
Development System for FPGA-Based Digital Circuits

V.Sklyarov, J.Fonseca, R.Monteiro, A.Oliveira, A.Melo, N.Lau, I.Skliarova, P.Neves, A.Ferrari

Department of Electronics and Telecommunications – Aveiro University

DESIGN PROBLEMS

The paper discusses some new hardware and software tools
that can be used for the design of virtual circuits based on
dynamically reconfigurable FPGAs. With the aid of these tools we
can implement a system that requires some hardware resources Rc,
on available hardware that has resources Rh, where Rc>Rh. The
main idea of the approach supported by these tools is the rational
combination of FPGA capabilities with some proposed methods
for producing a modifiable specification, together with a novel
technique for architectural and logic synthesis, which has been
incorporated into the new design environment.

The considered digital circuit is composed of two traditional
components, a control unit modeled as a FSM, and a datapath
containing a set of functional blocks that provide the required
processing of the data. Note that for virtual circuits, just a part of
operations will be physically implemented in reconfigurable
hardware. This part includes a subset πi⊂π of the control
algorithms and an associated subset of datapath Di⊂D, which will
be required in order to perform the operations described by πi. In
general, when we modify the control algorithms πi we have
implemented, we also have to modify the corresponding datapath
Di. In order to change the sets πi and Di we can load new
configuration data into the predefined areas of the FPGA SRAM
from external memory, keeping all the required configurations.

Thus the purpose of our design is to build the circuit with the
properties of modifiability, extensibility and, finally,
virtualability. We want also to solve some supplementary
problems, such as incorporate incomplete design for purposes of
preliminary tests, etc.

Note that field programmable technology only provides
support for some of the properties we have considered above. The
remainder have to be implemented through new architectures for
digital circuits that is suited to meet the target requirements. There
are some commercial boards that are used mainly as coprocessors
for PCs, such as the FireFlyTM (Annapolis), the Riley-2 (Imperial
College), etc. These allow the critical parts of software (usually
time-consuming) to be implemented in hardware, and
consequently improve many aspects of the related programs, such
as performance for instance. However, it is difficult, and in many
cases unrealistic, to use such boards to construct digital systems
that are not dependent on a host computer (such as embedded
systems), and for which the properties considered above are
satisfied. For this reason, we have designed a stand-alone board
that can be programmed from either the parallel or serial ports of a
host computer. The board is based on the dynamically
reconfigurable XC6200 FPGA.

The next stage is the architectural, logic and topological
design of digital circuits based on either a stand-alone or a built in
PC board. Our approach differs from known methods and tools in
two ways. It presents a set of formal methods that on the one hand
allows modifiable circuits to be synthesized for both the control
unit and the datapath, and on the other hand provides systematic
support for dynamic reconfiguration, starting from the behavioral
level. The approach is based on a proposed decomposition of the
resulting scheme into permanent, parameterized and modifiable

parts. The permanent and parameterized parts can be implemented
within an FPGA based on pre-designed templates. The modifiable
part can be designed using the software tools that have been
developed for this purpose. Finally, the proposed technique
allows the complete digital circuit to be designed, simulated,
implemented in hardware and debugged. Note that there are some
CAD systems such as ViewLogic, as well as other software
packages that can be used to construct circuits based on
dynamically reconfigurable hardware. However, they do not allow
dynamic reconfiguration of routing resources, i.e. they can only be
used to make run-time modifications to functions of individual
cells. That is why we have developed new software that provides
an interface with commercially available packages, such as
XACT6000 and Velab, and allows us to perform design steps that
are common to a number of digital circuits (to embedded
applications in particular). The new software also enables us to
construct circuits that satisfy all the requirements that we
considered above. Finally, we can combine existing software with
our newly developed modules to make use of both stand-alone
and built-in boards based on dynamically reconfigurable FPGAs.

DESIGN TOOLS

The developed design tools provide facilities for synthesis,
simulating, testing, and debugging of digital circuits based on
dynamically reconfigurable hardware, such as XC6200 family
FPGAs. These tools have been integrated into the design
environment for logic synthesis (IDELS)[1]. The software has
been developed using Visual C++ and allows access to both
stand-alone and built-in PC boards with the aid of the RALLib
library (some components of this library have been changed, and
all components have been included in the DLL). Fig. 1 shows the
primary blocks of IDELS, and illustrates a feasible design flow
with the aid of IDELS (see the rectangles with shadow) and
commercially available CAD tools such as ViewLogic, Velab and
XACT6000.

The digital system is considered as a composite of a control
unit and a datapath. To describe the behavior of the system we
have used the algorithmic state machine notation (that is a kind of
flow-chart), or graph-schemes (GS) and their varieties, such as
hierarchical GS (HGS) and parallel HGS (PHGS). Any GS Γk
describes the corresponding sub-algorithm πk from the set π, i.e.
we have to map the set π={π1,...,πK} onto the set Γ={Γ1,...,ΓK}:
π⇒Γ. Each sub-algorithm πk from the set π describes a desired
sequence of operations Ok from the set O={O1,...,OK}. Since we
want to provide extensibility and modifiability of the digital
system, we have to be able to alter the sequence in which
algorithms from the set π are to be executed in hardware, and alter
each separate algorithm πk∈π itself. For many practical
applications it is important to provide for the reuse of algorithms
from the set π in future products.

Let us consider π as a set of relatively independent modules,
and assume that some of them might be reused. To provide for
dynamic replacement of various modules, we can link them
flexibly, in such a way that the required binding between modules
will be established during run time. This will enable us to realize
just a part of π in hardware, and swap it with another part when

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório do Instituto Politécnico de Castelo Branco

https://core.ac.uk/display/62717192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

required. As a result, we will construct a virtual digital system, i.e.
a system for which Rc>Rh.

For many practical applications we want to change not only
the sequence of modules, but also the modules themselves. This
facility has been implemented with the aid of the following
technique:

- for each component πk∈π we have introduced some
constraints, such as the maximum number of inputs/outputs,
etc. As a result we can implement any algorithm πk∈π in a
pre-allocated area of an FPGA;

- modification of the required algorithm has been achieved with
the aid of field programmable technology, i.e. we assume a
partial reconfiguration of the FPGA within the area where the
algorithm πk∈π has to be implemented.
The request for dynamic reconfiguration is generated either

in accordance with some predefined sequence of changes, or
unpredictably when an FPGA generates a hardware interrupt that
forces the execution of the swapping procedure. The latter has
been used in particular for virtual embedded systems. Thus we
have combined architectural models directly supporting dynamic
modifications, and the topological capabilities of field
programmable devices, such as rerouting and the potential for
altering the functions for primary logic elements, such as FPGA
cells.

Note that, in the general case, when we change any algorithm
πk∈π we have to change the set of operations Ok∈O associated
with this algorithm. This has been achieved using a reconfigurable
ALU and stack-based sequence of operations presented in the
form of reverse Polish notation.

Let us consider the primary blocks depicted in fig. 1 in more
detail. The desired behavioral specification can be prepared and
entered with the aid of a graphical editor (block 1), which can also
accept input in a textual format.

After a GS (a HGS) has been prepared, it can be tested for
correctness by examining some formal rules. Then we can invoke
the synthesizer (block 2), i.e. the program, which will perform all
synthesis steps (see the next section for details) for the control
unit modeled as a hierarchical FSM (HFSM). The output of the
synthesizer is a structural VHDL code for the designed control
circuit based on primitives from the PRIMS library. The latter
describes possible configurations of cells for FPGA of XC6200
family of Xilinx. This code can be further processed by the Velab
elaborator, which creates an EDIF file containing the initial data
for XACT6000 (block 3). The latter carries out mapping,

placement and routing procedures and builds *.CAL, *.SYM and
*.RAL files that will be further utilized for initial configuration
(*.CAL), keeping information about the accommodation of
various elements of the circuit in FPGA (*.SYM), and for
dynamic reconfiguration (*.RAL).

The debugger for control circuits (block 4) has been
integrated with the editor (block 1) and enables the following
operations to be carried out:

- configuring an FPGA in accordance with the files
considered above. For preliminary test purposes we have used the
Annapolis FireFlyTM PC board with FPGAs XC6216/6264;

- examining (during run-time) any individual algorithm from
the set π in different modes, such as step by step, continuously,
with interrupts at specified break points, etc;

- testing hierarchical calls;
After the control unit has been designed and tested, we can

construct the attached datapath. The first step is to specify the
desired set of operations Ok∈O with multi-bit vectors (block 9).
The number of operations is limited and depends on the
capabilities of the reconfigurable ALU. Then we build the basic
structure of the datapath (block 10), which is based on pre-
designed templates that were created with the aid of ViewLogic.
The process of synthesis assumes the generation of a proper
modifiable core for the reconfigurable ALU, which is based on
components taken from the ViewLogic XC6000 library. Finally
we use ViewLogic to create an EDIF file for the complete
datapath that is composed of templates (block 11) and the
reconfigurable circuits (block 10). Then the EDIF file is processed
by XACT6000 and all the required files, such as *.CAL, *.SYM
and *.RAL, are generated.

Finally we invoke the debugger for general-purpose
applications (block 7), which can be used for any circuit
implemented in an XC6200 family FPGA. All debugging facilities
have been provided for both built-in and stand-alone boards. We
assume that initially the designed circuits will be tested with the
aid of a built-in board, such as the FireFlyTM. Then we can
configure a stand-alone board and provide its dynamic
reconfiguration when required. In order to do this the following
technique has been applied:

Initially all permanent and parameterizable components of the
circuit have to be loaded;

Next we load an initial configuration for the modifiable
components. All these components are located in preallocated
areas of the FPGA, which have been associated with related
windows in the configuration SRAM. When any modification is
required, just these windows (or parts of these windows) will be
updated. Partial dynamic reconfiguration of the circuit is
assumed; when a new configuration is required, the board
generates a hardware interrupt. The functionality of the FPGA
hardware that has to be reconfigured will be suspended, and the
other FPGA hardware will operate in normal working mode;

The host PC computer handles this interrupt. Firstly it reads
information from the board, which identifies the area of the FPGA
that has to be reconfigured (the window in configuration SRAM
that has to be swapped). Then the desired configuration will be
retrieved from predefined segments stored in the host PC
computer and loaded into the selected areas of the FPGA SRAM.

The results of experiments allow to conclude that hardware
and software tools we have presented appears to be very fast, even
when synthesizing some rather complex designs.

1. V.Sklyarov, R.Monteiro, N.Lau, A.Oliveira, A.Melo,
K.Kondratjuk. “Integrated Development Environment for
Logic Synthesis Based on Dynamically Reconfigurable
FPGAs” Proceeding of FPL'98, Tallinn, 1998.

Design of datapath
based on reconfigurable

templates

Specification of
the required set of

operations with
multi-bit vectors

Design of reconfigurable
templates with the aid of

ViewLogic and XACT6000

VHDL library of
permanent and
parameterizable
components of
control circuits

Specification of
control algorithms

with the aid of
graphical editor

Synthesis of
structural VHDL
code based on the
XC6200 library

Generating an
EDIF file with

the aid of Velab

Mapping, placement
and routing with the
aid of XACT6000

Debugger for
control circuits
integrated with

the editor

Software tools for
dynamic

reconfiguration

Debugger for
general-purpose

applications

Software tools for
remote
control

1

2

3

4

5

6

7

8

9

10

11

12

Figure 1 - Design flow for embedded system with the aid of IDELS
and commercially available CAD tools.

