Epithelial and Submucosal Lesions of the Stomach: Spectrum of CT Findings

e-Poster: P-150

Congress: ESGAR 2009

Type: Educational Exhibit

Topic: Diagnostic / GI Tract / Stomach

Authors: <u>I. Santiago</u>¹, J. Maciel¹, A. Canelas², M.F.S. Seco², B. Graça², B.J.A.M. Gonçalves², N.J.L. Dias²,

M.A. Cipriano², F. Caseiro Alves²; ¹Aveiro/PT, ²Coimbra/PT

MeSH:

Stomach Neoplasms [C04.588.274.476.767]

Keywords: Gastric epithelial tumors, Gastric submucosal tumors

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ESGAR's endorsement, sponsorship or recommendation of the third party, information, product, or service. ESGAR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ESGAR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.esgar.org

1. Learning objectives

Learning Objectives

Learning objectives

LEARNING OBJECTIVES

To describe and illustrate the CT imaging findings of gastric lesions, emphasizing the imaging features that help distinguish:

- · epithelial from submucosal lesions
- · benign from malignant tumors
- · tumors from submucosal non-tumorous lesions

2. Background

Background

diapositivo3.jpg

BACKGROUND

Gastric lesions may be classified:

- according to their origin epithelial or submucosal
- according to their nature tumoral or non-tumorous
- according to their biologic behavior benign or malignant

Gastric lesions

Mesenchymal tumors

diapositivo6.jpg

BACKGROUND

The clinical manifestations of gastric lesions span from absence of symptoms or signs of disease to severe abdominal pain in the context of acute abdomen. Their overlap is considerable, as are the radiologic findings.

The accurate characterization of gastric lesions is a mainstay for adequate therapy planning in order to avoid unnecessary or inadequate surgery or follow-up.

Imaging plays an important part in the diagnostic work-up of epithelial lesions, particularly cancer staging and peptic ulceration and an even more important part in the diagnosis of endoscopy-inaccessible submucosal lesions.

diapositivo7.jpg

BACKGROUND

Optical endoscopic studies and double-contrast barium meals (DCBM) have been traditionally used as primary tools for gastric lesions' diagnosis. These methods, however, are very unconfortable for patients.

The advances in Computer Tomography technology, particularly with the introduction of MultiDetector CT (MDCT), with it's multiplanar reformatation capabilities, have shown great potential for the evaluation of gastric disease, providing important information, not only on the gastric wall pathology itself, but also on it's perigastric extension and distant organ involvement.

3. Imaging findings OR Procedure details

Imaging Findings

imaging findings.jpg

IMAGING FINDINGS

In this presentation, we will discuss and illustrate the CT imaging findings of gastric epithelial lesions, namely adenocarcinoma, and submucosal lesions, namely lymphoma, GIST, leiomyoma, lipoma, leiomyosarcoma, heterotopic pancreas, fibroid inflammatory polyp, hematoma and duplication cyst.

diapositivo9.jpg

diapositivo10.jpg

ADENOCARCINOMA

Origin

Gastritis→ atrophy→ metaplasia→ displasia→ carcinoma

Epidemiology

2nd most common cancer (after lung cancer)

Peak prevalence 50 to 70 Yo

Higher incidence in 3

Higher prevalence in Japan

Risk factors include H. Pylori, pernicious anemia, partial gastrectomy, diet high in nitrates and smoking

diapositivo11.jpg

ADENOCARCINOMA

Location

Lower 2/3 (80%)

Clinical presentation

Asymptomatic

Indigestion, nausea, vomiting, early saciety, loss of appetite, melena, hematemesis, weight loss, dysphagia

Metastatic disease

32% present with distant metastatic disease

Liver, lungs, adrenals, kidneys, ovaries, rectum, peritoneum

diapositivo12.jpg

ADENOCARCINOMA

CT Imaging Findings

Polypoid mass with or without ulceration

Focal, excentric wall thickening with mucosal irregularity or ulceration

Linitis plastica

Diffuse thickening of the gastric wall

Mucinous adenocarcinoma

Very low attenuation thickening of the gastric wall with punctate miliary calcifications

Polypoid growth type of adenocarcinoma

Figure 1 Adenocarcinoma of the lesser curve of the stomach. Post-contrast axial and reformated images show a large polypoid mass with an irregular surface. Note the small ulceration (—) and adjacent lymphadenopathy (*).

diapositivo15.jpg

Figure 2a Adenocarcinoma of the gastric antrum. Post-contrast images, obtained in the portal phase of enhancement, show asymetrical thickening of the gastric antrum's wall. Note the marked enhancement of the gastric mucosa, which is thickened and irregular (—).

diapositivo16.jpg

diapositivo17.jpg

Figure 2c Adenocarcinoma of the gastric antrum. A perigastric lymphadenopathy is shown. Anatomo-pathological analysis revealed serosal infiltration and multiple perigastric metastatic lymph nodes.

diapositivo18.jpg

diapositivo19.jpg

Figure 3b Adenocarcinoma of the gastric cardia. Perigastric lymphadenopathies seen below the mass (*). Serosal infiltration and lymph node metastasis were confirmed in the surgical specimen's histologic analysis.

Linitis plastica

diapositivo21.jpg

Figure 4b Adenocarcinoma of the stomach – *linitis plastica*. Post-contrast images show diffuse hyperenhancing mucosal thickening of the body and part of the antrum (although not shown, the fundus was also involved).

Linitis plastica

Figure 4c Adenocarcinoma of the stomach – *linitis plastica*. Post-contrast oblique and sagital reformatations better depicting the diffuse thickening of the gastric mucosa in a somewhat underdistended stomach.

diapositivo13.jpg

diapositivo23.jpg

epithelial and submucosal lesions of the stomach - versao final.jpg

Figure 5b Gastric ulcer perforation. Abdominal CT shows focal hyperenhancing asymetrical thickening of the gastric antrum (\longrightarrow) suggestive of malignancy. There was a small amount of free intraperitoneal air (\longrightarrow) compatible with perforation. There were, however, no signs of malignancy on the surgical biopsy's histologic analysis.

diapositivo25.jpg

diapositivo26.jpg

LYMPHOMA

Origin

MALT-type Lymphoma is thought to originate from follicular gastritis caused by Helicobacter Pylori

diapositivo27.jpg

LYMPHOMA

Epidemiology

2 to 5% of malignant gastric lesions

The gastrointestinal tract (GIT) is the most common extranodal site of Non-Hodgkin Lymphoma (NHL)

The stomach is the most common segment of the GIT involved

MALT Lymphoma is considered a different form of extranodal NHL that generally manifests as localized disease and has a better prognosis

diapositivo28.jpg

diapositivo29.jpg

diapositivo30.jpg

LYMPHOMA

CT findings of NHL

Low grade MALT-type NHL

Absence of or subtle wall thickening

Lymphadenopathy not a proeminent feature

High grade MALT-type NHL

Severe thickening, mass formation, ulcer and lymphadenopathy

diapositivo31.jpg

Differential diagnosis between lymphoma and adenocarcinoma as seen on CT

Lymphoma usually presents with greater wall thickening (4 -5 cm) and more diffuse, circunferencial involvement.

Bulky lymphadenopathy that extend inferiorly beyond renal hylum suggest lymphoma.

Obstruction is much more common in adenocarcinoma.

diapositivo32.jpg

gastric body and antrum (-). No lymphadenopaties were found.

diapositivo33.jpg

diapositivo34.jpg

Figure 7b High-grade MALT Lymphoma. A more irregular thickening is seen at the level of the gastric antrum (→). Bulky lymphadenopathy extended down beyond renal hylum (*).

Lymphoma

diapositivo36.jpg

diapositivo37.jpg

diapositivo38.jpg

diapositivo39.jpg

diapositivo1.jpg

diapositivo41.jpg

diapositivo42.jpg

GIST

Epidemiology

2,5% of all gastric tumors

10-30% are malignant

60 a 70% occur in the stomach (better prognosis)

Higher incidence in middle age and eldery individuals

diapositivo43.jpg

GIST

Clinical presentation

Epigastric pain, disphagia, obstruction, gastrointestinal bleeding

Weight loss, palpable mass

Metastatic disease

50%, at presentation

Liver, peritoneum, soft tissues, lung, pleura, lymph nodes

diapositivo44.jpg

GIST

CT findings

Solid, heterogeneous, predominately exophytic, large mass

May have areas of necrosis, hemorrage, cystic degeneration, ulceration or fistulization to the gastrointestinal lumen

Displaces adjacent organs and vessels

May invade adjacent organs in an advanced stage

Small GISTs are more homogeneous and may be intramural or endoluminal (polypoid)

diapositivo45.jpg

GIST

CT findings

After IV contrast

Moderate, heterogeneous enhancement

Vessels may be seen crossing the tumor

diapositivo46.jpg

diapositivo47.jpg

diapositivo48.jpg

diapositivo49.jpg

diapositivo50.jpg

diapositivo51.jpg

the posterior wall of the gastric body (\rightarrow). Note central pooling of contrast, corresponding to the area of ulceration seen on CT (\rightarrow).

diapositivo52.jpg

GIST

diapositivo54.jpg

diapositivo55.jpg

diapositivo56.jpg

diapositivo57.jpg

diapositivo58.jpg

LEIOMYOMA

Origin

Smooth muscle in the muscularis propria or muscularis mucosa

Epidemiology

Rare in the stomach (higher incidence in the esophagus)

Adult age

diapositivo2.jpg

LEIOMYOMA

Preferential location

Antrum and body

Clinical presentation

Usually asymptomatic

Epigastric pain, gastrointestinal bleeding

diapositivo60.jpg

LEIOMYOMA

CT findings

Round or oval solid hypoattenuating homogeneous mass

Generally < 3 cm

Well defined margins

May be intramural or exhibit intra or extraluminal growth

May ulcerate or present areas of calcification

After IV contrast

May present a discrete homogenous enhancement

Always enhances less than the mucosa

diapositivo61.jpg

Leiomyoma

diapositivo63.jpg

LIPOMA

Origin

Proliferation of mature adipose tissue enclosed in a fibrous capsule

Epidemiology

3% of all benign gastric tumors

5% of all gastrointestinal lipomas

May present with areas of ulceration ou cystic degeneration

diapositivo64.jpg

LIPOMA

Preferential Location

75% occus as solitary lesions of the antrum

Clinical Presentation

When > 4 cm, may produce gastrointestinal bleeding, abdominal pain or obstruction due to ulceration or intussusception

diapositivo65.jpg

LIPOMA

CT imaging Findings

Well defined mass with homogeneous fat attenuation

After IV contrast

No significant enhancement

Lipoma

lipomadiap2.jpg

Figure 15b Lipoma (\rightarrow). Post-contrast CT, coronal (*left*) and sagital reformatations (*right*). Note how the normal enhancing submucosal layers of the stomach's wall are interrupted by the fat-attenuation tumor, at it's area of implantation (\rightarrow). Note also the enhancing mucosa overlying it.

lipoma21.jpg

lipoma22.jpg

diapositivo69.jpg

LEIOMYOSARCOMA

Origin

Smooth muscle in the muscularis propria or muscularis mucosa

Epidemiology

Rare gastric tumor (1%)

Higher incidence in adult ♂ (2:1)

Average age at presentation - 56 Yo

diapositivo3.jpg

LEIOMYOSARCOMA

Preferential location

Antrum and body

Clinical presentation

Nausea, vomiting, epigastric pain, weight loss, bleeding, palpable mass

Metastatic disease

May metastize hematogeneously to liver or lung

diapositivo71.jpg

LEIOMYOSARCOMA

CT findings

Solid hypoattenuating, homogenous or heterogeneous, > 5 cm, mass

Exophytic growth

May become superinfected, ulcerate or fistulize

May present with necrotic areas or calcifications

May invade surrounding organs such as liver, spleen and pancreas

diapositivo4.jpg

LEIOMYOSARCOMA

CT findings

After IV contrast

Heterogenous enhancement

May present areas of necrosis

diapositivo73.jpg

Figure 16a Leiomyosarcoma of the gastric body. Pre-contrast study shows a soft tissue density mass extending from the posterior wall of the gastric body to the upper pole of the spleen (→). Note areas of high attenuation within the mass due to intratumoral hemorrhage (*).

Leiomyosarcoma

Figure 16b Leiomyosarcoma of the gastric body. Post-contrast study shows central non-enhancing area corresponding to the areas of hemorrhage seen in the pre-contrast study (*). Patient had attended the Emergency Department with upper gastroinestinal bleeding. An ulceration was apparent in the posterior wall of the gastric body at endoscopy (not seen on CT).

diapositivo75.jpg

Figure 16c Leiomyosarcoma of the gastric body. Coronal reformatation showing the inferior extension of the mass (*).

diapositivo80.jpg

HETEROTOPIC PANCREAS

Origin

Pancreatic tissue remnants, with all pancreatic tissue components

Epidemiology

Present in 0.6 to 14 % of autopsies

Present in 1 in every 500 gastric surgical specimens

Higher incidence in ♂, 40-60 Yo

diapositivo15.jpg

HETEROTOPIC PANCREAS

Preferential location

Antrum or greater curvature, less than 6 cm from the pylorus in 85-95%

Clinical Presentation

Asymptomatic

Epigastric pain (70%), early saciety (30%)

Gastrointestinal hemorrhage, obstruction

Pancreatitis, pseudocyst formation, insulinoma, adenoma, malignant transformation

diapositivo82.jpg

HETEROTOPIC PANCREAS

CT findings

Oval or rounded, well-defined mass measuring 1 to 3 cm

Smooth or lobulated margins

Central umbilication (20 to 40%)

May present with cystic areas

After IV contrast

Intense enhancement ≈ pancreas

diapositivo83.jpg

Figure 17a Heterotopic pancreas. CT revealed and oval thickening of the anterior wall of the gastric antrum.

Heterotopic pancreas

diapositivo85.jpg

Figure 17c Heterotopic pancreas. Endoscopy showed an oval deformity of the anterior surface of the gastric antrum overlayed with normal looking mucosa except for a small depression at its apex (→) which could correspond to an ulceration or to the draining orifice of a rudimentary pancreatic duct.

diapositivo86.jpg

Figure 18a Adenocarcinoma within heterotopic pancreas. Post-contrast study shows an irregular area of thickening of the anterior wall of the gastric antrum that enhances similarly to the pancreas (→).

sÓ slides erradosloooooool.jpg

Figure 18b Adenocarcinoma within heterotopic pancreas. There was a peri-lesional lymphadenopathy (—). Histopathologic analysis revealed an adenocarcinoma within an ectopic pancreas.

diapositivo88.jpg

INFLAMMATORY FIBROID POLYP

Origin

Pseudotumor with an allergic or inflammatory origin

Epidemiology

Rare

80% of all gastrointestinal fibroid inflammatory polyps are located in the stomach

diapositivo89.jpg

INFLAMMATORY FIBROID POLYP

Preferential location

Antrum

Clinical presentation

Most are asymptomatic

May cause anemia, gastrointestinal bleeding, abdominal pain, vomiting, weight loss, obstruction or intussusception

diapositivo90.jpg

INFLAMMATORY FIBROID POLYP

CT findings

Solid, soft tissue density, submucosal mass

May be sessile or pedunculated,resembling mucosal masses on precontrast study

After IV contrast

May present peripheral and central scattered areas of enhancement

diapositivo91.jpg

diapositivo92.jpg

diapositivo93.jpg

diapositivo94.jpg

diapositivo95.jpg

Inflammatory fibroid polyp

diapositivo97.jpg

diapositivo98.jpg

diapositivo16.jpg

INTRAMURAL HEMATOMA

Origin

Trauma, ruptured abdominal aortic aneurism, antigoagulation therapy or blood dyscrasia

Epidemiology

Present in 0.6 to 14 % of autopsies and 1 in every 500 gastric surgical specimens

Higher incidence in ♂, 40-60 Yo

diapositivo17.jpg

INTRAMURAL HEMATOMA

Preferential location

Fundus

Clinical Presentation

Abdominal pain, anemia, hypotension and, on rare instances, obstruction

diapositivo18.jpg

INTRAMURAL HEMATOMA

CT findings

Well-circumscribed submucosal or subserosal mass

High-attenuation in the acute phase, in the pre-contrast study

Decreasing attenuation over time

After IV contrast

Active bleeding may be apparent in the acute phase as contrast extravasion from a feeding artery or from a vein

No enhancement in the chronic phase

Mural Hematoma

diapositivo3.jpg

mesentery (-).

diapositivo7.jpg

diapositivo8.jpg

diapositivo9.jpg

diapositivo10.jpg

diapositivo1.jpg

diapositivo99.jpg

DUPLICATION CYST

Origin

Congenital malformation than may involve any segment of the gastrointestinal tract

Epidemiology

Rare

Higher incidence in children (mean age – 3 Yo)

Higher incidence in the small bowel

4% located in the stomach

diapositivo100.jpg

DUPLICATION CYST

Preferential location

Greater curve, particularly the antrum

Clinical presentation

Most are asymptomatic

May cause abdominal pain, vomiting, weight loss

Rarely, recurrent pancreatitis, intracystic bleeding, infection or neoplasm may occur.

diapositivo101.jpg

DUPLICATION CYST

CT findings

Homogeneous, water-attenuation, well-defined lesion

Thick, regular wall

After IV contrast

Enhancement of the wall

Duplication cyst

obtuse angles between the lesion and the gastric wall (→).

diapositivo13.jpg

Figure 22b Duplication cyst of the gastric antrum. *Left* Barium meal in an upright position shows an oval, well defined, subtraction image in the gastric antrum (→). *Right* Abdominal Ultrasound shows a well defined anecoic oval lesion with floating debris (*).

diapositivo14.jpg

Images in Figure 21 were courtesy of Paula Vedor, MD, from Serviço de Radiologia do Hospital de S. Teotónio - Viseu.

sÓ slides erradoslol.jpg

diapositivo6.jpg

diapositivo7.jpg

sÓ slides erradoslooool.jpg

4. Conclusion

Conclusions

CONCLUSIONS

CT can provide important information regarding epithelial and submucosal lesions of the stomach.

Although the CT imaging findings in many gastric lesions overlap, some of them have typical features that may suggest a specific diagnosis.

5. References

References

diapositivo107.jpg

REFERENCES

Erik K. Insko, MD, PhD et all; "Benign and Malignant Lesions of the Stomach: Evaluation of CT Criteria for Differentiation", Radiology 2003; 228:166

Karen M. Horton, MD et all; "Current Role of CT in Imaging of the Stomach"; Radiographics 2003; 23:75 – 87

Christian R. Habermann, MD et all; "Preoperative Staging of Gastric Adenocarcinoma: Comparison of Helical CT and Endoscopic US"; Radiology 2004; 230:465 – 471

Isaac Hassan, MB, ChB, FRCR, DMRD: "Gastric Carcinoma: Imaging" eMedicine Specialties – Radiology – Gastrointestinal; February 26, 2009

Joon Seok Lim, MD et all; "CT and PET in Stomach Cancer: Preoperative Staging and Monitoring of Response to Therapy"; Radiographics 2006; 26:143 - 156

diapositivo 108. jpg

REFERENCES

Mi-Suk Park, MD et all; "Mucinous versus Nonmucinous Gastric Carcinoma: Differentiation with Helical CT"; Radiology 2002; 223:540

Dongil Choi et all; "Gastric Mucosa – Associated Lymphoid Tissue Lymphoma – Helical CT Findings and Pathological Correlation"; AJR 2002; 178:1117 – 1122

Jong Young Oh et all; "Benign Submucosal Lesions of the Stomach and Duodenum: Imaging Characteristics with Endoscopic and Pathologic Correlation" EJR Volume 67, Issue 1, July 2008

Shawn T. Butela et all; "Performance of CT in Detection of Bowel Injury"; AJR 2001; 176:129-135

Peter J. Strouse, MD et all "CT of Bowel and Mesenteric Trauma in Children"; Radiographics. 1999;19:1237-1250

diapositivo109.jpg

REFERENCES

Peter J. Strouse, MD et all "CT of Bowel and Mesenteric Trauma in Children"; Radiographics. 1999;19:1237-1250

Rie Oka, MD et all; "Heterotopic pancreas with calcification: a lesion mimicking leiomyosarcoma of the stomach"; GASTROINTESTINAL ENDOSCOPY VOLUME 56, NO. 6, 2002

Elio Jovine, MD; "Malignant gastrointestinal stromal neoplasm"; Surgery, November 2006

J. A. BROWN et all; "Low Grade Gastric MALT Lymphoma: Radiographic Findings"; *Clinical Radiology* (2000) 55, 384–389

Gregory Emmett Wildea et all; "Pancreatitis in initially occult gastric heterotopic pancreas"; Clinical Imaging 31 (2007) 356–359

Debesh Rima et all; "Symptomatic gastric heterotopic pancreas: Clinical presentation and review of the literature"; International Journal of Surgery (2008) 6, e52ee54

6. Author Information

Author Information

Author information

AUTHOR INFORMATION

Inês Santiago

Serviço de Radiologia do Hospital Infante D. Pedro Aveiro, Portugal

inês_agp_santiago@hotmail.com

Special thanks

SPECIAL THANKS

Paula Vecor, MD Henrique Rodrigues, MD

7. Mediafiles

Author information

AUTHOR INFORMATION

Inês Santiago

Serviço de Radiologia do Hospital Infante D. Pedro Aveiro, Portugal

inês_agp_santiago@hotmail.com

Conclusions

CONCLUSIONS

CT can provide important information regarding epithelial and submucosal lesions of the stomach.

Although the CT imaging findings in many gastric lesions overlap, some of them have typical features that may suggest a specific diagnosis.

Duplication cyst

Figure 22a Duplication cyst of the gastric antrum. Post-contrast CT images show a fluid-attenuation well-defined oval mass with a thick regular wall located in the anterior wall of the gastric antrum (*). Note the obtuse angles between the lesion and the gastric wall (\rightarrow).

GIST

Gastric lesions

Heterotopic pancreas

Inflammatory fibroid polyp

Learning objectives

LEARNING OBJECTIVES

To describe and illustrate the CT imaging findings of gastric lesions, emphasizing the imaging features that help distinguish:

- · epithelial from submucosal lesions
- · benign from malignant tumors
- · tumors from submucosal non-tumorous lesions

Leiomyoma

Leiomyosarcoma

Figure 16b Leiomyosarcoma of the gastric body. Post-contrast study shows central non-enhancing area corresponding to the areas of hemorrhage seen in the pre-contrast study (*). Patient had attended the Emergency Department with upper gastroinestinal bleeding. An ulceration was apparent in the posterior wall of the gastric body at endoscopy (not seen on CT).

Linitis plastica

Figure 4c Adenocarcinoma of the stomach – *linitis plastica*. Post-contrast oblique and sagital reformatations better depicting the diffuse thickening of the gastric mucosa in a somewhat underdistended stomach.

Linitis plastica

Lipoma

Lymphoma

Mesenchymal tumors

Mural Hematoma

Polypoid growth type of adenocarcinoma

Figure 1 Adenocarcinoma of the lesser curve of the stomach. Post-contrast axial and reformated images show a large polypoid mass with an irregular surface. Note the small ulceration (—) and adjacent lymphadenopathy (*).

Special thanks

SPECIAL THANKS

Paula Vecor, MD Henrique Rodrigues, MD

diapositivo1.jpg

diapositivo1.jpg

diapositivo2.jpg

LEIOMYOMA

Preferential location

Antrum and body

Clinical presentation

Usually asymptomatic

Epigastric pain, gastrointestinal bleeding

diapositivo3.jpg

BACKGROUND

Gastric lesions may be classified:

- according to their origin epithelial or submucosal
- according to their nature tumoral or non-tumorous
- according to their biologic behavior benign or malignant

diapositivo3.jpg

LEIOMYOSARCOMA

Preferential location

Antrum and body

Clinical presentation

Nausea, vomiting, epigastric pain, weight loss, bleeding, palpable mass

Metastatic disease

May metastize hematogeneously to liver or lung

diapositivo3.jpg

mesentery (-).

diapositivo4.jpg

LEIOMYOSARCOMA

CT findings

After IV contrast

Heterogenous enhancement

May present areas of necrosis

diapositivo6.jpg

BACKGROUND

The clinical manifestations of gastric lesions span from absence of symptoms or signs of disease to severe abdominal pain in the context of acute abdomen. Their overlap is considerable, as are the radiologic findings.

The accurate characterization of gastric lesions is a mainstay for adequate therapy planning in order to avoid unnecessary or inadequate surgery or follow-up.

Imaging plays an important part in the diagnostic work-up of epithelial lesions, particularly cancer staging and peptic ulceration and an even more important part in the diagnosis of endoscopy-inaccessible submucosal lesions.

diapositivo6.jpg

diapositivo7.jpg

BACKGROUND

Optical endoscopic studies and double-contrast barium meals (DCBM) have been traditionally used as primary tools for gastric lesions' diagnosis. These methods, however, are very unconfortable for patients.

The advances in Computer Tomography technology, particularly with the introduction of MultiDetector CT (MDCT), with it's multiplanar reformatation capabilities, have shown great potential for the evaluation of gastric disease, providing important information, not only on the gastric wall pathology itself, but also on it's perigastric extension and distant organ involvement.

diapositivo7.jpg

Figure 21c Intramural hematoma. It involves jejunal segments in the left flank (\longrightarrow) and extends along the gastrocolic ligament to reach the transverse colon (\longrightarrow) .

diapositivo7.jpg

diapositivo8.jpg

diapositivo9.jpg

diapositivo9.jpg

diapositivo 10.jpg

diapositivo10.jpg

ADENOCARCINOMA

Origin

Gastritis→ atrophy→ metaplasia→ displasia→ carcinoma

Epidemiology

2nd most common cancer (after lung cancer)

Peak prevalence 50 to 70 Yo

Higher incidence in 3

Higher prevalence in Japan

Risk factors include H. Pylori, pernicious anemia, partial gastrectomy, diet high in nitrates and smoking

diapositivo11.jpg

ADENOCARCINOMA

Location

Lower 2/3 (80%)

Clinical presentation

Asymptomatic

Indigestion, nausea, vomiting, early saciety, loss of appetite, melena, hematemesis, weight loss, dysphagia

Metastatic disease

32% present with distant metastatic disease

Liver, lungs, adrenals, kidneys, ovaries, rectum, peritoneum

diapositivo12.jpg

ADENOCARCINOMA

CT Imaging Findings

Polypoid mass with or without ulceration

Focal, excentric wall thickening with mucosal irregularity or ulceration

Linitis plastica

Diffuse thickening of the gastric wall

Mucinous adenocarcinoma

Very low attenuation thickening of the gastric wall with punctate miliary calcifications

diapositivo13.jpg

diapositivo13.jpg

Differential diagnosis between adenocarcinoma and benign conditions, such as gastritis or peptic ulceration, as seen on CT

Focal, eccentric, enhancing, > 1 cm wall thickening suggests malignancy.

Gastritis and peptic ulceration may present as focal wall thickening which usually does not enhance significantly. There are, however, exceptions.

diapositivo14.jpg

Figure 22c Duplication cyst of the gastric antrum. Photograph obtained during surgical excision.

Images in Figure 21 were courtesy of Paula Vedor, MD, from Serviço de Radiologia do Hospital de S. Teotónio – Viseu.

diapositivo15.jpg

Figure 2a Adenocarcinoma of the gastric antrum. Post-contrast images, obtained in the portal phase of enhancement, show asymetrical thickening of the gastric antrum's wall. Note the marked enhancement of the gastric mucosa, which is thickened and irregular (—).

diapositivo15.jpg

HETEROTOPIC PANCREAS

Preferential location

Antrum or greater curvature, less than 6 cm from the pylorus in 85-95%

Clinical Presentation

Asymptomatic

Epigastric pain (70%), early saciety (30%)

Gastrointestinal hemorrhage, obstruction

Pancreatitis, pseudocyst formation, insulinoma, adenoma, malignant transformation

diapositivo16.jpg

INTRAMURAL HEMATOMA

Origin

Trauma, ruptured abdominal aortic aneurism, antigoagulation therapy or blood dyscrasia

Epidemiology

Present in 0.6 to 14 % of autopsies and 1 in every 500 gastric surgical specimens

Higher incidence in ∂, 40-60 Yo

diapositivo16.jpg

diapositivo17.jpg

Figure 2c Adenocarcinoma of the gastric antrum. A perigastric lymphadenopathy is shown. Anatomo-pathological analysis revealed serosal infiltration and multiple perigastric metastatic lymph nodes.

diapositivo17.jpg

diapositivo18.jpg

INTRAMURAL HEMATOMA

CT findings

Well-circumscribed submucosal or subserosal mass

High-attenuation in the acute phase, in the pre-contrast study

Decreasing attenuation over time

After IV contrast

Active bleeding may be apparent in the acute phase as contrast extravasion from a feeding artery or from a vein

No enhancement in the chronic phase

diapositivo18.jpg

diapositivo19.jpg

Figure 3b Adenocarcinoma of the gastric cardia. Perigastric lymphadenopathies seen below the mass (*). Serosal infiltration and lymph node metastasis were confirmed in the surgical specimen's histologic analysis.

diapositivo21.jpg

diapositivo23.jpg

diapositivo25.jpg

diapositivo26.jpg

LYMPHOMA

Origin

MALT-type Lymphoma is thought to originate from follicular gastritis caused by Helicobacter Pylori

diapositivo27.jpg

LYMPHOMA

Epidemiology

2 to 5% of malignant gastric lesions

The gastrointestinal tract (GIT) is the most common extranodal site of Non-Hodgkin Lymphoma (NHL)

The stomach is the most common segment of the GIT involved

MALT Lymphoma is considered a different form of extranodal NHL that generally manifests as localized disease and has a better prognosis

diapositivo28.jpg

diapositivo29.jpg

diapositivo30.jpg

LYMPHOMA

CT findings of NHL

Low grade MALT-type NHL

Absence of or subtle wall thickening

Lymphadenopathy not a proeminent feature

High grade MALT-type NHL

Severe thickening, mass formation, ulcer and lymphadenopathy

diapositivo31.jpg

Differential diagnosis between lymphoma and adenocarcinoma as seen on CT

Lymphoma usually presents with greater wall thickening (4 -5 cm) and more diffuse, circunferencial involvement.

Bulky lymphadenopathy that extend inferiorly beyond renal hylum suggest lymphoma.

Obstruction is much more common in adenocarcinoma.

diapositivo32.jpg

gastric body and antrum (-). No lymphadenopaties were found.

diapositivo33.jpg

diapositivo34.jpg

Figure 7b High-grade MALT Lymphoma. A more irregular thickening is seen at the level of the gastric antrum (—). Bulky lymphadenopathy extended down beyond renal hylum (*).

diapositivo36.jpg

diapositivo37.jpg

diapositivo38.jpg

diapositivo39.jpg

diapositivo41.jpg

diapositivo42.jpg

GIST

Epidemiology

2,5% of all gastric tumors

10-30% are malignant

60 a 70% occur in the stomach (better prognosis)

Higher incidence in middle age and eldery individuals

diapositivo43.jpg

GIST

Clinical presentation

Epigastric pain, disphagia, obstruction, gastrointestinal bleeding

Weight loss, palpable mass

Metastatic disease

50%, at presentation

Liver, peritoneum, soft tissues, lung, pleura, lymph nodes

diapositivo44.jpg

GIST

CT findings

Solid, heterogeneous, predominately exophytic, large mass

May have areas of necrosis, hemorrage, cystic degeneration, ulceration or fistulization to the gastrointestinal lumen

Displaces adjacent organs and vessels

May invade adjacent organs in an advanced stage

Small GISTs are more homogeneous and may be intramural or endoluminal (polypoid)

diapositivo45.jpg

GIST

CT findings

After IV contrast

Moderate, heterogeneous enhancement

Vessels may be seen crossing the tumor

diapositivo46.jpg

diapositivo47.jpg

diapositivo48.jpg

diapositivo49.jpg

diapositivo50.jpg

diapositivo51.jpg

the posterior wall of the gastric body (\rightarrow). Note central pooling of contrast, corresponding to the area of ulceration seen on CT (\rightarrow).

diapositivo52.jpg

Figure 12a GIST of the greater curve. Pre-contrast CT study. A soft tissue density, heart-shaped mass is seen in the gastric antrum (►). There is a small, linear, peripheral calcification (→).

diapositivo54.jpg

diapositivo55.jpg

diapositivo56.jpg

diapositivo57.jpg

diapositivo58.jpg

LEIOMYOMA

Origin

Smooth muscle in the muscularis propria or muscularis mucosa

Epidemiology

Rare in the stomach (higher incidence in the esophagus)
Adult age

diapositivo60.jpg

LEIOMYOMA

CT findings

Round or oval solid hypoattenuating homogeneous mass

Generally < 3 cm

Well defined margins

May be intramural or exhibit intra or extraluminal growth

May ulcerate or present areas of calcification

After IV contrast

May present a discrete homogenous enhancement

Always enhances less than the mucosa

diapositivo61.jpg

diapositivo63.jpg

LIPOMA

Origin

Proliferation of mature adipose tissue enclosed in a fibrous capsule

Epidemiology

3% of all benign gastric tumors

5% of all gastrointestinal lipomas

May present with areas of ulceration ou cystic degeneration

diapositivo64.jpg

LIPOMA

Preferential Location

75% occus as solitary lesions of the antrum

Clinical Presentation

When > 4 cm, may produce gastrointestinal bleeding, abdominal pain or obstruction due to ulceration or intussusception

diapositivo65.jpg

LIPOMA

CT imaging Findings

Well defined mass with homogeneous fat attenuation

After IV contrast

No significant enhancement

diapositivo69.jpg

LEIOMYOSARCOMA

Origin

Smooth muscle in the muscularis propria or muscularis mucosa

Epidemiology

Rare gastric tumor (1%)

Higher incidence in adult ♂ (2:1)

Average age at presentation - 56 Yo

diapositivo71.jpg

LEIOMYOSARCOMA

CT findings

Solid hypoattenuating, homogenous or heterogeneous, > 5 cm, mass

Exophytic growth

May become superinfected, ulcerate or fistulize

May present with necrotic areas or calcifications

May invade surrounding organs such as liver, spleen and pancreas

diapositivo73.jpg

Figure 16a Leiomyosarcoma of the gastric body. Pre-contrast study shows a soft tissue density mass extending from the posterior wall of the gastric body to the upper pole of the spleen (→). Note areas of high attenuation within the mass due to intratumoral hemorrhage (*).

diapositivo75.jpg

Figure 16c Leiomyosarcoma of the gastric body. Coronal reformatation showing the inferior extension of the mass (*).

diapositivo80.jpg

HETEROTOPIC PANCREAS

Origin

Pancreatic tissue remnants, with all pancreatic tissue components

Epidemiology

Present in 0.6 to 14 % of autopsies

Present in 1 in every 500 gastric surgical specimens

Higher incidence in ♂, 40-60 Yo

diapositivo82.jpg

HETEROTOPIC PANCREAS

CT findings

Oval or rounded, well-defined mass measuring 1 to 3 cm

Smooth or lobulated margins

Central umbilication (20 to 40%)

May present with cystic areas

After IV contrast

Intense enhancement ≈ pancreas

diapositivo83.jpg

Figure 17a Heterotopic pancreas. CT revealed and oval thickening of the anterior wall of the gastric antrum.

diapositivo85.jpg

Figure 17c Heterotopic pancreas. Endoscopy showed an oval deformity of the anterior surface of the gastric antrum overlayed with normal looking mucosa except for a small depression at its apex (→) which could correspond to an ulceration or to the draining orifice of a rudimentary pancreatic duct.

diapositivo86.jpg

Figure 18a Adenocarcinoma within heterotopic pancreas. Post-contrast study shows an irregular area of thickening of the anterior wall of the gastric antrum that enhances similarly to the pancreas (→).

diapositivo88.jpg

INFLAMMATORY FIBROID POLYP

Origin

Pseudotumor with an allergic or inflammatory origin

Epidemiology

Rare

80% of all gastrointestinal fibroid inflammatory polyps are located in the stomach

diapositivo89.jpg

INFLAMMATORY FIBROID POLYP

Preferential location

Antrum

Clinical presentation

Most are asymptomatic

May cause anemia, gastrointestinal bleeding, abdominal pain, vomiting, weight loss, obstruction or intussusception

diapositivo90.jpg

INFLAMMATORY FIBROID POLYP

CT findings

Solid, soft tissue density, submucosal mass

May be sessile or pedunculated, resembling mucosal masses on precontrast study

After IV contrast

May present peripheral and central scattered areas of enhancement

diapositivo91.jpg

diapositivo92.jpg

diapositivo93.jpg

diapositivo94.jpg

diapositivo95.jpg

diapositivo97.jpg

diapositivo98.jpg

diapositivo99.jpg

DUPLICATION CYST

Origin

Congenital malformation than may involve any segment of the gastrointestinal tract

Epidemiology

Rare

Higher incidence in children (mean age – 3 Yo)

Higher incidence in the small bowel

4% located in the stomach

diapositivo100.jpg

DUPLICATION CYST

Preferential location

Greater curve, particularly the antrum

Clinical presentation

Most are asymptomatic

May cause abdominal pain, vomiting, weight loss

Rarely, recurrent pancreatitis, intracystic bleeding, infection or neoplasm may occur.

diapositivo101.jpg

DUPLICATION CYST

CT findings

Homogeneous, water-attenuation, well-defined lesion

Thick, regular wall

After IV contrast

Enhancement of the wall

diapositivo 107.jpg

REFERENCES

Erik K. Insko, MD, PhD et all; "Benign and Malignant Lesions of the Stomach: Evaluation of CT Criteria for Differentiation", Radiology 2003; 228:166

Karen M. Horton, MD et all; "Current Role of CT in Imaging of the Stomach"; Radiographics 2003; 23:75 – 87

Christian R. Habermann, MD et all; "Preoperative Staging of Gastric Adenocarcinoma: Comparison of Helical CT and Endoscopic US"; Radiology 2004; 230:465 – 471

Isaac Hassan, MB, ChB, FRCR, DMRD: "Gastric Carcinoma: Imaging" eMedicine Specialties – Radiology – Gastrointestinal; February 26, 2009

Joon Seok Lim, MD et all; "CT and PET in Stomach Cancer: Preoperative Staging and Monitoring of Response to Therapy"; Radiographics 2006; 26:143 - 156

diapositivo108.jpg

REFERENCES

Mi-Suk Park, MD et all; "Mucinous versus Nonmucinous Gastric Carcinoma: Differentiation with Helical CT"; Radiology 2002; 223:540

Dongil Choi et all; "Gastric Mucosa – Associated Lymphoid Tissue Lymphoma – Helical CT Findings and Pathological Correlation"; AJR 2002; 178:1117 – 1122

Jong Young Oh et all; "Benign Submucosal Lesions of the Stomach and Duodenum: Imaging Characteristics with Endoscopic and Pathologic Correlation" EJR Volume 67, Issue 1, July 2008

Shawn T. Butela et all; "Performance of CT in Detection of Bowel Injury"; AJR 2001; 176:129-135

Peter J. Strouse, MD et all "CT of Bowel and Mesenteric Trauma in Children"; Radiographics. 1999;19:1237-1250

diapositivo 109.jpg

REFERENCES

Peter J. Strouse, MD et all "CT of Bowel and Mesenteric Trauma in Children"; Radiographics. 1999;19:1237-1250

Rie Oka, MD et all; "Heterotopic pancreas with calcification: a lesion mimicking leiomyosarcoma of the stomach"; GASTROINTESTINAL ENDOSCOPY VOLUME 56, NO. 6, 2002

Elio Jovine, MD; "Malignant gastrointestinal stromal neoplasm"; Surgery, November 2006

J. A. BROWN et all; "Low Grade Gastric MALT Lymphoma: Radiographic Findings"; Clinical Radiology (2000) 55, 384–389

Gregory Emmett Wildea et all; "Pancreatitis in initially occult gastric heterotopic pancreas"; Clinical Imaging 31 (2007) 356–359

Debesh Rima et all; "Symptomatic gastric heterotopic pancreas: Clinical presentation and review of the literature"; International Journal of Surgery (2008) 6, e52ee54

epithelial and submucosal lesions of the stomach - versao final.jpg

Figure 5b Gastric ulcer perforation. Abdominal CT shows focal hyperenhancing asymetrical thickening of the gastric antrum (---) suggestive of malignancy. There was a small amount of free intraperitoneal air (---) compatible with perforation. There were, however, no signs of malignancy on the surgical biopsy's histologic analysis.

imaging findings.jpg

IMAGING FINDINGS

In this presentation, we will discuss and illustrate the CT imaging findings of gastric epithelial lesions, namely adenocarcinoma, and submucosal lesions, namely lymphoma, GIST, leiomyoma, lipoma, leiomyosarcoma, heterotopic pancreas, fibroid inflammatory polyp, hematoma and duplication cyst.

lipoma21.jpg

lipoma22.jpg

lipomadiap2.jpg

Figure 15b Lipoma (→). Post-contrast CT, coronal (*left*) and sagital reformatations (*right*). Note how the normal enhancing submucosal layers of the stomach's wall are interrupted by the fat-attenuation tumor, at it's area of implantation (→). Note also the enhancing mucosa overlying it.

sÓ slides erradoslol.jpg

sÓ slides erradoslooool.jpg

sÓ slides erradosloooooool.jpg

