,36 75

Joint 4 250 93,1% 0,20 66

Joint 5 342 64,3% 1,18 82
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of the robot.

5.3.2 Control Results

This section presents the obtained control results, using the Off-Line fuzzy model based control,

defined in figure 5.8. These results, that validate the proposed approach, were obtained from the

real robot, when performing the Uncalibrated Visual Servoing using the fuzzy model previously

presented.
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Figure 5.6: The output data, δq(k). For model identification, solid-line, and the estimated fuzzy model
output, dash-dotted line.

To validate the estimated fuzzy models for controlling the robot manipulator, several positions

were set within the robot workspace seen by the stereo vision system. Positioning tasks were

given to the robot manipulator to fulfil. The operator gives, to the robot, the desired 3D coordi-

nates of the object, either by a-priori knowledge or by moving the robot using a classical Cartesian

control law. In this work the second approach was used.

The experiment was conducted following the general procedure:

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

Time [s]

δq
4
[◦
/
s]

Figure 5.7: The output data, δq4(k). For model identification, solid-line, and the estimated fuzzy model
output, dash-dotted line.
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Figure 5.8: Uncalibrated Visual Servo Control Loop.

1. Move the robot to the desired position, using a classical Cartesian control law, where the

stereo vision system can see the object, i.e., the three LED system.

2. Extract the desired feature vector s∗ of the object, i.e., the 3D coordinates of the three LEDs.

3. Move the robot to the initial position, using a classical Cartesian control law, where the

stereo vision can extract the initial feature vector of the object, si.

4. Start the Fuzzy Uncalibrated Visual Servoing to reach s∗.

Although in general the target position, s∗, to be tracked may varies over the time, in this experi-

ment it was kept fixed.

Amongst all the positioning tasks given to the robot, in figure 5.3 is depicted one of the tested,

the dash-dotted line. This trajectory has the following taught desired position,

s∗ = [101.0 , 26.0 , 659.0 , 76.5 , 54.0 , 667.0 , 123.5 , 60.0 , 677.5](mm), and the following initial po-

sition, si = [107.5 , 38.0 , 670.0 , 81.0 , 65.5 , 675.0 , 129.5 , 72.5 , 690.0](mm).

Results are quite satisfactory, despite some initial oscillations of the 3D position error. The robot

stabilizes and stops at the desired position with a small error, i.e., within 3 [mm]. This error

was due to the precision of the robot (1 [mm] maximum) and the stereo vision system (4 [mm]

maximum, in the depth direction). Figure 5.9, figure 5.10 and figure 5.11, show the error for

each LED, with respect to the 3D coordinates X, Y, Z, respectively, obtained in one of several

trajectories performed with the robot. The error is measured between the current robot position

(obtained from the stereo vision system) and the taught desired position, for each one of the 3D

directions. The visual servo control approach can stabilize the robot, as depicted in figures 5.9

to 5.11, which shows the evolution of the visual features error, during the trajectory.

This approach to visual servo control, based on fuzzy modeling to obtain an uncalibrated visual

servo control system, is suitable to control the robot manipulator. The controller obtained pre-

sented excellent results, with errors within 3[mm] of the desired position, using the presented
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experimental setup.
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Figure 5.9: Evolution of the error of the position on the X coordinate.
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Figure 5.10: Evolution of the error of the position on the Y coordinate.
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Figure 5.11: Evolution of the error of the position on the Z coordinate.



Chapter 6

Ultrasound Based Robot Navigation

This chapter presents the complete surgical navigation system, combining all the concepts

already presented in previous chapters. Here are described the process of Bone Tracking

based on 2D US images, the calibration methods and the robot navigation system for the oper-

ating room. Experimental tests performed in a human femur phantom, are described to validate

the system.

6.1 Bone Tracking based on 2D US Images

This section describes the method developed for tracking the bone contour features in the US

images, necessary to construct the 3D point cloud based on US images. From now on, named,

3D US bone model.

As there are no fiducial markers on the bone, all movements during the surgery are performed

based on the information extracted from the US images. In other words, the Bone Tracking

performed intra-operatively is based on bone contour features extracted slice by slice. The avoid-

ance of fiducial markers implies that the US probe is referenced to the optical measurement

system, depicted in figure 1.3. This referencing is made by placing a target with four markers in

the US probe. From this moment, also the images and bone contour features are referenced to

the tracker (NDI - Polaris).

The proposed method to track the femur in a sequence of 2D US images, allows 3D real-

time measurement, which enables computer-assisted surgery for Hip Resurfacing Surgery. The

flowchart of figure 6.1 helps to understand the method.

In Initialization, are performed all necessary initialization settings for the Optical Tracking System

69
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Figure 6.1: Flowchart of the bone tracking based in US images.
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and for the image processing algorithms.

Image Acquisition corresponds to the US image acquisition through a USB video frame grabber,

which uses methods implemented in OpenCV. All images are acquired with 720 × 576 pixels

resolution and a frame rate of 30 fps. The surgeon identifies the ROI, with a square around the

bone in the first image acquired, as depicted in figure 6.2. This procedure improve accuracy and

also speed up the segmentation.

In NDI Trigger action, is ordered to start the NDI Polaris acquisition and synchronize the tracking

process. In this step, is read the position and orientation of the US probe and the extremity of

the drill. Once the marker is placed on the drill, the offsets to the extremity, extracted across the

drill pivoting technique (tool-tip offset), Pol (2006), need to be loaded. The synchronism between

US images and Opto Tracker is established in the acquisition of the first US image by marking a

point within the bone. The same point is used as the seed of the segmentation algorithm.

The Image Processing and Tracking action, corresponds to the task where images are pro-

cessed with the aim of extracting the bone surface and enabling the tracking of the bone, based

on US images. Here are applied methods to clean the images and to perform bone segmen-

tation in all US images based on the FastMarching algorithm, described in section 3.1.2. The

centroid of the segmented bone contour in each US image acquired, is used as input in the

image segmentation of the next iteration, i.e., captured US image.

Figure 6.2: Region of interest in an US image of a femur phantom.

After extracting the 2D contour of each US image, it is identified the upper contour of the bone,
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extracted the correspondent pixel’s coordinates and are calculated the 3D points in the NDI Po-

laris referential frame. The position and orientation of the drill are sent together with the 3D US

point cloud, though in different sockets, by UDP to the workstation that performs the registration

with the pre-operative 3D CT bone model. This process is continuously repeated until terminated

by the surgeon, i.e., when the bone drilling surgical procedure ends.

6.2 Navigation System Calibration

This section presents the calibration procedures needed to relate the 3D US point cloud and the

3D CT bone models, indispensable to detect and track the bone movements.

In a real scenario, inside an operating room, the femur bone must be spatially located, to later

identify the defined drilling point during pre-operative planning. Here appear the first challenges

to be solved:

• What is the patient’s location in the operating room, relatively to the robot and navigation

system?

• Which is the location of the femur without the existence of markers? Pre-operatively, there

is only a CT of the patient, the extracted femur point cloud, and the drilling point estimated

in the CT reference frame. US is used to locate the femur in the intra-operative scenario,

but...

• what is the relationship between CT and US, reference frames? The CT scan, was per-

formed without any markers in the bone. The CT point cloud was extracted directly from

the DICOM images, only knowing the relationship between slices, but the origin of its refer-

ential is completely unknown.

An initial calibration of the system is need, to answer the above questions. The main reference,

in the intra-operative scenario, is the navigation system, (NDI - POLARIS), reference frame. The

Homogeneous Transformation, that relates the intra-operative point clouds and the pre-operative

model, CT dataset, need to be obtained. This transformation, (CTTNDI ), is determined by a initial

registration between the CT point clouds and 3D US bone point clouds extracted intra-operatively.

With this transformation, all points in the femur are referenced to the CT reference frame.

Two calibration procedures are proposed in this thesis:

• First, after exposure of the femur head, a point cloud is extracted using the NDI Polaris

pivot passive marker. The pivot is moved along the femur head in the region of Greater
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Trochanter, according to the figure 6.3. The 3D point cloud extracted in this procedure is

referenced to the opto-tracker, therefore, the registration between the CT point cloud and

the former point cloud, returns the calibration matrix, CTTNDI .

• The second procedure, consists of performing a scan along the leg, with the US probe,

while extracting the features of the femur. These features correspond to the points of the

femur upper contour, referenced to the opto-tracker, since a passive marker is placed on

the probe, as can be seen in figure 6.4. Again, the calibration matrix is obtained through

the registration between the CT and US point clouds.

Figure 6.3: Detail the acquisition of points in the femur head (calibration method 1).

For both procedures, CTTNDI is obtained according the flowchart of figure 6.5. After loading

the two datasets, it is obtained the difference between the centroids (TR0), of the Moving 3D US

point cloud or the pivot point cloud of the head and the 3D CT point cloud. This difference will

define the distance separating the two point clouds, and it is used to move the 3D US point cloud

close to the 3D CT point cloud. The next step involves removing outliers through the RANSAC

algorithm, Fischler & Bolles (1981). After global rigid registration based on ICP algorithm is

applied to register the two point clouds. The output of this step is again used to perform a

local registration and obtain a more refined result. The CTTNDI transformation is then obtained

through the relationship of the two consecutive registrations and initial offset, according to the

equation 41, where TR2 and TR1 are the transformations obtained in both the local and global

registrations, respectively.
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(a) (b)

Figure 6.4: Scan of the femur with the ultrasound probe to extract features (calibration method 2).

CTTNDI = TR2 × TR1 × TR0 (41)

6.3 Robot Navigation

This section presents the method developed to update the drilling point location, in the robot

reference frame, using the information described in the two sections before.

For a correct and accurate navigation of the robot during the surgical procedure it is very impor-

tant that the navigation system can identify, and track the femur movements, and transmit them

to the robot, to perform a correct update of the target’s position and orientation, as soon as pos-

sible. Since this procedure takes place in the intra-operative scenario, all processing times have

to be very fast (close to video-rate), but ensuring accuracy. To achieve these goals and because

in the surgical procedures the femur does not change its position drastically, a local registration

is performed on-line to update the target, based on the femur movements. As was written earlier,

the ideal drilling point is estimated pre-operatively but needs to be spatially located within the

intra-operative scenario, in order to be updated in case the femur moves. Intra-operatively the

position and orientation of drilling point is measured with the NDI Polaris (NDIPdrill). The same

point is calculated in CT reference frame, considering the calibration matrix (CTTNDI ), according

to equation 42.
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Figure 6.5: Steps for obtaining CTTNDI transformation matrix, during calibration process.
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CTPdrill =
CT TNDI ×

NDI Pdrill (42)

The same point, calculated in the robot reference frame, considering the movements that may

exist in the femur is given by equation 43.

(ROBPdrill)k = (NDITROB)
−1 × (CTTNDI)

−1 × (TR)k ×CT Pdrill (43)

where, (TR)k is the homogeneous matrix that represent the transformation obtained in the on-line

local registration, which updates the calibration to compensate the femur movements.

The target (drilling point) update, important for positioning the robot, is done by calculating the

drilling point in the reference frame of the robot, at each instant, in order to track the movements

that may exist in the femur. The flowchart of figure 6.6 illustrates the tasks performed to determine

the on-line update of the target.

The parameters obtained pre-operatively and during calibration are loaded by the method in its

initialization task. After the initial settings the method is ready to receive data by UDP. Receives

at each instant, the robot pose (NDITROB) and the 3D point cloud of each slice. As shown in the

flowchart, the method does not process the information of each slice individually received, but

only sets of ten slices, to obtain a 3D US point cloud bone surface. This is because registration

with a surface obtained better results compared to the slice by slice approach. Ten is the trade-off

to ensure adequate speed and accuracy in the process. Each 3D US surface is calibrated with

CTTNDI in order to register the point cloud with the 3D bone model (CT). The RANSAC algorithm

is used to filter the dataset before performing the local registration with the ICP algorithm, to

obtain the (TR)k matrix.

The new ROBPdrill is calculated using equation 43 and sent to the robot controller in order to

follow the femur movements, if they exist. This process is repeated consecutively until terminated

by the surgeon. The robotic system works on variable impedance control, (Pires (2014)), for

physical surgeon-robot interaction and the real-time bone tracking is performed in open-loop, as

depicted in figure 6.7. NDITROB represents the drill position measure by the tracker and I, the

US image used to track the bone movements.
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Start

Initialization

count = 0

Receive by UDP:
NDITROB and 3D

US point cloud

count = count + 1

count == 10?

Calibrates the

US point cloud

Removing Out-

liers (RANSAC)

Local Registration (ICP)

CT ⇔ US

Calculates ROBPdrill

Sends ROBPdrill by UDP

to the robot controller

count = 0

yes

no

Figure 6.6: Flowchart that describes the calculation of the position and orientation of drilling point in the
robot coordinates.
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Tracking System Robot Controller

ROBPdrill

Optical Measurement

US Image

CTPdrill y

NDITROB

I

Figure 6.7: Block diagram of the open-loop robot control.

Figure 6.8: Experimental setup.
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6.4 Experimental Setup

The experimental setup for Ultrasound Based Robot Navigation System is composed of three

workstations, an optical measurement system (NDI Polaris Spectra), a portable ultrasound sys-

tem (Aloka prosound 2), with a 5 MHz linear probe and a USB video frame grabber, as illustrated

in figure 6.8. The vision-oriented software for bone tracking has been developed in C++ on Net-

Beans environment running on PC1 under OS X operating system. This computer, responsible

for the Bone Tracking, is connected to the NDI Polaris and frame grabber by USB. The calibration,

registration and Navigation applications, presented in sections 6.2 and 6.3 run on computer PC2

under Ubuntu Linux operating system.

Both applications, calibration and Navigation, have been developed in C++ using the Point Cloud

Library (PCL), (Rusu & Cousins, 2011), for 3D point cloud processing, registration and visualiza-

tion. Computer PC3 receives the updates obtained from the navigation system and implements

the trajectory planning, (Pires (2014)), for real-time robot control. All computers are connected

by Ethernet and communicate via UDP Protocol.

To perform experiments of robot positioning in real scenario (figure 6.9), it was constructed a

femur phantom (figures 6.3, 6.4) with similar characteristics to a human femur.

At the beginning of the experiments it is necessary to define the US image scale factors, accord-

ing to the image plane in which acquisitions will be made. A correct procedure goes through the

femur scan with US probe, identify the desired zone and adjust the image plane, probe frequency,

brightness, and focus. For the acquisitions presented in this section, the ultrasound system was

configured to acquire images with an image plane of 10 [cm] (R10), Torres et al. (2011a), and

probe frequency 7.5 MHz, as evidenced in figure 6.2, which results in scale factors Sx and Sy

equal to 0.2858 [mm].

Another important task to perform is to calibrate the system, as described in section 6.2 to obtain

the CTTNDI transformation matrix. This matrix, automatically enters as input into the naviga-

tion software. This procedure takes an average of 5 minutes to be carried out, distributed by

Acquisition and registration / calibration.

The final task to conclude calibration and initializations, passes for finding the drill tool-tip offset,

in order to reference the drill extremity, to the robot wrist. This is referenced to the Polaris system

according to the matrix 44, for all experiments. After performing the initializations / calibrations

previously described, the surgeon or an assistant makes constant scans with the US probe along

the femur. Another assistant starts the image processing station, defines the ROI and runs the

application. Starting from this moment, the system is completely autonomous. It processes sets
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of 10 slices (US images), to obtain a 3D US point cloud, in order to perform the local registration

and update the drilling point position and orientation, which is given to the robot’s controller,

as a set-point. Figure 6.10, depicts the experimental apparatus mounted to perform real-time

experiments.

Figure 6.9: The Real Scenario of the femur phantom, the Us probe, and the drilling point in the femur
head.

NDITMk =




NDIR3×3
NDIt3×1

03×3 1


×




1 0 0 −46, 82

0 1 0 0, 74

0 0 1 −113, 49

0 0 0 1




(44)

where, NDITMk represents the Homogeneous matrix relating the position of the markers, to the

tracker. These offsets (expressed in mm) correspond only to the markers placed on the drill.

6.5 Experimental Results

This section presents some of the results obtained from numerous experiments performed with

this setup. Afterwards it is performed a global error analysis.
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Figure 6.10: Experimental apparatus.

All bone contours were segmented successfully, enabling the accurate tracking of the bone move-

ments. Figure 6.11 shows an output resulting of image processing and the contour points extrac-

tion, calibrated in the NDI referential frame, during the US video tracking process. The segmenta-

tion errors, presented in table 6.1 were calculated in a set of 599 US images. The segmentation

method output was compared with manual segmentation performed by an expert. The results

are expressed in pixel and mm obtained from the Root Mean Squared Error (RMSE), Li & Zhao

(2001), and Mahalanobis Distance (MD), Bedrick et al. (2000). The segmentation results are

within the values obtained by the scientific community, for this kind of images, Alfiansyah et al.

(2009), Foroughi et al. (2007).

Figures 6.12 and 6.13, illustrate the registration process carried out by both methods, presented

in section 6.2 in order to determine the calibration matrix CTTNDI . The target is the 3D CT femur

bone, represented in green, the red point clouds corresponds to the femur features extracted

with Polaris Marker in the head region and the features extracted through a scan with the US

probe in the central part of the femur. In black is the registered point cloud. Figures 6.14 and

6.15 help to better detail the results after registration. As can be seen from the figures, the initial

clouds are quite far, and both methods, first by a global registration and after a local refinement

can successfully register the point clouds and find a relationship between them. The registration

results presented in table 6.2 prove this and show that method 2 present better results, and is

more realistic and practical to perform.

Completed the calibration process, the bone’s movements are identified by registering the 3D
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(a) ROI in the US image. (b) Clean image. (c) US points extracted of the seg-
mentation.

Figure 6.11: Results of image processing during the tracking of the femur.

Table 6.1: Quantification of segmentation errors during the on-line femur tracking.

RMSE σRMSE MD σMD

[pixel] 4.0978 2.5462 3.8041 2.1202

[mm] 1.1712 0.7277 1.0872 0.6060

Figure 6.12: The registration process - calibration method 1. 3D CT point cloud (green). Point cloud of
the femur head, before registration (red). Point cloud of the femur head, after registration (black).

Figure 6.13: The registration process - calibration method 2. 3D CT point cloud (green). US point cloud,
before registration (red). US point cloud, after registration (black).
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Figure 6.14: Local registration highlighting - calibration method 1.

Figure 6.15: Local registration highlighting - calibration method 2.

Table 6.2: Calibration error results, after registration.

Registration error Hdist[mm]

Method 1 0.801403

Method 2 0.756421
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Table 6.3: Results before and after the on-line Registration Process.

Before Registration After Registration Time

Hdist[mm] Hdist[mm] [s]
Registration results (ICP) 1.0667 0.7936 0.32

Refinement of registration (CPD) 0.7936 0.6826 13.01

US point cloud obtained from 10 US images. The average update time between registrations

is 0.32 seconds. Figure 6.16, presents a registration snapshot from the developed application,

run in PC2. The point clouds at the left shows the Model (CT) and the US point cloud received

from PC1 and in the right is presented the results after registration. The registration process

incorporates calibration, global registration and refinement through local registration. Figure 6.17

illustrates and highlights the Local registration process. The use of CPD for local refinement is

computationally more complex and slower, but improves the error results, however its use can be

optional, for the surgeon. Figure 6.18 depicts the local registration of an experiment, performed

with CPD. The registration errors (Table 6.3) obtained in this task are calculated by Hausdorff

distance metric, Mémoli & Sapiro (2004).

Figure 6.16: The registration process, snapshot from the developed application. Left, before registration,
and right, after registration.

NDIPdrill = (CTTNDI)
−1 × (TR)k ×CT Pdrill (45)

ε = △NDIPdrill −△NDITROB (46)

Figure 6.19 represents both the drilling point (NDIPdrill) and the robot’s associated motions,
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Figure 6.17: On-line local registration, highlighting. US point cloud, before local registration (red). US
point cloud, after local registration (black), performed with ICP method.

Figure 6.18: On-line local registration. CT point cloud (green). US point cloud, after local registration
(red). US point cloud, after local refinement (black), performed with CPD method.
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(NDITROB), measured by the tracker during an experiment, represented in Cartesian coordi-

nates. NDIPdrill is calculated according to equation 45 and NDITROB is directly measured by

the tracking system. In the numerous experiments performed, the system responded stably, the

robot followed the femur’s movements, randomly performed. The associated motion errors (ε)

were calculated according to equation 46, and presented in table 6.4. △ represents the differ-

ences between consecutive poses. These results were obtained in experiments where the bone

is purposely randomly moved. With smooth movements of the bone, the tracking error improve

significantly. An accuracy in the order of ± 2 mm / 2 .. 4◦ is achieved, which is aligned with the

accuracy of current systems, Raaijmaakers et al. (2010), McMinn (2009).

Table 6.4: Errors between the drilling point variation and the corresponding variations of the robot, in the
tracker reference frame.

norm δx δy δz

Position [mm] 6.06 1.77 3.77 1.23

Orientation [degree] 3.19 2.48 0.88 3.80

where norm is the norm of the vector and δ represents the variation of position and orientation

expressed in the orthonormal Cartesian system Oxyz.

Table 6.5 presents the tracking results obtained in 47 validated experiments. The errors were

calculated in the representation of vector / angle, considering the current position and the moved

drilling point at each instant, in the robot frame referential (ROBPdrill).

Table 6.5: Movements of the drilling point.

norm σ Max min

Position [mm] 7.64 3.56 14.60 1.46

Orientation [degree] 3.23 2.35 16.41 0.69

where Max and min, represent respectively the maximum and minimum values.
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Figure 6.19: Bone movements (Red) and robot movements (Blue) during an experiment, represented in
XYZ coordinates.





Chapter 7

Conclusions

I
n this last chapter are described the conclusions obtained from the work developed on this

thesis. The contributions developed in this thesis that go beyond the state-of-the-art are pre-

sented, along with a discussion on the research lines followed, to achieve those contributions.

The chapter concludes with proposals to future work.

7.1 General Conclusions

This thesis described a new approach for robot navigation during orthopaedic surgical proce-

dures. The solution developed to track femur bones was successfully applied to Hip Resurfacing

surgery. The system can also be adapted to other bone surgeries, that need a precise navigation

of the surgical tools.

The developed robotic system can compensate for femur movements, during bone drilling pro-

cedures. It is useful to ensure the drill desired positioning in order to perform a hole in the femur

head, necessary to implant the initial guide wire, which ensures the correct implant’s alignment.

The robot’s navigation system is based entirely on the information extracted from images ob-

tained from CT (pre-operatively) and US (intra-operatively). Contrary to current surgical systems,

it does not use any type of implant in the bone, to track the femur movements. The intra-operative

bone tracking is performed in real time by registration of 3D US points with the femur 3D model

(CT).

During this thesis, several approaches have been followed, always with the goal to reach a viable

solution for replacing fiducial markers used in orthopaedic surgery, towards an invasive image-

based navigation. Since CT produces a detailed cross-sectional image comparatively to other

89
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medical imaging modalities, it was chosen to be used in the preoperative surgical planning. As

US is a medical imaging technology with the capacity to deliver images at video-rate (50Hz), it

was chosen to be used in the intra-operative scenario to acquire images of the femur during the

surgical procedures. US imaging is a modality suited to track bone movements but produces

noisy images, e.g., mainly speckle noise. It have a low signal to noise ratio, and is limited for

tissue penetration, i.e., does not penetrate bones. As such, only the bone upper surface is

represented in US bone images.

A major contribution from this thesis were the developed algorithms to obtain the relation between

the images acquired intra-operatively (US) and the images previously processed pre-operatively

(CT). The proposed solution was based on the registration of both 3D point clouds, extracted

from CT and US images, respectively.

In this thesis, were proposed two solutions to acquire US images spatially located, in the intra-

operative scenario. The first was a freehand system, where it was used the NDI Polaris opto

tracker to measure the position and orientation of the US probe. The IGSTK toolkit was used to

acquire and synchronize the images with the Polaris. Passive markers were placed on the US

probe to measure its 3D pose and therefore find the position of each pixel in the US image.

The second solution is a non-freehand system, where the US probe is placed on the end-effector

of an anthropomorphic robot. The robot is responsible to move the US probe along the leg and

give a spatial location for each slice. This system has the advantage of obtaining images with the

same distance between them. Both systems were tested in several acquisitions of human femurs.

A combination of both systems would be a good solution, since it allows to acquire images evenly

spaced and with high pixel location accuracy, provided by the Polaris system.

A new region-based approach for US images segmentation based on an existing algorithm, was

proposed. This method presents excellent results in the segmentation of US images, compared

with other conventional algorithms. The principal difficulty of image segmentation algorithms is

to identify the bone boundary in noisy and blurred images, such as US images. The proposed

method identifies correctly the bone contour and rejects other regions in the images with pixel

intensities similar to bones. The same method was used in the femur head’s segmentation in CT

images and the results confirm the method’s flexibility and robustness.

After the image processing tasks the 3D CT and US surfaces were extracted and registered, with

the methods, ICP and CPD. The last method is more accurate but is more time consuming com-

paratively to ICP, as such is not a good solution to perform registration in real time applications.

The ICP has the difficulty to obtain good results if the ”Moving” dataset (3D US point cloud) is

far from the target (CT point cloud). To solve this, the difference between the centroids of both
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datasets were computed and used to move the ”Moving” cloud close to the target. After this

approximation, a global rigid registration was performed with ICP. The output was again used to

perform a local registration and obtain a more refined result. The local refinement results could

be improved if used the CPD, instead the ICP method, however is only an option for the surgeon,

because is a more time-consuming process.

To control the robot using visual feedback, an approach where the visual motor interaction is esti-

mated, using fuzzy models, was also presented. The Fuzzy based approach was validated using

an experimental setup developed for visual servoing experiments, under real working conditions.

The experimental results allows to identify real implementation issues regarding the visual frame

rate, the error introduced by the visual data, and its implications to robot control. The knowledge

obtained from these experiments and the results obtained, have opened a path to implement a

control system with visual servoing using US images.

Following the previous presented contributions of this thesis, a new approach for US based robot

navigation was developed. This approach combine the developments proposed in this thesis to

obtain a solution to close the control loop for robotic motion compensation of the femur, using

US images. A KUKA lightweight robot was used to validate the applicability of the bone tracking

system in the experimental tests carried out on a femur phantom. During the experiments the

drilling point update was validated, with errors less than 2 mm / 3◦. This accuracy values are

in line with the current conventional alignment systems, which demonstrates that the solution

found in this thesis, is valid and have applicability. The drilling point update, calculated in the

reference frame of the robot, is obtained at each 6 seconds. This value includes the time for

image acquisition and processing, registration and the calculation of the new drilling point pose.

This value should be improved in order to increase the robustness and stability of the navigation

system, and allow that this approach can be used as a real time solution to assist the surgeon in

the drilling procedures, during the HR surgery.

This thesis finally demonstrated that is possible to track the bone’s movements only with image

information. However, the system accuracy must be improved in order to be a valid solution for

experimental tests on corpses. Position errors less than 1 mm are needed for a real application,

and is possible to obtain this precision with improvements in the different tasks of this thesis. In

the next section are discussed and proposed ideas for future work, that could be implemented to

improve the system, and take it to the operating room.
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7.2 Suggestions for Future Work

During this thesis’s developments, a number of open problems were solved in order to obtain a

solution to track bones in orthopaedics surgery, without any marker in bone. These problems

suggest a variety of research directions that need to be pursued to improve the work and develop

a system feasible with application in the operating room.

The first suggestion consists in use a professional ultrasound equipment with a high resolution

linear transducer (7-12 MHz) and a new frame grabber with high video definition for more res-

olution, in order to improve the quality of images in the acquisition tasks. The improvements

in acquisition allow better results in the image processing tasks and certainly the precision and

accuracy of segmentation will be improved.

Another suggestion is use a robot manipulator with a ultrasound probe in eye-in-hand configura-

tion, to perform the femur’s scan. With this proposal the ultrasound slices are acquired with the

same spacing and the same pressure on the leg, that produces image datasets suited to obtain

3D data from them.

The registration results could be improved, if the registration between datasets is performed

based in other types of features, (e.g. shape, curvature, normals, etc), instead of only 3D points.

A possible drawback could be the computational time needed to obtain these features.

Another interesting line of research is the investigation of a new registration method, less sensi-

tive to initialization and to the distance between the point clouds. One suggestion is combine the

benefits of probabilistic methods such as CPD, with the speed of methods such as ICP.

The experimental setup could be changed in order to use only one workstation to perform the

tasks of acquisition, registration and tracking. The processing times can be improved if is used

GPU-accelerated computing in the image processing and registration tasks.

Finally, some markers could be placed in the region of femur’s head, after the intra-operative

exposure, to aid the tracking system in the bone movements detection during surgery. As these

markers are rigidly attached on a intervention region, don’t damage the bone and will be a good

solution to obtain a referencing point. The pose of these markers are directly measured by the

opto-tracker system.

After improving the systems reproducibility and repeatability with the reduction of tracking er-

rors, experimental tests should be performed in corpses to validate the applicability of the robot

navigation system proposed in this thesis.
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