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that results in antegrade amnesia and confabu-
lation [3]. Postmortem studies indicate that this 
very treatable disease is underdiagnosed [4].

Pathology
In a thiamine-deficient state, increased meta-

bolic requirements and inability to regulate the 
osmotic gradients disrupt the blood–brain bar-
rier, resulting in cytotoxic edema and, eventu-
ally, permanent neuronal loss in the areas with 
the highest metabolic demands [5]. In the acute 
setting, petechial hemorrhage, hypertrophic en-
dothelial changes, and reactive gliosis are iden-
tified [6]. Occasionally, necrosis is seen. These 
findings can then progress to the chronic patho-
logic changes of gliosis and neuronal loss [7].

Clinical Presentation
The classic triad of WE includes ataxia, glob-

al confusion, and opthalmoplegia [8]. However, 
this triad is often not present in many adult and 
pediatric patients [9, 10]. The most common 
presenting symptom is nonspecific mental sta-
tus changes [9]. This often makes the diagnosis 
challenging and likely explains its diagnostic 
elusiveness. Revised criteria have been pro-
posed that take into account dietary deficiencies 
and may facilitate the clinical detection of this 
syndrome [3]. A high degree of suspicion for 
WE is warranted in patients with systemic ill-
nesses, malnutrition, and alcoholism.

Imaging Findings
CT has been shown to have a low sensitivity 

for the detection of WE, and when findings are 
present, they are often nonspecific areas of low 
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A
lcohol-related encephalopathies 
comprise a spectrum of CNS dis-
orders that are directly or indirect-
ly related to chronic alcohol abuse. 

Chronic ethanol intoxication may lead to atro-
phy related to loss of subcortical white matter 
and alterations in the number and size of neu-
rons. Associated malnutrition may cause Wer-
nicke encephalopathy (WE), which is due to 
thiamine (vitamin B1) deficiency. Marchiafava-
Bignami disease (MBD) is a rare entity charac-
terized by acute demyelination of the corpus 
callosum. Osmotic demyelination syndromes are 
seen in the setting of altered plasma osmolarity 
that is associated with alcohol abuse. Hepatic 
encephalopathy is a potentially reversible syn-
drome occurring during acute and chronic liver 
failure that is associated with deposition of neu-
rotoxic substances in the CNS. Alcohol with-
drawal syndrome is observed in patients who 
stop drinking. The aim of this article is to provide 
an update of the important neuroimaging find-
ings associated with alcohol abuse that can 
be crucial in helping make these diagnoses.

Wernicke Encephalopathy
WE is a neurologic emergency caused by a 

thiamine deficiency [1]. It is commonly seen in 
the alcoholic population but can also be seen 
with malignancy, total parenteral nutrition, ab-
dominal surgery, hyperemesis gravidarum, he-
modialysis, or any situation that predisposes an 
individual to a chronically malnourished state 
[2]. If untreated, irreversible brain damage may 
ensue and could even lead to coma, death, or 
Korsakoff syndrome, a permanent brain injury 
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OBJECTIVE. Our aim was to review the emergent neuroimaging findings of alcohol-re-
lated CNS nontraumatic disorders. Alcohol (ethanol) promotes inflammatory processes, in-
creases DNA damage, and creates oxidative stress. In addition, the accompanying thiamine 
deficiency may lead to Wernicke encephalopathy. Associated changes in serum osmolarity 
may lead to acute demyelination.

CONCLUSION. Alcohol-related encephalopathies can be life-threatening conditions 
but can be prevented or treated, if recognized.
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density [11]. On MRI, WE typically affects me-
dial thalami, mamillary bodies, the tectal plate, 
and periaqueductal gray matter in a symmetric 
fashion [12] (Fig. 1). The differential diagnosis 
of symmetric lesions of the medial thalami 
should include ischemia as a result of occlusion 
of the artery of Percheron and deep cerebral 
vein thrombosis, influenza A virus infection, 
primary acute disseminated encephalomyelitis, 
cytomegalovirus encephalitis, primary cere-
bral lymphoma, Creutzfeldt-Jakob disease vari-
ant, West Nile virus meningoencephalitis, and 
WE [13]. Involvement of the cerebellum, cere-
bellar vermis, red nuclei, dentate nuclei, sple-
nium of corpus callosum, fornix, cerebral cor-
tex, cranial nerve nuclei, and basal ganglia have 
been identified only in the nonalcoholic and pe-
diatric populations [9–13]. Selective alteration 
of the putamen appears to differentiate the pe-
diatric form of WE from the adult cases [10–
13]. MR spectroscopy (MRS) may depict lac-
tate peak and low levels of N-acetylaspartate 
(N-NAA)/creatine (Cr) in the affected areas but 
does not have a clinical prognostic impact [14]. 
Positioning a single voxel (TE 144 or 244) in 
the thalami and a control voxel in the normal-
appearing gray matter could be helpful in de-
picting lactate peak. Otherwise, a voxel can be 
positioned on the midline to include the areas 
of T2 hyperintensity in the diencephalon [14].

Marchiafava-Bignami Disease
MBD is a rare disorder that results in pro-

gressive demyelination and necrosis of the cor-
pus collosum. MBD is generally associated 
with chronic alcohol abuse but is occasionally 
seen in nonalcoholic patients [15, 16]. Despite 
an anecdotal association with red wine, there is 
no clear evidence that red wine is specifically 
involved in MBD [17]. MBD is most prevalent 
in men between 40 and 60 years of age. How-
ever, the disease has also been reported in the 
pediatric population [18].

Pathology
The main pathologic change associated with 

MBD is degeneration of the corpus callosum, 
which may vary from demyelination to frank ne-
crosis [17, 19]. Demyelination is accompanied by 
infiltration of macrophages and, ultimately, thin-
ning of the corpus callosum [17,  20]. Necrosis 
produces cystic cavities within the corpus callo-
sum, mainly in the genu and splenium [17,  21].

Clinical Presentation
The disease may present in two major clini-

cal forms: acute and chronic. In the acute form, 
which often results in death, patients pres-

ent with severe impairment of consciousness, 
seizures, and muscle rigidity [17–20, 22]. The 
chronic form of the disease may last for several 
months or years and is characterized by vari-
able degrees of mental confusion, dementia, 
and impairment of gait [17, 19, 22]. An inter-
mediate form of MBD, with acute onset of neu-
rologic symptoms followed by regression to the 
chronic form, has also been reported [21].

Imaging Findings
CT of MBD patients shows diffuse periven-

tricular low density and focal areas of low den-
sity in the genu and splenium of the corpus cal-
losum [19]. On MRI, patients with MBD show 
areas of low signal intensity on T1-weighted im-
ages. There is high signal intensity on T2 and 
fluid-attenuated inversion recovery (FLAIR) 
images in the body of the corpus callosum, 
genu, splenium, and adjacent white matter [17, 
21]. During the acute phase, the lesions may 
show peripheral contrast enhancement [21]. As 
the disease progresses, signal alterations be-
come less evident, but residual atrophy of the 
involved structure is usually observed [17] 
(Figs. 2 and 3). MBD may be found in associa-
tion with other alcohol-related diseases, includ-
ing WE, Korsakoff syndrome, central pontine 
myelinolysis (CPM), and Morel laminar necro-
sis [21, 23]. The differential diagnosis of corpus 

callosum lesions includes ischemia, diffuse ax-
onal injury, multiple sclerosis, acute disseminat-
ed encephalomyelitis, high-altitude cerebral 
edema, extrapontine myelinolysis (EPM), and 
lymphoma [18, 24]. Diffusion-weighted imag-
ing (DWI) reveals symmetric hyperintense le-
sions in the cerebral cortex and corpus callosum 
[19]. Apparent diffusion coefficient (ADC) 
mapping yields a marked decrease of ADC val-
ues of the involved areas. Although rarely used, 
MRS may provide additional information on 
disease pathogenesis and prognosis through 
evaluation of brain metabolites [17]. To acquire 
the spectra, a chemical shift spin-echo tech-
nique (TR/TE, 1,500/135) has been described, 
in which the multivoxel was positioned to in-
clude the corpus callosum and periventricular 
white matter [17]. The N-NAA/Cr ratio has 
been reported to decline during the first 4 
months of MBD, representing secondary ax-
onal injury following myelin degradation. Lac-
tate, which accompanies inflammatory reac-
tions, was detectable during the subacute phase. 
After 4 months, lactate was replaced by lipids, 
indicating necrosis of axons and oligodendro-
cytes [17].

Osmotic Demyelination Syndrome
Osmotic demyelination syndrome (ODMS) 

was formerly known as CPM and EPM, or a 

Fig. 1—61-year-old 
alcoholic man with 
Wernicke encephalopathy 
during acute phase of 
disease.
A, Axial T2-weighted 
image shows asymmetric 
edema of mamillary bodies 
(arrows).
B, Multiplanar gradient-
recalled image shows 
blooming consistent with 
hemorrhage (arrow) in left 
mamillary body.
C, Symmetric involvement 
of medial thalami (arrows) 
is seen on T2-weighted 
image.
D, Contrast enhancement 
of mamillary bodies 
(arrows) is seen on T1-
weighted image.
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combination of both [25]. CPM is an acquired 
condition that results in an osmotic insult and 
demyelination of the basis pontis [26]. Al-
though the pontine base represents the most 
common site of involvement, lesions do occur 
outside of the pons and are termed EPM [27]. 
The extrapontine lesions are typically seen in 
the thalami, basal ganglia, lateral geniculate 
body, cerebellum, and the cerebral cortex 
[28]. ODMS is most commonly seen in the 
setting of hyponatremia and its acute correc-
tion, or in patients with a history of chronic al-
cohol abuse and malnutrition [29].

Pathology
The main pathologic finding seen with CPM 

or EPM is a symmetric area of myelin disrup-
tion in areas with admixed gray and white mat-
ter [30]. It is most commonly seen in the basis 
pontis (with CPM) but can also be seen inde-
pendently in the basal ganglia, thalamus, and 
neocortical and cerebellar gray/white interface 
(with EPM) [27]. The demyelinating process is 

characterized by vacuolization and intramyeli-
nitic splitting with eventual rupture of the my-
elin sheaths, believed to be caused by osmotic 
gradient effects [31].

Clinical Presentation
ODMS can present in three distinct ways: 

isolated CPM, isolated EPM, and combined 
CPM and EPM. The initial clinical scenario, 
however, is the same: A patient is treated with 
IV therapy for an underlying electrolyte dys-
function, as seen with hyponatremia, thus cre-
ating the hyperosmolar state that leads to de-
myelination [30]. Classically, the symptoms of 
CPM present in a biphasic pattern. Initially, the 
patient presents with a generalized encephal-
opathy and electrolytic dysfunction, both of 
which improve after treatment. Between 2 and 
7 days after rapid electrolyte correction, the pa-
tient develops neurologic abnormalities associ-
ated with myelinolysis, including dysphagia, 
dysarthria, opthalmoplegia, diplegia, and al-
tered mental status that can eventually progress 
to coma or death [25, 32, 33].

Imaging Findings
On CT, ODMS typically manifests as low-

density lesions in the pons or other affected 
regions, and occasionally shows enhancement 
[34]. In acute CPM, MRI shows signal altera-
tion in the central pons with sparing of the teg-
mentum, ventrolateral pons and corticospinal 
tracts [35] (Fig. 4). In EPM, symmetric signal 
alterations can be seen in the basal ganglia, 
thalami, lateral geniculate body, cerebellum, 
and cerebral cortex [36] (Figs. 5 and 6). On 
DWI, mildly restricted lesions can be detect-
ed within 24 hours after onset of symptoms 
and thus provide the earliest indication of this 
disease entity [32]. The differential consid-
erations include pontine infarcts, which can 
be distinguished by their asymmetric distri-
bution, involvement of the peripheral pontine 
fibers, demyelinating disease processes, neo-
plastic involvement of the pons, and metabolic 
syndromes such as Leigh disease and Wilson 
disease. Typically, however, these lesions do 

Fig. 2—53-year-old alcoholic woman with Marchiafava-Bignami disease during subacute phase.
A, Sagittal FLAIR image shows signal intensity alteration involving inferior aspect of corpus callosum (arrows).
B, Axial FLAIR image depicts two curvilinear hyperintensities (arrows) in splenium of corpus callosum.

Fig. 3—53-year-old alcoholic man affected by Marchiafava-Bignami disease.
A, Multiple cavitations and atrophy of corpus callosum are noted (arrows) on sagittal T1-weighted images.
B, Axial  FLAIR image shows cavitations of splenium of corpus callosum (arrow).

Fig. 4—40-year-old alcoholic woman after rapidly 
corrected hyponatremia.
A, Sagittal T2-weighted image shows signal 
prolongation in pontis (arrow) typical of central 
pontine myelinolysis.
B and C, Diffusion-weighted image (DWI) (B) 
and apparent diffusion coefficient map (C) show 
restricted diffusion (arrows).
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not spare the peripheral pontine fibers and fre-
quently have other associated findings [31].

Hepatic Encephalopathy
Hepatic encephalopathy (HE) is a functional 

and potentially reversible syndrome occurring 
during acute and chronic liver failure or after 
portosystemic shunt surgery. It is characterized 
by psychiatric, cognitive, and motor abnormali-
ties [37, 38]. Depending on the duration and de-
gree of hepatic dysfunction, HE may be classi-
fied into portosystemic encephalopathy (PSE) 
or fulminant hepatic failure [37].

Pathology
Pathogenic mechanisms responsible for 

HE are thought to be related to the accumu-
lation in blood of several compounds that are 
efficiently metabolized by the liver under 
normal circumstances. These substances in-
clude manganese and ammonia, which can 
then enter the brain and induce disturbanc-
es in astrocyte and neuron function [39–42]. 
The hypermanganesemia has a neurotoxic 
effect, inducing reactive gliosis and selective 
neuronal loss in basal ganglia and midbrain 
structures [43]. Pathologic examination of 
HE cases reveals diffuse proliferation of Al-
zheimer type-II cells in the many gray matter 
regions [41]. Some patients with acquired he-
patocerebral degeneration also have cortical 
gliosis, laminar neuronal necrosis, atrophy of 
lenticular nuclei, and polymicrocavitation of 
the corticomedullary junction, striatum, and 
cerebellar white matter.

Clinical Presentation
HE can occur during acute liver malfunc-

tion from any cause or can complicate chron-
ic liver disease. HE has been further subdi-
vided, based on duration and characteristics 
of neurologic dysfunction, into episodic, per-
sistent, and minimal subtypes [44]. HE man-
ifests as a neuropsychiatric syndrome en-
compassing a wide spectrum of psychiatric 
and behavioral disturbances, as well as mo-
tor disorders [44, 45].

Imaging Findings
In acute HE, T2 prolongation may affect 

the cerebral cortex [46–49]. In chronic he-
patic encephalopathy (CHE), foci of T2 pro-
longation resembles those seen in small-
vessel disease [50]. Regression of the MRI 
lesions after liver transplantation or with the 
improvement of HE has been shown, provid-
ing evidence supporting their reversible na-
ture [51]. The chronic phase is characterized 
by symmetric T1 high-signal-intensity alter-
ations in the basal ganglia (more often the 
globus pallidus), the subthalamic nucleus, 
mesencephalus, tectal plate, hypothalamus, 
and adenohypophysis [50, 52–54] (Fig. 7). 
The described T1 hyperintensity is caused 
by deposition of manganese, which is alle-

viated on normalization of liver function 
[53]. Increase in brain water diffusivity has 
been shown in CHE [55–57]. In acute liver 
failure, ADC values may be reduced [58], 
whereas MRS depicts an increase in the glu-
tamine and glutamate peak and a decrease in 
the myoinositol and choline peaks [59–65]. 
FLAIR, DWI, and diffusion tensor imaging 
[66] are more sensitive to changes in brain 
tissue water content than conventional T2 se-
quences and have been applied to detect dif-
fuse hyperammonemia-related brain edema 
in patients with chronic liver disease [49].

Alcohol Withdrawal Syndromes
Alcohol withdrawal syndrome (AWS) is a 

constellation of symptoms observed in a per-
son who stops drinking alcohol after a period 
of continuous and heavy alcohol consumption. 
Delirium tremens represents a distinct clini-
cal entity within the AWS spectrum. It is de-
fined as an acute generalized involvement of 
the CNS, and is characterized by impairment 
of consciousness. Patients affected by delirium 
tremens may experience hallucinations, trem-
ors, convulsions, sweating, and an increase in 
heart rate and body temperature. In severe cas-
es, hypothermia, cardiovascular collapse, and 
death are described [67].

Fig. 6—51-year-old 
alcoholic man after 
rapidly corrected 
hyponatremia showing 
typical and atypical 
patterns of extrapontine 
myelinolysis.
A, Axial FLAIR image 
reveals selective 
involvement of facial 
nerves nuclei (arrows), 
trigeminal and abducens 
nuclei (arrowheads), 
and dentate nuclei of 
cerebellum (open arrows).
B, Oculomotor nerve 
nuclei and red nuclei 
(open arrows), cerebral 
peduncles, mamillary 
bodies (black arrow), 
and optic tracts (white 
arrows) show signal 
intensity alterations. 
Note that alterations in 
mamillary bodies are 
also typical of Wernicke 
encephalopathy.
C, Basal ganglia show 
high signal intensity 
alterations bilaterally 
(arrows).
D, Alterations of corpus 
callosum (arrows) are also 
noted.

Fig. 5—67-year-old alcoholic man after rapidly 
corrected hyponatremia. T2-weighted image 
shows diffuse involvement of basal ganglia (arrows) 
characteristic of extrapontine myelinolysis.
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Pathology
Only a few pathologic investigations are 

available. They show nonspecific changes,  
lesions typical of alcoholism, or both. These 
reflect permanent pathologic changes such as 
axonal Wallerian degeneration, which results 
in a permanent decrease in white matter vol-
ume [68]. Histology shows central chroma-
tolysis of neurons [69], which most often is 
observed in Betz cells and in the neurons of 

the pontine nuclei. Circular neurons with pe-
ripheral displacement of the nuclei and Nissl 
substance are depicted [69].

Clinical Presentation
In AWS, disturbances in cognition, percep-

tion hallucinations, visual impairment, nau-
sea, and tinnitus are thought to relate to corti-
cal dysfunction. Tremor, sweating, depression, 
and anxiety are related to effects on the limbic 
system. Changes in consciousness and gait dis-
orders are associated with brainstem involve-
ment. Alcohol-related seizures were first de-
scribed in 1981, and are commonly observed 
in AWS [70]. The term alcoholic epilepsy 
should not be applied if alcohol is still being 
consumed. Delirium tremens is the expression 
of alcohol withdrawal, and seems to be related 
to kindling phenomenon [67]. A repeated sub-
convulsive stimulus can accumulate its activ-
ity, causing a generalized seizure [67].

Imaging Findings
In alcoholics with withdrawal seizures, MRI 

depicts cytotoxic edema during the acute and 
subacute phases (Fig. 8) and significant volume 
loss in temporal regions [71]. It could therefore 
be deduced that epileptic seizures affect alco-
holic subjects similarly to temporal epilepsy, in 
which reversible edema with some volume loss 
and consequent hippocampus atrophy is ob-
served. In a patient affected by AWS, reversible 
vasogenic edema in the cerebellum; thalami; 
and cortical, subcortical, and deep parietal 
white matter has been described in the clinical 

setting of posterior reversible encephalopathy 
syndrome [72].

Conclusion
Alcohol-related encephalopathies are life-

threatening conditions, often characterized 
by nonspecific neurologic presentation. Neu-
roimaging represents a useful tool in depict-
ing alcohol-related brain damage. Accurate 
knowledge of the neuroimaging findings can 
lead to correct diagnosis and treatment. Al-
cohol-related encephalopathies may share 
common anatomic regions and thus seem 
to represent a continuum more than distinct 
pathologic entities.
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