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Objective
To assess the fragmentation (ablation) efficiency of laser
lithotripsy along a wide range of pulse energies, frequencies,
power settings and different laser fibres, in particular to
compare high- with low-frequency lithotripsy using a dynamic
and innovative testing procedure free from any human
interaction bias.

Materials and Methods
An automated laser fragmentation testing system was
developed.

The unmoving laser fibres fired at the surface of an artificial
stone while the stone was moved past at a constant velocity,
thus creating a fissure.

The lithotripter settings were 0.2–1.2 J pulse energies, 5–40 Hz
frequencies, 4–20 W power levels, and 200 and 550 μm core
laser fibres.

Fissure width, depth, and volume were analysed and
comparisons between laser settings, fibres and ablation rates
were made.

Results
Low frequency-high pulse energy (LoFr-HiPE) settings were
(up to six times) more ablative than high frequency-low pulse
energy (HiFr-LoPE) at the same power levels (P < 0.001), as

they produced deeper (P < 0.01) and wider (P < 0.001)
fissures.

There were linear correlations between pulse energy and
fragmentation volume, fissure width, and fissure depth (all
P < 0.001).

Total power did not correlate with fragmentation measurements.

Laser fibre diameter did not affect fragmentation volume (P =
0.81), except at very low pulse energies (0.2 J), where the large
fibre was less efficient (P = 0.015).

Conclusions
At the same total power level, LoFr-HiPE lithotripsy was most
efficient. Pulse energy was the key variable that drove
fragmentation efficiency.

Attention must be paid to prevent the formation of
time-consuming bulky debris and adapt the lithotripter
settings to one’s needs.

As fibre diameter did not affect fragmentation efficiency, small
fibres are preferable due to better scope irrigation and
manoeuvrability.
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Introduction
The high and rising prevalence of stone disease [1–3] has led
to increasing numbers of lithotripsy treatments in urology
departments. The opinions of urologists differ about which
holmium laser energy setting fragments urinary stones in
the quickest and most efficient manner. Some claim that

high-frequency lithotripsy is the most efficient approach
[4,5].

To date, the published in vitro laser lithotripsy studies have
only focused separately on the effect on fragmentation
(ablation) efficiency of different laser fibre diameters [6,7],
different pulse energies [8,9], or different laser types [10–12].
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A systematic study examining how the various lithotripsy
settings interact with each other in shaping fragmentation
efficiency has not been performed. In addition, the previous
studies all used different experimentation methods. For
example, stone samples were subjected to single-pulse laser
emission [6,8,13], repeated laser emission [4,14], or just
straight-forward perforation [12]. Moreover, in some studies,
the majority of tests were performed manually [15–17] and/or
used other irregular approaches [14,17,18] that could
introduce human bias and/or error.

To address the controversy about the best settings for
lithotripsy, the present comprehensive study was performed.
Thus, a dynamic and innovative testing procedure that is
accurate, yields highly reproducible results, and is free from
human interaction was developed. The fragmentation
efficiency of high frequency-low pulse energy (HiFr-LoPE)
was compared with the fragmentation efficiency of low
frequency-high pulse energy (LoFr-HiPE) lithotripsy by
measuring fragmentation over wide ranges of pulse energies,
pulse frequencies, total power settings, and with different laser
fibre diameters.

Materials and Methods
Automated Laser Fragmentation Testing System

To ensure precision, laser fragmentation experiments were
performed using an automated system where the immovable

laser fibre fires at the surface of an artificial stone that is
moved along an axis at a constant velocity, thereby engraving
a fissure on the stone surface. The stone was chosen to be the
moving component instead of the laser fibre as this meant a
less complicated automated mechanism could be used, thus
ensuring accuracy.

The system consisted of an automated experimentation
support assembly that was made from Lego Technic™ (Fig. 1).
The assembly included a sliding holder that kept the artificial
stone in place while it was moved at a constant velocity
(21 mm/30 s) along a horizontal plane by an electric motor for
30 s (during which time the stone moved a distance of exactly
21 mm). The assembly also included a specially designed
holder for the laser fibre that kept the fibre tip at 75–80° and
allowed the tip to move slightly and adapt itself to changes in
the stone surface that arose from stone fragmentation. This
ensured that the fibre tip always remained in contact with the
stone material. It also prevented the fibre tip from becoming
trapped in a crater and being dragged away by the sliding
stone. The whole support assembly was immersed in a tank
filled with 0.9% saline.

Preparation of Artificial Stones

Artificial stones were made from plaster of Paris, using the
appropriate powder to water ratio of 1.5:1 by weight [19]. The
stones were left to dry for >96 h at room temperature. The

Fig. 1 Experimental setup and support assembly. (A) An artificial stone with a size of 30 × 20 × 10 mm. (B) The sliding stone holder bearing an artificial

stone. (C) The support assembly with the laser fibre holder and the electric motor but without the stone holder. (D) The support assembly with the

inserted stone holder just before immersion in the tank. (E) A close-up of the laser fibre tip and the artificial stone during laser fragmentation in saline.

The laser holder maintained the laser fibre at a 75–80° angle (instead of 90º) to prevent it from becoming trapped inside the stone during

fragmentation.
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tensile strength of these stones is very similar to several types
of urinary stones [20]. Moreover, they are composed of a
relatively soft material [21]. This makes them suitable for
measuring fragmentation at very low pulse energies that might
not yield detectable fragmentation if harder materials were
used.

Before the experiment, the artificial stones were submerged in
0.9% saline and soaked in a uniform manner. The experiment
began when the stone holder was put into motion, laser
emission was initiated, and a fissure was carved into the stone.

Lithotripsy Fibres

To assess possible variations resulting from differently sized
laser fibres, each experiment was performed with either a
small 200 or large 550 μm core laser fibre (Lumenis –
SlimLine™). Brand new laser fibres were used and the tip was
cleaved after each experiment to avoid any possible fibre tip
degradation bias.

Lithotripsy Settings

A broad range of laser lithotripter settings was used. There
were three groups of experiments. The high- vs low-frequency
experiment involved 16 different settings with total power levels
of 5, 6, 8 and 12 W, pulse energies of 0.2, 0.3, 0.5, 0.8, and 1.2 J,
pulse frequencies of 5, 10, 25, 30, and 40 Hz, and small and large
fibres. The combinations are specified in Figs 2 and 3.

The 6 W experiments, which were performed to more closely
evaluate the changes in fragmentation efficiency as frequency
declined and pulse energy rose, included four experiments of
the previous test group and eight additional experiments at
pulse energies of 0.2, 0.3, 0.4, 0.6, 1.0, and 1.2 J, and pulse
frequencies of 5, 6, 10, 15, 20 and 30 Hz. The combinations,
which were performed with small and large fibres, are
specified in Table 1.

Another 10 experiments involved the following five W/Hz/J
combinations, which were performed with both small and
large fibres: 4/8/0.5, 6.4/8/0.8, 9.6/8/1.2, 16/40/0.4, and
20/40/0.5. These 10 experiments were added to the 16 high- vs
low-frequency experiments and the eight additional 6 W
experiments to make the 34 test dataset displayed and
analysed in Fig. 4.

The laser lithotripter used was the Lumenis™ VersaPulse®

Powersuite 100 W, which can be used at these multiple
frequency and pulse energy settings.

Fissure Measurements

After the experiments were completed, the stones were dried
for >96 h at room temperature and the fissure width, depth,
and volume were measured. Fissure depth was measured

Fig. 2 Surface photographs of the artificial

stones that were exposed to high- or

low-frequency laser emissions from laser fibres

whose diameters were 200 or 550 μm and

which were used at power levels that ranged

from 5 to 12 W. Naked eye observations show

that low-frequency emissions clearly had

superior outcomes. This was confirmed by

subsequent digital volumetric measurements.

The large 550 μm fibre produces wide but

shallow fissures, while the small 200 μm fibre

generates deep but narrow fissures.

Fig. 3 The mean fragmentation volume achieved by small (200 μm) and

large (550 μm) fibres at four different power levels and at high-or

low-frequency lithotripter settings.
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accurately by using the depth of focus of a calibrated optical
microscope (Nikon Labophot 2) [22]. Concerning fissure
width, the borders of the fissure were sometimes too irregular
to make exact measurements. To overcome this, high
resolution photographs were taken with tangential lighting to
reveal the outlines of the fissure. After photographic
calibration and use of image processing software (ImageJ
1.46r, U.S. National Institutes of Health, Bethesda, Maryland,
USA), the depth, width, and volume of the fissure were
calculated. The volume measurement served as the primary
measure of fragmentation efficiency. Fissure width and depth
served as secondary measures.

Statistical Analyses

Statistical analysis was performed using StatEL 2.6, AD Science,
Paris, France. The t-test was used to compare high- vs low-
frequency settings and small vs large laser fibres. Pearson’s
correlation test was used to evaluate relationships between the
different laser settings and the resulting ablation rates. A
P < 0.05 was considered to indicate statistical significance.

Results
Figures 2 and 3 show the high- vs low-frequency experimental
data. At the same power level, LoFr-HiPE lithotripsy achieved

a higher fragmentation (ablation) volume than HiFr-LoPE for
all power levels that were tested, regardless of the fibre size.
Compared with HiFr-LoPE, LoFr-HiPE increased the volume
on average by 4.5 (SD 1.4)-fold (P < 0.001).

When the mean fragmented volumes of the 16 LoFr-HiPE vs
HiFr-LoPE tests were ordered from the lowest to the highest
volumes, the tests with the highest pulse energy (1.2 J)
congregated at the higher end. When these tests were
combined with another 18 tests involving other power, pulse
energy, and pulse frequency combinations (see above), thus
yielding 34 tests, the same distribution was seen (Fig. 4).
There was a linear correlation between pulse energy and
fragmentation volume (P < 0.001). However, the power (W)
used did not correlate with fragmentation volume (P = 0.29).

The results of secondary experiments at the 6 W power level
are shown in Table 1. This indicated that gradual increases
in pulse energy were accompanied by steady, almost
proportional, increases in mean fragmented volume. Thus,
compared with the initial high-frequency setting, increasing
the pulse energy essentially increased the fragmented volume
ratios in a proportional manner.

Analyses of fissure width and depth revealed that these
variables showed similar relationships as the mean
fragmentation volume. First, LoFr-HiPE settings were

Table 1 Relationship between fragmentation and pulse energy at the 6 W power level. Comparison of the fragmentation (ablation) rates with the initial
fragmentation volumes († and ‡) reveals an almost directly proportional increase as pulse energy rises for both types of laser fibres. If the pulse energy
level doubled, tripled or even quintupled in relation to the initial high frequency setting, the fragmented volume ratios rose in an equivalent fashion
although the power level remained the same (6 W).

Frequency,
Hz

Pulse
energy, J

Small 200 μm fibre Large 550 μm fibre Proportional increase
of initial pulse energy

(0.2 J)Mean (SD)
FV, mm3

Ratio of FV
to initial FV†

Mean (SD)
FV, mm3

Ratio of FV
to initial FV‡

30 0.2 5.73† (0.05) 1.0 5.18‡ (0.18) 1.0 1.0
20 0.3 8.57 (0.07) 1.5 11.32 (0.46) 2.2 1.5
15 0.4 10.67 (0.21) 1.9 12.27 (0.71) 2.4 2.0
10 0.6 17.59 (1.08) 3.1 21.34 (1.59) 4.1 3.0
6 1.0 24.46 (1.65) 4.3 25.73 (1.72) 5.0 5.0
5 1.2 31.30 (0.78) 5.5 31.98 (0.75) 6.2 6.0

FV, fragmentation volume.
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settings (inverted red triangles) did not yield

higher fragmentation rates than LoFr-HiPE

settings, even when the settings of the latter

were several orders of magnitude smaller. By

contrast, the highest pulse energies were

associated with the highest fragmentation

volumes (green circle).
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associated with significantly wider and deeper fissures than
HiFr-LoPE (P < 0.001 and P < 0.01, respectively). Second,
analysis of the 34 experiments revealed that higher pulse
energy correlated significantly with wider (P < 0.001) and
deeper fissures (P < 0.001).

When different laser fibres were used for these experiments,
statistically significant fragmentation volume changes were not
detected. This was generally true even when the experiments
were grouped according to regular total power or pulse energy
intervals (P = 0.81). The exception was at very low pulse
energies: at the energy of 0.2 J, the 550-μm fibre was
significantly less effective at fragmentation than the smaller
200-μm fibre (P = 0.015). Notably, large fibres were always
associated with wide fissures (P < 0.001) and small fibres were
always associated with deep fissures (P < 0.001), regardless of
the frequency, pulse energy, or total power used.

It was observed during the experiments that the high-
frequency experiments generated very small, almost
powder-like fragments, whereas low-frequency lithotripsy
generated slightly larger fragments. However, all of these
debris pieces were very friable and turned completely into
dust. Consequently, measurable fragments were not available
for further evaluation.

Discussion
There are only a few studies on high-frequency laser
lithotripsy. One evaluated the effect of pulse frequency and the
so-called ‘popcorn effect’ on multiple loose stone fragments. It
was found that while increasing frequency tended to increase
the fragmentation rate, there was a decline when very high
frequency and higher energy settings were used [4]. The
present study showed that at the same power levels,
HiFr-LoPE was significantly less efficient than LoFr-HiPE
lithotripsy.

The present study also showed that the fragmentation
(ablation) volume, fissure width, and fissure depth increased
when the pulse energy rose. This relationship between
fragmentation volume and pulse energy has already been
described in the early publications of leading experts in the
field, such as Teichman and Vassar [8,9]. However, these
single-pulse laser emission studies analysed the effect of pulse
energy on its own; the possible interactive effects of different
pulse frequency or total power were not examined. A more
recent study that included high-frequency tests found that
when the same frequency is maintained, fragmentation
increases four-fold when 10-times as much pulse energy is
applied [17]. In the present study, the effect on fragmentation
efficiency of varying both frequency and total power levels
was examined. This revealed that higher total power settings
did not guarantee higher fragmentation volumes or wider or
deeper fissures, even when significantly higher total power was
used compared to LoFr-HiPE (Fig. 4). The secondary

experiments at the 6 W power level also revealed another
interesting association (Table 1): as the pulse energy increased,
the mean fragmented volume ratio increased in an almost
directly proportional way. In other words, if the pulse energy
level doubled, tripled or even quintupled in relation to the
initial high-frequency setting, the fragmented volume ratios
rose in an equivalent fashion. This indicates that the key
variable that affects fragmentation efficiency is the pulse
energy, whereas frequency, especially high frequency, and total
power setting play more minor roles.

Several studies have shown that low pulse energy settings
produce smaller stone fragments than high pulse energy
settings [5,23]. This was also marginally observed in the
present study, although no measurable fragments resulting
from any of the lithotripter settings tested were recovered.
Many endourologists claim that HiFr-LoPE settings assist in
achieving a more thorough stone fragmentation because they
‘dust’ the stone and leave no fragments to remove afterwards;
nevertheless the present study shows that these same settings
can be up to six-times slower if one considers the total
ablation volume. But one admits that in vivo stone material
(other than plaster of Paris) may possibly produce some
bulky debris with LoFr-HiPE, debris whose removal may be
time-consuming. The influence of debris size and the
importance of uniformly dusting the stone should not be
underestimated, as indicated by the following example of
three different-sized stones whose length is 1, 2 or 3 cm,
respectively. These stones have a stone volume of 1, 8, and
27 mL, respectively, and their fragmentation into 5-mm
fragments would result in 8, 64 or 216 5-mm fragments,
respectively. All of these fragments would have to be removed
individually. If a 10/12 F ureteric access-sheath was used, the
stones would have to be reduced to 3-mm fragments, which is
the maximum stone size that can be accommodated by this
sheath. In the case of the 3-cm stone, 1000 3-mm fragments
would be produced. During laser lithotripsy, whether using the
slower HiFr-LoPE setting or the faster LoFr-HiPE setting, it is
important to ensure that the lithotripter setting that is applied
ablates the stone uniformly and does not generate numerous
large fragments. The removal of such fragments significantly
increases the operating time, may require the use of a
stone-removal device or specific laser lithotripsy techniques
(e.g. the ‘popcorn effect’) to reduce the stone burden [4].
Cutting of the stone into small, removable pieces should be
considered only when a small residual stone volume remains.
Thus, slower ablating HiFr-LoPE, but only dust producing
settings can be a useful element in the fragmentation
procedure as a whole. Similar studies using real-life stone
material are needed to confirm these results.

The studies comparing large and small laser fibres have
yielded contradictory results: some suggest that at the same
laser lithotripter settings, large fibres fragment large volumes
[13], whereas others have found the opposite [9]. In the
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present study, large fibres always created wider fissures,
while small fibres always generated deep fissures, but neither
surpassed the other in terms of fragmentation volume.
Indeed, for any given laser setting (with the exception of very
low energy settings), the small fibre produced narrower yet
deeper fissures than the large fibre. As a result, the two fibres
fragmented similar volumes. The disparities between the
present study and those of others may relate to the
experimental approaches that were used. When isolated single
laser pulses [8,9,13] or repeated laser pulses scattered over a
surface are used [14,17], or handheld experiments are
conducted [15,17], the impact of the laser never or rarely
occurs at the same location twice. If the stone structure
around these isolated fragmentation craters is weakened by
the first impact, any new impacts on the same site could
generate a significantly higher fragmentation volume.
However, this effect cannot be detected by the above-described
study designs. By contrast, the present study used continuous
laser emission, where the same place was hit several times
while moving the fibre steadily along a path. This closely
mimics real-life lithotripsy and allows the effect of repeated
laser emission impacts on the same area to be measured. This
may explain the differences between the present and previous
studies.

The large and small laser fibres differed only at the smallest
energy level that was tested, namely, at 0.2 J when the large
fibre was less effective. This may relate to energy dispersion.
As the tip of the large laser fibre has a significantly larger
contact area (7.5-times bigger) than the small fibre, the
amount of energy delivered at the 0.2 J level may be too
dispersed to exceed the ablation threshold [11].

Although the present study showed that the laser fibre
diameters that were tested did not influence the laser ablation
rate directly, the physical properties of the fibres can still exert
a positive or negative effect on the lithotripsy procedure
overall. Large-diameter laser fibres are more resistant to fibre
tip degradation or the ‘burn-back’ effect, but their stiffness
hampers scope deflection and their diameter obstructs
irrigation flow. By contrast, small-diameter laser fibres are
more fragile and prone to degradation phenomena with
higher energies, but facilitate ureterorenoscope flexibility and
irrigation rates at the same irrigation pressure, thereby
increasing accessibility and visibility [7,9,14,24,25]. As
fragmentation volume is not affected, the advantages of
small-diameter laser fibres, namely, their increased scope
deflection facility and irrigation rate (and consequent better
visibility), lead us to prefer and recommend the use of
small-diameter laser fibres, notwithstanding the financial costs
associated with increased fibre degradation.

The present study did not take retropulsion into account, and
did so intentionally. Retropulsion is affected by known factors,
e.g. stone mass and pulse energy [11,13,26], the latter being

one of the main variables analysed, but retropulsion is
probably also influenced by other features like stone shape,
friction between the surrounding tissue and the stone, etc.
With the exception of pulse energy, all the previous variables
could introduce potentially bias, leading to irreproducible
results and conceal otherwise significant outcomes concerning
pulse energy, frequency, total power and laser fibre diameter,
the real focus of the present study. Nevertheless, retropulsion
poses a problem to urologists because it reduces the laser’s
efficiency, increases operating time, and sometimes makes the
calculus inaccessible. Some of the recommendations the
present study advises might be impractical for very small
free floating stones (e.g. minor ureteric calculi), because
retropulsion increases with rising pulse energy [11,13].
However, in those stones only slightly influenced or
completely unaffected by retropulsion due to size, location
(e.g. trapped in a calyx), being fixed or impacted, our
recommendations of using LoFr-HiPE can be useful and
accelerate the procedure, especially on the brink of changing
guidelines considering constantly larger stones suitable for
retrograde intrarenal surgery (RIRS) [27,28].

The present study showed that should urologists wish to use
the same total power level, they can accelerate their lithotripsy
procedure simply by increasing the pulse energy and reducing
frequency, although attention must be paid to preventing the
production of bulky debris that might have an opposing effect
and prolong the procedure. It also showed that urologists can
use small-diameter laser fibres without compromising stone
ablation efficiency, with the added benefit of having better
irrigation, visibility, and manoeuvrability. Conventional laser
lithotripters continue to offer as much as other high-frequency
lithotripters at the power levels tested without jeopardising the
fragmentation rate or surgery time.

The limitations of the present study concern the
recommendation’s applicability to very small calculi and the
associated retropulsion. In the future, the next experimental
step would be to mimic laser lithotripsy of very small
non-impacted ureteric calculi. However, to include the
simultaneous analysis of lithotripter settings, ablation volume
and retropulsion of such small stones, and examine how
they influence each other using this experimental setup, one
would have to develop a system, where, besides all regular
variables used, the retropulsion effect needs to be measurable
and independent but still someway ‘mechanised’ and
consistent, regardless of the different experimental parameters
used. We are not sure if such a model can be developed that
integrates ablation rate and retropulsion in a mechanised
and reproducible fashion without introducing new factors,
influencing existing ones, and leaving others to chance.
This dilemma may be similar in analogy to Heisenberg’s
uncertainty principle in particle physics: one may either know
the precise velocity of a particle or know its exact location, but
never both of them at the same time [29].
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The experimental setup of the present study met all planned
criteria and proposed objectives that were described in the
Introduction and Materials and Methods sections. Strenuous
efforts were made to limit possible bias. Future comparisons
with other testing methods will assess the power and reliability
of the present study.
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