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Abstract:  In this paper decomposition techniques are
applied  to derivative operators, used for image  edge
detection. It is shown that the application of
decomposition techniques to common edge detectors can
result in substantial savings in computing time. For a
25x25 Laplacian of Gaussian, mask, an improvement of
six times less arithmetic operations is achieved when
decomposition techniques are applied.We also show that
these techniques are advantageous for hardware
realization of the filters. The memory required to a 2-D
(nxn)-th order FIR filter direct realization with

distributed arithmetic is O n
( )( )2 1 2+  while the worst

case for the decomposed filter is O nn
( )× 2 .
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decomposition, computing efficiency.

1. INTRODUCTION

2-D digital linear filtering is often used in image and
video processing, for noise removal, edge enhancement
and edge detection purposes. The most common filters are
finite impulse response (FIR) filters, whose transfer
function may be represented as:

H z z T( 1, )2 1 2= Z F Z  ,             (1)
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The matrix F(mxn) is usually squared and composed by a
large number of coefficients. The application of these
operators to large arrays of pixels is computationally
intensive. It requires huge amount of time when
implemented in general purpose computers and great
quantity  of hardware for dedicated realizations.

The problem of reducing all the computacional
requirements associated with 2-D FIR filters realization
can be attacked in several ways. A possible method
involves the approximation of the given response function
by an 2-D recursive filter [1]. The approach we are
interested on is based on the expansion of the given
coefficient matrix into a finite and converging sum of
separable matrices; this means that  each matrix in the
expansion can be expressed as the product of a column
vector by a row vector. Several methods have been
proposed to the  decomposition of the filters transfer
function [2,3].
In this paper, we study the decomposition techniques
application to derivative operators, used for image edge
detection. The classic gradient or Laplacian operators
usually have low performance when  applied to noisy
images. To obtain performance improvement, some type
of averaging is made before the application of derivative
operators. The resulting coefficient matrices are larger,
which allows performance improvement at the expense of
computational complexity. The computing efficiency gain
achieved with the application of  decomposition
techniques to those operators are analysed in this paper.
In the next section, a short description of the used matrix
decomposition methods is presented. The subject of  their
advantages is also discussed. In section 3, experimental
results obtained by applying the decomposition methods to
typical edge detection operators are presented and
analysed. In section 4, we discuss the implications of the
decomposition in hardware filters’ realizations, namely
for systolic structures and distributed arithmetic
computation. Finally, conclusions are drawn in in section
5.

2. 2-D FIR FILTERS DECOMPOSITION

By a 2-D filter coefficient  matrix decomposition, the
matrix F can be represented as:

F F=
=
∑ i
i

p

1
 ,               (2)
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where p is the rank of the original matrix and Fi represents
separable matrices. Since each matrix Fi is separable, it
can be split into the product of a column vector by a row
vector. Therefore, H(z1,z2) can be expressed as a sum of
products of 1-D polynomials, each one of which is
function of one variable only:

H z z i z i z
i

p
( 1, ) ( 1) ( )2 2

1
= ×

=
∑ α β .          (3)

Two methods for decomposing the matrix of weighting
coefficients (Fi) are now briefly presented: i)  Singular
Value (SV) decomposition, and ii ) Lower Upper
triangular (LU) decomposition. Thses two methods are
compared regarding both the error introduced and  the
computional efficiency gain achieved. Without loss of
generality, in order to facilitate the discussion, a square
coefficient matrix F(nxn)  (rank p n≤ ) is considered.

2.1. Singular-Value (SV) Decomposition

With SV decomposition, the matrix F can be represented
by [2]:
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= + + +
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   ,            (4)

where:

• λ1>λ2>…>λp - are the positive eigenvalues of the

symmetric matrixFTF ;

• k1, k2, …, kp - are the normalized column eigenvectors
associated with the corresponding eigenvalues of the

matrix FFT ;

• r1, r2, …, rp are the normalized row eigenvectors
associated with the corresponding eigenvalues of the

matrix FTF .

Eq. 1 can then be written as:
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The rank of matrix F determines the number of the
expansion terms. Thus far, all the p terms are included in
the expansion, which leads to an exact representation of F.
However, the p terms of Eq. 4 can not contribute equally
to the entire expansion. If only the first d dominant terms
are included, Eq. 4 assumes the form:
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=
∑ +i i

i

d
d

1
   ,            (5)

where the (nxn) array Ed represents the truncation error
matrix. For a mean-square error (MSE) approximation,
we can use the energy in the truncation error matrix (εd) as
a figure of merit:

εd
Jd
J

=
0

   ,             (6)

where Jd is the sum of the squares of the truncation error
matrix elements and J0 is the sum of the squares of matrix
F elements. Treitel and Shanks [2] have proved that:
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where the bounds of εd are  0 for d=p and 1 for d=0.

In the SV decomposition, the truncation error is easily
computed and controlled. However, as we will see in
sub-section 2.3, the computing efficiency gain achieved
with this method is only significant when the number of
dominant terms of the expansion is small.

2.2. Lower Upper (LU) Triangular Decomposition

To apply the LU decomposition method to matrix F, one
has to guarantee that its first p successive principle minors
are nonzero. This is achieved by making the suitable
permutations of rows and columns of matrix F (F’):
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Z F Z  .             (8)

Applying the LU decomposition method to the matrix F’
we obtain:
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Therefore, the transfer function is:
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As in the SV decomposition, in the LU decomposition is
also possibly to retain only part of the expansion terms for
a non-exact representation of matrix F.

In the following sub-section we discuss the advantages of
these two decomposition methods and the possibility of
their conjunction .

2.3. Computing Efficiency Gain

The computing efficiency gain achieved with the
decomposition techniques can be evaluated by
determining the number of “multiply and add” operations
(MADs) required for filters realization. n2 MADS  are
required  for the direct  realization of a     (n-1)×(n-1)-th
order filter (Eq. 1). 2×n×d MADs are required to realize
the filter if SV decomposition is applied and d terms are
retained. In the same conditions, the number of MADs for
the LU decomposition is:
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Figure 1 - Number of MADs versus the number of
expansion terms for a 7x7 matrix.

Figure 2. Number of MADs versus the number of
expansion terms for a 15x15 matrix.

Figures 1 and 2 graphically present the number of MADs
versus the number of the expansion terms for,
respectively, 7x7 and 15x15 matrices. The computing
efficiency gain is quite similar for both decomposition
methods if a relative small number of terms are
considered (less than about 30% of the total number).
However, for the SV decomposition the number of MADs
grows linearly with the number of terms, while this
growing rate is much smaller for the LU decomposition.
Moreover, the LU decomposition only requires a greater
number of MADs than the direct form when almost the
total number of terms is included in the expansion. On the
other hand, experimental studies have shown that the SV
decomposition requires a less number of expansion terms
to achieve a given MSE [3]. This is also confirmed by the
results presented in the next section.

We can take advantage of  the SV and LU properties in the
following way:

• by applying the SV decomposition on the
matrix F, and by retaining only the d
expansion terms required for a given MSE;

• by computing a new matrix G based on only
the d expansion terms

G c r=
=
∑ i i

i

d

1
    ;

• by performing the LU decomposition on G.

The final decomposition requires a minimum number of
stages and a minimum number of MADs for a given MSE.

3. APPLYING SV AND LU DECOMPOSITION TO

EDGE DETECTORS

In a simplified approach, an edge can be detected as a
sharp discontinuity in the grey-level profile. However, the
task of detecting edges in real images  is more complex,
due to the presence of noise and image resolution. Well-
known edge detectors based on first and second order
derivative operators are gradient and Laplacian edge
detectors [5]. Pixels with high gradient magnitude or with
Laplacian zero-crossings are labeled as edges. The
weighting coefficient matrices corresponding to these
linear operators have small size (typically 3x3 or 5x5). In
general, these detectors have low performance poorly on
noisy images. To improve their performance, some of the
noise is usually removed by previous filtering.

Generalized Laplacian operators, with large size
coefficient arrays, can be used for noise reduction and
edge detection. Marr and Hildreth suggest a family of
generalized Laplacian edge operators, which uses
Gaussian low-pass filters to remove noise [5]. The matrix
corresponding to the Laplacian of the Gaussian (LoG)

must have at least ( )6 2 6 2σ σ×  elements, where σ is

the space constant of the Gaussian  for example, a
17x17 matrix should be used for σ=2.

Software tools for the decomposition of 2-D filters were
developed by the authors [6], based on the MATLAB1

mathematics routines. These tools were used to
decompose the edge detectors just referred. The results
are presented in the next sub-sections.

3.1. Gradient Edge Detector

The application of SV decomposition is illustrated, by
using the basic gradient edge detector. The two Sobel
masks to compute the gradient are:

F F∆ ∆x y =      =    
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The rows and columns of the matrices are linearly
dependent, so they have a unitary rank.

By performing the SV decomposition:

                                                          
1 MATLAB is a registered  trademark of MathWorks Inc..
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By performing the LU decomposition:
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For this simple but illustrative example, the small filter
arrays are separable, but decomposition leads to poor
computing efficiency gain.

3.2. Zero-Crossing Edge Detectors

Laplacian and generalized Laplacian are isotropic edge
detectors. The weighting coefficients arrays associated to
these operators exhibit a low rank. The weighting
coefficients matrix upper left quadrant for a generalized
Laplacian filter may be:

− − − − − −
− − − −
− −
− −
−
−

34 25 18 12 8 7

25 15 7 1 3 4

18 7 2 8 12 14

12 1 8 15 20 21

8 3 12 20 24 26

7 4 14 21 26 27

which correspond to the following eigenvalues:

[ ]λ = 16058 13512 4 2   .

The first two expansion terms are clearly dominant. By
applying the SV and LU decomposition we obtain the
results presented in  Table 1.

SV LU

d εd MADs εd MADs

1 4.57x10-2 22 7.35x10-1 22

2 2.14x10-4 44 2.57x10-3 42

3 7.90x10-5 66 1.67x10-3 60

Table 1 - Error and number of MADs obtained for
the generalized Laplacian filter decomposition.

A good approximation of the filter is obtained by retaining
the first two expansion terms. In these conditions, only 60
MADs are required to realize the filter, against the 121
required when we directly use the transfer function. As
referred in the previous section, the SV and LU
decompositions can be applied in conjunction to achieve a
better computing efficiency gain with a minimum error.

The coefficient matrices associated to the Laplacian of
Gaussian (LoG ) zero-crossing edge detector is given by:
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where σ is the space constant of the Gaussian. As Huertas
and others observed [4], it is possible to decompose the
LoG into a sum of two separable filters:
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If a floating point numbering system is used, only two
expansion terms are required for the exact representation
of ∇ 2(x,y). However,  the coefficients of the matrix are
usually quantized to integers [5]. When the SV and LU

decomposition methods are applied to ( )6 2 6 2σ σ×
LoG 2-D matrices and the coefficients are quantized to 16
bit integers, the results in Table 2 are obtained.

SV LU

σ d εd MADs εd MADs

1 3.08x10-2 10 2.19x10-1 10

0. 2 1.21x10-11 20 5.94x10-6 18

5 3 0 30 0 24

1 6.78x10-2 18 4.62x10-1 18

1 2 1.87x10-9 36 3.34x10-3 34

3 1.37x10-10 54 9.90x10-7 48

1 6.70x10-2 26 4.57x10-1 26

1. 2 4.70x10-9 52 8.40x10-2 50

5 3 1.60x10-9 78 8.35x10-5 72



1 6.71x10-2 34 4.60x10-1 34

2 2 4.26x10-9 68 1.94x10-2 66

3 1.33x10-9 102 1.63x10-3 96

1 6.71x10-2 42 4.52x10-1 42

2. 2 4.47x10-9 84 7.99x10-2 82

5 3 2.26x10-9 126 6.47x10-3 120

1 6.71x10-2 50 4.57x10-1 50

3 2 3.67x10-9 100 1.10x10-1 98

3 1.97x10-9 150 1.23x10-2 144

Table 2 - Error and number of MADs for the LoG
filter decompostion.

For the same number of expansion terms, the MSE is
considerable lower for the SV decomposition than for the
LU decomposition. For the SV decomposition the MSE is
negligible when only two expansion terms are retained.
Although the original LoG filter can be decomposed into a
sum of two separable filters,  results in Table 2 are
concerned to an integer quantized filter approach. Using
two expansion terms, the computing efficiency gain,
compared to the direct form, varies between 1.25 to 6.25,
for arrays size between 5x5 and 25x25.

The MSE for the LU decomposition is significant  when
two expansion terms are retained. As it was referred in
the previous section, the LU decomposition can be useful
when applied in conjunction with the SV decomposition,
in order to increase the computing efficiency  gain.

4. HARDWARE FILTER REALIZATION

The block diagram of Fig. 3 shows the realization of the
FIR filters described by Eq. 3.

Figure 3.- Decomposition realization for  2-D filters.

The decomposition realization exhibits parallelism,
because the d terms can be computed in parallel.
Moreover, each of the d stages corresponds to two  1-D
filters. Array processors [7] and distributed arithmetic
computation [9] are two approaches used for the hardware
implementation of the filters. As we will see in the next
sub-sections, filter decomposition can be advantageous
for both approaches.

4.1. Array Processors

A systolic array is a computing network in which the data
are  rhythmically computed and passed through the
network. Several systolic array processors have been
proposed for 1-D and 2-D filters [7, 8]. The structure of
such arrays is directly derived from the filter signal flow
graph. Retiming  procedures are applied to the graphs in
order to achieve completely  pipelined computation.

Array processor elements basically perform MAD
operations.  Processing elements are interconnected trough
delay elements corresponding to the sampling period of a
pixel or of a row of pixels.

A systolic processor directly obtained from the transfer
function of a (nxn)-th order 2-D FIR filter implies (n+1)2

processor elements. The number of processor elements
required to realize filters with decomposition is equal to
the number of MADs. Therefore, the cost of systolic array
processors depends directly on the number of expansion
terms.

4.2. Distributed Arithmetic Computation

To implement a filter equation with  distributed arithmetic
it is assumed that: i) signals are bounded by ±1; ii ) signals
are coded in two’s complement with B bits of accuracy.
The general difference equation for a  n-th order 1-D FIR
filter can be written in the form:
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where xi k
s
− are binary variables. Through the definition of

a proper function, ϕ( , , )x xi i n� − , Eq. 13 can be re-

written as:
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and the filter can be realized through look-up-tables, for
realizing the ϕ(.) function, mask bit shifters and adders.
The total memory requirement to realize a 1-D n-th order
filter is then:

B t n× × +2 1  ,

where t is the coefficient precision (in bits).

Distributed arithmetic can also be applied to 2-D FIR

filters, by writing the corresponding difference equation in
the form:
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Through the definition of a proper function:
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Eq. 15 can be re-written as:
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The total memory requirement to realize a (nxn)-th order
2-D FIR filter is then:

B t n× × +2 1 2( )   .

Distributed arithmetic computation is easily applied to the
filter decomposition realization depicted in Fig. 3. For
each of the d stages, we have two 1-D filters. The total
memory requirement to realize a 2-D (nxn)-th order filter
with decomposition in d stages is:

d B t n× × × +2 2   .

Therefore, an high reduction on the memory requirement is
achieved when decomposition is applied. For the exact
representation of the filters (all expansion terms are
retained), the memory requirement order is:

O n n( )× 2    ,

while for the direct form realization it rises to:

O n( )( )2 1 2+    .

5. CONCLUSIONS

In this paper the application of decomposition techniques
to derivative edge detectors is discussed. It is shown that
significant computing efficiency gain is achieved by
applying these techniques to zero-crossing edge detectors.
For a 25x25 LoG mask (σ=3), an improvement of six
times less MADs is achieved when compared with the
direct form realization. It is also shown that the
application of decomposition techniques allow to
significantly reduce the hardware filter realization cost.
The memory required to a 2-D (nxn)-th order FIR filter
direct realization with distributed arithmetic is

O n( )( )2 1 2+  while the worst case for the decomposed

filter isO n n( )× 2 .

Research work is being done in order to quantify the
decomposition errors impact in edge detection
performance in real images.
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