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Abstract: In this paper decompii®n techniques are The problem of reducing all the computacional
applied to derivative operators, used for image edgerequirements associated with 2-D FIR filters realization
detection. It is shown that the application of can be attacked in several ways. A possible method
decomposition techniques to common edge detectors canvolves the approximation of the given response function
result in substantial savings in computing time. For aby an 2-D recursive filte[1]. The approach we are
25x25 Laplacian of Gaussian, mask, an improvement ofnterested on is based on the expansion of the given
six times less arithmetic operations is achieved wheroefficient matrix into a finite and converging sum of
decomposition techniques are applied.We also show thateparable matrices; this means that each matrix in the
these techniques are advantageous for hardwarexpansion can be expressed as the product of a column
realization of the filters. The memory required to a 2-Dvector by a row vector. Several methods have been
(nxn)-th order FIR filter direct realization with proposed to the decomposition of the filters transfer
distributed arithmetic is Q(n+1)2) while the worst ~function[2,3]. L .
o n In this paper, we study the decomposition techniques
case for the decomposed filter i< a") . application to derivative operators, used for image edge
detection. The classic gradient or Laplacian operators
Keywords: 2-D filters, edge detean, matrix usually have low performance when applied to noisy
decomposition, computindfieiency. images. To obtain performance improvement, some type
of averaging is made before the application of derivative
operators. The resulting coefficient matrices are larger,
which allows performance improvement at the expense of
2-D digital linear filtering is often used in image and computational complexity. The computing efficiency gain
video processing, for noise removal, edge enhancemenichieved with the application of  decomposition
and edge detection purposes. The most common filters atechniques to those operators are analysed in this paper.
finite impulse responseFIR) filters, whose transfer Inthe next section, a short description of the used matrix
function may be represented as: decomposition methods is presented. The subject of their
advantages is also discussed. In section 3, experimental
H(z, ») = ZIF V4 2 1) results obtained by applying the decomposition methods to
typical edge detection operators are presented and
where analysed. In section 4, we discuss the implications of the
T decomposition in hardware filters’ realizations, namely
1 Zl—l Zl_(m_l) for systolic structures and distributed arithmetic
computation. Finally, conclusions are drawn in in section
5.

1. INTRODUCTION

Z]_:
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The matrixFmm) is usually squared and composed by aBy a 2-D filter coefficient matrix decomposition, the
large number of coefficients. The application of thesematrixF can be represented as:

operators to large arrays of pixels is computationally p

intensive. It requires huge amount of time when F=5SF , )

implemented in general purpose computers and great is1

quantity of hardware for dedicated realizations.

2. 2-D FIR HLTERS DECOMPOSITION
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wherep is the rank of the original matrix afélrepresents whereJy is the sum of the squares of the truncation error
separable matrices. Since each mafiis separable, it matrix elements and is the sum of the squares of matrix
can be split into the product of a column vector by a rowF elements. Treitel and Sharld have proved that:

vector. ThereforeH(z;,z) can be expressed as a sum of

products of 1-D polynomials, each one of which is p/\.
function of one variable only: i—dz+|1
p Ed :_p— ’ (7)
H(z1,2) = 3 ai(z) x Bi(z2) - 3 iilAi
i=1 =

Two methods for decomposing the matrix of weightingwhere the bounds &f are 0 ford=p and 1 ford=0.

coefficients &) are now briefly presented) Singular | the SV decomposition, the truncation error is easily
Value (SV) decomposition, andii) Lower Upper computed and controlled. However, as we will see in
triangular (U) decomposition. Thses two methods aregyp-section 2.3, the computing efficiency gain achieved

compared regarding both the error introduced and  tgith this method is only significant when the number of
computional efficiency gain achieved. Without loss of yominant terms of the expansion is small.

generality, in order to facilitate the discussion, a square ) N
coefficient matrixFnxy (rank p< n) is considered. 2.2. Lower Upper (LU) Triangular Decomposition

To apply the LU decomposition method to matfixone
has to guarantee that its fipssuccessive principle minors
With SV decomposition, the matrix can be represented are nonzero. This is achieved by making the suitable

2.1. Singular-Value (SV) Decomposition

by[2]: permutations of rows and columns of makfi¢F'):
F:Cll'1+C2r2+-~-+Cprp | @) H(Zl’ ZZ):ZIF'ZZ . (8)
€= \//\_iki Applying the LU decomposition method to the matFix
where: we obtain:
* A>A>...>Ap - are the positive eigenvalues of the P T
. T F'= ) diLiUi 9)
symmetric matrik " F; &
* ki Kz, ..., Kp - are the normalized column eigenvectors \ynere
associated with the corresponding eigenvalues of the
. T
matanFT; Lj :[O o 001 fiygi |ni]
. . il (q0)
* Iy, Iy ..., Ip are the normalized row eigenvectors L N T
associated with the corresponding eigenvalues of the Ui ‘[O 01 Uj+1 o ip nx1
matrix F T F.

Therefore, the transfer function is:
Eqg. 1 can then be written as:

p p
P - b HELz)= 3 d@{L)UiZ2)= 3a (@A (22).
Hzu2)= ¥ (Z96)-(1Z,)= Yo (@A (22) - =1 =1
=1 =1 As in the SV decomposition, in the LU decomposition is
The rank of matrix F determines the number of the @lSo possibly to retain only part of the expansion terms for
expansion terms. Thus far, all theerms are included in @ non-exact representation of maffix

the expansion, which leads to an exact representatibn of | the following sub-section we discuss the advantages of

However, thep terms of Eq. 4 can not contribute equally these two decomposition methods and the possibility of
to the entire expansion. If only the fistdominant terms  thejr conjunction .

are included, Eq. 4 assumes the form:
2.3. Computing Efficiency Gain

d

F= Scn +tEq . (5) The computing efficiency gain achieved with the

i=1 decomposition techniques can be evaluated by
determining the number of “multiply and add” operations
(MADs) required for filters realizatiom’ MADS are
required for the direct realization of a n-1)x(n-1)-th
order filter (Eq. 1)2xnxd MADs are required to realize
the filter if SV decomposition is applied adderms are
Jd retained. In the same conditions, the number of MADs for

&d =£ ' (6) the LU decomposition is:

where the ixn) arrayEq represents the truncation error
matrix. For a mean-square error (MSE) approximation
we can use the energy in the truncation error maggxas

a figure of merit:



d d
2x S(n-i+h=2xnxd+d- & G= Soif
i=1 i=1

* by performing the LU decomposition @G

The final decomposition requires a minimum number of
stages and a minimum number of MADs for a given MSE.
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% 50 LU 3. APPLYING SV AND LU DECOMPOSITION TO

5 * _ EDGE DETECTORS

-g 0 Il } } | Il Il Q dll’eCt form i .

2 0 e et oo~ In a simplified approach, an edge can be detected as a
number of decomp. terms sharp discontinuity in the grey-level profile. However, the

task of detecting edges in real images is more complex,
) due to the presence of noise and image resolution. Well-
Figure 1 - Number of MADs versus the number of  \nown edge detectors based on first and second order
expansion terms for a 7x7 matrix. derivative operators argradient and Laplacian edge
detectord5]. Pixels with high gradient magnitude or with
Laplacian zero-crossings are labeled as edges. The
weighting coefficient matrices corresponding to these

450 linear operators have small size (typically 3x3 or 5x5). In

400

& 350 general, these detectors have low performance poorly on

<§f 300 —%— SV no?sy i_mages. To improve their p_erforr_nan_ce, some of the

%5 250 —se— LU noise is usually removed by previous filtering.

E igg —o—direct form Generalized Laplacian operators, with large size

E 100 coefficient arrays, can be used for noise reduction and

S 50 edge detection. Marr and Hildreth suggest a family of
0 generalized Laplacian edge operators, which uses

S ®m ! ~ o «HS ™
L B |

Gaussianow-pass filters to remove noi§&. The matrix
corresponding to théaplacian of the Gaussian(LoG)

Figure 2. Number of MADs versus the number of must have at leag6v/20 x 6/ ) elements, where is

expansion terms for a 15x15 matrix. the space constant of ti@aussian] for example, a
17x17 matrix should be used for2.

Figures 1 and 2 graphically present the number of MADSSoftware tools for the decomposition of 2-D filters were

versus the number of the expansion terms for,
respectively, 7x7 and 15x15 matrices. The computingf”evelc’pe(.j by the.authm[ﬁ], based on the MATLAB
athematics routines. These tools were used to

efficiency gain is quite similar for both decomposition .
methods if a relative small number of terms aredecompose th_e edge detectors j'USt referred. The results
re presented in the next sub-sections.

considered (less than about 30% of the total number)Ffl
However, for the SV decomposition the number of MADs 3.1. Gradient Edge Detector

grows linearly with the number of terms, while this L e

growing rate is much smaller for the LU decomposition, | "¢ @pplication of SV decomposition is illustrated, by

Moreover, the LU decomposition only requires a greater“smg the basic gradiednt edge detector. The two Sobel
number of MADs than the direct form when almost the MaSks o compute tigradientare:

number of decomp. terms

total number of terms is included in the expansion. On the 1 0 17 01 2 10
other hand, experimental studies have shown that the SV 0 0 0O
decomposition requires a less number of expansion terms Fax =2 0 21% Fay=po0 0 0g.
to achieve a given MSB]. This is also confirmed by the F1 0 1H Bl -2 -H

results presented in the next section. ) .
The rows and columns of the matrices are linearly

We can take advantage of the SV and LU properties in thgependent, so they have a unitary rank.

following way:
gway By performing the SV decomposition:

e by applying the SV decomposition on the
matrix F, and by retaining only thed
expansion terms required for a given MSE;

e by computing a new matrig based on only
thed expansion terms

! MATLAB is a registered trademark of MathWorks Inc..



06 0 -67 2 4 2
Fafax =00 0 OpFiFay = @ 8 4
F6 0 6§ B4 A
A=A =12
JAV( Ay
3 1.41477
Fax = 0 28284°x[- 07071 0 + 07071
B+ 141420
3 2.44947]
Fay=g 0 [x[0.4082 08165 04042
5 2.4494]
By performing the LU decomposition:
310
Fax=-1x 20t 0 -1
B+ 15
310
Fay =1x EO BX[+1 +2 +1.
B15

For this simple but illustrative example, the small filter

arrays are separable, but decomposition leads to poor hl(f):\/F(l—

computing efficiency gain.
3.2. Zero-Crossing Edge Detectors

Laplacianand generalizedlaplacian are isotropic edge

Table 1 - Error and number of MADs obtained for
the generalized Laplacian filter decomposition.

A good approximation of the filter is obtained by retaining
the first two expansion terms. In these conditions, only 60
MADs are required to realize the filter, against the 121
required when we directly use the transfer function. As
referred in the previous section, the SV and LU
decompositions can be applied in conjunction to achieve a
better computing efficiency gain with a minimum error.

The coefficient matrices associated to taplacian of
GaussianLoG ) zero-crossing edge detector is given by:

2 2
+
y )

X2+y2
2 X (—=)
07G(x y) = K2-———) xe 20

o . (11)

1
2Mo

4

wherego is the space constant of Baussian As Huertas
and others observdd], it is possible to decompose the
LoG into a sum of two separable filters:

02G(xy) = A B(Y+ B(X I ¥

, £
é 2
S)xe 20 (12)
g

EZ

ho (€) = vk x e 20°

detectors. The weighting coefficients arrays associated tg 5 floating point numbering system is used, only two

these operators exhibit a low rank. The weightingeynansion terms are required for the exact representation

coefﬂCl_ents_ matrix upper left quadrant for a generallzedmc [73x,y). However, the coefficients of the matrix are
Laplacianfilter may be:

usually quantized to integers [5]. When the SV and LU

-34 -25 -18 -12 -8 -7 decomposition methods are applied (MG x 6\/_27)
-25 -15 -7 -1 3 4 LoG 2-D matrices and the coefficients are quantized to 16
18 -7 2 8 12 14 bit integers, the results in Table 2 are obtained.
-12 -1 8 15 20 21
-8 3 12 20 24 26 SV LU
-7 4 14 21 26 27 — y D y TADe
which correspond to the following eigenvalues: 1130807 10 519510 )
A=[16058 13512 4 P . 0. [2[121xa0% | 20 | 594xaF | 18
The first two expansion terms are clearly dominant. By 5 [ 3 0 30 0 24
applying the SV and LU decomposition we obtain the
results presented in Table 1. 1] 6.78x10° 18 4.62x10 18
SV LU 1 | 2] 1.87x10 36 3.34x10 34
d & MADs y MADSs 3] 1.37x10° | 54 9.90x10 48
1 | 457x1C0 22 7.35x10 22 1] 6.70x10° 26 4.57x10 26
> | 214510 a1 > 57510 42 1. | 2] 4.70x10 52 8.40x10 50
3 | 7.90x10 66 1.67x10 60 5 | 3] 1.60x10° 78 8.35x10° 72




1| 6.71x1C° 34 4.60x10 34 Array processor elements basically perform MAD
F 3 operations. Processing elements are interconnected trough
2 | 2] 4.26x1 68 1.94x1 66 delay elements corresponding to the sampling period of a
3] 1.33x10 102 1.63x10 96 pixel or of a row of pixels.
A systolic processor directly obtained from the transfer
1] 67140 42 4.52x10 42 function of a (xn)-th order 2-D FIR filter impliesr(+1)2
2. | 21 4.47x10 84 7.99x10 82 processor elements. The number of processor elements
required to realize filters with decomposition is equal to
5 | 3] 2.26x10 126 6.47x10 120 the number of MADs. Therefore, the cost of systolic array
11 67110 50 257510 50 processors depends directly on the number of expansion
' ' terms.
3 | 2] 36mad 100 1.10x10 98 4.2. Distributed Arithmetic Computation
3| 1.97x10 150 1.23x10 144 To implement a filter equation with distributed arithmetic
it is assumed that) signals are bounded ;i) signals
Table 2 - Error and number of MADs for the LoG are coded in two’s complement wiBbits of accuracy.

filter decompostion. The general difference equation forreth order 1-D FIR
filter can be written in the form:

B-1 n n
For Fhe same number of expansion terms, the MSE is yi = ( Z_SakX‘sik) _ akxio—k , (13)
considerable lower for the SV decomposition than for the 4 & &

LU decomposition. For the SV decomposition the MSE is

negligible when only two expansion terms are retainedyhere x| are binary variables. Through the definition of
Although the original LoG filter can be decomposed into a )

sum of two separable filters, results in Table 2 are® Proper function,¢(x,--,%-n), Eq. 13 can be re-
concerned to an integer quantized filter approach. Usingvritten as:

two expansion terms, the computing efficiency gain, B_1

compared to the direct form, varies between 1.25 to 6.25, o S, \o—=S _ 40

for arrays size between 5x5 and 25x25. Yi= le¢ (2 7-¢7°(), (4

The MSE for the LU decomposition is significant when
two expansion terms are retained. As it was referred i
the previous section, the LU decomposition can be usef
when applied in conjunction with the SV decomposition,
in order to increase the computing efficiency gain.

l;%md the filter can be realized through look-up-tables, for
ealizing thed(.) function, mask bit shifters and adders.
he total memory requirement to realize a +Hih order

filter is then:

n+1
4. HARDWARE FILTER REALIZATION Bxtx2 )

The block diagram of Fig. 3 shows the realization of theWheret Is the coefficient precision (in bits).

FIR filters described by Eq. 3. Distributed arithmetic can also be applied to 2-D FIR

Figure 3.- Decomposition realization for 2-D filters.

a1(z1) Bu(z)

. Yij
The decomposition realization exhibits parallelism, %ij 5
because thed terms can be computed in parallel. | 92(z) [ BA2) g
Moreover, each of thd stages corresponds to two 1-D
filters. Array processorg7] and distributed arithmetic
computatiorf9] are two approaches used for the hardware 0u(z2) Ba(22)
implementation of the filters. As we will see in the next
sub-sections, filter decomposition can be advantageous
for both approaches. filters, by writing the corresponding difference equation in

4.1. Array Processors the form:

A systolic array is a computing network in which the data B-1n n s nan 0

are rhythmically computed and passed through theVi,j = Z(;)%Z a1 A2k, jl) ;Zak’m_k’j -
network. Several systolic array processors have been s=1 k=0[= k=0I=

proposed for 1-D and 2-D filteri§, §. The structure of (15)
such arrays is directly derived from the filter signal flow _— .

graph. Retiming procedures are applied to the graphs i-rl;hrongh the definition of a proper function:
order to achieve completely pipelined computation. G5 K jon X1y o K )



Eqg. 15 can be re-written as:
B-1
Yij = prs(.)z‘s—coo(.) . (8)
S=

The total memory requirement to realizenrj-th order
2-D FIR filter is then:

Bxtx 2(n+1)2

Distributed arithmetic computation is easily applied to the
filter decomposition realization depicted in Fig. 3. For
each of thad stages, we have two 1-D filters. The total
memory requirement to realize a 2-Bx()-th order filter
with decomposition il stages is:

n+2

dxBxtx2
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Therefore, an high reduction on the memory requirement is[10] J. Jaggernauth,et al., “Real-Time Image
achieved when decomposition is applied. For the exactProcessing by Distributed Arithmetic Implementation of
representation of the filters (all expansion terms are Two-Dimensional Digital Filters”|EEE Trans. On Ac.,

retained), the memory requirement order is:
o(nx2"y |
while for the direct form realization it rises to:

O(2(n+1)2 )

5. CONCLUSIONS

Speechand Sig. Prog.vol.33, n°6, Dec. 1985.

In this paper the application of decomposition techniques
to derivative edge detectors is discussed. It is shown that
significant computing efficiency gain is achieved by
applying these techniques to zero-crossing edge detectors.
For a 25x25 LoG maska€3), an improvement of six
times less MADs is achieved when compared with the
direct form realization. It is also shown that the
application of decomposition techniques allow to
significantly reduce the hardware filter realization cost.
The memory required to a 2-ixn)-th order FIR filter
direct realization with distributed arithmetic is

0(2(”+1)2) while the worst case for the decomposed
filter isO(nx 2").

Research work is being done in order to quantify the
decomposition errors impact in edge detection
performance in real images.
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