
G-JSIM – A GUI TOOL FOR WIRELESS SENSOR NETWORKS SIMULATIONS UNDER J-
SIM

1Paulo A. C. S. Neves, 2Iúri D. C. Veiga, 3Joel J. P. C. Rodrigues

1Superior School of Technology, Politecnic Institute of Castelo Branco, Avenida do Empresário, Castelo

Branco, Portugal
2,3Department of Informatics, University of Beira Interior, Rua Marquês d'Ávila e Bolama,

6201-001 Covilhã, Portugal
2,3Institute of Telecommunications - Networks and Multimedia Group, Portugal

1pneves@est.ipcb.pt, 2iuridavid@gmail.com, 3joeljr@ieee.org

ABSTRACT

A Wireless Sensor Network is composed of up to thousands
of smart sensing nodes with processing unit and memory,
sensing unit and wireless communication capabilities.
Wireless Sensor Networks application spans from the
military applications into almost every field we can think of.
Several simulation tools are readily available, among them
the J-Sim, a java-based simulator with growing interest by
research and network developers alike. We propose to
enhance J-Sim functionality with a Guided User Interface
for Wireless Sensor Networks that dramatically increases
the user-friendliness of the simulator. Also, we provide a
free download web page for everyone to benefit.

Index Terms— Wireless Sensor Networks, J-Sim simulator,
Guided User Interface, XML-based Simulation Tools, Tcl

1. INTRODUCTION

A Wireless Sensor Network (WSN) [1] is a network of
interconnected nodes with sensing capability, self-powered,
with a processing core and wireless communication
capabilities. The intelligent sensors scan the environment
and provide useful information transmitted over to a special
node: the sink node. Although there are some designs that
are sinkless, the sink node is present in the large majority of
deployments.

The WSN are expanding its applications from military
into almost every application we can think of, like
environment applications, habitat monitoring, industry and
business application and smart home, smart office, smart
system. Recently a great interest is draw to medical
applications [2], namely personal monitoring [3].

Simulation is a relatively fast means to obtain an
estimate of network performance and tuning. Three of the
most used simulators for WSNs are Network Simulator 2
(ns-2) [4], Java Simulator (J-Sim) [5] and Sensor Network
Emulator and Simulator (SENSE) [6].

The paper elaborates on the development of a Guided
User Interface (GUI) for the specification of WSNs
simulation under J-Sim. Our approach provides the
specification of a network, through pre-defined guided
steps, simulation parameters and network topology storage
and retrieval, automatic Tcl file creation and issues J-Sim to
perform the simulation itself. We consider the user
friendliness of the solution, by providing a structured GUI,
based on the different node types and grouping similar
simulation parameters.

The remainder of the paper is as follows. In section 2 we
surface the J-Sim simulator, while in section 3 we present
our solution in the user perspective. In section 4 we
elaborate on G-JSIM internals and finally in section 5 we
conclude the paper.

2. THE J-SIM SIMULATOR

J-Sim is developed in the Ohio State University and is an
open source, component-based compositional network
simulation environment that is developed entirely in Java.
The simulator provides many advantages over the “classic”
ns-2 approach, namely with the use of the Autonomous
Component Architecture (ACA) [7] that enables component
independence.

The ACA uses a model that resembles integrated circuit
assembly, since components have ports to communicate
between each other and can be constructed independently. J-
Sim uses Java to implement all the cases and Tool
Command Language (Tcl) is used as a linking script
language that enables construction, configuration and/or
network simulation at run-time.

In [8], the authors state that J-Sim is much more scalable
than ns-2 (with emphasis on memory usage). J-Sim is also a
dual-language simulator like ns-2 (J-Sim uses Java and Tcl,
while ns-2 uses C++ and Tcl), the classes/methods/fields in
Java need not be explicitly exported to be accessed in the
Tcl environment.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório do Instituto Politécnico de Castelo Branco

https://core.ac.uk/display/62717205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

J-Sim uses the simulation model depicted in Figure 1.
The target node sends stimulus information for the WSN to
capture: the sensor nodes must cooperate in order to retrieve
meaningful data and send it to the sink node. With this
model, it is possible to simulate several WSN scenarios.

Target nodes have only one communication channel, the
sensor channel, since they only send stimulus to the sensor
network, the sensor nodes communicate in two ways, sensor
and wireless channel, and finally the sink nodes only
communicate in the wireless channel.

Figure 1. J-Sim simulation model for WSNs.

To the best of our knowledge there are no dedicated
applications for guided creation of simulation scenarios,
namely an application that can capture WSN parameters
graphically, build the corresponding Tcl file and
automatically launch the simulation.

3. G-JSIM IN USE

Graphical interface for Java Simulator is built in Java. Since
J-Sim already needs a java Runtime environment, there is no
need to install additional frameworks. We provide a
downloadable zip archive of the application in
http://www.di.ubi.pt/~joel/g-jsim.html.

Figure 2. G-JSim main screen interface.

Figure 2 shows the main screen interface of G-JSim. In
this screen the user can configure the top level parameters of
the Wireless Sensor Network, such as number of sensor,
target and sink nodes, the method to define the network
topology, and simulation time. This first screen also requests
what the propagation model will be and the network grid
size. An asterisk close to a parameter or button indicates that
changes aren’t saved yet.

After initial network setup, individual network
components can be set up. The sensor node parameters input
is divided into three main areas: Power Model, Sensor
Mobility Model and Sensor Function model. Power Model
has three different areas: the CPU model, the Radio model,
and the Battery model as Figure 3 shows.

Figure 3. Sensor node’s simulation parameters input.

In Figure 4 we present the target node’s simulation
parameters. These are divided into three main areas: Sensor
Mobility Model, Target Agent Layer and Sensor Physical
Layer. The Sensor Mobility Model is further divided into
Topology (that defines sensor movement boundaries), the
initial position of the node and the Destination Mode (the
model that is used to calculate node movement).

Figure 4. Target node’s simulation parameters input.

Finally the sink node’s simulation parameters are shown
in Figure 5. The sensor application part deals with Coherent
Threshold, and node position, while Queue allows queue
parameter’s specification. Finally Wireless Phy sets physical
layer parameters and RTS threshold of Mac 802.11 can also
be set.

Figure 5. Sink node’s simulation parameters input.

If more than one node type is selected the interface
allows personalization of individual nodes, bounded by J-
Sim capabilities. For instance the user can define the
individual location of each node, but sink nodes are limited
to one per simulation at this time.

After simulation parameters input, the application is
ready for the next step. The user can save the current
simulation parameters in a XML file. Figure 6 shows the
beginning of one XML file. This file can latter be loaded,
avoiding the burden of input the new simulation parameters
and allowing fine adjustments.

Figure 6. Illustration of XML file that stores simulation parameters.

All simulation options are according to J-Sim simulation
engine as to November 2007. After the XML file creation
the user can issue a simulation. J-Sim accepts a Tcl file for
simulation input, we generate the Tcl file based on an Tcl
Wireless Sensor Network simulation file by Ahmed Sobeih
[9], MsC.

Figure 7 shows an extract of the Tcl file generated on
one of our performed simulations. The file starts by
informing J-Sim that a Sensor Network of 4 sensor nodes
and a sink node must be simulated, and 2 target nodes are
used to provide stimulus for this network.

Figure 7. Illustration of Tcl file used for simulation.

Finally the simulation takes place. J-Sim is automatically
invoked and a third file is created with log information, as
Figure 8 shows. We named this file with extension .sim.

Figure 8. Illustration of simulation log file.

When simulation is finished, J-Sim shows the results in
graphical form, in signal-to-noise ratio charts, like Figure 9
shows. Each graph corresponds to a target node.

Figure 9. SNR ratio illustration.

<?xml version="1.0" encoding="ISO-8859-1"?>
<Data_Simulation>
 <netWorkTopologyType>AODV</netWorkTopologyType>
 <propagationType>Seismic Propagation</propagationType>
 <simulationTime>600.0</simulationTime>
 <d0>0.2</d0>
 <atnFactor>0.0</atnFactor>
 <flagD0>true</flagD0>
 <flagAtnFactor>true</flagAtnFactor>
 <sensorNodeMaxX>0.0</sensorNodeMaxX>
 <sensorNodeMinX>0.0</sensorNodeMinX>
 <sensorNodeMaxY>0.0</sensorNodeMaxY>
 <sensorNodeMinY>0.0</sensorNodeMinY>
 <capacityWirelessChannel>0</capacityWirelessChannel>
 <nGrids>0</nGrids>
 <nodePosMaxX>600.0</nodePosMaxX>
 <nodePosMaxY>500.0</nodePosMaxY>
 <nodePosMaxZ>0.0</nodePosMaxZ>
 <nodePosMinX>100.0</nodePosMinX>
 <nodePosMinY>100.0</nodePosMinY>
 <nodePosMinZ>0.0</nodePosMinZ>
 <nodePosDX>60.0</nodePosDX>
 <nodePosDY>60.0</nodePosDY>

#Number of Target Nodes
set num_target_nodes 2

#Number of Sensor Nodes
set num_sensor_nodes 4

#Number of Sink Nodes
set num_sink_nodes 1

set sink_id 0

#Number of Nodes (sensor + target + sink)
set num_nodes 7

#Create the sensor Channel
mkdir drcl.inet.sensorsim.SensorChannel sensorChannel

Capacity of the sensor channel is total number of nodes (sensors + targets)
! sensorChannel setCapacity $num_nodes

#Create the propagation model
mkdir drcl.inet.sensorsim.SeismicProp seismicProp

#Sets the minimum value of the distance between two nodes
! seismicProp setD0 0.2

TCL0> create sink 0
create sensor 1
create sensor 2
create sensor 3
create sensor 4
create target 5
create target 6
simulation begins...
Target 5: generating signal at time 0.05 loc: 550.0, 250.0, 0.0
Target 6: generating signal at time 0.06 loc: 400.0, 450.0, 0.0
Target 5: generating signal at time 20.05 loc: 186.55257801708888,
330.79967725171025, 0.0
Target 6: generating signal at time 20.06 loc: 510.8940036922546,
265.5468162323655, 0.0

4. G-JSIM ARCHITECTURE

G-JSIM is entirely built over the Java development

platform, JDK 6 Release 5 and we used the Netbeans 6.0.1
IDE. Figure 10 shows G-JSIM class diagram. The classes
SinkNodes, SensorNodes and TargetNodes have the
attributes and methods of their respective node type. Class
AllVariables groups it all, with other simulation parameters
not directly related to the nodes.

Classes TargetNodeGUI, SensorNodeGUI and
SinkNodeGUI handle the Guided User Interface of their
respective node types, while MainInterface is the core of the
graphical interface.

In terms of files, there are classes that open existing Tcl
(OpenTcl) and XML (OpenXml) and classes that create and
save current Tcl (GenerateTcl) and XML (GenerateXml).

Finally class FileTypeFilter allows restriction of file
extension when browsing for a file, and classes
CreateTables manage the tables created for the sensor’s
mobility.

We are currently working on application optimization
and a friendlier user interface.

Figure 10. G-JSIM class diagram.

5. CONCLUSIONS AND FUTURE WORK

We presented a GUI tool for WSN simulation with direct
and automatic interface with the J-Sim simulation engine.
The tool is freely available for download, and grabs user
input parameters, stores them in a Xml file and
automatically launches J-Sim to perform simulation.

With the growing use of sensors in consumer electronics,
this tool might help further developments on this area,
providing reliable and easy-to-get information before an
actual deployment of the sensor network.

We are currently working on a user-friendlier version of
G-JSIM, namely with a graphical introduction of the nodes.

5. REFERENCES

[1] I. F. Akyldiz, W. Su, Y. Sankarasubramaniam, and E.
Cayirci, "Wireless Sensor Networks: a Survey," Computer
Networks (Elsevier), vol. 38, pp. 393-422, 2002.

[2] The promise of Wireless Sensor Networks for Medicine,
http://www.intel.com/research/exploratory/wireless_promise.htm,
Accessed in June 2007

[3] S. Kroc and V. Delic, "Personal Wireless Sensor
Network for Mobile Health Care Monitoring", presented at 6th
international Conference on Telecommunications in Modern

Satellite, Cable and Broadcasting Service, Serbia and Montenegro,
2003.

[4] NS-2 Networking Simulator,
http://www.isi.edu/nsnam/ns/, Accessed in January 2007

[5] The J-SIM Simulator, http://www.j-sim.org, Accessed in
January 2007

[6] SENSE - Sensor Network Simulator and Emulator,
http://www.ita.cs.rpi.edu/sense/index.html, Accessed in March
2007

[7] The Autonomous Component Architecture,
http://www.j-sim.org/whitepapers/aca.html, Accessed in April
2007

[8] A. Sobeih, W.-P. Chen, J. C. Hou, L.-C. Kung, N. Li, H.
Lim, H.-Y. Tyan, and H. Zhang, "J-Sim: A Simulation
Environment for Wireless Sensor Networks", presented at 38th
Annual Simulation Symposium (ANSS '05), San Diego, CA, USA,
2005.

[9] Ahmed Sobeih Home Page,
https://netfiles.uiuc.edu/sobeih/www/, Accessed in September
2007

