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ABSTRACT 

The development of topical microbicide formulations for vaginal delivery to 

prevent HIV-2 sexual transmission is urgently needed. Second- and third-

generation polyanionic carbosilane dendrimers with silicon atom core and 16 

sulfonate (G2-S16), napthylsulfonate (G2-NS16) and sulphate (G3-Sh16) end-

groups have showed potent and broad-spectrum anti-HIV-1 activity. However, 

their antiviral activity against HIV-2 and mode of action has not been probed. 

Cytotoxicity, anti-HIV-2, anti-sperm and antimicrobial activities of dendrimers 

were determined. Analysis of combined effects of triple combinations with 

tenofovir and raltegravir were performed by using CalcuSyn software. We also 

assessed the mode of antiviral action on the inhibition of HIV-2 infection through 

a panel of different in vitro antiviral assays: attachment, internalization in 

PBMCs, inactivation and cell-based fusion. Vaginal irritation and histological 

analysis in female BALB/c mice were evaluated. 

Our results suggest that G2-S16, G2-NS16 and G3-Sh16 exert anti-HIV-2 

activity at an early stage of viral replication inactivating the virus, inhibiting cell-

to-cell HIV-2 transmission, blocking binding of gp120 to CD4, and HIV-2 entry. 

Triple combinations with tenofovir and raltegravir increased anti-HIV-2 activity, 

consistent with synergistic interactions (CIwt: 0.33-0.66). No vaginal irritation 

was detected in BALB/c mice after two consecutive applications for 2 days with 

3% G2-S16. 

This work clearly shows that G2-S16, G2-NS16 and G3-Sh16 have high 

potency against HIV-2 infection. The modes of action confirm their multifactorial 

and non-specific ability, suggesting that these dendrimers deserve further 
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studies as potential candidate microbicides to prevent vaginal/rectal HIV-1/HIV-

2 transmission in humans. 
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1. INTRODUCTION 

Human immunodeficiency virus (HIV) and other sexually transmitted infections 

are global threats to public health. Although HIV-1 strains are responsible for 

most of the global infections, HIV-2 strains are an important cause of disease in 

West African nations, Portugal, France, and in the United States.1, 2 Moreover, 

co-infection with both HIV-1 and HIV-2 occurs in some countries of West Africa 

where the viruses co-circulate.3, 4  

Sexual transmission is responsible for the majority of HIV-2 infections due to 

infected semen or cervico-vaginal secretions containing infected lymphocytes.5 

Ideally, a vaginal/rectal microbicide should have the following features: to be 

acceptable and affordable, offer maximal and immediate protection, remain in 

the vagina for a few hours to act against the sexual transmitted diseases 

(STDs) during and after sexual intercourse, not leak immediately after 

application, not accumulate to avoid toxicity effects, not affect the normal 

vaginal flora, and be compatible with male latex condom.6-8 

Dendrimers are a class of well-defined hyper-branched polymers with a 

nanoscale globular shape, well-defined functional groups at the periphery, 

hydrophobic/hydrophilic cavities in the interior and low polydispersity.9 

Dendrimers offer unique opportunities in the synthesis of agents with broad-

spectrum anti-HIV-1 activity and activity against Alzheimer’s disease, herpes 

simplex virus (HSV), bacteria, and cancer.10-14 A group of dendrimers with a 

carbosilane structure has demonstrated potential against HIV and other 

pathogens. These dendrimers are particularly suitable for this application due to 

the simplicity of their synthesis, which allows for large amounts of the polymer 

to be generated; the ability to obtain a polymer with a defined molecular weight 
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and number of terminal functions; chemical and biochemical stability; 

biologically inertness; and the low polarity of the C–Si bond, which imparts 

hydrophobicity to the carbosilane scaffold.15-17  

One of the most promising targets of the HIV cycle is the viral entry/fusion 

process, which is divided into three steps: (i) attachment of gp120 to CD4, (ii) 

binding to CCR5 and/or CXCR4, and (iii) fusion of the envelope with the cell 

membrane and releasing of the viral capsid into the cytoplasm of the host cell. 

18 Dendrimers containing functionalized groups at their periphery can bind to 

their target in a multivalent manner, providing a strategy for the development of 

potent viral entry inhibitors. Although the antiviral activity and the mode of action 

of carbosilane dendrimers have been studied against HIV-1, their antiviral 

activity against HIV-2 is currently unknown. Dendrimers may be important to 

fight HIV-2 infection as few of the currently available antiretroviral drugs work 

well against this virus and drug resistance is rapidly selected against the drugs 

that do work.19 

In order to identify dendrimers with potent anti-HIV-2 activity, we considered 

several polyanionic carbosilane dendrimers successfully tested for HIV-1 

applications with the objective of selecting those compounds with the best 

results obtained. In previous studies, we have shown that polyanionic 

carbosilane dendrimers G2-S16, G2-NS16, and G3-Sh16 (generations 

described as the number of repeating layers of silicon atoms forming the 

dendrimer, Fig. 1) had great anti-HIV-1 activity in vitro and in vivo.20-22 G2-S16 

and G2-NS16 consists of second-generation carbosilane dendrimers scaffold 

built from a silicon atom core, which is fully capped on the surface with 16 

sulfonate and napthylsulfonate groups, respectively. G3-Sh16 is a sulphate-
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terminated generation 3 carbosilane dendrimer, silicon-cored and also with 16 

anionic charges at the periphery. The anionic groups are in the form of sodium 

salts. Here, we have investigated the cytotoxicity, the anti-HIV-2 activity, and 

the anti-sperm and antimicrobial activities of G2-S16, G2-NS16, and G3-Sh16 

dendrimers. Moreover, we researched the anti-HIV-2 activity of combinations of 

these dendrimers with tenofovir and raltegravir. In order to discover more about 

the antiviral mechanism of action of these dendrimers, we used several in vitro 

experiments including: attachment and internalization of HIV-2 in PBMCs, HIV-2 

inactivation, and cell-based fusion assays. Finally, we show that vaginal 

application of 3% G2-S16 gel formulation does not cause vaginal irritation or 

lesions after histological analysis in female BALB/c mice.  

 

2. EXPERIMENTAL SECTION 

a. Dendrimers and reagents 

Polyanionic carbosilane dendrimers G2-S16 (C112H244N8Na16O48S16Si13; 

Molecular weight, Mw: 3,717.2 g/mol), G2-NS16 (C184H244N24Na16O56S16Si13; 

Mw: 4,934.0 g/mol) and G3-Sh16 (C256H508N48Na16O64S16Si29; Mw: 6,978.4 

g/mol) were synthesized as previously reported.15, 17 1mM stock solution of 

dendrimers and subsequent dilutions to obtain µM concentrations were 

prepared in distilled water. The reagents used as controls for inhibition of viral 

replication were the peptide HIV fusion inhibitor T-1249 (Trimeris, Inc., 

Morrisville, NC, USA), tenofovir (TFV; Gilead Sciences, Foster City, CA, USA), 

and raltegravir (RAL; Merck Sharp & Dohme Corp, Whitehouse Station, NJ, 

USA). Stock solutions were prepared in dimethyl sulfoxide (DMSO; Sigma-
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Aldrich, St. Louis, MO, USA), and serial dilutions to the intermediate 

concentrations were prepared using distilled water.  

b. Cells 

Peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats 

obtained from healthy blood donors by a standard Ficoll-Hypaque density 

gradient (Rafer, Zaragoza, Spain) and cultured following the procedures of 

Spanish HIV-HGM BioBank.23, 24 When indicated, PBMCs were stimulated with 

2 µg/ml phytohemaglutinin (PHA; Remel, Santa Fe, NM, USA) and 20 U/ml IL-2 

(Bachem, Bubendorf, Switzerland) for at least 2 days before the experiments 

began. The protocol for maintaining the human epithelial TZM-bl and Hela cell 

lines (National Institute of Health AIDS Research and Reference Reagent 

Program, NIH-ARRRP) has been described.25-27 

c. Virus stocks and titration 

CCR5- and CXCR4-tropic primary HIV-2 clade A strains were isolated by co-

cultivation of PBMCs from infected subjects with PHA-activated PBMCs from 

healthy individuals.28 The 50% tissue culture infectious dose (TCID50) of viruses 

was determined in a single round viral infectivity assay using a luciferase 

reporter gene assay in TZM-bl cells as described previously.29  

The recombinant vaccinia virus vSC50 encodes the full-length env gene from 

HIV-2SBL/ISY, an X4-tropic infectious molecular clone, which was cloned into 

the vaccinia (WR) TK gene.30 Env gene expression is under control of the 

vaccinia virus P7.5 promoter.31 Virus stocks were tittered using the Reed & 

Muench method32 in Rat2 cells. 

d. Cytotoxicity assay 
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The safety and toxicity profile of G2-S16, G2-NS16 and G3-Sh16 in TZM-bl, 

Hela, and PBMCs cells was determined by MTT (3-(4,5-dimethyl-2-thiazolyl)-

2,5-diphenyl-2H-tetrazoliumbromide; Sigma) cytotoxicity assay according to 

manufacturer’s instructions.  

e. Antiviral assay 

TZM-bl cells were pretreated with serial dilutions of dendrimers for 1h at 37ºC. 

Cells were then infected with 200 TCID50 of virus-containing primary R5- or X4-

HIV-2 isolates for 2h at 37ºC. After 48h, the cells were washed and lysed, and 

the luciferase activity was measured by using a luciferase assay system kit 

(Promega, Madrid, Spain) according to the manufacturer’s instructions. From 

the dose-response curve, the 50% cytotoxic concentration (CC50) and the half-

maximal inhibitory concentration (IC50) of dendrimers were determined for each 

strain. The therapeutic index (TI) was determined by the following equation: 

TI=CC50/IC50.
33 

f. Inhibition of HIV-2 attachment and entry to PBMCs 

PHA-activated PBMCs were pretreated with dendrimers or controls for 1h. 

Then, primary HIV-2 isolates were added to PBMCs (the equivalent to 40 ng 

capsid protein/106 cells) and incubated for 2h at 4ºC. Unbound virus was 

removed by washing with phosphate-buffer saline (PBS; Lonza, Walkersville, 

MD, USA) three times, the cells were then lysed, and cell-bound viruses were 

quantified by the capsid p24 content in cell lysates. To measure internalization, 

the same conditions were used, except that PBMCs were incubated with virus 

for 2h at 37ºC, washed in acid wash (glycine 50 mM pH 3.2; Sigma) to strip 

surface-bound viral particles, and cell-internalizated viruses were quantified by 

the capsid p24 content in cell lysates. 
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g. HIV-2 inactivation  

Primary R5- or X4-HIV-2 isolates (the equivalent to 10 ng of the capsid protein) 

were incubated at 4ºC overnight into wells of a 96-well flat-bottom plate with 

poly-L-Lysine, to ensure the adherence of viral particles to the bottom of the 

well. Then, the wells were washed three times with PBS to remove unbound 

HIV-2 and treated with dendrimers or controls for 1h. PHA-activated PBMCs 

were then added. After 72h, cells were washed and lysed, and the HIV-2 p24 

Gag level in the cell lysates was quantified by using HIVp24gag ELISA kit 

(Innogenetics, Ghent, Belgium). Cell viability was measured by MTT assay.   

h. Cell-to-cell fusion inhibition 

Cell-to-cell fusion (CTC) inhibition was tested using a newly developed method 

with recombinant vaccinia virus expressing HIV-2 ISY env gene (vSC50). Hela 

cells were transfected using jetPRIME® reagent (Polyplus-transfection SA, 

Illkirch, France) with the Tat expressing plasmid pcDNA3.1+/Tat101-flag 

following manufacturer’s instructions and infected with the recombinant vaccinia 

virus. After 3h, Hela were collected and co-cultured with TZM-bl (CD4+, 

CCR5+, CXCR4+, indicator cells) at 1:1 cell density ratio in the absence or 

presence of increasing concentrations of dendrimers or controls. The 

percentage of membrane cell fusion was measured by luciferase activity 

induced by the Tat protein. The level of syncytium formation was determined by 

direct microscopic observation. 

i. Combination analysis between dendrimers and antiretrovirals 

TZM-bl cells were pretreated with different concentrations of 

dendrimer/antiretroviral (ARV) at a constant fixed ratio for 1h at 37ºC. The cells 

were then infected with the equivalent to 10 ng of the capsid protein of primary 
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R5-HIV-2 or X4-HIV-2 strains. 48h post-infection, the cells were washed and 

lysed and HIV-2 replication was quantified by luciferase activity. The IC50 and 

synergism were determined by using CalcuSyn software (Biosoft, Cambridge, 

UK). IC50 was determined by using the median-effect plot and the dose-

reduction index.34 Combination indices (CIs) were calculated based on the 

median-effect principle,35 where CI<0.9 indicates a synergistic effect, 

0.9<CI<1.1 indicates an additive effect, and CI>1.1 indicates an antagonism 

effect. 

j. Sperm processing and spermicidal activity 

Semen samples were collected by healthy volunteers by masturbation at the 

laboratory after 2-5 days of sexual abstinence and allowed to liquefy for 30-45 

min at room temperature.36 If completely liquefied, G2-S16 was selected for 

evaluating the sperm motility at 24h according to previously described method. 

37 Only specimens with at least a final motile sperm concentration of 5x106/mL 

were used. These parameters were evaluated by using the Sperm Class 

Analyzer software (Microptic S.L., Barcelona, Spain). 

k. Antimicrobial assays 

G2-S16 was evaluated for its antimicrobial activity against Candida 

albicans ATCC 10231, Enterococcus faecalis ATCC 29212, Escherichia 

coli ATCC 25922, Klebsiella pneumonia ATCC 00603, Lactobacillus 

plantarum ATCC 14917, Pseudomonas aeruginosa ATCC 28753 and 

Staphylococcus aureus ATCC 29213 microorganisms. The antimicrobial activity 

of G2-S16 was measured using a broth microdilution test and serial 1:2 dilutions 

according to the Clinical and Laboratory Standards Institute (CLSI; formerly 

NCCLS) guidelines.  

Page 12 of 47Nanoscale



l. BALB/c mice vaginal irritation test 

Six- to eight-week-old female BALB/c mice (Charles River, Barcelona, Spain) 

were housed in a specific-pathogen-free animal facility at Centro de Biología 

Molecular ‘Severo Ochoa’ for at least one week before the experiments were 

conducted. All mice were maintained and treated according to protocols 

approved by the Institutional Animal Care and Research Committee. BALB/c 

mice were injected subcutaneously with 2 mg of medroxyprogesterone acetate 

(DepoProvera, Pfizer, New York, NY, USA) five days before treatment. To 

assess and conduct an easy, low-cost, and a reliable statistical comparison of 

irritation studies with minimal damage, mice were randomized into 3 groups 

(n=3 in each group). Forty microliters of 2% hydroxyethylcellulose (HEC; Bohm 

laboratories, Madrid, Spain) gel containing 3% G2-S16 was carefully applied to 

the vaginal vault of mice using a stainless steel feeding needle for one day or 

two consecutive days. On day 7, mice were euthanized and vaginal tissues 

were excised and fixed in 4% formaldehyde solution (Panreac, Barcelona, 

Spain) for histology. 

m. Histological studies in BALB/c 

Formalin-fixed excised vaginal tissues were submitted to the Anatomic 

Pathology Laboratory (anaPath, Granada, Spain) for embedding, sectioning and 

evaluation of hematoxylin-and-eosin-stained tissue by an experienced patholo-

gist. Sections were mounted on slides and were subjected to a blind evaluation 

for epithelial erosion, leukocyte infiltration, thickening of the lamina propria 

(edema), and vascular congestion. The inflammation scores were assigned by a 

semiquantitative system.38, 39 

n. Statistical analysis 
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The data are presented as mean values and standard deviations (SD). The 

statistical significance between a treatment group and untreated control was 

calculated by unpaired t-test using GraphPad Prism v5.0 software (GraphPad, 

San Diego, CA, USA). 

 

3. RESULTS 

a. Cell biocompatibility 

The biocompatibility of G2-S16, G2-NS16 and G3-Sh16 was evaluated in TZM-

bl, Hela, and PBMCs. Cells were treated for 48h with increasing concentrations 

of dendrimers, which were considered toxic when survival rate were <80%. G2-

NS16 and G3-Sh16 were considered non-toxic at 10 µM in PBMCs; G2-S16 

was toxic at 50 µM. G2-NS16 and G2-S16 were non-toxic at 100 µM in TZM-bl 

and Hela cells, whereas G3-Sh16 was non-toxic up to 50 µM (Fig. 2). 

Therefore, the in vitro working concentration selected as non-toxic for all types 

of cells to facilitate a better comparison between compounds was of 10 µM. 

b. Anti-HIV-2 activity 

Although R5- and X4-HIV-1 viruses are present in body fluids (blood, semen, 

cervicovaginal and rectal secretions), R5 variants predominate in early stages 

during the process of sexual transmission, and persist throughout the course of 

HIV disease.40 Moreover, late stage R5 HIV-1 variants show more rapid 

replication and higher cytopathicity relative to early stage R5 variants.41 

Previous studies have demonstrated a similar behavior of the viral coreceptor 

specificity during the course of HIV-2 infection.42, 43 Therefore, we analyzed the 

antiviral activity and the IC50 of G2-S16, G2-NS16 and G3-Sh16 against both 

early- and late-stage R5- and X4-HIV-2 isolates in TZM-bl cells. 
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The CC50 were >100 µM for G2-S16 and G2-NS16 in TZM-bl cells. The CC50 for 

G3-Sh16 was 90 µM in TZM-bl cells (Table 1). The concentrations of G2-S16 at 

which R5- and X4-HIV-2 isolates were inhibited by 50% (IC50) varied between 

1.12 and 4.56 µM. The pre-treatment of TZM-bl cells with 10 µM G2-S16 

resulted in 73-94% inhibition of infection by primary R5- and X4-HIV-2 isolates 

(Fig. 3a). Pretreatment of TZM-bl cells with G2-NS16 showed a dose 

dependent inhibition of HIV-2 infection with IC50 values ranging from 0.73 to 

1.07 µM (Table 1). G2-NS16 at 10 µM was the dendrimer with the best 

inhibition values against the primary R5- and X4-HIV-2 strains (>93%; Fig. 3b). 

G3-Sh16 also showed dose dependent inhibition in HIV-2 infection with IC50 

values ranging from 0.85 to 2.97 µM (Table 1). Maximum percentage of 

inhibition varied between 82-94% with 10 µM G3-Sh16 (Fig. 3c). 

The TI of a compound is the ratio between the toxic and the therapeutic dose to 

measure its relative safety. Although TI values depend on many factors, it is 

generally considered that a drug has a good safety profile whether its TI >10.44 

The TI values of G2-S16 and G3-Sh16 were in a range of >21.9 to >89.3, and 

43.5 to 105.9, respectively (Table 1). G2-NS16 showed the highest TI with 

values that varied between >93.5 and >137. 

Summarizing, the three dendrimers were highly active against HIV-2 infection in 

TZM-bl cells, G2-NS16 being the most potent and broad of them. 

c. Virus-cell attachment and viral entry to the susceptible host cells 

Viral entry is a process that involves the binding of a virus to the surface of a 

cell, fusion to the cell membrane, and internalization of the viral genome into the 

target cells. We evaluated whether G2-S16, G2-NS16 and G3-Sh16 is involved 

in HIV-2 binding or in entry steps in PHA-activated PBMCs. Virus attachment 
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was measured at 4ºC, a temperature at which membrane fusion and 

endocytosis processes are ineffective. Virus internalization was evaluated by 

incubating the virus-cell mixture at 37ºC, a temperature that allows membrane 

fusion and viral entry.  

Treatment with 10 µM of G2-S16, G2-NS16 and G3-Sh16 significantly 

decreased the capacity of the primary X4-HIV-2 isolate to bind to PBMCs by 

55%, 62%, and 52%, respectively (p<0.0001; Fig. 4a). This pattern was similar 

to that observed for the primary R5-HIV-2 particles (58-75% infection inhibition), 

but the reduction was not significant. As for the internalization of the viruses into 

PBMCs albeit a reduction was observed for all dendrimers it was only significant 

for G2-S16 with X4-HIV-2 isolates (45% decrease at 10 µM; p<0.0001; Fig. 4b). 

In summary, the three dendrimers bound to target cells and perturbed the ability 

of the viral envelope to interact with its cell surface receptors. G2-NS16 was the 

dendrimer that best blocked the virus-cell binding processes.  

d. HIV-2 inactivation  

The mechanism of inhibition of polyanionic carbosilane dendrimers against HIV-

2 could also be associated to a direct viral inactivation, without forgetting the 

ability of dendrimers to block the gp120/CD4 interaction. Therefore, we 

evaluated the ability of G2-S16, G2-NS16 and G3-Sh16 to directly inactivate 

primary HIV-2 isolates before contact with PHA-activated PBMCs. 

The pre-treatment of primary X4-HIV-2 with 10 µM of G2-S16, G2-NS16 or G3-

Sh16 significantly decreased the infectivity of X4-HIV-2 after 1h of exposure 

(82-91% reduction; p<0.0001). This pattern was similar to that observed for the 

primary R5-HIV-2 (68-81% reduction), but the decrease was not significant (Fig. 

5). The cell viability was always over 80%. 
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To summarize, the pre-treatment with the dendrimers for 1h decreased the 

infectivity of the HIV-2 particles in a tropism-dependent manner, suggesting that 

the dendrimers act strongly on the virion. The best results of HIV-2 inactivation 

were obtained with the G2-NS16 dendrimer. 

e. Inhibition of cell-to-cell fusion and syncytium formation 

A Tat and luciferase-based fusion assay and a syncytium counting assay were 

developed and used to assess whether the dendrimers block cell-associated 

virus entry. 

In the presence of a Hela/TZM-bl cell mixture, G2-S16, G2-NS16 and G3-Sh16 

efficiently blocked fusion between both cell lines in a dose-dependent manner 

(Fig. 6a). We also observed a significant decrease in the number of syncytia 

when the cells were pre-treated with the dendrimers, in particular for G2-NS16, 

which acts like the fusion inhibitor control T-1249 (Fig. 6a). Inhibition of HIV-2 

CTC fusion requires higher concentrations of each dendrimer than inhibition of 

HIV-2 cell-free infection. The IC50 of G2-S16 for CTC inhibition was 8.4-fold 

higher than IC50 for cell-free virus infection. The IC50 of G2-NS16 and G3-Sh16 

for CTC inhibition was 4.4-fold higher than IC50 for cell-free virus infection (Fig. 

6b). 

In summary, our results indicate that the three dendrimers inhibit cell-associated 

HIV-2 infection in a dose-dependent manner, in particular G2-NS16, albeit at a 

higher concentration relative to the inhibition of cell-free infection.  

f. Combination of dendrimers and antiretrovirals against HIV-2 infection  

The anti-HIV-2 activity of triple drug combinations was assessed in a single 

cycle assay in TZM-bl cells. For these studies the dendrimers were combined 
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with TFV, a nucleoside RT inhibitor, and RAL, an integrase inhibitor, at 1:1:1 

fixed ratio.  

In G2-S16/TFV/RAL, the IC50 for G2-S16 decreased against the primary R5- 

and X4-HIV-2 isolates (IC50: 3.0-60.0 nM) compared with dendrimer treatment 

alone. A similar result was also observed for the ARVs against the two primary 

HIV-2 infections (IC50: 60-310 nM for TFV; IC50: 60 nM for RAL) compared with 

single-drug treatment (Fig. 7a). CI was then calculated to determine whether 

synergistic, additive or antagonistic effects against all primary HIV-2 isolates 

occurred after this combination. CI calculations showed synergism at 75, 90, 

and 95% inhibition of R5-HIV-2 (CI: 0.38-0.53) and X4-HIV-2 infection (CI: 0.47-

0.61) (Table 2). 

For G2-NS16/TFV/RAL, the IC50 for G2-NS16 dropped against the primary R5- 

and X4-HIV-2 isolates (IC50: 50.0-60.0 nM) compared with the dendrimers used 

alone. Reductions were also observed in the IC50 for TFV (IC50: 250-610 nM) 

and RAL (IC50: 100-240 nM) against the primary R5-HIV-2 and X4-HIV-2 

infection compared to the drug treatment alone (Fig. 7b). The average CI 

displayed stronger synergy at the calculated EC90, and EC95 inhibitory 

concentrations against R5-HIV-2 infection (CI: 0.24-0.30). CI values indicated a 

good synergistic inhibitory profile at the three EC75, EC90, and EC95 

concentrations against X4-HIV-2 infection (CI: 0.46-0.65) (Table 2). 

With G3-Sh16/TFV/RAL, a reduction in G3-Sh16 concentration was observed 

(IC50: 10-110 nM) against the primary R5- and X4-HIV-2 infection. The IC50 for 

TFV dropped against R5- and X4-HIV-2 infection (IC50: 260-620 nM) compared 

with TFV alone; and for RAL decreased against R5- and X4-HIV-2 infection 

(IC50: 100-360 nM) compared with the drug used alone (Fig. 7c). CI 
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determination showed synergistic interactions at the calculated EC75, EC90, and 

EC95 inhibitory concentrations against R5-HIV-2 infection (CI: 0.31-0.42).This 

combination exhibited synergism at 90%, and 95% inhibition of X4-HIV-2 (CI: 

0.60-0.64) (Table 2). 

In summary, the strongest synergistic interactions and the highest inhibition of 

infection in TZM-bl cells were observed with G2-NS16/TFV/RAL, which is 

consistent with the most potent activity of G2-NS16 alone relative to the other 

dendrimers. 

g. In vitro spermicidal activity 

To identify whether the topical microbicide candidate G2-S16 is spermostatic or 

spermicidal, sperm was cultured in the presence or absence of dendrimer and 

the progressive motility of the sperm was analyzed. No significant changes in 

sperm progressive motility of G2-S16 (at 10 and 50 µM) at 24h post-treatment 

were obtained compared with untreated control (Fig. 8a). 

This result indicates that G2-S16 can be considered safe to be used as topical 

vaginal microbicide because it did not alter the sperm motility and did not affect 

other sperm functions. Moreover, this finding is consistent with the results 

obtained with G2-NS16 and G3-Sh16 in previous studies.22  

h. Antimicrobial activity 

The normal vaginal microbiota contains a wide variety of bacterial species that 

maintain an acidic pH by hydrogen peroxide and lactic acid production.45 

Alterations in this ecosystem can cause several vaginal infections, such as 

bacterial vaginosis and Candida vaginitis, which represent the majority of these 

infections among women.46 A successful microbicide product has to be stable 

and biocompatible in normal vaginal flora, preventing HIV-2 transmission in this 
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highly complex microenvironment. Therefore, toxicity of G2-S16 against a 

composite population of bacteria observed in normal vaginal microbiota was 

analyzed. No antimicrobial activity of G2-S16 (at 10 and 50 µM) at 24h post-

treatment against the list of microorganisms cited in M&M was observed (Fig. 

8b). 

Summarizing, our findings are consistent with the results obtained with G2-

NS16 and G3-Sh16 in previous studies.22 It suggests that G2-S16 is a good 

potential candidate for the first biological barrier encountered by the viruses 

because G2-S16 did not have negative effects in the normal vaginal flora. 

 i. In vivo assay of G2-S16 in BALB/c mice model 

To evaluate whether microbicide exposure of G2-S16 resulted in toxicity and 

inflammation of the vaginal mucosa, G2-S16 at 3% was applied intravaginally to 

BALB/c mice, and pathological examination of the vaginal tissues was 

performed at 7 days post-application. Histopathological examination indicated 

that the application of one dose or two doses of 3% of G2-S16 gel-treated 

BALB/c mice did not induce vaginal irritation or damages in the vaginal mucosa 

(Fig. 9). 

 

4. DISCUSSION 

Sexual transmission is the main route of HIV spread throughout the world.47 In 

the absence of a prophylactic anti-HIV vaccine, microbicides could offer to 

women a new strategy to prevent sexually transmitted HIV.48-50 To identify 

alternative medicines that provide significant advantage compared to existing 

therapies, different mechanisms to inhibit the viral lifecycle before the 
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integrations should be considered, such as the process of receptor-mediated 

viral entry.  

Dendrimers containing several types of functionalized groups at their periphery 

have shown effective anti-HIV activity as non-specific microbicides.18, 51, 52 

SPL7013 (the active product of VivaGel®), a fourth generation polylysine-based 

dendrimer with 32 napthylsulfonate groups at the periphery, is the only topical 

nanomicrobicide that has advanced to human clinical trials for HIV-1/HSV-2 

prophylaxis. However, VivaGel® provided low activity against R5-HIV-1 isolates 

and epithelial injury after 7-14 days of twice-daily administration has been 

associated with an increased risk for HIV infection.53 A new water-soluble 

dendrimers with carbosilane structure, which are characterized by the easy 

availability of reagents, short reaction times, high reproducibility and quantitative 

yields of reaction, have been synthesized.15-17 These polyanionic carbosilane 

dendrimers are stable compounds and their microbicide capacity against HIV-1 

has been previously reported.22, 54 However, the potential microbicide capacity 

against HIV-2 infection is still unknown. Here, the anti-HIV-2 activity of G2-S16, 

G2-NS16 and G3-Sh16 and the mechanism of action were determined. 

It has been reported that in heterosexual HIV transmission, R5-tropic HIV 

variants dominate in the early stages of HIV disease,55 although X4-tropic HIV 

variants are also present in body fluids.56 We compared the half cytotoxic 

concentration of G2-S16, G2-NS16 and G3-Sh16 when exposed to TZM-bl cells 

(CC50 > 90 µM) with the concentration of these dendrimers at which R5- and 

X4-HIV-2 infectivity was inhibited by 50% (IC50: 0.73-4.56 µM). Then, the 

therapeutic index was determined (TI: 21.9 - >137) and used as an indicator of 

overall efficacy and safety. Despite the fact that TI was high (>10), G2-S16, G2-
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NS16 and G3-Sh16 are compounds that should be studied more thoroughly and 

carefully before passing to clinical trials. 

In the virucidal and HIV-2 inactivation assays, we observed the capacity to 

diminish the residual infectivity of HIV-2 particles after 1h of incubation with the 

dendrimers. These results suggest that diverse mechanisms of HIV-2 

inactivation may be involved. The dendrimers can (i) disrupt the integrity of the 

HIV-2 membrane decreasing the stability of viral RNA,57 (ii) bind to V3 loop,20, 58 

or (iii) interact and modify by denaturing the two disulfide bonds locate on the 

HIV-2 gp120 protein (an area implicates in binding to the CD4 receptor).59 

However, additional research is needed to define the mechanism of inactivation 

occurs. The observations previously obtained by molecular dynamics 

simulations support this idea because the mechanism of action is associated 

with electrostatic interactions between HIV gp120 and different functional 

groups of dendrimers.20 However, the HIV-2 inactivation has not still been 

studied and further experiments by molecular modeling should be performed. 

The ability to prevent HIV-2 binding to PBMCs but not entry can be explained by 

the existence of other effective mechanisms of attachment besides the direct 

HIV-2 fusion with the CD4 cell surface (i.e., through galactosyl-ceramide, ICAM-

1, LFA-1 or heparan sulfate),60 which are beyond the mode of action of the 

dendrimers. Another possibility is that virus-cell fusion occurs with the 

endosomal membrane following the endocytic uptake of virus particles.61 

However, all alternatives of HIV-2 entry can probably coexist, which is the 

reason why G2-S16, G2-NS16 and G3-Sh16 inhibit binding but do not inhibit 

completely the internalization. Finally, the HIV-2 capsid protein can be altered 

by the dendrimers during the passage to the cell and this leads to problems in 
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its disaggregation, most likely the p24 antigen enters the cell but RT, integrase 

and viral RNA do not. Consequently, HIV-2 particles are not infectious. 

The ability of HIV to spread between cells determines its virulence, with direct 

HIV CTC up to thousand fold more potent and efficient than infection by cell-

free virus particles.62, 63 It is known that CTC protects viruses from humoral 

immune responses and antiviral treatments, allowing the persistence of residual 

replication, and the establishment and maintenance of viral reservoirs. Previous 

studies have demonstrated that HIV-1 CTC is susceptible to ARVs and 

neutralizing antibodies.64-67 Here, we have developed a simple and highly 

effective assay to assess the activity of dendrimers and other drugs in CTC 

promoted by the HIV-2 envelope. We show that dendrimers can efficiently 

prevent cell HIV-2 CTC albeit at a higher concentration relative to cell-free 

infection. These results confirm that cell-to cell fusion is more difficult to inhibit 

than cell-free HIV infection62 and, more importantly, indicate that dendrimers 

can prevent cell-associated HIV-2 infection 

ARVs display great potential in the prevention of sexual HIV transmission. 

However, ARVs-based microbicides could increase the risk of emergence of 

multidrug-resistant mutants, drug-drug interactions, systematic absorption and 

adverse side effects associated with high drug concentrations and lifelong 

therapy.29, 68, 69 Therefore, to prevent these problems the ideal HIV microbicide 

should combine different classes of antiretroviral drugs acting in different targets 

with compounds that act in a non-specific way.18 Here, we have shown that 

dendrimer/TFV/RAL combinations at a fixed 1:1:1 ratio have significant 

synergistic interactions against the primary R5- and X4-HIV-2 isolates. Similar 

results have been previously obtained for HIV-1 using a combination of these 
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dendrimers with TFV and/or maraviroc.25, 70-72 G2-NS16/TFV/RAL was the most 

potent combination regimen against HIV-2 isolates, which is consistent with the 

higher anti-HIV-2 potency of the G2-NS16 dendrimer when given alone relative 

to the other dendrimers. 

The safety profile of a microbicide candidate should preserve its activity against 

HIV infection and other STDs (i.e., HSV-2) and be carefully evaluated before 

moving the candidate into clinical trials. It is also important to note that an 

algorithm focused on prevention of HIV infection should address whether the 

lead topical microbicide candidates are spermicidal. There are some evidences 

of harm through genital lesions with the spermicide nonoxynol-9 when is 

vaginally administered for preventing HIV and other STDs.73 Previously we have 

shown that G2-NS16 and G3-Sh16 do not induce changes in sperm motility.22 

In this work, we studied the anti-sperm and antimicrobial activity of G2-S16. The 

sperm motility and the different bacteria present in normal vaginal flora showed 

very similar response patterns compared to untreated control, indicating that 

G2-S16 is not an antimicrobial and spermicidal compound. The results confirm 

that this class of dendrimers is not spermicidal 

Several polyanionic polymers as entry inhibitors (i.e., Ushercell, Carraguard or 

PRO2000) showed an increased risk of HIV-1 infection because of the 

disruption of the integrity of mucosal epithelial surface.74 In the present work, we 

studied the safety of 3% G2-S16 gel on topical mucosal site using BALB/c mice 

model. We showed that G2-S16 displayed a good safety profile and did not 

cause alterations to the vaginal epithelium. For the topical application, the 

dendrimer establishes a film or a physical barrier to prevent the dissemination of 
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infected cells from the local mucosa to the regional lymph nodes and acts 

against the infection once virus has crossed the epithelial barrier.75 

 

5. CONCLUSIONS 

To summarize, our studies reveal that G2-S16, G2-NS16 and G3-Sh16 are non-

specific compounds that inhibit HIV-2 infection acting at different and early 

steps in the HIV-2 lifecycle. These dendrimers act directly on the virus, block 

HIV-2 replication at steps prior to the integration of proviral DNA into the 

infected host cell genome (binding and fusion/entry into target cells), block HIV-

2 CTC and are effective at non-cytotoxic concentration easily reachable in the 

mice model. The use of a combined therapy blocking HIV-2 infection at early 

steps in the HIV-2 lifecycle is highly effective to stop the infection over existing 

therapeutic approaches, as they may avoid virus entry into new target cells and 

accelerate the decay of the latent reservoirs for HIV.  

The delivery vehicle for the formulation of the dendrimers is important for a 

good distribution throughout the vagina or rectum. Therefore, novel routes of 

administration to those already known (topical gels, intravaginal rings or locally 

applied solid films and tablets) should be explored to improve the activity, 

accept ability and adherence of these dendrimers for the prevention of HIV-2 

infection and other STDs that enhances HIV. It would be also interesting to test 

the anti-HIV-2 activity of the microbicide in presence of semen and to study the 

hypersensitivity, photosensitivity and condom integrity in the presence of the 

microbicide. Finally, further studies including humanized mice to complement in 

vitro and in vivo findings should be considered avoiding high economic losses 

and time before reaching human clinical trials.  
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Our data suggests that these dendrimers are promising candidates for future 

microbicide clinical trials in the field for prevention of HIV-2 infection. The role of 

these parameters in G2-S16/TFV/RAL, G2-NS16/TFV/RAL and G3-

Sh16/TFV/RAL, and other combination activities should be assessed in future 

studies. 
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7. FIGURE AND TABLE LEGENDS 

Figure 1. Molecular representation of second- and third-generation 

dendrimers. (A) G2-S16 with 16 sulfonate end groups; (B) G2-NS16 with 16 

naphthylsulfonate end groups; (C) G3-Sh16 with 16 sulphate end groups. The 

generation of dendrimers is determined by considering that each generation 

corresponds to the number of repeating layers of silicon atoms forming the 

dendrimer. Abbreviations: Mw= Molecular weight 

 

Figure 2. Cytotoxicity associated to polyanionic carbosilane dendrimers 

G2-S16, G2-NS16 and G3-Sh16. (A) TZM-bl, (B) Hela and (C) PBMCs cells 

were loaded with increased amounts of dendrimers in a range between 0.01 

and 100 µM; or treated with 10 µM dextran (innocuous control) or 10% of 

DMSO (control of cell death). Histograms represent the percentage of viable 
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cells as the mean ± SD of at least three independent experiments performed in 

triplicate (vs. NT). Abbreviations: DMSO= Dimethylsulfoxide; NT= Non-treated 

(medium alone). 

 

Figure 3. Anti-HIV-2 activity and dose-response curve obtained for 

polyanionic carbosilane dendrimers G2-S16, G2-NS16 and G3-Sh16 in 

TZM-bl cells. TZM-bl cells were pretreated with increased concentrations of (A) 

G2-S16, (B) G2-NS16, and (C) G3-Sh16 for 1h before HIV-2 infection 

(concentrations ranged from 0.31 to 20 µM). Equal amounts of virus-containing 

(2,000 TCID50) primary early/late R5- or X4-HIV-2 isolates were used. 

Luciferase activity was analyzed to 48h post-infection vs. control non-treated 

cells. Data represent the mean ± SD of three independent experiments 

performed in triplicate. 

 

Figure 4. Effect of polyanionic carbosilane dendrimers G2-S16, G2-NS16 

and G3-Sh16 on HIV-1 attachment and entry into PBMCs. PHA-activated 

PBMCs were pretreated with dendrimers (10 µM) or control (5 µM T-1249) for 

1h before the infection with primary R5- or X4- HIV-2 isolates. After infection for 

2h (A) at 4°C (binding) or (B) at 37°C (internalization), the cells were washed 

extensively (with glycine-acid washing for internalization assay) and lysed with 

0.1% Triton X-100 buffer. Attachment and internalization levels were quantified 

by the measure of p24 in cell lysates by p24 ELISA. Results represent the mean 

± SD of three independent experiments performed in triplicate. ***: p<0.0001 vs. 

untreated control. Abbreviations: PBMCs= Peripheral blood mononuclear cells; 

PHA= Phytohaemagglutinin. 
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Figure 5. HIV-2 virus inactivation by polyanionic carbosilane dendrimers 

G2-S16, G2-NS16 and G3-Sh16 prior to infection the PBMCs. Primary R5- 

and X4- HIV-2 isolates (grey and white bars, respectively) were stuck on poly-L-

lysine coated plates and were treated with dendrimers (10 µM) or control (5 µM 

T-1249) 1h before exposure to PHA-activated PBMCs. After 72h, PBMCs 

supernatants were collected and p24 levels were measured by p24 capture 

ELISA. Cell viability was measured by MTT assay (black solid and dashed 

lines). Data are represented as the mean ± SD of three independent 

experiments performed in triplicate. ***: p<0.0001 vs. untreated control. 

Abbreviations: CI= Control of infection; PBMCs= Peripheral blood mononuclear 

cells; PHA= Phytohaemagglutinin. 

 

Figure 6. Inhibition of Env/CD4-mediated membrane fusion. The plasmid 

Tat+ (pcDNA 3.1/Tat 101-flag) was transfected using the jetPRIME® transfection 

reagent into Hela-CD4- cells. The cells were then infected with the rVVenv virus 

(rVV/ISY). After 3h, TZM-bl (indicator cells) and Hela (effector cells) were co-

cultured and treated with dendrimers at a range of concentrations (2.5-50 µM) 

or T-1249 (1.25-10 µM) for 48h. (A) Percentage of fusion was measured by 

luciferase activity vs. cell-to-cell fusion without treatment (NT) and by direct 

microscopic observation by quantification of the syncytium formation. Data 

represent the mean ± SD of three independent experiments performed in 

triplicate. (B) The half-maximal inhibitory concentration (IC50) for cell-free and 

cell-to-cell viral fusion. 
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Figure 7. The half-maximal inhibitory concentration (IC50) of polyanionic 

carbosilane dendrimers G2-S16, G2-NS16 and G3-Sh16 and antiretrovirals 

(tenofovir or raltegravir) alone and in combination in TZM-bl cells. Mean 

50% effective concentrations (IC50, nM) for (A) G2-S16/TFV/RAL, (B) G2-

NS16/TFV/RAL, and (C) G3-Sh16/TFV/RAL at an equimolar ratio (1:1:1) after 

infection with primary R5- and X4-HIV-2 isolates in TZM-bl cells. The white bars 

indicate the mean IC50 calculated for the compounds when added alone, and 

the gray bars indicate the mean IC50 calculated for the compounds when used 

in combination. Data are shown as the mean ± SD from three independent 

experiments performed in duplicate. Abbreviations: TFV= Tenofovir; RAL= 

Raltegravir 

 

Figure 8. Sperm survival index and antimicrobial activity after 24h of 

treatment with G2-S16. (A) Sperm were cultured in seminal plasma, in the 

presence or absence of different concentrations of G2-S16 (10 and 50 µM). The 

sperm progressive motility was measured by using the Sperm Class Analyzer 

software. A calculated sperm motility index value <75% was used to indicate 

sperm toxicity. Data are represented as the mean ± SD of three different 

donors. (B) The determination of the minimum inhibitory concentration 

(antimicrobial susceptibility) of G2-S16 at 10 and 50 µM, defined as the lowest 

concentration of an antimicrobial that will inhibit the visible growth of a 

microorganism after overnight incubation at 35ºC, is calculated by a modified 

Kirby-Bauer disk diffusion technique. 
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Figure 9. Effects of 3% G2-S16 on the vaginal mucosa in BALB/c mice 

model. Mice were inoculated (A) once or (B) twice for two consecutive days 

(with an interval of 24h between sessions) intravaginally with 40 µl of 2% HEC 

containing G2-S16 at 3% (8 mM). The vaginal tract was harvested from the 

mice at 7 days post-application. Formalin-fixed, paraffin-embedded tissues 

sections were stained with hematoxylin-eosin for evidence of morphological 

damage or evidence of inflammation. HEC-treated mice were included as 

reference control (data no shown). Photographs are representative of all treated 

mice. Original magnification 100X. (C) Histopathological examination of vaginal 

tissues. Data were calculated as the mean ± SD of the scores estimated at the 

vaginas of three mice in each group. † Individual score: 0=absence, 1=minimal, 

2=mild, 3=moderate, 4=severe irritation. ‡ The cumulative score for epithelial 

disruption, submucosal leukocyte infiltration, edema and vascular congestion 

were correlated to human vaginal irritation potential as follows: vaginal irritation 

index ≤8: Acceptable; 9-10: Borderline; ≥11: Unacceptable. The scoring system 

was established according to Eckstein et. al35 and Zhong et. al.36 Abbreviations: 

HEC= Hydroxyethylcellulose gel. 

 

Table 1. In vitro cytotoxicity and anti-HIV-2 activity of polyanionic 

carbosilane dendrimers G2-S16, G2-NS16 and G3-Sh16 in TZM-bl cells. 

† CC50: The cytotoxic concentration of the dendrimers that caused the reduction of 
viable cells by 50%. Data represents the mean ± SD of three independent experiments 
performed in triplicate. 
‡ IC50: The concentration of the dendrimers that resulted in 50% inhibition in HIV-2 
infection. Data represents the mean ± SD of three independent experiments performed 
in triplicate 
¥ TI: Therapeutic index is CC50/IC50 
 

Page 30 of 47Nanoscale



Table 2. Combination indices of three-drug combinations against HIV-2 

infection in TZM-bl cells. Computer-simulated combination index at 50, 75, 90 

and 95% inhibition of primary R5- and X4-HIV-2 infection in vitro in TZM-bl cells. 

CIs are presented as the mean ± SD from the average of three experiments 

performed in triplicate.  

† CI > 1.1 indicates antagonism (-); 1.1 > CI > 0.9 indicates additive effect (ad) and CI < 
0.9 indicates a synergistic effect. 
‡ Synergy levels: 0.9 > CI > 0.85: + (sight synergism); 0.85 > CI > 0.7: ++ (moderate 
synergism); 0.7 > CI > 0.3: +++ (synergism); 0.3 > CI > 0.1: ++++ (strong synergism); 
CI < 0.1; +++++ (very strong synergism). 
¥ Because high degrees of effects are more important to the treatment than the low 
degrees of effects, the weighted average CI value was assigned as CIwt = [CI50 + 2CI75 
+ 3CI90 + 4CI95]/10, where CI50, CI75, CI90, and CI95 are the CI values at 50, 75, 90, and 
95% inhibition, respectively.31, 32  
Abbreviations: CI= Combination index; RAL= Raltegravir; TFV= Tenofovir. 
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Polyanionic carbosilane dendrimers inhibit HIV-2 binding and subsequent 

internalization, inactivate the virus, block HIV-2 cell-to-cell fusion, and enhance 

the antiviral activity in combination with tenofovir/raltegravir compared to the 

compounds alone. 
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Dendrimer HIV-2 CC50 (µM) 
†
 IC50 (µM) 

‡
 TI 

¥
 

G2-S16 Early R5-HSM2.03 >100 4.56 >21.9 

 Late R5-HCC12.3  2.46 >40.7 

 Early X4-CT03  1.12 >89.3 

 Late X4-HCC10.3  3.72 >26.9 

G2-NS16 Early R5-HSM2.03 >100 0.73 >137.0 

 Late R5-HCC12.3  1.07 >93.5 

 Early X4-CT03  0.81 >123.5 

 Late X4-HCC10.3  0.88 >113.6 

G3-Sh16 Early R5-HSM2.03 90 1.56 57.7 

 Late R5-HCC12.3  2.07 43.5 

 Early X4-CT03  0.85 105.9 

 Late X4-HCC10.3  0.85 105.9 
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Triple Combination 

(Combination ratios) 
HIV-2 CI values at inhibition of: 

†
 CIwt-values 

¥
 

  50% 75% 90% 95%  

G2-S16 + TFV + RAL (1:1:1) R5 
0.66 ± 0.04 

‡
 

+++ 

0.53 ± 0.01 

+++ 

0.43 ± 0.01 

+++ 

0.38 ± 0.02 

+++ 

0.45 ± 0.02 

+++ 

 X4 
0.73 ± 0.05 

++ 

0.61 ± 0.01 

+++ 

0.52 ± 0.03 

+++ 

0.47 ± 0.05 

+++ 

0.54 ± 0.03 

+++ 

G2-NS16 + TFV + RAL (1:1:1) R5 
0.63 ± 0.09 

+++ 

0.42 ± 0.02 

+++ 

0.30 ± 0.01 

++++ 

0.24 ± 0.03 

++++ 

0.33 ± 0.04 

+++ 

 X4 
0.84 ± 0.02 

++ 

0.65 ± 0.05 

+++ 

0.52 ± 0.08 

+++ 

0.46 ± 0.09 

+++ 

0.55 ± 0.06 

+++ 

G3-Sh16 + TFV + RAL (1:1:1) R5 
0.51 ± 0.05 

+++ 

0.42 ± 0.05 

+++ 

0.35 ± 0.02 

+++ 

0.31 ± 0.01 

+++ 

0.36 ± 0.02 

+++ 

 X4 
0.84 ± 0.03 

++ 

0.73 ± 0.02 

+++ 

0.64 ± 0.05 

+++ 

0.60 ± 0.06 

+++ 

0.66 ± 0.04 

+++ 
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