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Abstracts: 

In this paper, authors introduce a new Pythagorean mean functional equation which relates the three classical 
Pythagorean mean and investigate its generalized Hyers -Ulam stability. Also, Motivated by the work of Roman Ger [7], we 
deal with the general solution of Pythagorean means functional equation. We also provide counter -examples for singular 
cases. Very specially in this paper we illustrate the geometrical interpretation and application of new introduced Pythagorean 
mean functional equation. 
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1.Introduction 

There is a legend that one day when Pythagoras (c.500 BCE) was passing a blacksmith’s shop, he heard harmonious 
music ringing from the hammers. When he enquired, he was told that the weights of the hammers were 6, 8, 9, and 12 
pounds. These ratios produce a fundamental and its fourth, fifth and octave. This was evidence that the elegance of 
mathematics is manifested in the harmony of nature.  

Returning to music, these ratios are indeed a foundation of music as noted by Archytus of Tarentum(c.350 BCE): 
There are three ’means’ in music: one is the arithmetic, the second is the geometric and the third is the subcontrary, which 
they call ’harmonic’.  

 The arithmetic mean is when there are three terms showing successively the same excess: the secon d exceeds the 
third by the same amount as the first exceeds the second. In this proportion, the ratio of the larger number is less, that of  the 
smaller mumbers greater.  

The geometric mean is when the second is to the third as the first is to the second; in this, the greater numbers have 
the same ratio as the smaller numbers.  

 The subcontrary, which we call harmonic, is as follows: by whatever part of itself the first term exceeds the second, 
the middle term exceeds the third by the same part of the third. In  this proportion, the ratio of the larger numbers is large r and 
of the lower numbers less [15].  

 In order to understand these descriptions, it is necessary to realize that for Greeks, a mean for two numbers 

> ,B A was a third number C  satisfying ACB >>  and a further property. The above description of the arithmetic 

mean, geometric mean and harmonic mean states that  
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the arithmetic mean, geometric mean and harmonic mean repectively.  
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Definition 1.1 Pythagorean Means:[4] In Mathematics, the three classical Pythagorean means are the arithmetic mean(A), 
the Geometric mean(G), and the harmonic mean(H). They are defined by 
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  The stability problem of functional equations originates from the fundamental question: When is it true that a mathematical 
object satisfying a certain property approximately must be close to an object satisfying the property exactly?  

 In connection with the above question, in 1940, S.M. Ulam [24] raised a question concerning the stability of 

homomorphisms. Let G  be a group and let G  be a metric group with (.,.)d . Given 0>  does there exist a 0>  

such that if a function GGf :  satisfies the inequality <))()(),(( yfxfxyfd  for all Gyx , , then there is 

a homomorphism GGH :  with ))(),(( xHxfd  for all Gx ? 

 The first partial solution to Ulam’s question was given by D.H. Hyers [9]. He considered the case of approximately 

additive mappings EEf :  where E  and E  are Banach spaces and f  satisfies Hyers inequality  

  )()()( yfxfyxf  

 for all Eyx , , it was shown that the limit  
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 exists for all Ex  and that EEa :  is the unique additive mapping satisfying  

 .)()(  xaxf  

 Moreover, it was proved that if )(txf  is continuous in t  for each fixed Ex , then a  is linear. In this case, the 

Cauchy additive functional equation )()(=)( yfxfyxf   is said to satisfy the Hyers-Ulam stability. 

 In 1978, Th.M. Rassias [23] provided a generalized version of the theorem of Hyers which permitted the Cauchy 
difference to become unbounded. He proved the following theorem.  

Theorem 1.2 [ . . ]Th M Rassias  If a function EEf :  between Banach spaces satisfies the inequality  

  ( ) ( ) ( )
p p

f x y f x f y x y      (1.1) 

 for some 0 , 1<0 p  and for all Eyx , , then there exists a unique additive function EEa :  such that  
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 for all Ex . Moreover, if )(txf  is continous in t  for each fixed Ex , then a  is linear.  

  A particular case of Th.M. Rassias’ theorem regarding the Hyers -Ulam stability of the additive mappings was 

proved by T. Aoki [1]. The theorem of Rassias  was later extended to all 1p  and generalized by many mathematicians 

(see [2, 3, 5, 8, 10, 18, 19, 20]). The phenomenon that was introduced and proved by Th.M. Rassias is called the 
Hyers-Ulam-Rassias stability. The Hyers-Ulam-Rassias stability for various functional equations have been extensively 
investigated by numerous authors; one can refer to ([11, 12, 13, 14, 16, 17]). In 1994, a generalization of the Th.M. Rassias ’ 

theorem was obtained by P.G â vruta [6], who replaced the bound  pp
yx   by a general control function ( , ).x y  
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 In 1982-1989, J.M.Rassias [18, 19] replaced the sum appeared in right hand side of the equation (1 .1) by the 
product of powers of norms. This stability is called Ulam-Gavruta-Rassias stability involving a product of different powers of 
norms. Infact, he proved the following theorem. 

Theorem 1.3 ]..[ RassiasMJ  Let 
21: EEf   be a mapping from a normed vector space 

1E  into Banach space 

2E  subject to the inequality  
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 for all 1Ex .  

 

Very recently, J. M. Rassias replaced the sum appeared in right hand side of the equation (1 .1) by the mixed 
product of powers of norms in [21]. The investigation of stability of functional equation involving with  the mixed product of 
power norms is known as Hyers-Ulam-J.M.Rassias stability.  

 In 2010, K. Ravi and B.V. Senthil Kumar [22] investigated some results on Ulam -Gavruta-Rassias stability of the 
functional equation  

 .
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  (1.8) 

 It was proved that the reciprocal function 
x

c
xr =)(  is a solution of the functional equation (1.8).  

Definition 1.4 Pythagorean mean functional equation:  Pythagorean mean functional equation is an functional equation 
which arises from the relations between the three Pyhagorean means of arithmetic mean, geometric mean and harmonic 
mean.  

 With the motivation of the Pythagorean means, that is; arithmetic mean, geometric mean, harmonic mean and its 
relations. In this paper, authors arrive the Pythagorean means functional equation of the form  

  2 2 ( ) ( )
= , , (0, )
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f x f y
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 with 
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c
xf  and very specially in this paper we illustrate the geometrical interpretation in Section 2. In Section 3, 

Motivated by the work of Roman Ger [7] we deal with the solution of Pythagorean mean functional equation (1.9). In Section 
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4, we investigate the generalized Hyers-Ulam stability of equation (1.9) also we provide counter-examples for singular 
cases. In Section 5, we investigate the application of new introduced Pythagorean mean functional equation. 

2. Geometrical Interpretation of Equation (1.9) 

Consider the circle centre A  and the tangent to the circle from the point M  touching the circle at the point G  

with = , =PM a QM b  and 0>> ba . 

  

We can work out the radius of the circle and show the length AM  is 
2

)( ba 
 be the arithmetic mean of a  and 

b . Using Pythagoras’ theorem we can get the length GM  is ab  be the geometric mean of a  and b . Using the fact 

that the triangles AGM  and GHM  are similar we can get HM  is 
)(

2

ba

ab


 be the harmonic mean of a  and b . 

From the definition of Pythagorean means and from the diagram, one can shows that the harmonic mean is related to the 

arithmetic mean and the geometric mean by .=
2

AM

GM
HM  So  

 HMAMGM =  (2.1) 

meaning the two numbers geometric mean equals the geometric mean of their arithmetic and harmonic means. By rewriting 
the equation (2.1), we get  
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Comparing this result (2.3) with (1.9), we obtain 
2

1
=)(

x
xf . This proves that the Pythagorean mean functional equation 

(1.9) holds good in the above geometric construction. 

 

Throughout this paper, let us assume X  be a linear space and Y  be a Banach space. For the sake of convenience, let 
us denote  
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3. General Solution of the Functional Equation (1.9) 

In this section, motivated by the work of Roman Ger [7], we present the general solution of the Pyhagorean mean 
functional equation in the simplest case and also we give the differentiable solution of (1.9). The following Theorem gives the 
solution of (1.9) in the simplest case.  

Theorem 3.1 Simplest case: The only nonzero solution R)(0,:f , admitting a finite limit of the quotient 

2
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xf
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 for all )(0,x . By a simple induction, for every positive integer n , we also obtain the equalities  

 ),()2(=
)2(

xg
x

g n

n 












 

 for all )(0,x , whence, finally,  

 .
)2(

)2(

1

=
1

)2(

)()2(
=

1

)(













nasc

x

xg

x

xg

x

xg
n

n

n

n

 

 Consequently, for every )(0,x , we get  
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 as claimed, because clearly c  cannot vanish since, otherwise, we would have 0=f .  

 The following Theorem gives the differentiable solution of the Pythagorean mean functional equation (1.9).  

Theorem 3.2 Differentiable Solution: Let R)(0,:f  be continuously differentiable functions with nowhere 

vanishing derivatives f  . Then f  yields a solution to the functional equation (1.9) if and only if there exists nonzero real 

constants c  such that ).(0,,=)(
2

x
x

c
xf  



Global Journal of Mathematics                             Vol. 4, No. 1, September 29, 2015 

www.gpcpublishing.com                                               ISSN: 2395-4760 

403 | P a g e                       e d i t o r @ g p c p u b l i s h i n g . c o m  

Proof. Differentiate equation (1.9) with respect to x  on both side, we obtain  
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 for all )(0,)(0,, yx . Since on setting xy =  in (1.9) we deduce that  
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 for all )(0,x . for all integers mn,  and due to the continuity of the map f  , we derive its linearity  
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we have to have 0=d  because of the equality )(
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1
=)2( xfxf  valid for all positive x . Which completes the proof.  

4. Generalized Hyers- Ulam Stability of Equation (1.9) 

Theorem 4.1 Let YXf :  be a mapping satisfying  

 ),(),( yxyxDf   (4.1) 

 where YX 2:  is a function such that  
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 for all Xx . Then there exists a unique reciprocal-quadratic mapping YXr :  which satisfies (1.9) and the 
inequality  

 )()()( xxfxr    (4.4) 

 for all Xx .  
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Proof. Replacing y  by x  in (4.1) and multiplying by 2 , we get  

 ),(2)()2(2 xxxfxf    (4.5) 

 for all Xx . Now, replacing x  by x2  in (5), multiplying by 2  and summing the resulting inequality with (5), we 

obtain  
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 Allowing n  in (4.8), we see that r  satisfies (1.9) for all Xyx , . To prove r  is a unique reciprocal-quadratic 

mapping satisfying (1.9). Let YXR :  be another reciprocal-quadratic mapping which satisfies (1.9) and the inequality 

(4.4). Clearly )(2=)(22 xRxR n
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 for all .x X Allowing n  in (4.9) and using (4.3), we find that r  is unique. This completes the proof of Theorem 
4.1.  
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Theorem 4.2 Let YXf :  be a mapping satisfying (4.1), where YX 2:  is a function such that  
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 for all Xx . Then there exists a unique reciprocal mapping YXr :  which satisfies (1.9) and the inequality  

 )()()( xxfxr    (4.12) 

 for all .x X  
 

Proof. The proof is obtained by replacing ),( yx  by )
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 in (4.1) and proceeding further by similar arguments as 

in Theorem 4.1.  

 

 The following Corollaries are the immediate consequences of Theorem 4.1 and 4.2 which gives the 
Hyers-Ulam-Rassias stability, Ulam-Gavruta-Rassias stability and Hyers-Ulam-J.M.Rassias stability of the functional 
equation (1.9). 

Corollary 4.3 For any fixed 01 c  and 2< p  or 2> p , if YXf :  saitsifies  
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 for all , ,x y X then there exists a unique reciprocal mapping YXr :  such that  

  

 for all Xx .  

 

Proof. If we choose )(=),( 1

pp yxcyx   , for all Xyx , , then by Theorem 4.1, we arrive  

 
1

2

2

4
( ) ( ) ,    < 2

1 2

p

p

c
r x f x x for all x X and p


   



 

and using Theorem 4.2, we arrive  

 
1

2

2

4
( ) ( ) ,    > 2.

2 1

p

p

c
r x f x x for all x X and p


   



 

Now we will provide an example to illustrate that the functional equation (1.9) is not stable for 2= p  in Corollary 4.3.  

Example 4.4 Let RR :  be a function defined by  
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where 0>a  is a constant and a function RR:f  by  
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Then f  satisfies the functional inequality  
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Therefore we see that f  is bounded. We are going to prove that f  satisfies (4.14).  
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Therefore for each 1,0,1,= rn  , we have  
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Thus f  satisfies (4.14) for all Ryx,  with 1|<
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 We claim that the reciprocal functional equation (1.9) is not stable for 2= p  in Corollary 4.3. Suppose on the 

contrary, there exist a reciprocal mapping RR:r  and a constant 0>  satisfying (4.15). There, we have  
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 for all 1,0,1,= mn  . For this x , we get  
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which contradicts (4.18). Therefore the reciprocal functional equation (1.9) is not stable in sense of Ulam, Hyers and Rassias 

if 2= p , assumed in the inequality (4.13).  
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 for all Xyx , , then there exists a unique reciprocal mapping YXr :  satisfying the functional equation (1.9) and  

  

 for all Xx .  

Proof. Considering )(=),( 22
2
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yxcyx  , for all Xyx , , then by Theorem 4.1, we arrive  
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pandXxforallx
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and using Theorem 4.2, we arrive  
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Corollary 4.6 Let 0>3c  and 1<   or 1>   be real numbers, and YXf :  be a mapping satisfying the 

functional inequality  

   2 2

3( , )Df x y c x y x y
   

    

 for all Xyx , . Then there exists a unique reciprocal mapping YXr :  satisfying the functional equation (1.9) and  

  

 for all Xx .  

 

Proof. Choosing   2 2

3( , ) =x y c x y x y
   

   , for all , ,x y X then by Theorem 4.1, we arrive  
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c
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and using Theorem 4.2, we arrive  

 
23

1

6
( ) ( ) ,    > 1.

2 1

c
r x f x x for all x X and







   


 

Now we will provide an example to illustrate that the functional equation (1.9) is not stable for 1= p  in Corollary 4.6.  

Example 4.7 Let  RR : be a function defined by  

 









otherwisek

xif
x

k

x

, 

)(1,,
=)( 2  

where 0>k  is a constant and a function RR :f  by  
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 xallfor
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Then f  satisfies the functional inequality  
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22
|||||

1
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 for all Ryx, . Then there do not exist a reciprocal mapping RR:r  and a constant 0>  such that  
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2

R xallfor
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xrxf   (4.20) 

Proof. Now  
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Therefore we see that f  is bounded. We are going to prove that f  satisfies (4.19).  

 If 1|||||
1

||
1

| 11

22
  yx

yx
 then the left hand side of (4.19) is less than a2 . Now suppose that 

1<|||||
1

||
1

<|0 11

22

 yx
yx

 . Then there exist a positive integer r  such that  

 ,
2

1
<|||||

1
||

1
|

2

1
2

11

221)2( rr
yx

yx




  (4.21) 

 and the rest of the proof is same as the proof of Example 4.4. 

5.Application of Functional Equation (1.9) 

The Parallel Circuit and the Functional Equation (1.9): A parallel circuit has more than one resistor and gets its 
name from having multiple paths to move along. Also one can know that the following rule apply to a parallel circuit.  

 The inverse of the total resistance of the circuit is equal to the sum of the inverses of the individual resistances, 
that is  

 .
111

=
1

321


RRRRT

 (5.1) 

 For only two resistors, the unreciprocated expression (5.1) simplifies to  
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21

21=
RR

RR
RT


 (5.2) 

 

  

 Refer to the above Figure. If we take 
2221

1
= ,

1
=

y
R

x
R , we get  

 .
11

11

=

22

22

yx

yx
RT



 (5.3) 

 Since electrical conductance G  is reciprocal to resistance, therefore total conductance of the above circuit is 

22= yxGT  . Now from the equation (5.3), we get  

 

22

22

11

11

=
1

yx

yx

GT 

 

 

 .
11

11

=
1

22

22

22

yx

yx

yx



 (5.4) 

 One can easily identify the equation (5.4) is our main functional equation (1.9) with 
2

=)(
x

c
xf . Hence the functional 

equation (1.9) holds good in the above circuit. 

6.Conclusion 

In this paper authors mainly achieved a new Pythagorean mean functional equation corresponding to the relation 
between three classical Pythagorean means and obtained the general solution of Pythagorean means functional equation 
from the motivated work of Roman Ger [7].  

 Also, authors investigated its generalized Hyers -Ulam stability and also provided counter-examples for singular 
cases. Very specially in this paper we illustrated the geometrical interpretation and applications of our introduced 
Pythagorean means functional equation in connection with the Parallel Circuit. 
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