

Instituto Politécnico de Coimbra

Instituto Superior de Engenharia de Coimbra

Departamento de Engenharia Informática e de Sistemas

Master in Informatics and Systems

Internship/Industrial Project

Final Report

Mobile Web Applications

Stanislava Nedyalkova

Thesis Supervisor:

Professor Viriato Marques

Instituto Superior de Engenharia de Coimbra

Coimbra, September, 2013

Mobile Web Applications

ii

Acknowledgements

i

Acknowledgements

I would like to express my gratitude to my supervisor Aurélio Santos for his total

dedication and contribution to my internship. His orientation and help have greatest

impact on the success of the project.

Furthermore, my special thanks go to Victor Batista and Samuel Santos for their attention

and decisions throughout the entire course of the internship, Avelino Martins for his

collaboration for the Tizen push service implementation and Ricardo Silva for the iOS

development for PhoneGap and Titanium.

In addition, I would like to thank Paulo Martins and all Present Technologies employees

whose warm welcome made my integration into the company effortless.

Last but not least, I would like to acknowledge with much appreciation my thesis

supervisor from Departamento de Engenharia Informática e de Sistemas, Professor

Viriato Marques, for his availability, advices and understanding.

Mobile Web Applications

ii

Abstract

iii

Abstract

This document presents the work that was elaborated at the company Present

Technologies as part of the academic discipline Internship/Industrial Project for the

Master’s degree in Informatics and Systems, Software Development branch, at Instituto

Superior de Engenharia de Coimbra.

The area of the mobile web applications has grown exponentially over the last few years

turning it into a very dynamic field where new development platforms and frameworks

are constantly emerging. Thus, the internship consisted in the study of two new mobile

operating systems, Tizen and Firefox OS, as well as two frameworks for packaging of

mobile web applications – Adobe PhoneGap and Appcelerator Titanium. These platforms

are in the direct interest of Present Technology since it pretends to use them in its future

projects in general and in the Phune Gaming project in particular. Since Television is one

of the Present Technologies’ business areas, during the course of the internship it was

decided to perform additionally a study of two Smart TV platforms, namely Samsung

Smart TV and Opera TV, which was considered as a valuable knowledge for the

company.

For each of the platforms was performed a study about its architecture, supported

standards and the development tools that are provided, nevertheless the focus was on the

applications and for this reason a practical case study was conducted. The case studies

consisted in the creation of a prototype or packaging of an application, for the case of the

packaging tools, in order to prove the feasibility of the applications for the Present

Technologies’ needs.

The outcome of the work performed during the internship is that it raised the awareness

of Present Technology of the studied platforms, providing it with prototypes and written

documentation for the platforms’ successful usage in future projects.

Keywords (Subject): Mobile Web Applications, Mobile Operating

Systems, Packaging Tools, Smart TV

Keywords (Technology): Tizen, Firefox OS, PhoneGap, Apache Cordova,

Titanium, Samsung Smart TV, Opera TV

Mobile Web Applications

iv

Resumo

v

Resumo

Este documento apresenta o trabalho que foi elaborado na empresa Present Technologies

no âmbito da disciplina Estágio/Projecto Industrial do Mestrado em Informática e

Sistemas, ramo de Desenvolvimento de Software, do Instituto Superior de Engenharia de

Coimbra.

A área das aplicações web mobile tem crescido exponencialmente nos últimos anos,

transformando-a numa área muito dinâmica onde novas plataformas e frameworks de

desenvolvimento surgem constantemente. Assim, o estágio consistiu no estudo de dois

novos sistemas operativos móveis, Tizen e Firefox OS, bem como duas ferramentas de

packaging de aplicações web mobile – Adobe PhoneGap e Appcelerator Titanium. Estas

plataformas são do interesse direto da Present Technologies, uma vez que esta pretende

usá-los nos seus projetos futuros, em geral, e no projeto Phune Gaming em particular.

Visto que a Televisão é uma das áreas de negócios da Present Technologies, no decorrer

do estágio, decidiu-se realizar também um estudo sobre duas plataformas de Smart TV,

nomeadamente Samsung Smart TV e Opera TV, que foi considerado como um

conhecimento valioso para a empresa.

Para cada uma das plataformas estudadas foi realizado um estudo da sua arquitetura,

standards suportados e as ferramentas de desenvolvimento que são fornecidas, no

entanto, o foco era nas aplicações e por este motivo foi realizado um caso de estudo. Os

casos de estudo consistiram na criação de um protótipo ou packaging de uma aplicação,

para o caso das ferramentas de packaging, a fim de comprovar a viabilidade das

aplicações para as necessidades da Present Technologies.

O resultado do trabalho realizado durante o estágio é que ele aumentou o conhecimento

da Present Technologies sobre as plataformas estudadas, fornecendo-lhe com protótipos e

documentação escrita para o uso bem sucedido das plataformas em projetos futuros.

Palavras Chave (Tema): Aplicações Web Mobile, Sistemas Operativos

Móveis, Ferramentas de Packaging, Smart TV

Palavras Chave (Tecnologia): Tizen, Firefox OS, PhoneGap, Apache Cordova,

Titanium, Samsung Smart TV, Opera TV

Mobile Web Applications

vi

Table of Contents

vii

Table of Contents

Acknowledgements ... i

Abstract ...iii

Resumo .. v

Table of Contents .. vii

Table of Figures ... xi

Table of Tables ...xiii

Acronyms and Abbreviations .. xv

Glossary .. xix

1. Introduction ... 1

1.1 Internship Description ... 1

1.1.1 Initial Proposal .. 1

1.1.2 Changes to the Initial Proposal ... 2

1.2 Objectives and Motivation .. 3

1.3 Report Structure .. 4

2. Background ... 7

2.1 Mobile .. 7

2.2 Television .. 10

3. Mobile Operating Systems .. 13

3.1 Tizen .. 13

3.1.1 Tizen Overview .. 13

3.1.2 Tizen Architecture, API and SDK .. 17

3.1.3 Tizen Applications .. 25

3.1.4 Tizen Case Study .. 29

3.1.5 Tizen Conclusions .. 29

Mobile Web Applications

viii

3.2 Firefox OS ... 30

3.2.1 Firefox OS Overview .. 30

3.2.2 Firefox OS Architecture, API and Tools .. 31

3.2.3 Firefox OS Applications ... 35

3.2.4 Firefox OS Case Study ... 36

3.2.5 Firefox OS Conclusions .. 36

4. Web Applications Packaging Tools .. 39

4.1 PhoneGap .. 39

4.1.1 PhoneGap History ... 40

4.1.2 PhoneGap vs. Apache Cordova .. 41

4.1.3 PhoneGap Services ... 42

4.1.4 PhoneGap Case Study ... 43

4.2 Appcelerator Titanium .. 44

4.2.1 Titanium Architecture ... 44

4.2.2 Titanium Applications .. 47

4.2.3 Titanium Case Study... 49

4.3 API Comparison ... 49

4.4 Packaging Tools Conclusions .. 51

5. Smart TV ... 53

5.1 Samsung Smart TV .. 53

5.1.1 Samsung Smart TV Architecture, API and SDK .. 54

5.1.2 Samsung Smart TV Applications ... 56

5.1.3 Samsung Smart TV Case Study .. 59

5.1.4 Samsung Smart TV Conclusions .. 59

5.2 Opera TV .. 60

5.2.1 Opera TV Architecture, Web Standards and Tools .. 60

5.2.2 Opera TV Store ... 63

5.2.3 Opera TV Store Applications ... 65

5.2.4 Opera TV Case Study ... 66

Table of Contents

ix

5.2.5 Opera TV Conclusions ... 67

6. Conclusions ... 69

6.1 Achievements .. 69

6.2 Limitations and Difficulties ... 70

6.3 Future Work ... 71

7. Bibliography .. 73

8. Appendices ... 81

8.1 Internship Proposal .. 81

8.2 Tizen .. 84

8.2.1 Tizen Core Components ... 84

8.2.2 Tizen Web Device APIs ... 86

8.2.3 W3C/HTML5 API .. 87

8.2.4 Supplementary API ... 89

8.2.5 Tizen Native API .. 89

8.2.6 Tizen Web App Configuration File .. 91

8.3 Firefox OS ... 93

8.3.1 API Reference ... 93

8.4 Samsung Smart TV .. 95

8.4.1 Common Module’s Objects .. 95

8.4.2 Device APIs .. 96

8.4.3 SSTV API Summary... 97

8.4.4 Configuration of SSTV config.xml... 98

9. Confidential Appendices ... 103

Mobile Web Applications

x

Table of Figures

xi

Table of Figures

Figure 1 Mobile app types.. 10

Figure 2 Tizen family tree .. 15

Figure 3 Tizen architecture ... 17

Figure 4 Tizen IDE ... 21

Figure 5 Tizen Web Simulator .. 22

Figure 6 Tizen Emulator .. 23

Figure 7 Emulator Manager .. 24

Figure 8 Smart Development Bridge .. 25

Figure 9 Application lifecycle .. 25

Figure 10 Application states .. 26

Figure 11 Tizen web project structure .. 27

Figure 12 Tizen native project structure .. 28

Figure 13 Firefox OS architecture .. 31

Figure 14 Firefox OS Simulator .. 33

Figure 15 Simulator Dashboard .. 33

Figure 16 Remote Debugger .. 34

Figure 17 App Validator .. 35

Figure 18 PhoneGap app UI layer .. 39

Figure 19 PhoneGap API ... 40

Figure 20 Apache Cordova and PhoneGap logos .. 41

Figure 21 PhoneGap Build... 42

Figure 22 Enable hydration ... 43

Figure 23 Titanium architecture ... 45

Figure 24 Example code illustrating proxies .. 46

Figure 25 Diagram of the executed code ... 46

Figure 26 UI differences ... 47

Figure 27 Smart Hub .. 54

Figure 28 SSTV architecture ... 54

Mobile Web Applications

xii

Figure 29 Web page vs. SSTV application ... 56

Figure 30 Application display types .. 57

Figure 31 Application file structure .. 58

Figure 32 Opera TV architecture .. 61

Figure 33 Opera TV Store ... 63

Figure 34 My Apps tab ... 64

Figure 35 Opera TV Store architecture .. 64

Table of Tables

xiii

Table of Tables

Table 1 Mobile OS’s overview ... 8

Table 2 Tizen SDK folder contents ... 20

Table 3 API comparison... 49

Table 4 Tizen Web Device APIs .. 86

Table 5 W3C APIs .. 87

Table 6 Supplementary specifications description... 89

Table 7 Namespace list ... 90

Table 8 Configurations of the config.xml file ... 92

Table 9 Firefox OS Device APIs .. 93

Table 10 General Web APIs .. 94

Table 11 Firefox Marketplace APIs .. 95

Table 12 Common Modules’ objects ... 95

Table 13 Device APIs .. 96

Table 14 SSTV API reference .. 97

Table 15 Config.xml elements description .. 98

Mobile Web Applications

xiv

Acronyms and Abbreviations

xv

Acronyms and Abbreviations

3D Three-dimensional

3G 3rd Generation of Mobile Telecommunications Technology

ADT Android Development Tools

AJAX Asynchronous JavaScript and XML

AMD Asynchronous Module Definition

API Application Programming Interface

ASF Apache Software Foundation

BOSH Bidirectional-streams Over Synchronous HTTP

CDMA Code Division Multiple Access

CDT C/C++ Development Tools

CE Consumer Electronics

CLI Command Line Interface

CORS Cross-Origin Resource Sharing

CPU Central Processing Unit

CSS Cascading Style Sheets

DOM Document Object Model

DTV Digital Television

DVD Digital Versatile Disc / Digital Video Disc

EFL Enlightenment Foundation Library

EPG Electronic Program Guide

FM Frequency Modulation

GPL General Public License

GPS Global Positioning System

GUI Graphical User Interface

HAL Hardware Abstraction Layer

HbbTV Hybrid Broadcast Broadband TV

HD High-Definition

HDMI High-Definition Multimedia Interface

HTML HyperText Markup Language

Mobile Web Applications

xvi

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

I/O Input/Output

ID Identification

IDE Integrated Development Environment

IE Internet Explorer

IME Input Method Editor

IP Internet Protocol

IRC Internet Relay Chat

IRI Internationalized Resource Identifier

ISF Input Service Framework

ISO International Organization for Standardization

IT Information Technology

IVI In-Vehicle Infotainment

JDK Java Development Kit

JPEG/JPG Joint Photographic Experts Group

JRE Java Runtime Environment

JS JavaScript

JSDT JavaScript Development Tools

JSON JavaScript Object Notation

kB kilobyte

LAN Local Area Network

LBS Location-Based Services

Maple Markup Engine Platform for Embedded Systems

MB Megabyte

MIME Multipurpose Internet Mail Extensions

MIT Massachusetts Institute of Technology

MMC Multi Media Card

MMS Multimedia Messaging Service

MO Mobile Origination

MT Mobile Termination

Acronyms and Abbreviations

xvii

MVC Model-View-Controller

NDEF NFC Data Exchange Format

NDK Native Development Kit

NFC Near Field Communication

OBS Open Build Service

OEM Original Equipment Manufacturer

OpenGL ES Open Graphics Library for Embedded Systems

OS Operating System

OWA Open Web App

PDA Personal Digital Assistants

PIM Personal Information Management

PNG Portable Network Graphics

PTECH Present Technologies, Lda.

RAM Random Access Memory

REST Representational State Transfer

RSS Rich Site Summary

SASL Simple Authentication and Security Layer

SD Secure Digital

SDB Smart Development Bridge

SDK Software Development Kit

SEF Service Extension Framework

SIM Subscriber Identity Module / Subscriber Identification Module

SLP Samsung Linux Platform

SMACK Simplified Mandatory Access Control Kernel

SMS Short Message Service

SP Service Pack

SSDP Simple Service Discovery Protocol

SSL Secure Sockets Layer

SSO Single Sign-On

SSTV Samsung Smart TV

ST Search Target

Mobile Web Applications

xviii

STB Set-Top Box

SVG Scalable Vector Graphics

SWF ShockWave Flash / Small Web Format

TCP Transmission Control Protocol

TLS Transport Layer Security

TV Television

TXT Text file

UCS Universal Character Set

UDP User Datagram Protocol

UI User Interface

UMTS Universal Mobile Telecommunications System

UPnP Universal Plug and Play

URI Uniform Resource Identifier

URL Uniform Resource Locator

USB Universal Serial Bus

UTF-8 UCS Transformation Format—8-bit

VoIP Voice Over IP

VT-x Intel Virtualization Technology

W3C World Wide Web Consortium

WebGL Web Graphics Library

WOFF Web Open Font Format

WPS Wi-Fi Positioning System

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

Glossary

xix

Glossary

API Stands for “Application Programming Interface”. It represents a

set of functions and protocols, which define how software

components can interact.

Client application Applications that communicate with another application in a

central point called the server application, in order to use its

services.

Cloud An Internet-based computing architecture, which provides remote

data storage and other computing services and resources.

Device API An API which allows web applications to interact with the device

hardware.

Framework A set of software libraries and additional applications that can be

used in applications.

Platform Can have multiple meanings. In this report it is primary used to

represent an abstract layer on which a given application runs, yet

sometimes is used interchangeably with framework.

Set-top box An electronic device, which receives digital signals and decodes

them in order to be viewed on a television (TV) set. The signals

can be from the TV broadcast or Internet data.

Smart TV A TV technology, which besides the programming from the TV

broadcast, provides Internet access and can run applications.

Hence, it turns the TV devices into more interactive devices for the

users.

Smartphone A cellular phone, which besides the phone calls and text

messaging capabilities, has Internet access and can run mobile

applications. Thus, it can be considered a mobile personal

computer.

Tablet A mobile device that has Internet access and can run mobile

applications. Its main input is from a touchscreen.

W3C widget

package

A package, which contains all necessary files of a web application,

therefore it is a complete standalone web application that does not

depend on external resources.

Mobile Web Applications

xx

Introduction

1

1. Introduction

This chapter presents the description of the internship exposing its initial proposal,

subsequent changes, objectives and motivation. Also presented is the structure of the

report.

1.1 Internship Description

The internship was performed within the scope of the academic discipline Internship/

Industrial Project for the Master’s degree in Informatics and Systems, Software

Development branch, at Instituto Superior de Engenharia de Coimbra under the

supervision of Professor Viriato Marques. The studies and case studies were conducted

on the premises of the company Present Technologies (PTECH) in Coimbra under the

supervision of Software Engineer Aurélio Santos.

The internship began on January 2
nd

, 2013. It was on a full-time basis for the period of

seven months and thus it came to an end on July 31
st
, 2013. The monitoring of the

internship was carried out through regular meetings and weekly progress reports.

The work performed during the internship consisted in studies of platforms for mobile

web applications development, thus claiming at the end of the internship PTECH to have

better understanding and knowledge of the studied platforms. Nevertheless, due to the

dynamic changes in the mobile applications area and the PTECH’s business strategy and

philosophy to work with emergent technologies, there were several changes to the initial

proposal for the internship. The initial proposal and subsequent changes are discussed in

the following subsections.

1.1.1 Initial Proposal

The initial proposal provided in Appendix 8.1 consisted of the fulfillment of three main

tasks as follows:

 T1 – Mobile Operating Systems: This task aimed at performing a study of a

new mobile operating system (OS) called Tizen. The deliverables at the end of

the task included a prototype for a Tizen web application and a document that

describes Tizen, its architecture and application development.

Mobile Web Applications

2

 T2 – Web Applications Packaging Tools: This task consisted of study,

evaluation and comparison of five tools for web applications packaging, namely

PhoneGap, Appcelerator Titanium, Sencha Touch, Qt and Rhodes. These tools

support various mobile OS’s, therefore to fulfill T2 an existing application had to

be packaged by using each one of the five tools, in order to test its support for the

respective mobile OS. The task required elaboration of a document describing

the details of each tool along with a comparison between all of them.

 T3 – Mobile Web Frameworks: T3 involved the study, evaluation and

comparison of five frameworks for mobile application development, as follows:

jQuery Mobile, jQTouch, Sencha Touch, Jo and Yiibu. The requirements for this

task included development of prototypes using each one of the frameworks and a

document with the frameworks’ details and comparison between them.

1.1.2 Changes to the Initial Proposal

PTECH intends to start developing Tizen applications using functionality such as push

notifications and the Facebook Chat service; however, due to some limitations explained

in detail in Appendix 9.1.2, this functionality could be implemented only using native

code. Therefore, for T1 besides the prototype for Tizen web application, two more

prototypes for Tizen native applications had to be created as prove of concept, in order to

demonstrate the feasibility of these applications. Additionally, for this task it was defined

to conduct a study of another emergent mobile OS – Firefox OS. The Firefox OS

applications are completely web and thus this new platform could be of interest to the

company. To determine this it was decided to develop a prototype for Firefox OS

application and elaborate a document describing the details of the Firefox OS

architecture and application development. Nevertheless, for this task the Tizen study

remained as major focus.

Taking into consideration the company’s needs and the scope of the internship, PTECH

decided to exclude Sencha Touch, Qt and Rhodes from T2. The reason for this decision

was based on an evaluation research which concluded that Sencha Touch is more limited

than PhoneGap in terms of supported platforms (supports only Android and iOS) and

device functionality. Qt, on the other hand, seems to be an established framework for

developing applications written in C++, yet its support for web applications is recent.

Introduction

3

The Qt’s support for mobile devices that PTECH is interested in will be available in a

later version, thus it was not possible to analyze them during this internship. Finally,

Rhodes provides an extensive set of device functionality along with good support for

mobile OS’s; however, it has dependencies on Ruby, which is not used in the company.

This is why it was decided to focus only on the studies of PhoneGap and Titanium.

Due to the natural evolution of the PTECH’s objectives and needs, it determined instead

of performing the study of the mobile web frameworks from T3, to conduct studies of

two Smart TV platforms, namely Samsung Smart TV (SSTV) and Opera TV. The reason

for this decision was based on the fact that the mobile web frameworks from T3 became

less relevant to PTECH compared to the area of Smart TV, where the company wants to

concentrate. There are still many doubts if any of these mobile web frameworks will be

of some use to the company, since the design of the PTECH’s applications is always

developed by the design team. However, such frameworks make it difficult to apply

different themes. Instead, they are good for creating applications using patterns, yet

PTECH rarely develops this kind of applications. Hence, the focus of this task was on

SSTV and its study included description of the architecture and application development

and creation of two prototypes. The study of Opera TV required elaboration of a

document containing introduction to the Opera TV platform and details about the Opera

TV Store and Opera TV Store applications. The practical part consisted of adapting an

existing application to the platform.

1.2 Objectives and Motivation

After the changes the internship had the following objectives:

 Study of two new mobile OS’s – Tizen and Firefox OS;

 Study and comparison of two web applications packaging tools – PhoneGap and

Appcelerator Titanium;

 Study of two Smart TV platforms – SSTV and Opera TV.

The motivation behind these objectives was the PTECH’s business strategy and need to

acquire knowledge of the studied platforms so they can be used in its projects. To further

understand the need of conducting the studies, following is a brief description of the

company.

Mobile Web Applications

4

PTECH is a Portuguese IT company founded in 2000. Its mission as stated on the

company’s web site
1
 is “research and development of innovative services and

applications for the worldwide market, using emergent and state-of-the-art

technologies”. PTECH covers four key business areas as follows: Mobile Solutions;

Internet Services and Applications; Enterprise Applications and Television. Regarding

the Mobile Solutions area, the company is already competent in many mobile platforms,

such as Android, iOS, Symbian, Windows Phone to name a few, and is willing to spread

its knowledge with new emergent platforms and frameworks. In the foreseeable future

the company’s strategy is to focus on the Smart TV area.

Currently, PTECH is developing a multiplayer gaming platform called Phune Gaming

that allows casual games to be played online against real users. Phune Gaming is

intended to be used on various device categories including mobile devices, desktop and

Smart TV. At this moment the platform is targeted at Android and iOS; however, it is

contemplated to support more platforms. Therefore, the studies of the various platforms

during the internship allowed PTECH to gain more knowledge supported with practical

experience and documentation, thus it can use them in its projects and especially in

Phune Gaming.

1.3 Report Structure

The report is organized in the following order:

 Chapter 1, Introduction, describes the internship, its initial proposal and changes

and, in addition, the objectives it aims to achieve and the motivation behind

them.

 Chapter 2, Background, presents brief background information about the Mobile

and Smart TV areas in order to introduce the reader to the technologies that are

discussed in the following chapters.

 Chapter 3, Mobile Operating Systems, reports the studies of Tizen and Firefox

OS, including their overviews, architectures, supported APIs and the tools that

are available for the application development. Also described are the applications

that each platform supports. The chapter additionally provides an introduction to

1 http://www.present-technologies.com/profile.jsp

Introduction

5

the case studies that were conducted for the two mobile OS’s and the conclusions

of the studies.

 Chapter 4, Web Applications Packaging Tools, presents the details of the two

web applications packaging tools – PhoneGap and Titanium. The PhoneGap

study includes: the PhoneGap overview and history, its comparison with Apache

Cordova, the additional services provided by PhoneGap and the description of

the PhoneGap case study. The Titanium study, by contrast, presents the Titanium

architecture, supported application types and their specific features and

introduction to the Titanium case study. The chapter further contains a

comparison of the APIs of the two packaging tools, and the conclusions section

draws the analogy between PhoneGap and Titanium.

 Chapter 5, Smart TV, reports the studies that were performed for SSTV and

Opera TV. For SSTV are presented the platform’s architecture, supported APIs

and the contents of the latest Software Development Kit (SDK). Also described

are the SSTV applications, their possible display types and contents, and

information about the application testing and publishing. The SSTV study

concludes with a description of the SSTV case studies and final conclusions.

Regarding Opera TV its section introduces the overview, architecture, supported

web standards and available tools. Furthermore, the Opera TV study presents the

Opera TV Store, its architecture and applications. Finally are the description of

the Opera TV case studies and the conclusions of the study.

 Chapter 6, Conclusions, summarizes the work that was performed during the

internship exposing its achievements, limitations and difficulties. The chapter

concludes with an outline for the future work.

 Chapter 7, Bibliography, makes available the bibliography and references that

were used during the elaboration of the report.

 Chapter 8, Appendices, presents the report’s publicly available appendices.

 Chapter 9, Confidential Appendices, contains the confidential appendices.

Mobile Web Applications

6

Background

 7

2. Background

This chapter presents some background information in order to introduce the reader to

the technologies that were employed during the internship. For the sake of good

organization and readability the chapter is divided in two sections – Mobile and

Television. Nevertheless, it should be noted that the applications that were used in the

Smart TV case studies are mobile web applications that were repurposed to be displayed

on a TV screen and controlled by the TV controller as its main input interface.

2.1 Mobile

Over the last two decades mobile devices have undergone significant changes in their

sizes and available functionality. Thus, the today’s smartphones are devices that combine

the functionality of yesterday’s mobile phones and personal digital assistants (PDA).

This gives the users opportunity to use the mobile phone’s voice calling and text

messaging and beyond this to be able to manage their personal information, like

contacts, notes, and calendar and at the same time have Internet access, features typical

for PDAs. Some of the functions that a smartphone offers are: media players, web

browser, digital camera, GPS navigation, high-resolution touch screen, sensors and many

others.

A mobile device is operated by a mobile OS, which typically consist of five functional

layers that from bottom to top are described as follows [89]:

 Kernel – the lowest layer is composed of hardware drivers, file system, memory

and process management;

 Middleware – this layer includes libraries for device management,

communication and messaging engines, multimedia codecs, web page rendering

engines, security subsystems, among others;

 Application execution environment – the layer consists of various components

for application management and APIs for implementing device functionality in

applications;

 User Interface (UI) framework – represents a set of Graphical User Interface

(GUI) components that are specific to the mobile OS, such as buttons, input

fields, tab bars, dialog boxes, menus, and many more;

Mobile Web Applications

8

 Application suite – makes available a set of built-in applications, for example

contacts, photo gallery, calendar, browser and messages.

Alongside the application suite other applications (sometimes referred in the texts as

apps) developed by third party developers can be installed. Thus, the mobile OS provides

these applications with access to the device resources and user data, such as sensors,

camera, battery, geo location, contacts, among others.

Nowadays, there are numerous mobile OS’s in the market. Table 1 summarizes the

mobile OS’s that were used in the case studies conducted during the internship. Also

presented in the table are the main characteristics of each OS.

Table 1 Mobile OS’s overview

OS
Principal

Developer

Source

model

Programming

Language
Tools

Package

format
App Store

Android
2
 Google Open

source

Java, C++ Android

SDK, NDK

apk Google Play

BlackBerry
3
 BlackBerry Closed and

proprietary

Java, Web BlackBerry,

NDK

BlackBerry

WebWorks

cod, bar BlackBerry

App World

iOS
4
 Apple Inc. Closed and

proprietary

Objective C iOS SDK

and Xcode

ipa App Store

Firefox OS
5
 Mozilla Open

source

Web Simulator,

Remote

Debugger

zip Firefox

Marketplace,

and others

Tizen
6
 Samsung,

Intel

Open with

proprietary

components

Web, C++ Tizen SDK wgt, tpk Tizen Store

Windows

Phone
7

Microsoft Closed and

proprietary

C# Windows

Phone SDK

xap Windows

Phone Store

As can be seen in the table the different mobile OS’s use specific programming

languages for the app development. Thus, the apps that are developed for a particular OS

2 http://www.android.com/
3 http://us.blackberry.com/
4 http://www.apple.com/ios/
5 http://www.mozilla.org/en-US/firefox/os/
6 https://www.tizen.org/
7 http://www.windowsphone.com/en-us

Background

 9

are known as native apps. They are normally installed as a binary executable file

(consider Java, Objective C, C++ and C#) and when they are launched they interact

directly with the OS, therefore they have full direct access to the mobile OS APIs.

Another type of mobile apps exists, whose apps are created with web technologies (e.g.

HTML, CSS, and JavaScript) and hosted on a remote server; thus they are called web

apps. The web apps run within the browser of the device and therefore they have access

only to a limited set of device or OS-specific APIs, which are exposed by the browser.

The benefits of the mobile web applications are that they do not require downloading

from the app store and installing the app and they provide instant application updates for

all users; yet they need a constant network connection.

There is third type of applications called hybrid apps, which are a combination of native

and web parts. The application logic is usually written entirely with web technologies

and the native code is used to create a container which is a web browser view that

displays the contents of the web app. A web browser view, referred to as webview in the

text, is a native UI component that renders web pages similarly to a regular web browser;

however, unlike the regular browser it does not have navigation controls. The webview

has a full access to the OS’s APIs and thus it represents a bridge between the device

API’s and the web app. Developers can develop this bridge themselves or instead can

use a framework, referred to as packaging tool in this report, such as PhoneGap or

Titanium.

The difference between these three types of mobile applications in terms of interaction

with the device APIs is illustrated in Figure 1
8
.

8 Image courtesy of [48]

Mobile Web Applications

10

Figure 1 Mobile app types

In order to prepare an application for deployment and distribution its contents have to be

packaged in an archive file with specific file format. The packaging of a web application

usually includes only the creation of an archive file with all source files and other

resources, for example images, audio and configuration files. The native applications

packaging, by contrast, implies the compilation and sometimes linking of the source

code in order to generate a binary executable file.

After the apps are packaged they can be distributed on the mobile OS respective online

app store.

2.2 Television

Smart TV, also known as connected TV, is a technology that emerged in 2010 and

provides the following key features: full Internet access, ability to install applications

and ability to connect with other devices on the network such as desktop computers,

smartphones and tablets. The Internet connection allows users to surf the Web right from

their connected TV sets. Besides the Internet navigation, the application support brings

the functionality a smartphone user is already familiar with to the TV screen. However,

since the TV is usually placed in the living room it is more social device than a

smartphone, and this should be considered in applications when sensitive information

has to be entered.

With Smart TV the TV no longer provides only passive programming. It allows

interaction and thus the viewer is much more engaged with the content. Some modern

Background

 11

Smart TV sets have integrated camera, microphone, voice and motion sensors, therefore

users can have video calls or control the device via voice and motion commands.

A Smart TV normally has available an SDK, tools and an app store and thus provides a

platform for application developers to develop and distribute their apps. The apps are

web applications written in HTML5 and related web technologies. The HTML5 standard

enables some benefits for the TV consumers such as [33]:

 Web contents can be stored locally which enables apps to remain functional even

without Internet connection;

 The WebSockets technology provides a full communication channel between the

Smart TV device and the server. This is beneficial for real-time delivery, such as

weather updates and live sports results;

 The HTML5 audio and video tags do not require plugins to launch audio and

video and this allows to provide almost identical experience on mobile and TV

environment;

 The WebGL standard allows creation of 3D graphics for more compelling

contents.

The Smart TV technology can be incorporated in TV sets, set-top boxes (STB), Blu-ray

players, game consoles and other players. Some Original Equipment Manufacturers

(OEMs) that unveiled their Smart TV devices are: Samsung, LG, Sony, Toshiba, Philips,

Panasonic and Vizio. Nevertheless, unlike the Mobile area in the Smart TV area no clear

leaders exist thus far.

Mobile Web Applications

12

Mobile Operating Systems

13

3. Mobile Operating Systems

This chapter presents the studies of the mobile OS’s Tizen and Firefox OS. Since

PTECH already intends to develop applications for Tizen, the focus of the chapter is on

Tizen while the Firefox OS study aimed at familiarizing the company with the new OS.

3.1 Tizen

This section exposes the Tizen OS. It should be noted that Tizen is a new platform that is

still under development and as result it undergoes various changes and updates. The

study was performed in January 2013; therefore the information in the text presents the

state of the platform at the time of the study. However, due to the emerging needs of

PTECH, later on the study was reestablished and the Sections: 3.1.2.1 Architecture;

3.1.2.2 API, 3.1.3.3 Native Applications, 3.1.4 Tizen Case Study and 3.1.5 Tizen

Conclusions were updated corresponding to the changes in the Tizen SDK as of April

2013.

3.1.1 Tizen Overview

Tizen (pronounced Tie Zen) is a new open source standards-based mobile OS that

supports multiple device categories and provides an environment for developing

applications for end users. The Tizen Project is hosted by the Linux Foundation
9
 and its

engineering governance is provided by the Technical Steering Group composed of Intel

and Samsung. The focus of the Technical Steering Group is on the platform development

and delivery, while the Tizen Association
10

 is responsible for the Tizen’s in-market

support and industry presence. The current members of the Tizen Association are:

Huawei, Intel, NEC Casio, Fujitsu, NTT DOCOMO, Orange, Panasonic, Samsung, SK

Telecom, Sprint, Vodafone and KT.

9 http://www.linuxfoundation.org/
10 http://www.tizenassociation.org/

Mobile Web Applications

14

3.1.1.1 Tizen Objectives

The main objectives of Tizen are as follows:

 Tizen is intended to serve the industry as a strong independent device platform

that is supported by a collaborative governance structure. The Tizen Project is

hosted by the Linux Foundation which has a great influence and ability to attract

companies to the project.

 The Tizen Project aims to build a completely open OS, from the core, up through

the core applications and user interfaces. Currently, there are several other OS’s

that claim to be open; however they are normally controlled by a single entity

and some of their components are proprietary.

 Tizen is designed to support a variety of devices such as smartphones, tablets,

notebooks, Smart TVs, and In-Vehicle Infotainment (IVI) systems.

 The Tizen development will be completely transparent and rely on application

developers’ feedback in order to improve the platform.

3.1.1.2 Tizen History

In February 2010 during the Mobile World Congress, Intel and Nokia announced

MeeGo, a Linux-based free OS that was designed to target a variety of devices such as

smartphones, notebooks, Smart TVs, and IVI systems. The aim of MeeGo was to merge

the efforts of Intel and Nokia on their former projects Moblin and Maemo, respectively,

into one new common project [54]. Subsequently, Nokia announced their strategy to use

Windows Phone for future smartphones and abandoned MeeGo; however they continued

developing MeeGo/Harmattan for the smartphone device Nokia N9. Intel collaborated

with Samsung on a new mobile OS, Tizen, which would be based on Samsung Linux

Platform (SLP), a platform that Samsung previously provided to the LiMo Foundation

[41]. In September 2011, Intel announced that MeeGo would be transitioning to Tizen in

2012 and in January 2012 the first Tizen source code and SDK preview were made

available.

Mobile Operating Systems

15

In Figure 2
11

 is presented the family tree of Tizen. It illustrates the Tizen’s parentage

from components of MeeGo, SLP and the Samsung’s Bada platform. Mer
12

 is an open,

mobile-oriented software distribution that is aimed at device manufacturers. It is based

on the work from MeeGo and plans to share effort with the Tizen project.

Figure 2 Tizen family tree

3.1.1.3 Tizen Versions

Tizen 1.0 Larkspur was released on April 30
th

, 2012. The platform consists of the

following components [86]: Application Framework, Graphics and UI, Multimedia,

Web, Messaging, Location, Security, System, Base, Connectivity, Telephony, Personal

Information Management (PIM), Kernel.

Tizen 2.0 Alpha SDK and source code were released on September 25
th

, 2012. This

release has many improvements and additional features and tools such as:

 Enhanced Web UI framework that provides new functionalities from HTML5

and W3C APIs;

 New Tizen Device APIs – Download, Notification, and Power;

 Changes to the Web UI Framework related to the subservices and JavaScript

algorithm, page specification and widgets;

 The Tizen Device APIs – System and Contact, were altered;

11 Image courtesy of [5]
12 http://merproject.org/

Mobile Web Applications

16

 Many bugs in the Web UI framework were fixed;

 New features were added to the Core system components – Application, System

and Telephony;

 Additional functionalities to the tools – Emulator, Emulator Manager, Web

Simulator, UI Builder, JavaScript editor, etc.;

 New platform SDK that helps platform development based on Open Build

Service (OBS).

The complete list of the new and changed features in this release, as well as the fixed

bugs and known issues can be consulted in [88].

3.1.1.4 Devices

Tizen 2.0 Alpha is targeted towards smartphones; however the platform is designed to

provide support for multiple device categories, as follows [31]:

 Smartphones – the smartphone technologies of Tizen include a flexible UI, 3D

window effects, advanced multimedia, location-based service frameworks,

sensor frameworks, multi-tasking and multi-touch capabilities and support for

scalable screen resolution.

 Tablets - for tablets is provided a touch-optimized UI with a suite of built-in

applications for Web browsing, personal information management (PIM), and

media consumption.

 Netbooks – a rich user experience and improved performance will be available

for netbooks.

 IVI devices – IVI devices provide navigation and entertainment services in

vehicles, such as cars, buses, airplanes, etc. Tizen has an open source project

called Tizen IVI
13

, which will enable the development of applications for IVI

devices. Thus, users can have Internet and multimedia experience while

travelling.

13 https://wiki.tizen.org/wiki/IVI

Mobile Operating Systems

17

 Smart TVs – for smart TVs, Tizen provides a complete open standards-based

Linux stack, optimized for living room devices, such as TVs, STBs and Blu-ray

players.

3.1.2 Tizen Architecture, API and SDK

In this subsection are presented the Tizen architecture, available APIs and contents of the

Tizen SDK.

3.1.2.1 Architecture

As shown in Figure 3
14

, the Tizen architecture is composed of four subsystems that are:

Web framework, Native framework, Core and Kernel.

Figure 3 Tizen architecture

 Web framework

The Web framework enables the development of web apps. It supports many HTML5

functionalities, for example: video, audio, 2D canvas, WebGL, CSS3, geolocation,

vibration, WebSocket, and Web worker; and in addition it makes available various

device APIs for device functionality such as alarm, messaging, Bluetooth and Near Field

Communication (NFC).

14 Image courtesy of [28]

Mobile Web Applications

18

 Native framework

The native framework allows the creation of native applications. It provides numerous

services divided into the namespaces presented in Section 3.1.2.2.5. This framework

additionally supports some standard open source libraries, such as: glibc, libxml2,

libstdc++, OpenAL, OpenGL ES and OpenMP.

 Core

The Core subsystem consists of open source libraries and a set of APIs that are used by

the Web and Native frameworks. The Core comprises the following components:

Application Framework; Base; Connectivity; Graphics and UI; Location; Messaging;

Multimedia; PIM, Security; System, Telephony; Web. Their details are presented in

Appendix 8.2.1.

 Kernel

The kernel subsystem consists of Linux kernel and device drivers.

3.1.2.2 API

For the development of web and native applications Tizen provides the following API

references:

 Web framework:

o Tizen Web Device API;

o Web UI Framework;

o W3C/HTML5 API;

o Supplementary API;

 Native framework:

o Tizen Native API.

These API references are described in the following subsections.

3.1.2.2.1 Tizen Web Device API

The set of Tizen Web Device APIs enables web applications to access device

functionality such as: alarm; application launching; Bluetooth; calendar; call history;

Mobile Operating Systems

19

contacts; downloads; file system; messaging; multimedia contents; NFC; notification;

power; system information and settings. The description of the APIs in the set is

provided in Appendix 8.2.2.

3.1.2.2.2 Web UI Framework

The Web UI framework provides services for creating GUI widgets, events, and different

animations and effects. The services are based on a template making use of the

JavaScript projects jQuery, jQuery Mobile and Globalization and work on a WebKit-

based web browser. Thus, the Web UI framework provides the following:

 Web widgets – include Tizen and jQuery Mobile widgets;

 Web themes – make available CSS themes and resources;

 Loader – supports the loading of configurations, for instance Web theme and

internationalization set-up.

3.1.2.2.3 W3C/HTML5 API

Tizen supports APIs that are part of several W3C specifications, for functionality such

as: Communication, Device, DOM, Forms and Styles, Graphics, Location, Media,

Performance and Optimization, Security, Storage, UI and Widgets. A table with the

Tizen support for W3C APIs for these functionalities is presented in Appendix 8.2.3.

3.1.2.2.4 Supplementary API

Tizen supports several non-W3C specifications that are widely used, such as WebGL,

Typed Arrays, FullScreen API and viewport Mega Tag. The description of these

specifications can be found in Appendix 8.2.4.

3.1.2.2.5 Tizen Native API

For the development of native apps, Tizen provides the following C++ namespaces:

App; Base; Graphics; Io; Locations; Messaging; Net; Security; Social; Ui and Web.

Their detailed list along with description is presented in Appendix 8.2.5.

Mobile Web Applications

20

3.1.2.3 SDK

The Tizen SDK is a comprehensive set of tools for developing Tizen applications. It

includes platform binaries and libraries, header files, Integrated Development

Environment (IDE), tools and sample applications. The main contents of the SDK

folders are presented in Table 2.

Table 2 Tizen SDK folder contents

Folder Contents

documents General Tizen documentation

ide Tizen IDE

tools Tools available through the IDE

platforms Tizen libraries, samples, and public header files

Install-manager Tizen SDK Install Manager

license Tizen SDK license

3.1.2.3.1 Tizen IDE

The Tizen IDE is based on the JavaScript Development Tools (JSDT) and Eclipse

C/C++ Development Tools (CDT) [28]. The SDK provides all the necessary plugins for

the Tizen IDE. As can be seen in Figure 4, the IDE has different wizards and tools that

are useful for application creation and debugging.

Mobile Operating Systems

21

Figure 4 Tizen IDE

3.1.2.3.2 Tools

The Tizen SDK provides several standalone tools that are useful for testing and

debugging purposes. These tools are presented in the following subsections.

3.1.2.3.2.1 Web Simulator

The Tizen Web Simulator is a light-weight tool for testing mobile web applications. It is

based on the Ripple-UI Framework (a browser-like component that provides emulation

services) and runs on Google Chrome. The Web Simulator has the following features:

 Supports running and debugging HTML5 applications;

 Uses JavaScript back-end to simulate Tizen Web APIs;

 Includes various configuration panels for simulating different events, such as

device events, phone calls and messages.

A screen shot of the Simulator is shown in Figure 5.

Mobile Web Applications

22

Figure 5 Tizen Web Simulator

In the current version of the Simulator, the supported Tizen Web Device APIs are: Tizen,

Alarm, Application, Calendar, Call, Contact, Geocoder, Location-Based Services (LBS),

Media Content, Messaging, NFC, System Information, Time, and Power [28].

3.1.2.3.2.2 Emulator

The Emulator is a virtual mobile device that can be used to test Tizen applications before

deploying them to an actual device. The Emulator includes virtual CPU, memory, and

various peripherals.

A screen shot of the Emulator is presented in Figure 6. The Emulator can be started

either through the Emulator Manager or using the command line, where different start-up

options can be defined. While the application is running on the Emulator, various

functions can be performed, such as using multi-point touch, network features, file

sharing, among others. The Emulator can be controlled by control keys and menus. It

supports various media formats and codecs and OpenGL ES acceleration; however,

Mobile Operating Systems

23

compared to physical target devices it has some limitations and differences, which are

described in detail in [28].

Figure 6 Tizen Emulator

3.1.2.3.2.3 Emulator Manager

The Emulator Manager, illustrated in Figure 7, is a tool that enables to create emulated

devices and customize their hardware aspects, including display resolution and density,

and RAM size. The Emulator Manager allows the creation of multiple Emulators which

is useful in order to test multiple environments.

Mobile Web Applications

24

Figure 7 Emulator Manager

3.1.2.3.2.4 Smart Development Bridge

The Smart Development Bridge (SDB) is a command-line tool that manages multiple

device connections. It provides basic commands for application development such as:

file transfer; remote shell command; port forwarding for a debugger; viewing, filtering,

and controlling device log output. For each connected device, the SDB creates a serial

number, which is a string that uniquely identifies an Emulator or an actual device. By

using this serial number, commands can be sent to a specific device in a list of connected

devices. In order to use the SDB with an actual device, the device has to be set to the

SDB mode.

The SDB commands can be seen in Figure 8 and a detailed description for each

command is available in [28].

Mobile Operating Systems

25

Figure 8 Smart Development Bridge

3.1.3 Tizen Applications

This section presents the Tizen applications which can be web, native and hybrid.

3.1.3.1 Application Life Cycle

The lifecycle of a mobile application is illustrated in Figure 9
15

.

Figure 9 Application lifecycle

15 Image courtesy of [12].

Mobile Web Applications

26

In the figure the main loop represents the app run time and the ellipses create, reset,

pause, resume and terminate are the callback functions that can be implemented for an

application. Each of these callbacks is invoked as follows:

 Create – when the application is launched to facilitate the creation of the window

and data allocation;

 Reset – when the app is restarted during run time;

 Pause – when the window of the application is sent to the background;

 Resume – when the application window is restored back to the foreground;

 Terminate – after the main loop is executed to terminate the application.

During execution the app passes through several states as presented in Figure 10
16

.

Figure 10 Application states

When the application is launched it is in a ready state. Then, the create callback is called

and the app enters in a created state where it is initialized. In the running state the

application runs in the foreground of the screen and receives user inputs. Hence, it can be

restarted by calling the reset callback. Moreover, the app can be paused passing it to the

paused state and resumed, which returns it to the running state. The app is in a

terminated state after calling the terminate callback.

16 Image courtesy of [12].

Mobile Operating Systems

27

3.1.3.2 Web Applications

A Tizen web application is a composition of HTML (based on the HTML5 standard),

CSS and JavaScript files. These files are distributed in a W3C widget package
17

 that can

be installed on a device.

The Tizen IDE provides several templates for the creation of Tizen web projects. The

available templates in the current Tizen SDK are: Basic, Tizen Web UI Framework,

jQuery Mobile, and Tizen Web UI Builder. Developers can create Tizen web projects by

using these templates, by using their own user templates, or without using any template.

Depending of the chosen template, the Tizen IDE automatically creates the files and

folders needed for the project. A Basic Template project is illustrated in Figure 11.

Although this is the recommended project structure, the developers are allowed to

customize the project the way it serves best for their needs.

Figure 11 Tizen web project structure

Most of the contents in the figure are self-explanatory with exception of the WebContent

folder, intended for the multimedia files used in the project, and the

BasicTemplateDemo.wgt is the final widget package. The package is built using the IDE

and after that it is ready to be installed on the Emulator or on an actual device. The

configuration of the widget is set in the config.xml file. Each widget has exactly one

configuration file and it is located at the root of the package. More details about the

config.xml file can be found in Appendix 8.2.6.

A Tizen application can be tested on an actual device or on the Emulator. As an

alternative, a web app can be tested in the Web Simulator; however, as it was mentioned

17 http://www.w3.org/TR/widgets/

Mobile Web Applications

28

before (Section 3.1.2.3.2.1) in the current version of the Tizen SDK, the Web Simulator

does not support all Tizen Web Device APIs.

3.1.3.3 Native Applications

Tizen supports the development of native apps written in C++ or C (partially supported).

The package file format of the Tizen C++ applications is the zip archive format with

package file extension “.tpk”. The Tizen IDE provides the following project templates:

Empty Application; Form-based Application; Library; OpenGL Application; Service

Application; and Tab-based Application. The structure of a Form-based project is

illustrated in Figure 12.

Figure 12 Tizen native project structure

The manifest.xml file contains all application-related information including application

ID, version, type and privileges. The privileges allow the application to use features and

services of the privileged APIs, which are Tizen native APIs responsible for handling

platform and user-sensitive data. More information about the manifest.xml file is

available in [28].

3.1.3.4 Hybrid Applications

Tizen supports hybrid applications containing web and native parts. The package format

of the hybrid apps is the zip archive with file extension “.wgt”. However, in the current

release of the Tizen SDK the development of hybrid apps is not available.

Mobile Operating Systems

29

3.1.4 Tizen Case Study

For the practical part of the Tizen study three distinct case studies were conducted. The

first one explored the Tizen web applications, more specifically a conversion of an

existing web app into a Tizen web app and implementation of a Tizen device

functionality using a Tizen Web Device API. The second and third case studies included

implementation of two prototypes for Tizen native apps using Tizen Push Messaging

service and Facebook Chat service, respectively. PTECH considers the three case studies

confidential; therefore their description is presented in Appendix 9.1.

3.1.5 Tizen Conclusions

The following conclusions can be extracted from the Tizen study presented in the

previous sections:

 Tizen is an open source platform targeted at a wide variety of device categories.

 The Tizen project is backed by leading device manufacturers, chip suppliers, and

mobile operators.

 It combines the effort on other projects such as MeeGo, SLP, and Bada as it was

confirmed that Samsung will merge Bada with Tizen [75].

 Tizen provides a Web Framework allowing developers to use HTML5 and well-

known Web technologies to develop applications that are portable across

multiple devices.

 Tizen also offers a Native Framework, which enables the creation of interactive

native application written in C++ or C (partially supported).

 Hybrid applications containing native and web parts will be supported in the

future.

 The Tizen project relies on application developers’ feedback to improve the

platform. It provides a vast documentation, many tools for creating and

debugging, and other resources that facilitate the process of development and

distribution.

Compared to the dominating platforms in the mobile industry, Android and iOS, in terms

of application development only Tizen offers the possibility to create apps that are

completely web. Android and iOS do not support this option without using external

Mobile Web Applications

30

frameworks (e.g. PhoneGap). Furthermore, Tizen also allows the creation of native apps,

thus it does not lose over the other two platforms in terms of performance.

The participation of many handset manufacturers and carriers in the Board of Directors

of the Tizen Association, as well as the combination of the efforts on MeeGo and Bada,

are considered as some of the ingredients that may guarantee the success of Tizen [32].

However, whether this will happen will be known this year when Samsung launches its

first smartphones based on the Tizen OS.

3.2 Firefox OS

This section presents the Firefox OS study. It exposes the state of the platform as of

March 2013. Nevertheless, similarly to Tizen, Firefox OS is a new OS that is still under

development; therefore some of the information in the text may be subject to change at

some later point.

3.2.1 Firefox OS Overview

Firefox OS, also known by its project name Boot to Gecko or B2G, is a new open-source

mobile OS developed by Mozilla. The platform is based on a Linux kernel and a Gecko-

based runtime engine and it is free from any proprietary technology [49]. The Firefox OS

applications are web pages written in HTML, CSS, and JavaScript and they have

enhanced access to the hardware and services of a mobile device.

Currently, 17 operators are committed to the project as follows: América Móvil, China

Unicom, Deutsche Telekom, Etisalat, Hutchison Three Group, KDDI, KT, MegaFon,

Qtel, SingTel, Smart, Sprint, Telecom Italia Group, Telefónica, Telenor, TMN and

VimpelCom [55].

Firefox OS is oriented to low-cost devices proving that they can have the same features

and performance as high-end smartphones. The first devices running Firefox OS are

manufactured by Alcatel (TCL), ZTE and LG. They are powered by Qualcomm

Snapdragon mobile processors. The first devices will be available to consumers in

Brazil, Colombia, Hungary, Mexico, Montenegro, Poland, Serbia, Spain and Venezuela

[55].

Mobile Operating Systems

31

3.2.2 Firefox OS Architecture, API and Tools

This subsection presents the platform’s architecture, an overview of the supported APIs

and the tools that can be used during the development process.

3.2.2.1 Architecture

The Firefox OS architecture is illustrated in Figure 13
18

.

Figure 13 Firefox OS architecture

As can be seen in the figure the platform is composed of three main components as

follows [39]:

 Gaia – the top layer of the architecture is the UI of Firefox OS. It contains the

home screen, lock screen, telephone dialer, camera and other apps. Gaia is

entirely written in HTML, CSS, and JavaScript, and its interface with the lower

layers is only through Open Web APIs. Third party applications can be installed

beside Gaia.

 Gecko – this is the application runtime that provides all support for HTML, CSS

and JavaScript. Therefore, some of the Gecko’s components are: a layout engine,

a JavaScript virtual machine, networking and graphics stacks and porting layers.

 Gonk – the Firefox OS’s bottom layer consists of Linux kernel and Hardware

Abstraction Layer (HAL). The kernel and some of the userspace libraries are

18 Image courtesy of [35]

Mobile Web Applications

32

common open source projects, including Linux, libusb and bluez. Other parts of

the HAL are shared with the Android project, such as camera and GPS. Gonk is a

porting target of Gecko, which means that there is a port of Gecko to Gonk.

Thus, since the Firefox OS project has full control over Gonk, Gecko has direct

hardware access on Gonk; however, it does not have this access on other

platforms.

3.2.2.2 API

Firefox OS supports the following sets of APIs:

 Firefox OS Device APIs – this set of APIs exposes device features to the Firefox

OS apps. Thus, it includes functionality such as: alarm; browser; contacts;

geolocation; notifications; radio; storage.

 General Web APIs – consist of standard Web APIs that are supported by the

Firefox browser, some of which are: DOM events; device orientation; history;

HTML5 audio and video tags; network requests; online and offline events; touch

events.

 Firefox Marketplace Services – provides APIs that support publishing and

managing apps on the Firefox OS Marketplace.

The list of the available APIs and their descriptions can be seen in Appendix 8.3.1.

3.2.2.3 Tools

In this subsection are presented some of the available tools that can be used to test

Firefox OS applications.

3.2.2.3.1 Firefox OS Simulator

Firefox OS Simulator is a tool that simulates a mobile phone environment. It is installed

as an Add-On on the Firefox desktop browser. As can be seen in Figure 14 the Simulator

is a complete simulation of Firefox OS providing a Home button and numerous pre-

installed apps. Nevertheless, some device APIs are dependent on hardware features;

Mobile Operating Systems

33

therefore, although they work on an actual device, they may not work properly on the

Simulator.

Figure 14 Firefox OS Simulator

3.2.2.3.2 Simulator Dashboard

The Simulator Dashboard, shown in Figure 15, is a manager tab on the Firefox desktop

browser that serves to launch the Firefox OS Simulator and install applications on it. In

addition, the Dashboard provides a remote console for the Simulator and a port number

for the Remote Debugger.

Figure 15 Simulator Dashboard

Mobile Web Applications

34

3.2.2.3.3 Remote Debugger

The Remote Debugger delivers the Firefox development tools to debug apps running on

the Firefox OS Simulator or on an actual device. The main difference with the web

content debugger is that the Remote Debugger runs on its own window, as can be seen in

Figure 16. In order to use the Remote Debugger the Firefox desktop browser and the

Firefox OS Simulator or the device need to be set up. However, currently the device

debugging is disabled [79]; therefore, only the Simulator can be used to debug apps.

More details about the Remote Debugger’s features can be found in [25].

Figure 16 Remote Debugger

3.2.2.3.4 App Validator

The App Validator
19

 is an online tool that can be used before submitting an app to the

Firefox Marketplace. The tool checks the manifest file of an app and shows the errors (if

any) or warnings that should be considered. The App Validator is shown in Figure 17.

19 https://marketplace.firefox.com/developers/validator

Mobile Operating Systems

35

Figure 17 App Validator

3.2.3 Firefox OS Applications

The Firefox OS applications are Open Web Apps (OWA), which are web apps written in

HTML, CSS, and JavaScript. OWAs are intended to be standardized and therefore to be

able to work on any browser, OS or device. The apps can be distributed through the

Firefox Marketplace or any other website. Moreover, it should be noted that web apps

can be published as any website; however there are several characteristics that make

them different from a normal website such as: apps are installed by the user and can run

offline; they are self-contained and do not require a browser window [44].

In order to install a website as a web app on a device, it has to have a manifest file.

 App Manifest

The app manifest is a JSON file which contains information that the browser needs to

interact with the app. The manifest has the name manifest.webapp and is placed at the

root of the application. The file may provide information for the app’s version; icons;

permissions required by the app; locale strings to name a few; however the only required

fields are the name and description for the app. For more details about the manifest file

can be referred to [11].

 App Types

The Firefox OS apps can be two main types as follows:

 Hosted app – an app that is run from a server at a given domain and alternatively

it can be installed on a device using JavaScript code;

 Packaged app – a zip file containing all app resources such as HTML, CSS, and

JavaScript files. This allows the zip file to be downloaded and installed on a

device.

Mobile Web Applications

36

Both app types must have a valid manifest file. However, since the packaged apps can

have access to some sensitive device APIs, they must be verified by the app store where

the apps are distributed. There are three types of packaged apps based on their

accessibility to the device APIs:

 Plain packaged app – a regular app that is packaged in a zip file. It is signed on

the marketplace, yet since it does not have access to certain sensitive device APIs

it is not verified following any special process;

 Privileged app – an app that is approved by an app store (e.g. Firefox

Marketplace) in order to have access to sensitive APIs;

 Certified apps – an app that is used for critical system functions, such as the

default dialer or the system settings app on a device. Therefore, it must be

approved by the OEM or carrier to use all device permissions explicitly (without

requiring the user’s authorization).

3.2.4 Firefox OS Case Study

The objective of the Firefox OS case study was to explore the conversion of an existing

web app into Firefox OS app and to implement one of the Firefox OS Device APIs, in

order to estimate the effort needed for porting the PTECH’s apps to the new OS. After

performing the case study, we can conclude that the process was very straightforward.

Nevertheless, PTECH considers the practical part of the Firefox OS study confidential,

and therefore its description is presented in Appendix 9.2.

3.2.5 Firefox OS Conclusions

Firefox OS is a new free open source mobile OS which is Web-based and runs OWAs,

developed with HTML5 and related technologies. The OWAs are part of the Mozilla’s

vision for Free Web aiming to standardize them and thus making the apps runnable on

every browser, OS or a device. HTML5 and the other open web standards are likely to

attract more developers to start developing apps for the new OS. Hence, Mozilla does not

intend to create a new ecosystem, instead it wants to allow web developers to leverage

their skills to create mobile apps that run on diverse devices. This means that even

Mobile Operating Systems

37

existing websites and web apps can be easily transformed into Firefox OS apps as we

proved in our case study.

Firefox OS apps can be published on Firefox Marketplace or any other website creating

multiple marketplaces. This is an important concept for the openness of the platform,

because the multiple marketplaces will permit the developers to have a direct

relationship with their customers and, additionally, carriers to bill the consumers for the

apps they download. This is why Firefox OS is embraced by so many carriers. However,

having multiple marketplaces raises some security and privacy concerns. Nevertheless,

Mozilla assures that the users can expect security and privacy since Firefox OS is

designed to protect the users from malicious apps as well as applications from one

another [56].

In our opinion, Firefox OS has all the potential to compete with other Web-based OS’s,

like Tizen for example, taking into account that it is developed by Mozilla, the company

that develops the successful Firefox web browser. However, competing with platforms

already established in the market like Android and iOS, will be challenging since these

two OS’s are still the leaders in the market with 92 percent of global smartphone

shipment during the first quarter of 2013 [6]. In terms of market position even the

Mozilla’s goal is not to achieve “global domination” [57]. Rather, its goal is to provide

an open source and low-priced mobile OS option to the end users and to prove that

HTML5 is powerful enough to allow functionality competitive with the native

applications of other mobile OS’s.

Mozilla already presented the first official Firefox OS devices, Alcatel One Touch Fire

and ZTE Open, at the Mobile World Congress in Barcelona [51]. They are expected to

be available to the consumer later in 2013.

Mobile Web Applications

38

Web Applications Packaging Tools

39

4. Web Applications Packaging Tools

This chapter presents the studies of the web applications packaging tools Adobe

PhoneGap and Appcelerator Titanium. It describes the state of the tools as of May 2013;

however, since both, PhoneGap and Titanium, are under active development, some of the

information presented in the text may be subject to change at some point in the future.

4.1 PhoneGap

PhoneGap is a free open source framework for developing cross-platform mobile

applications. It currently supports eight mobile OS’s as follows: Android; Bada;

BlackBerry; iOS; Symbian; Tizen; webOS and Windows Phone. PhoneGap has been

downloaded over 1 million times and it is used by over 400 000 developers [2].

The PhoneGap applications are hybrid apps, thus they are created with standard web

technologies such as HTML5, CSS3 and JavaScript; and they use webview providing

them with enhanced access to device APIs. The web resources are hosted locally in the

application and not on a remote HTTP server. As illustrated in Figure 18
20

 the UI of the

app occupies 100% of the display’s width and height. PhoneGap uses the native

webviews of the supported OS’s and since there is difference in the rendering engines,

the UI of a PhoneGap app may not be consistent on the different platforms.

Figure 18 PhoneGap app UI layer

20 Image courtesy of [71]

Mobile Web Applications

40

To enable device functionality in applications, PhoneGap provides a standard set of

JavaScript APIs. These APIs handle the communication between the web app and the

native OS, as illustrated in Figure 19
21

. Since the JavaScript APIs are built on web

standards, the apps should be portable between the different OS’s with minimal or no

changes. Nevertheless, PhoneGap supports only a limited set of native APIs; therefore,

for a device functionality that is not exposed yet, PhoneGap allows the developers to

create native plugins that provide the access to the required functionality.

Figure 19 PhoneGap API

A PhoneGap app is developed using web technologies; however, the application package

is a binary archive in the format that the mobile OS uses. The final app can be distributed

through the appropriate app store (refer to Table 1).

4.1.1 PhoneGap History

PhoneGap and PhoneGap Build were originally developed by Nitobi Software. In 2011,

Adobe Systems Incorporated acquired Nitobi [3] and as a consequence of the acquisition

they donated the PhoneGap codebase to Apache Software Foundation (ASF) for

incubation. This contribution was provoked by Adobe/Nitobi’s desire to provide the

PhoneGap code with proper stewardship, to maintain open and transparent governance,

and moreover to facilitate the contribution of other large organizations [70].

Nevertheless, as a result of the donation, PhoneGap had to be renamed. Initially it was

called Apache Callback; however, this name was considered too generic [38]. Later, it

was changed to Apache Cordova after the Cordova Street in Vancouver, Canada, where

21 Image courtesy of [71]

Web Applications Packaging Tools

41

the Nitobi’s office was situated when they developed PhoneGap. In October 2012,

Apache Cordova became a top level project within the ASF [1].

Currently, Cordova has contributors from Adobe, BlackBerry, Google, IBM, Intel

Corporation and other independent contributors [20].

4.1.2 PhoneGap vs. Apache Cordova

Many sources use the names PhoneGap and Cordova interchangeably; however, when

speaking about the open source project more technically correct is to use the name

Cordova, since PhoneGap is the Adobe’s distribution of Cordova and Cordova is an

Apache project, as shown in Figure 20
22

. From PhoneGap explain the relationship

between Cordova and PhoneGap as Cordova is the engine that powers PhoneGap [70].

Both, Apache Cordova and PhoneGap, are licensed under the Apache License, Version

2.0.

Figure 20 Apache Cordova and PhoneGap logos

Comparing the distributions of Apache Cordova and PhoneGap for version 2.6.0, the

PhoneGap distribution
23

 includes several supporting compiled files, such as the

cordova.jar required for Android and the CordovaStarter-x.x.x.zip for the Windows

Phone template. Otherwise, if the Cordova distribution [1] is used these files have to be

built manually.

22 Image courtesy of [45]
23 http://phonegap.com/

Mobile Web Applications

42

4.1.3 PhoneGap Services

Besides the functionality that corresponds to the one of Cordova, PhoneGap provides

some optional services. These are described in the following subsections.

4.1.3.1 PhoneGap Support

PhoneGap allows subscriptions for paid technical support. The PhoneGap Support

service comprises several packages that are divided based on factors, including number

of developers, office hours and response time. More information can be found on [72].

4.1.3.2 PhoneGap Build

PhoneGap Build is a paid service for mobile application packaging. As illustrated in

Figure 21
24

, the service packages a web app in the Cloud for all supported mobile OS’s;

therefore, the developer does not need to install the SDK for each target OS and build the

projects manually. The application can be submitted to PhoneGap Build by uploading

the application’s files or by referencing a GitHub
25

 repository. The PhoneGap Build

service additionally provides a free plan with one private app and unlimited number of

open source apps.

Figure 21 PhoneGap Build

24 Image courtesy of [4]
25 https://github.com/

Web Applications Packaging Tools

43

4.1.3.3 Hydration

Hydration is a service that can be enabled through PhoneGap Build, as shown in Figure

22. It improves the compilation time by pushing updates directly to the application

installed on a device. This is achieved by compiling a native binary that serves as a

container for the mobile app and checks for updates directly from the Cloud account.

Hydration is intended to benefit the development process. Thus, when a developer

uploads a new build, the tester is notified for the update upon restart of the application. If

the tester accepts the new version, the app is updated automatically without the need of

uninstallation and re-installation.

Figure 22 Enable hydration

Hydration can be enabled for a new application or for an existing one. Nevertheless, it

currently supports PhoneGap version 2.0.0 or greater and only the platforms Android and

iOS [47].

4.1.4 PhoneGap Case Study

The practical part of the PhoneGap study included packaging of a web app for the

following target OS’s: Android; iOS; Tizen; BlackBerry and Windows Phone. PTECH

decided to package the Phune Gaming client application and required to use Cordova,

thus the PhoneGap case study would help the company to choose between Cordova and

PhoneGap. By the same token, PTECH required the app to be packaged with PhoneGap

Build in order to have some estimation between the effort needed for packaging

manually with Cordova and by using the automated tool. However, PTECH considers

the case study confidential and therefore it is presented in Appendix 9.3.

Mobile Web Applications

44

4.2 Appcelerator Titanium

Appcelerator Titanium is a free open source platform for developing native mobile

applications written in JavaScript. Titanium is developed by Appcelerator Inc. and it was

first introduced in December 2008 [10]. Its goal is to help developers use their JavaScript

skills to create native mobile apps that run across multiple platforms [83]. Titanium

supports the following platforms: Android; BlackBerry; iOS; Mobile Web and Tizen.

The Titanium SDK in addition provides the Alloy framework, which allows mobile web

applications to be designed under the Model-View-Controller (MVC) design pattern.

Currently, Titanium has about 55 000 mobile applications deployed on 137 million

devices [84]

4.2.1 Titanium Architecture

Titanium consists of the following components:

 Titanium SDK – includes a set of Python scripts and other supporting tools that

interact with the native SDK tools;

 Titanium Mobile APIs – comprise JavaScript-based APIs, which expose access

to native APIs;

 Titanium Studio – an Eclipse-based IDE that supports creating, testing,

debugging and distributing mobile apps;

 Modules – enable to extend the Titanium’s core functionality in order to add

support for device or OS-specific APIs. Developers can create their own modules

and distribute or sell them through the Appcelerator Marketplace;

 Appcelerator cloud services – the core API makes available various backend

services, such as the analytics, which provide basic usage statistics about how

often the application is used and on which platforms.

Web Applications Packaging Tools

45

Titanium exists as a bridge between the application source code and the mobile OS. This

architecture is presented in Figure 23
26

.

Figure 23 Titanium architecture

At the top layer is the developer’s application written in JavaScript and at the bottom

layer is the native OS (Android, BlackBerry, iOS and Tizen) or the browser (for the

Mobile Web platform). Between the top and the bottom layers resides the Titanium SDK

with the Titanium APIs. Therefore, the developer writes the app in JavaScript calling the

Titanium APIs and the Titanium Bridge, called Kroll, translates the calls into their native

equivalents.

Thus, at runtime the application consists of three major parts – the JavaScript source

code, the platform-specific implementation of the Titanium API in native language and a

JavaScript interpreter that evaluates the JavaScript code at runtime [18]. When the

JavaScript code is evaluated, a proxy object, which is a native object that exposes a

JavaScript API, is created. Then, this proxy object is returned to the JavaScript layer and

the JavaScript engine creates a corresponding JavaScript object [83]. Therefore, the

proxy object exists in the native and in the JavaScript layer and serves as a bridge

between them.

26 Image courtesy of [83]

Mobile Web Applications

46

This is illustrated with the code snippet in Figure 24
27

.

Figure 24 Example code illustrating proxies

After the execution of the code, the creation of the proxy object and the invocation of its

methods are visualized in Figure 25
28

. It can be seen that there are two objects – the

JavaScript object and the native proxy object.

Figure 25 Diagram of the executed code

It should be noted that Titanium does not require a webview, although it can be used, and

the JavaScript code is not cross-compiled to Java or Objective C; however, it is

evaluated at runtime [18].

27 Image courtesy of [83]
28 Image courtesy of [83]

Web Applications Packaging Tools

47

4.2.2 Titanium Applications

The regular Titanium applications are native apps since the JavaScript APIs translate the

developer’s code into native API calls. Nevertheless, Titanium additionally provides

support for web and hybrid app development. The following subsections present features

specific for the Titanium apps.

4.2.2.1 Native Applications UI

Although Titanium provides cross-platform mobile application development, the UI of

the native apps is not identical across all platforms in order to preserve the native look

and behavior that the target OS users are accustomed to. This is illustrated in Figure 26
29

,

which demonstrates the UI differences of an example application running on the iOS and

Android.

Figure 26 UI differences

29 Image courtesy of [83]

Mobile Web Applications

48

4.2.2.2 Mobile Applications

The mobile web apps implement Titanium functionality, such as: common UI elements,

animations and 2D matrix operations; HTTP network access; local storage and cache;

add-on modules in the form of CommonJS and Asynchronous Module Definition

(AMD) modules. Titanium tends to provide this functionality whenever the browser of

the supported devices permit and its access is identical on all platforms. Nevertheless,

the mobile web apps have some limitations due to restrictions imposed by a vendor,

platform and mobile browser. These limitations are as follows [83]:

 Access to some platform-specific components (e.g. iOS local notifications,

Android activities);

 Access to native UI controls;

 Full operation without a constant network connection;

 Universal access to hardware sensors (e.g. the camera);

 Access to some components that depend on the OS support (e.g. calendar,

contacts);

 Support for Titanium+Plus modules for iOS and Android, which are written in

native language and cannot run in a browser.

4.2.2.3 Hybrid Applications

Titanium makes available the Ti.UI.WebView API, which provides access to the

platforms’ native webview components. The webview can be positioned and resized the

way it serves best for the developer’s needs and thus other UI components can be added

to the remaining space. The web contents displayed in a webview can be hosted on a

remote server or locally in the application resources. The major benefit of using remote

web contents is the ability to update particular parts of the app without the need to update

the whole application. The local web contents, on the other hand, enable to use the app

even offline and furthermore this approach can decrease the loading time of the

application.

A bidirectional communication can be established between the native Titanium code and

the JavaScript code running within the webview. This functionality is limited to the local

Web Applications Packaging Tools

49

web contents; yet to interact with a remote web content the platform provides the

evalJS() method which can be used to inject JavaScript code into a webview.

When using webviews, it should be taken into consideration that the webviews are the

heaviest native UI components, they take time to render and can affect the performance

of the application [83].

4.2.3 Titanium Case Study

Similarly to the PhoneGap case study, the Titanium case study included packaging of the

Phune Gaming client application for all supported platforms. PTECH is interested in the

hybrid app and therefore we used the project template, which allows apps with webview

to be developed. Nevertheless, since this project further provides the option to create

mobile web app, we decided to explore it as well, because, as expected, it would not

require too much effort. PTECH considers the case study confidential; therefore, it is

presented in Appendix 9.4.

4.3 API Comparison

Table 3 presents the comparison of the APIs provided by Cordova and Titanium. The

first column lists the APIs in alphabetical order and the second and third column indicate

with check marks () the Cordova and Titanium support, respectively. When the two

platforms provide similar functionality the check marks are presented in bold to increase

the readability of the table. In the cases when Cordova and Titanium use different API

names for similar functionality, these are presented in the format: Cordova API /

Titanium API.

Table 3 API comparison

API Cordova Titanium

Accelerometer  

Analytics 

Android 

Calendar 

Camera, Capture, Media / Media  

CloudPush (Push Notifications)* 

Mobile Web Applications

50

API Cordova Titanium

Compass, Geolocation  

Connection / Network  

Contacts  

Device, Events / App, Platform  

Facebook* 

File / Filesystem  

Gesture 

Globalization / Locale  

Map 

Notification  

Splashscreen 

Storage / Database  

Stream 

UI (Create native user interface) 

XML 

Yahoo 

* Cordova provides plugins for this functionality.

The Titanium Android API enables the access to some specific Android features (e.g. the

Android Intents). Furthermore, it should be noted that some of the Titanium APIs were

not considered; hence they are not presented in Table 3. The reason for their exclusion is

that they are specific for Titanium and since the table does not present a textual

description, they could cause some misunderstanding. Therefore, for the complete list of

APIs and respective description, as well as which target OS they support should be

referred to Cordova API Reference [7] and Titanium API Documentation [83].

Web Applications Packaging Tools

51

4.4 Packaging Tools Conclusions

This chapter presented the studies of two packaging tools for cross-platform mobile app

development – PhoneGap and Titanium. Both platforms are open source and are licensed

under the Apache License, Version 2.0. Moreover, they are similar in that they require

the use of JavaScript; expose access to device and OS-specific features and if any feature

is not available, they allow the developers to create the missing functionality themselves

as plugin/module. The PhoneGap and Titanium apps can be installed on a device and

they are distributed via the app stores of the target mobile OS’s.

Although at first the two platforms seem to be very similar, they differ in many aspects.

The PhoneGap applications are hybrid apps – they are written in HTML, CSS and

JavaScript that run within a native webview component. Titanium provides support for

hybrid apps, yet it also supports the development of native apps written in JavaScript and

mobile web apps that are accessed from the browser of a device. Therefore, PhoneGap

aims at offering option web developers to reuse existing web apps to make them portable

across multiple platforms. While this is possible with Titanium as well, Titanium wants

primarily to provide a way for web developers to use their JavaScript skill in order to

write native apps instead of learning a specific native programming language – Java,

Objective C, or others. In terms of hybrid apps, the PhoneGap apps are displayed in full

screen, whereas with Titanium the webview can be resized and positioned the way it

serves best the developer’s needs. Therefore, Titanium seems to be more powerful and

flexible platform.

PhoneGap and Titanium further differ in their support for target mobile OS’s. PhoneGap

has a larger spectrum of target OS’s since at the time of the study it supports Android,

Bada, BlackBery, iOS, Symbian, Tizen, webOS and Windows Phone; whereas Titanium,

provides support for Android, BlackBery, iOS, Mobile Web and Tizen. The difference in

the supported OS’s can be explained with the scope of the device APIs. PhoneGap

supports a smaller set of API that access device features thus it is easier to support new

platforms. The scope of the Titanium API, on the other hand, is greater and therefore to

implement the Titanium API on a new platform requires greater effort.

Regarding the development process the two platforms take different approaches.

Cordova (and PhoneGap) requires the creation of separate projects for each target

platform. Titanium, by contrast, provides the Titanium Studio, which centralizes the

Mobile Web Applications

52

interaction with the native tools and thus creates a single codebase for all target

platforms. Nevertheless, PhoneGap overcomes the problem with the separated projects

by providing PhoneGap Build.

In terms of performance both frameworks have their issues. Some developers have

complained for performance problems related to memory leaks when developing

complex applications with Titanium [93]. The problem of PhoneGap is that the apps are

not native and the users may feel the difference if the app appears more as a web page

than an application. Thus, PhoneGap apps for iOS may not be approved on the App

Store if the apps do not satisfy the performance requirements.

Finally, as a conclusion we must say that like all technologies for software development,

both platforms have their strengths and weaknesses. Nevertheless, considering the hybrid

apps, which are in the interest of PTECH, in our opinion, PhoneGap is the better choice

for the PTECH’s needs. The reason for this is the support for more target platforms and

that the PhoneGap functionality is more focused on the hybrid apps, whereas Titanium

focuses on the native apps. In our case studies using the Phune Gaming client application

we created the Cordova-based applications easier and obtained better results. The

development with Titanium, on the contrary, was particularly problematic. Finally, in

our practical experience we did not work with the native functionality neither for

Cordova nor for Titanium, nevertheless if this is required we expect to be easier to make

modifications or additions to the native functionality of Cordova, since its

implementation is simpler compared to the one of Titanium.

Smart TV

53

5. Smart TV

This chapter presents the studies of the two Smart TV technologies that were addressed

during the internship – SSTV and Opera TV. The SSTV study was conducted in February,

2013 and the one of Opera TV in June, 2013. Hence, since the two platforms are under

active development, some of the information in the text may be subject to change at some

later point in time. Furthermore, SSTV is in the direct interest of PTECH; therefore, the

focus was on it, while the Opera TV study aimed at introducing the company to the new

platform.

5.1 Samsung Smart TV

SSTV is a platform that extends the user experience beyond the traditional TV providing

the users with access to web contents. A user can navigate the Internet and obtain

information about news, weather, sports, and much more on the TV screen. Nevertheless,

the experience is not the same as viewing a web page on a personal computer due to the

difference in the screen resolution, hardware specification and using the remote controller

as the main interface with the TV.

SSTV provides a place on the TV, called Smart Hub, which centralizes the management of

users’ accounts and all the smart contents, thus allowing an instant access to applications,

videos, photos, web browser and others. It allows search by using the remote controller, a

wireless keyboard or voice, and also displays recommended applications to the users. The

Smart Hub is presented in Figure 27
30

.

30 Image courtesy of [34]

Mobile Web Applications

54

Figure 27 Smart Hub

5.1.1 Samsung Smart TV Architecture, API and SDK

This subsection presents the various modules of the SSTV architecture, and also

introduces in a concise manner the supported APIs and the SDK’s contents.

5.1.1.1 Architecture

Figure 28
31

 illustrates the architecture of SSTV, which is composed of the following

components: Application Manager; Mapple Browser; Common Modules; Device APIs and

Internet@TV.

Figure 28 SSTV architecture

31 Image courtesy of [69]

Smart TV

55

 Application Manager

The Application Manager is responsible for the management of applications for tasks,

such as installing, running and deleting apps and also assists in the functions of the

Common Modules component. Furthermore, the Application Manager handles the

management of the user accounts. It supports the Single Sign-On (SSO) module, which

gives to the users the convenience to enter once their account information and then the

Application Manager encrypts and saves the user data, and sends it to applications

whenever it is required.

 Maple Browser

The SSTV platform uses a Markup engine Platform for Embedded Systems (Maple),

which is a browser engine for Consumer Electronics (CE) devices [76]. However, the

2012 devices have an entirely new browser engine based on WebKit [9].

 Common Modules

The common modules provide some general purpose objects that can be used in an

application, such as: TVKeyValue; Widget; Input Method Editor (IME) and SSO. These

objects are needed in order to run and display applications on the TV screen, recognize

remote controller events, use plugins, and communicate with the Application Manager.

The list of the Common Modules’ objects can be seen in Appendix 8.4.1.

 Device APIs

The Device APIs is a set of APIs that provide access to some middleware features of the

digital TV (DTV), including: audio; download; filesystem; network; player; screen; time

and video. The full list of Device APIs is provided in Appendix 8.4.2.

 Internet@TV

This component in the figure indicates that the platform has integrated Internet

capabilities, which are required in order to run SSTV applications.

5.1.1.2 API

Besides the Device APIs, SSTV provides APIs for functionality, such as: advertisement;

in-application purchase; interaction between the TV and a mobile device; convergence

Mobile Web Applications

56

application, among others. The summary of the supported APIs is presented in Appendix

8.4.3.

5.1.1.3 SDK

The SSTV SDK is available for Windows, Linux and Mac OS and it contains all tools and

APIs necessary for developing applications for SSTV. The latest SDK version is 4.0 and

provides the tools for creating applications for 2013 TV platform, such as:

 Eclipse-based IDE;

 Visual editor;

 JavaScript debugger;

 Smart TV Emulators for TV models: 2011, 2012 and 2013.

The changes in the various SDK releases are available in [80] and the technologies

supported by the different TV platforms can be consulted in [81].

5.1.2 Samsung Smart TV Applications

The SSTV applications are web applications that run on a DTV connected to the Internet.

However, unlike the regular web pages, the SSTV applications can implement the SSTV

APIs in order to use features that are specific for TV. This makes the apps more TV-

oriented which contributes to the better TV experience for consumers.

Figure 29
32

 illustrates a comparison between a web page and a Smart TV application. As

can be seen the main difference is in the screen resolution, hardware specifications and the

usage of the remote controller as the main user interface.

Figure 29 Web page vs. SSTV application

32 Image courtesy of [77]

Smart TV

57

5.1.2.1 Application Display Types

In terms of positioning on the screen, an application can be full screen, single-wide or

ticker, as shown in Figure 30
33

. The full screen applications occupy the full screen area,

while the single-wide apps are displayed only on a part of the TV screen. The ticker type

allows the application to remain on the bottom of the screen while the user does other

things on the TV. It should be noted, however, that the apps launched in Europe can be

only full-screen applications.

Figure 30 Application display types

5.1.2.2 Project Types and Application Structure

The SSTV SDK makes available the following project types:

 Basic – permits the creation of applications using the Visual Editor tool;

 JavaScript – provides SSTV JavaScript APIs for greater control over application

tasks and processes;

 Flash – allows Flash functionality to be used in the application.

As can be seen in Figure 31
34

 a SSTV application is composed of HTML, CSS and

JavaScript files, the config.xml file and other resources.

33 Image courtesy of [77]
34 Image courtesy of [69]

Mobile Web Applications

58

Figure 31 Application file structure

The config.xml file contains information related to the settings of the application and the

operating environment. This information is used by the Application Manager in order to

manage the user accounts, control the application’s version and set the environment. The

configuration of the config.xml file is provided in Appendix 8.4.4.

5.1.2.3 Testing and Publishing

A SSTV application can be tested on an Emulator or on an actual SSTV. Although the

Emulator simulates running an application on the TV, it is recommended to test the app on

an actual TV, since there are some aspects in which the TV differs from a computer

environment, such as [26]:

 Less memory is available on TV;

 The response to the remote controller’s keys may have different timing;

 Only certain keys are allocated to the application;

 Audio and video playback may have different behavior;

 The application may behave differently if the TV has a different browser version

than the browser of the Emulator.

In order to test an application on the TV and to prepare it for publishing, it has to be

packaged using a SSTV IDE. After the app is packaged and tested it can be submitted to

Samsung Apps
35

 where it goes through a certification process. Once the application is

certified and published, the developer can upgrade it or remove it from the marketplace.

35 http://www.samsungapps.com

Smart TV

59

5.1.3 Samsung Smart TV Case Study

For the SSTV study two case studies were conducted. The first one included the

implementation of the remote controller’s key events handling in an existing JavaScript

application in order to control it using the remote controller. The second case study aimed

to examine the SSTV convergence application, which is a composition of two applications

– a TV application and a client application that runs on an external device, such as a

smartphone, desktop, tablet, and interacts with the TV application. PTECH considers the

two case studies confidential and therefore they are presented in Appendix 9.5.

5.1.4 Samsung Smart TV Conclusions

SSTV is a platform that provides to the consumers many services that go beyond the

traditional TV allowing the user to access web content from the TV, play games, purchase

items, talk with friends on social networks or via Skype video calls, command the TV

using motion , voice control or external mobile device. Therefore, SSTV makes the TV

experience more engaging for the consumers.

From the developer’s point of view, the platform provides SDK with all APIs and tools

needed to develop SSTV applications. It also makes available a developers website

containing many articles and tutorials about the various functionality supported by the

platform. Nevertheless, it has its weaknesses, since we find the organization and the search

engine not very easy to procure the information that is looking for. Moreover, it lacks

information about the SSTV architecture, a sufficient explanation for the API’s functions

and available examples. However, besides these weaknesses we can conclude that the

platform provides satisfactory information to start developing SSTV apps.

In our case study we experienced several challenges related to the development tools.

SSTV provides two IDEs – Eclipse-based IDE available in SDK 4.0 and SSTV IDE

available in previous SDK versions. The Eclipse IDE requires to be run with administrator

privileges in order to set the SSTV perspective. In addition, its packaging did not work

properly and therefore we had to use the SSTV IDE to package the applications.

Furthermore, there were some issues with rendering the pages on the Emulators. Samsung

provides a SDK Emulator Image for Virtual Box, which crashed frequently, thus we used

Mobile Web Applications

60

the Emulator provided by the SDK; however, it did not display the app’s images. In order

to solve this issue we had to specify the absolute paths in the source code.

Another less pleasant aspect is that the developers are not able to upgrade their TVs to test

applications developed with functionality that is not supported in their TV models, as it

was in our case. Fortunately, Samsung seems to be working in this direction as they are

developing an external device, called Evolution Kit, which enables a 2012 SSTV to evolve

into the new 2013 SSTV [78].

5.2 Opera TV

Opera TV is a platform that provides web functionality and environment for running web

apps on connected TV devices that integrate Opera Device SDK. The Opera Device SDK

is a toolkit intended for OEMs and therefore it is not available for app developers. It

allows device manufacturers to build custom HTML5 and CE-HTML rendering based on

the Presto engine.

The Opera Device SDK powers a wide range of devices, such as: TVs, STBs, Blu-ray and

other media players. Some of the brands that integrate the SDK in their devices are:

Panasonic; Philips; Toshiba; Sharp; Boxee TV among others [74].

5.2.1 Opera TV Architecture, Web Standards and Tools

This subsection presents the Opera TV architecture, supported web standards and tools

available for app developers.

5.2.1.1 Architecture

Figure 32
36

 illustrates the architecture of the Opera TV platform. In the figure in blue are

presented the contents and applications, in red (and black) the Opera components and in

green the platform and third party components.

36 Image courtesy of [64]

Smart TV

61

Figure 32 Opera TV architecture

Besides the Opera Presto HTML engine and the Opera Devices SDK, in the figure further

can be seen the other Opera’s products as follows:

 Hybrid TV option – a solution to run and display “red button” applications and

other Hybrid Broadcast Broadband TV (HbbTV) applications;

 TV browser – an Opera web browser for connected TVs;

 TV Store – an HTML5-based storefront described in more detail in Section 5.2.2;

 TV apps – web-based applications optimized to run on TV with different screen

sizes and resolutions. More details are presented in Section 5.2.3.

5.2.1.2 Supported Web Standards

Some of the web standards that are supported in the latest Opera Device SDK version 3.4

are as follows [61]:

 HTML 4.01, 5 (draft)

 HTML5 video

 Encrypted Media Extensions v0.1

Mobile Web Applications

62

 Media Source Extensions v0.5

 <track> subtitles/captions for HTML <video>

 WebSocket 2.0

 DOM fullscreen API

 XHTML Basic, 1.0, 1.1

 Web Forms 2.0

 XML

 CSS Level 1, 2, CSS3

 DOM 2, 3

 <canvas>

 HTML5 Forms

 HTTP 1.0, 1.1

 SSL 3 and TLS 1.0, 1.1, 1.2

 Unicode and legacy encodings

 SVG 1.1 Basic and 1.2 Tiny, CSS TV, WebGL, HbbTV (option)

The complete specification can be found on [92].

5.2.1.3 Tools

For testing and debugging purposes, Opera provides the following tools:

 Opera TV Emulator – enables to test HTML5 and CE-HTML contents developed

to run on the Opera Device SDK as well as web applications for the Opera TV

Store. It is packaged as Oracle VirtualBox and currently there are two versions

available: Opera TV Emulator 3.3, which is compatible with Opera Device SDK

3.1 to 3.3; and Opera TV Emulator 3.4 compatible with Opera Device SDK 3.4.

 Opera Dragonfly– the built-in suite of developer tools of the Opera desktop

browser, which also allows to connect to the Opera browser running on an actual

device or on the Opera TV Emulator and perform remote JavaScript debugging,

HTTP logs, RAM analysis, among others.

Smart TV

63

5.2.2 Opera TV Store

The Opera TV Store, presented in Figure 33, is an HTML5-based storefront that shows a

catalogue of TV-oriented web applications. It allows users to browse, search and interact

with the applications using a standard remote controller. The Opera TV Store is based on

the Opera Device SDK and runs on a device that has the SDK integrated. Currently, it is

available on Sony Bravia TV 2012 models (EX, HX, NX series); Sony Bravia TV 2013

models; Sony Blu-ray Disc Players 2012 and 2013 models. The complete list of retail

devices can be found on [67].

Figure 33 Opera TV Store

It should be noted that the Develop category illustrated in Figure 33 is only available after

the TV device or the Opera TV Emulator is paired with the developer’s Opera TV Store

Submission portal account. The exact steps that have to be followed for the pairing are

described in [82]. The Develop category provides a URL-entry application, called URL

Loader, which allows the URL of an application to be entered in order to test it before it is

submitted for review. The apps that are already submitted are also available in the Develop

category.

In Figure 34 is presented the My Apps tab, which is a home screen that displays the

installed applications in a grid layout. The user can navigate the apps using the four

directional keys of the remote controller.

Mobile Web Applications

64

Figure 34 My Apps tab

The Opera TV Store is fully Cloud-based and therefore the applications are not actually

installed on the device. This is illustrated in Figure 35
37

 which presents the architecture of

the Opera TV Store.

Figure 35 Opera TV Store architecture

When a user browses the categories of the Opera TV Store and “installs” an application,

the application is added to the Portal dashboard (the My App tab) where it is displayed as

a thumbnail image. Thereafter, when the application is launched it is displayed in a full-

screen mode. The full-screen application is not hosted directly on the Opera’s servers;

instead the Opera TV Store contains the reference to the actual URL of the application,

which is hosted on external servers.

Some of the new features of the Opera TV Store are as follows [64]:

37 Image courtesy of [13]

Smart TV

65

 Companion SDK – allows developers to create companion apps that integrate

Android or iOS phones/tablets with the TV, for example, to use them as a remote

controller;

 Side-by-side applications – enables the application to be run side by side with the

broadcast stream;

 Pre-roll advertisement – allows pre-roll video ads to be run before the application

starts.

A demonstration Opera TV Store is available from the Opera TV Emulator at the

following URL: https://demo.tvstore.opera.com.

5.2.3 Opera TV Store Applications

The Opera TV Store applications are web applications written in HTML5, CSS3,

JavaScript and other web technologies. They run from the Cloud and are optimized to be

displayed on a TV screen and controlled by a standard remote controller.

Existing HTML5 applications for desktop and mobile devices can be repurposed to run on

TV following the recommendations for creating web content for TV and the design

considerations for Opera TV Store that are accessible on [23] and [27], respectively.

Currently, Opera TV Store provides two app templates namely Video player and RSS

reader that developers can freely use and customize. These templates are available as zip

files on [66].

Opera TV Store runs on Opera Device SDK, which uses the same rendering engine as the

Opera desktop browser; nevertheless, there are still some differences due to platform-

specific APIs, remote controller keys handling, available RAM and others. Hence, it is

recommended to test the apps on an actual device and/or Opera TV Emulator and in the

Opera TV Store environment in particular.

The apps can be submitted to the Opera TV Store Submission portal and then they are

distributed to different OEMs; therefore, there is no need of separate submissions. The

information and assets that have to be provided during submission are as follows [65]:

 Company information – name, address, email;

 Application name;

Mobile Web Applications

66

 Description of the application;

 Author name;

 Support email;

 Thumbnail (JPG, 480x270 or larger, with 16:9 aspect ratio, 1MB max);

 Application icons (JPG or PNG, 128x128px and 512x512px, 500kB max);

 Screenshots of the application (JPG, 1280x720px or larger, with 16:9 aspect ratio,

1MB max);

 URL to full-screen version of the application hosted at the external server;

 Languages supported by the TV application;

 Type of the TV the application was designed for (e.g. ‘44” Full-HD TV’).

When the app is submitted, the developer does not have access to the metadata; therefore,

in order to make any changes a new version of the app has to be submitted. After the

submission the app is evaluated according to the acceptance criteria available on [65]. If

the app satisfies the criteria, it is additionally tested on reference devices, which may also

include review process by device OEMs. If the app fails on any of the criteria or the tests,

it is rejected and the developer is allowed to fix the problem and resubmit it. Once the app

satisfies all criteria it is published on the Opera TV Store.

5.2.4 Opera TV Case Study

We performed two case studies as part of the Opera TV study. For the first case study the

Phune Gaming client application had to be adapted to run on Opera TV and it was required

to register any issue that we would encounter. This was very valuable information for

PTECH, because Phune Gaming does not support officially the Opera web browser.

During this case study we solved most of the problems by using workarounds;

nevertheless, our findings will help the company to find better working solutions. The

second case study included implementation of the remote controller’s key events handling

in order to enable the navigation on the platform and Tic Tac Toe game via the remote

controller. Since PTECH considers the two case studies confidential, they are presented in

Appendix 9.6.

Smart TV

67

5.2.5 Opera TV Conclusions

The Opera TV platform is aimed at end users, OEMs and developers and to each one of

them it provides the respective benefits. To end-users Opera TV and the Opera TV Store

in particular mean a comfortable “lean-back” web experience allowing them to browse

web content and use applications on their connected TV devices. To OEMs Opera TV

gives the opportunity to provide this TV web experience, which makes their devices more

attractive to consumers. Finally, it allows developers to create HTML5-based applications

that run across all devices that integrate the Opera Device SDK. Opera provides the

developers with developer portal and tools, such as the Opera TV Emulator and Opera

Dragonfly, thus they can create and test applications even without access to an actual

device.

Opera TV Store is still a new platform that is currently running only on Sony Bravia TV

2013 and Sony Blu-ray Disc Players. Nevertheless, Opera is already established in the

Smart TV market. Because of the support for web standards and performance

improvements many OEMs choose to integrate the Opera Device SDK on their devices.

As it was announced [59], even Samsung which develops its own Smart TV platform will

launch Blu-ray players powered by Opera Device SDK.

In our practical experience the implementation of the remote controller functionality was

very simple compared to the one that we implemented for SSTV. The problems with

Opera TV came from the fact that Phune Gaming does not officially support Opera, yet

after the problems were solved it showed a proper behavior on the Emulator. Regarding

the available documentation, at this time SSTV provides a more comprehensive

documentation compared to Opera TV. The Opera TV documentation comprises articles

about developing applications for TV; however, currently there is not much information

about the platform’s specific features and how they can be implemented in applications.

Mobile Web Applications

68

Conclusions

 69

6. Conclusions

The area of the mobile web applications is a very dynamic field where new platforms

and frameworks are constantly emerging. Thus, since PTECH is a company whose

mission is to research and develop innovative services with new and state-of-the-art

technologies, it had the need to conduct the studies of the two new mobile OS’s that run

web applications, Tizen and Firefox OS, in order to prove whether it is advantageous to

start developing applications for these platforms. PTECH is satisfied with the results that

we obtained for Tizen and already started planning applications for Tizen. Although the

Firefox OS study was not that profound compared to the one of Tizen, the Mozilla’s new

OS is a potential target for Phune Gaming.

The goal of the web applications packaging tools can be explained to some extent with

the slogan “write once, run everywhere”. In the context of PTECH objectives this means

to use PhoneGap or Titanium in order to make its existing web applications and the

Phune Gaming client in particular target more platforms with less development costs.

After performing the case studies we concluded that PhoneGap satisfies better this

requirement, especially if PTECH decides to use PhoneGap Build it will decrease

significantly the development time.

Since PTECH intends to target the Smart TV area, during the course of the internship

emerged the need to perform the studies of the two Smart TV technologies – SSTV and

Opera TV. SSTV is more mature platform compared to Opera TV thus it provides more

comprehensive documentation and tutorials for the developers. For the SSTV

Convergence Application case study we did not find a way to perform the discovery in

accordance with the company’s needs, nevertheless the problem was identified.

Finally, what all technologies that were used have in common is that they all support

HTML5, therefore the ultimate conclusion is that HTML5 is a technology with a great

potential that allows applications to be developed for diverse platforms such as desktop,

mobile and TV.

6.1 Achievements

All of the objectives defined in Section 1.2 were achieved. We performed the studies for

Tizen, Firefox OS, PhoneGap, Titanium, SSTV and Opera TV. With these studies

Mobile Web Applications

70

PTECH gained better understanding and knowledge of the platforms it intends to use.

For each one of the platforms we conducted a case study in order to prove its feasibility

for the PTECH’s needs in practice. Thus, the company has working prototypes and

findings that can use in its projects. Furthermore, for the case studies of PhoneGap,

Titanium and Opera TV the Phune Gaming client application was used, therefore

PTECH has concrete results which will consider for the implementation of Phune

Gaming. In addition, for each one of the studies was elaborated a report to serve as

internal reference material and the company’s wiki pages were updated, thus the

information is easily accessible for the PTECH’s employees whenever it is needed.

Personally, the internship gave me the opportunity to be in a company that is established

in the area and working with its professionals helped me understand its needs and the

decisions that have to be made in real situations. I further improved my research skills

and the ability to apply the theory to practical work. Moreover, performing the internship

in a company that works with new technologies arouse my interest in new technologies,

to be aware of them and possibly to use them in my work. Finally, I gained knowledge of

the app development for mobile and TV which I find to be two areas with very good

career perspectives and I would like to specialize in them in the future.

Therefore, considering the positive outcome for the company and my own professional

growth in the area I can conclude that the internship was a success.

6.2 Limitations and Difficulties

The main limitation of the case studies that were conducted during the internship is

caused by the fact that we did not have some of the actual devices for the testing. Tizen,

Firefox OS, Opera TV and BlackBerry 10 are new platforms and thus PTECH could not

acquire their devices by the end of the internship. For SSTV the company has an actual

TV, yet its model does not support the functionality that PTECH intends to use. Hence,

for these platforms we could test only on emulators, nevertheless we are aware that the

applications may have different behavior when running on actual devices.

Besides the hardware limitations, for the PhoneGap and Titanium case studies we faced

some software limitations since Cordova supports older versions of Tizen and Bada, and

the Titanium support for Tizen was recent. In addition, some of the target OS’s require

the development to be only on specific platforms, such as iOS apps can be developed

Conclusions

 71

only on Mac OS and Windows Phone 8 apps only on Windows 8. However, these

problems were overcome with the help of PTECH, whenever it was possible they found

an alternative solution that allowed me to fulfill the tasks.

The main difficulty of this internship was that when I started it I had no background of

the mobile application development as well as for TV. Moreover, I used existing

applications whose source code I did not know, thus initially it was difficult to

understand it. For the tasks of the packaging tools I needed to become familiar with the

different platforms and the tools they use for the development process. I further consider

difficulty the fact that the technologies that were used in the internship are new and

rapidly changing platforms, thus the main source of information were the documentation

and posts published on the platforms’ official websites. Nevertheless, these difficulties

were overcome with time and now I can say with certainty that they greatly contributed

to my learning.

6.3 Future Work

Referring to the limitations presented in the previous subsection the future work that

would follow as a natural consequence from them is to repeat the tests on actual devices.

PTECH already acquired a Tizen device and will perform the tests on it. In addition, the

company plans to acquire an actual device running Firefox OS and a SSTV model 2013.

This will allow the tests to be repeated on the respective actual devices and thus PTECH

will gain more confidence in the behavior of the applications.

The prototype for the Tizen Facebook Chat application performs the authentication using

the DIGEST-MD5 authentication mechanism. However, Facebook provides one more

authentication mechanism called X-FACEBOOK-PLATFORM, which permits to

connect to Facebook Chat using the Facebook authentication. This mechanism is more

desirable, because it provides a better user experience and integration with the Facebook

Platform. Therefore, the prototype can be improved by implementing the X-

FACEBOOK-PLATFORM mechanism for the authentication.

PTECH already started the creation of UI for Phune Gaming that is customized for TV in

order to target SSTV and Opera TV Store. Regarding SSTV it will explore in depth how

to perform the discovery for the Convergence Application in a more efficient way. The

Phune Gaming problems on Opera TV are also part of the future work.

Mobile Web Applications

72

In the meantime the hybrid packaging was made available in Tizen. It should be

explored since it can provide more flexibility for the PTECH’s applications.

These are some of the points that the company will realize in the foreseeable future as a

result of the work performed during the internship.

Bibliography

 73

7. Bibliography

[1] “About Apache Cordova”, Retrieved [Online] May 6
th

, 2013, [Address]

http://cordova.apache.org/

[2] “About the Project”, Retrieved [Online] May 13
th

, 2013, [Address]

http://phonegap.com/about/

[3] “Adobe Announces Agreement to Acquire Nitobi, Creator of PhoneGap”,

Retrieved [Online] May 6
th

, 2013, [Address]

http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquires

Nitobi.html

[4] “Adobe PhoneGap Build”, Retrieved [Online] May 6
th

, 2013, [Address]

https://build.phonegap.com/

[5] “An Introduction to Tizen”, Retrieved [Online] January 27
th

, 2013, [Address]

http://www.youtube.com/watch?v=TkPqPz4Y03M

[6] “Android & iOS generated 90% of smartphone shipments in Q1- IDC”, Retrieved

[Online] June 5
th

, 2013, [Address] http://www.mobileworldlive.com/android-ios-

dominated-90-of-shipments-in-q1-idc

[7] “Apache Cordova Documentation”, Retrieved [Online] May 15
th

, 2013,

[Address] http://cordova.apache.org/docs/en/2.6.0/

[8] “App development API reference”, Retrieved [Online] March 8
th

, 2013, [Address]

https://developer.mozilla.org/en-US/docs/Apps/Reference

[9] “Application does not Launch on Samsung Platform”, Retrieved [Online] March

5
th

, 2013, [Address] http://www.samsungdforum.com/Guide/tec00127/index.html

[10] “Appcelerator Raises $4.1 Million for Open Source RIA Platform”, Retrieved

[Online] May 30
th

, 2013, [Address] http://techcrunch.com/2008/12/09/appcelerator-

raises-41-million-for-open-source-ria-platform/

[11] “App manifest”, Retrieved [Online] March 8
th

, 2013, [Address]

https://developer.mozilla.org/en-US/docs/Apps/Manifest

[12] “Application Fundamentals Developer Guide”, Retrieved [Online] January 21
st
,

2013, [Address] https://developer.tizen.org/documentation/application-fundamentals-

developer-guide

[13] “Building Applications for the Opera TV Store”, Retrieved [Online] June 20
th

,

2013, [Address] http://dev.opera.com/articles/view/building-applications-for-the-

opera-tv-store/

[14] “Can I use CSS pointer-events?”, Retrieved [Online] June 20
th

, 2013, [Address]

http://caniuse.com/pointer-events

http://cordova.apache.org/
http://phonegap.com/about/
http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresNitobi.html
http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresNitobi.html
https://build.phonegap.com/
http://www.youtube.com/watch?v=TkPqPz4Y03M
http://www.mobileworldlive.com/android-ios-dominated-90-of-shipments-in-q1-idc
http://www.mobileworldlive.com/android-ios-dominated-90-of-shipments-in-q1-idc
http://cordova.apache.org/docs/en/2.6.0/
https://developer.mozilla.org/en-US/docs/Apps/Reference
http://www.samsungdforum.com/Guide/tec00127/index.html
http://techcrunch.com/2008/12/09/appcelerator-raises-41-million-for-open-source-ria-platform/
http://techcrunch.com/2008/12/09/appcelerator-raises-41-million-for-open-source-ria-platform/
https://developer.mozilla.org/en-US/docs/Apps/Manifest
https://developer.tizen.org/documentation/application-fundamentals-developer-guide
https://developer.tizen.org/documentation/application-fundamentals-developer-guide
http://dev.opera.com/articles/view/building-applications-for-the-opera-tv-store/
http://dev.opera.com/articles/view/building-applications-for-the-opera-tv-store/
http://caniuse.com/pointer-events

Mobile Web Applications

74

[15] “Client (HHP) to TV Application Communication”, Retrieved [Online] March

4
th

, 2013, [Address]

http://www.samsungdforum.com/Guide/ref00003/convergence_app_clienttotvappco

mm.html

[16] “Coding Your JavaScript Application”, Retrieved [Online] February 26
th

, 2013,

[Address] http://www.samsungdforum.com/Guide/art00011/index.html

[17] “Common Modules API”, Retrieved [Online] March 5
th

, 2013, [Address]

http://www.samsungdforum.com/Guide/ref00006/index.html

[18] “Comparing Titanium and PhoneGap”, Retrieved [Online] May 3
rd

, 2013,

[Address] http://developer.appcelerator.com/blog/2012/05/comparing-titanium-and-

phonegap.html

[19] “Convergence App”, Retrieved [Online] March 1
st
, 2013, [Address]

http://www.samsungdforum.com/Guide/art00027/index.html

[20] “Cordova Contributors: Who’s who”, Retrieved [Online] May 6
th

, 2013,

[Address] http://wiki.apache.org/cordova/who

[21] “Cordova Tizen”, Retrieved [Online] May 13
th

, 2013, [Address]

https://github.com/apache/cordova-tizen

[22] “Creating a Convergence Application”, Retrieved [Online] March 4
th

, 2013,

[Address] http://www.samsungdforum.com/Guide/tut00024/index.html

[23] “Creating web content for TV”, Retrieved [Online] June 21
st
, 2013, [Address]

http://dev.opera.com/articles/view/creating-web-content-for-tv/

[24] Cromar S. (2010), “Smartphones in the U.S.: Market Analysis”

[25] “Debugger”, Retrieved [Online] March 14
th

, 2013, [Address]

https://developer.mozilla.org/en-US/docs/Tools/Debugger

[26] “Debugging and Testing Applications”, Retrieved [Online] March 8
th

, 2013,

[Address] http://www.samsungdforum.com/Guide/art00012/index.html

[27] “Design considerations for Opera TV Store applications”, Retrieved [Online]

June 21
st
, 2013, [Address]

http://dev.opera.com/articles/view/design-considerations-for-opera-tv-store-

applications/

[28] “Dev Guide”, Retrieved [Online] January 8
th

, 2013, [Address]

https://developer.tizen.org/documentation/dev-guide

[29] “Development Guide”, Retrieved [Online] March 5
th

, 2013, [Address]

http://www.samsungdforum.com/Guide/

[30] “Device Discovery, Authentication, and Pairing”, Retrieved [Online] March 1
st
,

2013, [Address] http://www.samsungdforum.com/Guide/art00030/index.html

http://www.samsungdforum.com/Guide/ref00003/convergence_app_clienttotvappcomm.html
http://www.samsungdforum.com/Guide/ref00003/convergence_app_clienttotvappcomm.html
http://www.samsungdforum.com/Guide/art00011/index.html
http://www.samsungdforum.com/Guide/ref00006/index.html
http://developer.appcelerator.com/blog/2012/05/comparing-titanium-and-phonegap.html
http://developer.appcelerator.com/blog/2012/05/comparing-titanium-and-phonegap.html
http://www.samsungdforum.com/Guide/art00027/index.html
http://wiki.apache.org/cordova/who
https://github.com/apache/cordova-tizen
http://www.samsungdforum.com/Guide/tut00024/index.html
http://dev.opera.com/articles/view/creating-web-content-for-tv/
https://developer.mozilla.org/en-US/docs/Tools/Debugger
http://www.samsungdforum.com/Guide/art00012/index.html
http://dev.opera.com/articles/view/design-considerations-for-opera-tv-store-applications/
http://dev.opera.com/articles/view/design-considerations-for-opera-tv-store-applications/
https://developer.tizen.org/documentation/dev-guide
http://www.samsungdforum.com/Guide/
http://www.samsungdforum.com/Guide/art00030/index.html

Bibliography

 75

[31] “Devices”, Retrieved [Online] January 7
th

, 2013, [Address]

https://www.tizen.org/about/devices

[32] “Early Thoughts on New Operating Systems – Ubuntu, Sailfish (Jolla/MeeGo),

Tizen (Samsung’s update to MeeGo), Firefox; and some updates to classics BB10,

WP8”, Retrieved [Online] February 10
th

, 2013, [Address] http://communities-

dominate.blogs.com/brands/2013/01/early-thoughts-on-new-operating-systems-

ubuntu-sailfish-jollameego-tizen-samsungs-update-to-meego-fi/comments/page/1/

[33] Espial Group (2012), “HTML5 Technologies for the Smart TV Experience”

[34] “Experience the Wonder of Samsung’s New Smart TVs”, Retrieved [Online]

March 14
th

, 2013, [Address]

http://www.samsung.com/us/2012-smart-tv/smart-content.html

[35] “Experimental Firefox OS software for Xperia™ E available for developers

[ROM]”, Retrieved [Online] March 8
th

, 2013, [Address]

http://developer.sonymobile.com/2013/02/27/experimental-firefox-os-software-for-

xperia-e-available-for-developers-rom/

[36] “Facebook Chat API”, Retrieved [Online] July 11
th

, 2013, [Address]

https://developers.facebook.com/docs/chat/

[37] “File Properties”, Retrieved [Online] July 11
th

, 2013, [Address]

http://msdn.microsoft.com/en-us/library/0c6xyb66(v=vs.80).aspx

[38] “Finding a new name that isn’t PhoneGap”, Retrieved [Online] May 6
th

, 2013,

[Address] http://markmail.org/message/vcrw2swiwiwcojsd

[39] “Firefox OS architecture”, Retrieved [Online] March 11
th

, 2013, [Address]

https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS/Platform/Architecture

[40] “Firefox OS Simulator”, Retrieved [Online] March 11
th

, 2013, [Address]

https://marketplace.firefox.com/developers/docs/firefox_os_simulator

[41] “From MeeGo to Tizen: The Making of Another Software Bubble”, Retrieved

[Online] January 29
th

, 2013, [Address]

http://www.visionmobile.com/blog/2011/10/from-meego-to-tizen-the-making-of-

another-software-bubble/

[42] “Functional key handling in Opera TV Store applications”, Retrieved [Online]

June 20
th

, 2013, [Address] http://dev.opera.com/articles/view/functional-key-

handling-in-opera-tv-store-applications/

[43] “Functional Buttons”, Retrieved [Online] June 20
th

, 2013, [Address]

https://publish.tvstore.opera.com/developer/guidelines/functional-keys/

[44] “Getting started with app development”, Retrieved [Online] March 12
th

, 2013,

[Address] https://developer.mozilla.org/en-US/docs/Apps/Getting_Started

https://www.tizen.org/about/devices
http://communities-dominate.blogs.com/brands/2013/01/early-thoughts-on-new-operating-systems-ubuntu-sailfish-jollameego-tizen-samsungs-update-to-meego-fi/comments/page/1/
http://communities-dominate.blogs.com/brands/2013/01/early-thoughts-on-new-operating-systems-ubuntu-sailfish-jollameego-tizen-samsungs-update-to-meego-fi/comments/page/1/
http://communities-dominate.blogs.com/brands/2013/01/early-thoughts-on-new-operating-systems-ubuntu-sailfish-jollameego-tizen-samsungs-update-to-meego-fi/comments/page/1/
http://www.samsung.com/us/2012-smart-tv/smart-content.html
http://developer.sonymobile.com/2013/02/27/experimental-firefox-os-software-for-xperia-e-available-for-developers-rom/
http://developer.sonymobile.com/2013/02/27/experimental-firefox-os-software-for-xperia-e-available-for-developers-rom/
https://developers.facebook.com/docs/chat/
http://msdn.microsoft.com/en-us/library/0c6xyb66(v=vs.80).aspx
http://markmail.org/message/vcrw2swiwiwcojsd
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS/Platform/Architecture
https://marketplace.firefox.com/developers/docs/firefox_os_simulator
http://www.visionmobile.com/blog/2011/10/from-meego-to-tizen-the-making-of-another-software-bubble/
http://www.visionmobile.com/blog/2011/10/from-meego-to-tizen-the-making-of-another-software-bubble/
http://dev.opera.com/articles/view/functional-key-handling-in-opera-tv-store-applications/
http://dev.opera.com/articles/view/functional-key-handling-in-opera-tv-store-applications/
https://publish.tvstore.opera.com/developer/guidelines/functional-keys/
https://developer.mozilla.org/en-US/docs/Apps/Getting_Started

Mobile Web Applications

76

[45] “Getting Started with PhoneGap and PhoneGap Build”, Retrieved [Online]

May 6
th

, 2013, [Address] http://phonegap.com/blog/2013/02/18/getting-started-with-

phonegap-and-phonegap-build/

[46] “Getting Started with Windows Phone 8”, Retrieved [Online] May 14
th

, 2013,

[Address] http://cordova.apache.org/docs/en/2.6.0/guide_getting-started_windows-

phone-8_index.md.html#Getting%20Started%20with%20Windows%20Phone%208

[47] “Hydration”, Retrieved [Online] May 6
th

, 2013, [Address]

https://build.phonegap.com/docs/hydration

[48] IBM Software Group (2012), “Native, web or hybrid mobile-app development”

[49] “Introduction to Firefox OS”, Retrieved [Online] March 11
th

, 2013, [Address]

https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS/Introduction

[50] “Intro to Open Web apps”, Retrieved [Online] March 19
th

, 2013, [Address]

https://marketplace.firefox.com/developers/docs/intro_apps

[51] “Jay Sullivan at the Mozilla MWC Press Conference”, Retrieved [Online] June

5
th

, 2013, [Address] https://air.mozilla.org/jay-sullivan-mwc/

[52] Jewett F. (2011), “Why Smart TV is the Next Big Thing”, Mobile Connect, 2, 3-5

[53] “Making Elements Focusable with Tabindex”, Retrieved [Online] June 20
th

,

2013, [Address]

http://snook.ca/archives/accessibility_and_usability/elements_focusable_with_tabind

ex/

[54] “MeeGo”, Retrieved [Online] January 27
th

, 2013, [Address]

http://en.wikipedia.org/wiki/MeeGo

[55] “Mozilla Announces Global Expansion for Firefox OS”, Retrieved [Online]

March 8
th

, 2013, [Address] http://blog.mozilla.org/press/2013/02/firefox-os-

expansion/

[56] “Mozilla’s Mobile Firefox OS Raises Security Questions”, Retrieved [Online]

June 5
th

, 2013, [Address] http://www.technologyreview.com/news/511706/mozillas-

mobile-firefox-os-raises-security-questions/

[57] “Mozilla VP talks Firefox OS, the threat from Tizen and low-quality HTML5

apps”, Retrieved [Online] June 5
th

, 2013, [Address]

http://thenextweb.com/mobile/2013/02/27/mozilla-vp-talks-firefox-os-the-threat-

from-tizen-and-poor-quality-html5-apps/

[58] “Namespace List”, Retrieved [Online] April 17
th

, 2013, [Address]

https://developer.tizen.org/help/topic/org.tizen.native.apireference/namespaces.html

[59] “New eye candy from Opera-powered Samsung Blu-ray players”, Retrieved

[Online] June 24
th

, 2013, [Address]

http://business.opera.com/press/releases/devices/2013-04-30

http://phonegap.com/blog/2013/02/18/getting-started-with-phonegap-and-phonegap-build/
http://phonegap.com/blog/2013/02/18/getting-started-with-phonegap-and-phonegap-build/
http://cordova.apache.org/docs/en/2.6.0/guide_getting-started_windows-phone-8_index.md.html#Getting%20Started%20with%20Windows%20Phone%208
http://cordova.apache.org/docs/en/2.6.0/guide_getting-started_windows-phone-8_index.md.html#Getting%20Started%20with%20Windows%20Phone%208
https://build.phonegap.com/docs/hydration
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS/Introduction
https://marketplace.firefox.com/developers/docs/intro_apps
https://air.mozilla.org/jay-sullivan-mwc/
http://snook.ca/archives/accessibility_and_usability/elements_focusable_with_tabindex/
http://snook.ca/archives/accessibility_and_usability/elements_focusable_with_tabindex/
http://en.wikipedia.org/wiki/MeeGo
http://blog.mozilla.org/press/2013/02/firefox-os-expansion/
http://blog.mozilla.org/press/2013/02/firefox-os-expansion/
http://www.technologyreview.com/news/511706/mozillas-mobile-firefox-os-raises-security-questions/
http://www.technologyreview.com/news/511706/mozillas-mobile-firefox-os-raises-security-questions/
http://thenextweb.com/mobile/2013/02/27/mozilla-vp-talks-firefox-os-the-threat-from-tizen-and-poor-quality-html5-apps/
http://thenextweb.com/mobile/2013/02/27/mozilla-vp-talks-firefox-os-the-threat-from-tizen-and-poor-quality-html5-apps/
https://developer.tizen.org/help/topic/org.tizen.native.apireference/namespaces.html
http://business.opera.com/press/releases/devices/2013-04-30

Bibliography

 77

[60] Nosrati M., Karimi R. & Hasanvand H. (2012), “Mobile Computing: Principles,

Devices and Operating Systems”, World Applied Programming, 2(7), 399-408

[61] Opera Software, “Opera Devices SDK 3.5 Connected TV within your reach”,

Product Sheet

[62] Opera Software, “Opera TV browser Full internet browsing for TVs”, Product

Sheet

[63] “Opera TV Emulator build and test HTML5 and CE-HTML content for TVs”,

Retrieved [Online] June 24
th

, 2013, [Address]

http://business.opera.com/solutions/tv/emulator

[64] “Opera TV Store: Applications made for TV”, Product Sheet Retrieved [Online]

June 20
th

, 2013, [Address] http://business.opera.com/solutions/tv

[65] “Opera TV Store Application Publishing Guidelines”, Retrieved [Online] June

20
th

, 2013, [Address] https://publish.tvstore.opera.com/guidelines/

[66] “Opera TV Store app templates”, Retrieved [Online] June 21
st
, 2013, [Address]

http://dev.opera.com/articles/view/opera-tv-store-app-templates/

[67] “Opera TV Store at retail devices”, Retrieved [Online] June 21
st
, 2013,

[Address] http://my.opera.com/community/forums/topic.dml?id=1428782

[68] “Packaged apps”, Retrieved [Online] March 12
th

, 2013, [Address]

https://developer.mozilla.org/en-

US/docs/Apps/Packaged_apps#Types_of_packaged_apps

[69] Park J., “Smart TV Technology and Service”

[70] “PhoneGap, Cordova, and what’s in a name?”, Retrieved [Online] May 6
th

,

2013, [Address] http://phonegap.com/2012/03/19/phonegap-cordova-and-

what%E2%80%99s-in-a-name/

[71] “PhoneGap Explained Visually”, Retrieved [Online] May 13
th

, 2013, [Address]

http://phonegap.com/2012/05/02/phonegap-explained-visually/

[72] “PhoneGap Support”, Retrieved [Online] May 6
th

, 2013, [Address]

http://phonegap.com/support/

[73] “Push Messaging”, Retrieved [Online] April 16
th

, 2013, [Address]

https://developer.tizen.org/help/topic/org.tizen.native.appprogramming/html/guide/m

essaging/push_messaging.htm

[74] “Quietly, Opera is working on becoming a Smart TV powerhouse”, Retrieved

[Online] June 21
st
, 2013, [Address] http://gigaom.com/2013/03/27/opera-smart-tv/

[75] “Samsung to Merge Bada with Tizen”, Retrieved [Online] January 30
th

, 2013,

[Address] http://www.sammobile.com/2012/10/09/samsung-to-merge-bada-with-

tizen/

http://business.opera.com/solutions/tv/emulator
http://business.opera.com/solutions/tv
https://publish.tvstore.opera.com/guidelines/
http://dev.opera.com/articles/view/opera-tv-store-app-templates/
http://my.opera.com/community/forums/topic.dml?id=1428782
https://developer.mozilla.org/en-US/docs/Apps/Packaged_apps#Types_of_packaged_apps
https://developer.mozilla.org/en-US/docs/Apps/Packaged_apps#Types_of_packaged_apps
http://phonegap.com/2012/03/19/phonegap-cordova-and-what%E2%80%99s-in-a-name/
http://phonegap.com/2012/03/19/phonegap-cordova-and-what%E2%80%99s-in-a-name/
http://phonegap.com/2012/05/02/phonegap-explained-visually/
http://phonegap.com/support/
https://developer.tizen.org/help/topic/org.tizen.native.appprogramming/html/guide/messaging/push_messaging.htm
https://developer.tizen.org/help/topic/org.tizen.native.appprogramming/html/guide/messaging/push_messaging.htm
http://gigaom.com/2013/03/27/opera-smart-tv/
http://www.sammobile.com/2012/10/09/samsung-to-merge-bada-with-tizen/
http://www.sammobile.com/2012/10/09/samsung-to-merge-bada-with-tizen/

Mobile Web Applications

78

[76] Samsung Smart TV (2011), “Application Development Guide for Samsung

Smart TV”

[77] “Samsung SmartTV SDK 4.0 Overview”, Retrieved [Online] February 26
th

,

2013, [Address] http://www.samsungdforum.com/Guide/d08/index.html

[78] “Samsung unveils Evolution Kit at CES 2013 to complete an evolving Smart

TV”, Retrieved [Online] March 8
th

, 2013, [Address]

http://www.samsung.com/us/aboutsamsung/news/newsIrRead.do?news_ctgry=irnews

release&news_seq=20329

[79] “Setting up to debug on Firefox OS using Firefox developer tools”, Retrieved

[Online] March 14
th

, 2013, [Address] https://developer.mozilla.org/en-

US/docs/Mozilla/Firefox_OS/Debugging/Setting_up

[80] “SDK Release Note”, Retrieved [Online] March 5
th

, 2013, [Address]

http://samsungdforum.com/Devtools/SdkReleaseNote#4b2d3a2e448e2bbe

[81] “Spec & Features”, Retrieved [Online] March 6
th

, 2013, [Address]

http://samsungdforum.com/Devtools/Spec

[82] “Testing your app inside the Opera TV Store”, Retrieved [Online] June 21
st
,

2013, [Address] http://dev.opera.com/articles/view/testing-your-app-inside-the-opera-

tv-store/

[83] “Titanium Documentation”, Retrieved [Online] May 23th, 2013, [Address]

http://docs.appcelerator.com/titanium/latest/

[84] “Titanium Mobile Development Environment”, Retrieved [Online] May 30
th

,

2013, [Address] http://www.appcelerator.com/platform/titanium-platform/

[85] “Titanium Mobile Tizen now available”, Retrieved [Online] May 28
th

, 2013,

[Address] http://developer.appcelerator.com/blog/2013/03/titanium-mobile-tizen-

now-available.html

[86] “Tizen 1.0 Larkspur”, Retrieved [Online] January 28
th

, 2013, [Address]

https://source.tizen.org/release/tizen-1.0-larkspur

[87] “Tizen Architecture Overview”, Retrieved [Online] January 28
th

, 2013,

[Address] https://www.tizen.org/sites/default/files/tizen-architecture-linuxcollab.pdf

[88] “Tizen SDK 2.0 Alpha Release Notes”, Retrieved [Online] January 28
th

, 2013,

[Address] https://developer.tizen.org/downloads/sdk/2.0-alpha-release-notes

[89] Vision Mobile (2006), “Mobile Operating Systems: The New Generation”

[90] Vision Mobile (2011), “Open Governance Index Measuring the True Openness

of Open Source Projects from Android to WebKit”

[91] “WebAPI”, Retrieved [Online] March 18
th

, 2013, [Address]

https://wiki.mozilla.org/WebAPI

http://www.samsungdforum.com/Guide/d08/index.html
http://www.samsung.com/us/aboutsamsung/news/newsIrRead.do?news_ctgry=irnewsrelease&news_seq=20329
http://www.samsung.com/us/aboutsamsung/news/newsIrRead.do?news_ctgry=irnewsrelease&news_seq=20329
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS/Debugging/Setting_up
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS/Debugging/Setting_up
http://samsungdforum.com/Devtools/SdkReleaseNote#4b2d3a2e448e2bbe
http://samsungdforum.com/Devtools/Spec
http://dev.opera.com/articles/view/testing-your-app-inside-the-opera-tv-store/
http://dev.opera.com/articles/view/testing-your-app-inside-the-opera-tv-store/
http://docs.appcelerator.com/titanium/latest/
http://www.appcelerator.com/platform/titanium-platform/
http://developer.appcelerator.com/blog/2013/03/titanium-mobile-tizen-now-available.html
http://developer.appcelerator.com/blog/2013/03/titanium-mobile-tizen-now-available.html
https://source.tizen.org/release/tizen-1.0-larkspur
https://www.tizen.org/sites/default/files/tizen-architecture-linuxcollab.pdf
https://developer.tizen.org/downloads/sdk/2.0-alpha-release-notes
https://wiki.mozilla.org/WebAPI

Bibliography

 79

[92] “Web specifications support in Opera”, Retrieved [Online] June 24
th

, 2013,

[Address] http://www.opera.com/docs/specs/

[93] “Why you should stay away from Appcelerator’s Titanium”, Retrieved [Online]

May 24
th

, 2013, [Address] http://usingimho.wordpress.com/2011/06/14/why-you-

should-stay-away-from-appcelerators-titanium/

http://www.opera.com/docs/specs/
http://usingimho.wordpress.com/2011/06/14/why-you-should-stay-away-from-appcelerators-titanium/
http://usingimho.wordpress.com/2011/06/14/why-you-should-stay-away-from-appcelerators-titanium/

Mobile Web Applications

80

Appendices

 81

8. Appendices

This chapter presents the publicly available appendices of the report.

8.1 Internship Proposal

PROPOSTA DE ESTÁGIO
Ano Lectivo de 2012 / 2013

Mestrado em Informática e Sistemas (Desenvolvimento de Software ou
Tecnologias da Informação e do Conhecimento)

TEMA

Mobile Web Applications

SUMÁRIO
Este estágio tem como objectivo o estudo de várias ferramentas e frameworks
orientadas ao desenvolvimento de aplicações web mobile. Pretende-se que no
final do estágio a Present Technologies passe a ter conhecimento na área do
desenvolvimento e packaging de aplicações web em diferentes plataformas
mobile.

 ÂMBITO

A área mobile web tem vindo a crescer exponencialmente nos últimos anos,
sendo que esta é uma área muito dinâmica onde estão constantemente a surgir
novas plataformas e frameworks de desenvolvimento. Este estágio irá centrar-
se no estudo e avaliação em diferentes áreas:

 Sistemas operativos mobile

 Ferramentas de packaging

 Frameworks para desenvolvimento

 OBJECTIVOS

O presente projecto pretende atingir os seguintes objectivos:

 Estudo do sistema operativo Tizen

 Estudo e avaliação de ferramentas de packaging para web
applications

http://www.deis.isec.pt/curso_mei.aspx

Mobile Web Applications

82

 Estudo e avaliação de mobile web frameworks

 PROGRAMA DE TRABALHOS

O estágio consistirá nas seguintes actividades e respectivas tarefas:

 T1 – Mobile Operating Systems:

 Estudo da plataforma Tizen

 T2 – Web applications packaging tools:

 Estudo e avaliação da ferramenta PhoneGap

 Estudo e avaliação da ferramenta Appcelerator

 Estudo e avaliação da ferramenta Sencha Touch

 Estudo e avaliação da ferramenta Qt

 Estudo e avaliação da ferramenta Rhodes

 Comparação das ferramentas estudadas

 T3 – Mobile Web Frameworks:

 Estudo e avaliação da framework jQuery Mobile

 Estudo e avaliação da framework jQTouch

 Estudo e avaliação da framework Sencha Touch

 Estudo e avaliação da framework Jo

 Estudo e avaliação da framework Yiibu

 Comparação das frameworks estudadas

 CALENDARIZAÇÃO DAS TAREFAS

O plano de escalonamento dos trabalhos é apresentado em seguida:

Tarefas

T1

T2

T3

Metas INI M1 M2 M3

N+4 N+5N N+1 N+2 N+3

Meses

N+6

INI Início dos trabalhos
M1 (INI + 4 Semanas) Tarefa T1 terminada
M2 (INI + 16 Semanas) Tarefa T2 terminada
M3 (INI + 28 Semanas) Tarefa T3 terminada

 RESULTADOS

Os resultados do estágio serão consubstanciados num conjunto de documentos e

deliverables a elaborar pelo estagiário de acordo com o seguinte plano:

Appendices

 83

M1:

R1.1: Protótipo de uma aplicação web para o sistema operativo Tizen.

R1.2: Documento que descreva o sistema operativo Tizen, a sua

arquitectura e a forma de desenvolver aplicações para este.

M2:

R2.1: Packaging de uma aplicação recorrendo a cada uma das

ferramentas estudadas. A aplicação deverá ser testada nos diferentes sistemas

operativos suportados. A aplicação a testar será disponibilizada pela Present

Technologies.

R2.2: Documento com detalhes de cada ferramenta de packaging

estudada e com um comparativo entre as mesmas.

M3:

R3.1: Desenvolvimento de um protótipo recorrendo a cada uma das

frameworks estudadas.

R2.2: Documento com detalhes de cada framework de desenvolvimento

estudada e com um comparativo entre as mesmas.

 LOCAL DE TRABALHO

O estágio decorrerá nas instalações da Present Technologies, em Coimbra
em regime de full-time.

 METODOLOGIA

A metodologia de desenvolvimento de software seguirá o processo de
desenvolvimento interno da Present Technologies, baseado no modelo em
cascata/waterfall.

O acompanhamento do estágio será efectuado através de reunião regulares
entre o orientador e o estagiário.

 ORIENTAÇÃO
ISEC:

Nome (nome@isec.pt)
Categoria

Entidade de Acolhimento:
Aurélio Santos (aurelio.santos@present-technologies.com)
Software Engineer

mailto:nome@isec.pt
mailto:aurelio.santos@present-technologies.com

Mobile Web Applications

84

 CARACTERIZAÇÃO E REMUNERAÇÃO

 Data de início: 02/01/2013

 Data de fim: 31/07/2013

 Horário: Será praticado o horário em vigor na Present Technologies

Remuneração: O estágio será não remunerado

8.2 Tizen

This appendix contains the additional material that was elaborated for the Tizen study.

8.2.1 Tizen Core Components

The description of the Tizen Core subsystem’s components is as follows [86], [87]:

 Application Framework – provides functionality for application management,

including launching other applications using the package name, Uniform

Resource Identifier (URI), or Multipurpose Internet Mail Extensions (MIME)

type. In addition it notifies applications for common events, such as low

memory, low battery, changes in screen orientation and push notifications.

 Base – contains of Linux-based system libraries that provide features for

database support, internationalization, and XML parsing. The Base is defined as

self-sufficient and by using the packages in Base the system is able to boot itself

to console/login.

 Connectivity – provides functionalities for networking and connectivity, such as

3G, Wi-Fi, Bluetooth, HTTP, and NFC. The Connection Manager is based on

ConnMan
38

.

 Graphics and UI – consist of the system graphic and UI stacks, which include

Enlightenment Foundation Library
39

 (EFL), an X11-based window management

system, Input Service Framework (ISF), and OpenGL ES
40

.

38 https://connman.net/
39 http://www.enlightenment.org/?p=about/efl
40 http://www.khronos.org/opengles/

Appendices

 85

 Location – provides Location-Based Services (LBS), which contain information

for position, geocoding, satellite, and GPS status. It is based on GeoClue
41

,

which delivers location information from GPS, Wi-Fi Positioning System

(WPS), Cell ID, and sensors.

 Messaging – supports functionality for sending and receiving SMS, MMS, and

email messages;

 Multimedia – it is based on GStreamer
42

 and provides functionality for playing

and manipulation of audio, video, images, and VoIP. The Audio server

functionality is based on PulseAudio
43

.

 PIM – enables the managements of user data on the device, such as calendar,

contacts, and tasks, and also enables retrieving data about the device context (e.g.

device position).

 Security – it is responsible for the security deployment across the system and

consists of platform security enablers, such as: access control; certificate

management, and secure application distribution. Security is based on Simplified

Mandatory Access Control Kernel
44

 (SMACK).

 System – provides system and device management functionality, including

interfaces for accessing devices, such as: sensors; display; vibrator; monitoring

devices and handling events (e.g. USB, MMC, charger, and ear jack events);

power management.

 Telephony – provides functionality for cellular and VoIP calls, such as:

managing call-related and non-call-related information and services for Universal

Mobile Telecommunications System (UMTS) and Code Division Multiple

Access (CDMA).

 Web – provides a complete implementation of Tizen Web API optimized for

mobile devices. It includes the WebKit rendering engine.

41 http://www.freedesktop.org/wiki/Software/GeoClue/
42 http://gstreamer.freedesktop.org/
43 http://www.freedesktop.org/wiki/Software/PulseAudio/
44 http://schaufler-ca.com/

Mobile Web Applications

86

8.2.2 Tizen Web Device APIs

Table 4 provides the description for the APIs part of the Tizen Web Device API set [28].

Table 4 Tizen Web Device APIs

API Description

Tizen Provides basic definitions that are used in all other Tizen Web

Device APIs, such as generic callback for success and error,

WebAPIError and WebAPIException interfaces, and different

types of filters.

Alarm Provides functionality for setting and unsetting alarms. Each

client application has its own alarm storage, thus it cannot see

an alarm that is set by another application.

Application Provides functionality for launching other applications and thus

they can process a task and return the result to the caller

application.

Bluetooth Provides access to diverse Bluetooth functionalities.

Calendar Provides functionality for creating, deleting, reading and

updating items in specific calendars.

Callhistory Provides access to call history for cellular and VoIP calls.

Contact Provides functionality for creating, deleting, reading and

updating contacts in specific address books.

Content Provides functionality to discover multimedia contents on a

device.

Download Provides functionality for downloading remote objects by HTTP

requests.

Filesystem Provides access to the file system of a device.

Messaging Provides functionality for sending and receiving SMS, MMS,

and Email messages.

NFC Provides access to NFC devices.

Notification Provides functionality to notify the user for events that happen

in the application.

Power Provides functionality for requesting resource states related to

the power management (e.g. display brightness).

System Information Provides information for the hardware of a device, such as

device’s display, storage, network and other capabilities.

Appendices

 87

API Description

System Setting Provides functionality for system settings.

Time Provides information about date, time and time zones.

8.2.3 W3C/HTML5 API

In Table 5 are presented the W3C APIs divided into categories based on their

functionality [28]. Some of the APIs are stable while others are draft specifications and

thus they are subject to change.

Table 5 W3C APIs

Category Specifications

Communication  The WebSocket API

 HTML5 Web Messaging

 XMLHttpRequest Level 2 (Partial)

 HTML5 The session history of browsing contexts

(Partial)

 Server-Sent Events

Device  Touch Events (Partial)

 Device Orientation Event Specification (Partial)

 Battery Status API

 Vibration API

 HTML5 Browser state

 The Screen Orientation API

 The Network Information API

DOM, Forms and

Styles
 HTML5 Forms (Partial)

 Selectors API Level 1

 Selectors API Level 2 (Partial)

 Media Queries (Partial)

 CSS 2D Transforms

 CSS 3D Transforms Module Level 3 (Partial)

 CSS Animations Module Level 3

 CSS Transitions Module Level 3

Mobile Web Applications

88

Category Specifications

 CSS Colors Module Level 3

 CSS Backgrounds and Borders Module Level 3

(Partial)

 CSS Flexible Box Layout Module (Partial)

 CSS Multi-column Layout Module (Partial)

 CSS Text Module Level 3 (Partial)

 CSS Basic User Interface Module Level 3 (CSS3

UI) (Partial)

 CSS Fonts Module Level 3 (Partial)

 Web Open Font Format (WOFF) File Format 1.0

 HTML5

Graphics  HTML5 The canvas element (Partial)

 HTML Canvas 2D Context

 HTML5 SVG

Location  Geolocation API Specification

Media  HTML5 The video element (Partial)

 HTML5 The audio element (Partal)

 getUserMedia (Partial)

 Web Audio API

 HTML Media Capture

Performance and

Optimization
 Web Workers (Partial)

 Page Visibility API

 Timing control for script-based animation

Security  Cross-Origin Resource Sharing

 HTML5 iframe element

Storage  Web Storage (Partial)

 File API

 File API: Directories and System (Partial)

 File API: Writer (Partial)

 HTML5 Application Cache

 Web SQL Database

 Indexed Database API (Partial)

Appendices

 89

Category Specifications

UI  Clipboard API and events

 HTML5 Drag and drop

Widget  Widget Packaging and XML Configuration

 Widget Interface

 XML Digital Signatures for Widgets

 Widget Access Request Policy

8.2.4 Supplementary API

Table 6 presents the non-W3C specifications supported by Tizen.

Table 6 Supplementary specifications description

Specification Description

WebGL (Khronos Spec) Describes an additional rendering context and support

objects for the HTML 5 canvas element.

Typed Arrays (Khronos

Spec)

Provides an API for interoperability with native binary data.

FullScreen API (Mozilla

Spec)

Allows elements to be displayed in full screen mode

programmatically.

viewport MetaTag (Apple

Spec)

Allows the control of the viewport's size and scale.

The supplementary specifications are partially supported in the current release. The list

of the supported functionalities can be seen in [28].

8.2.5 Tizen Native API

A list of all documented Tizen C++ namespaces along with brief descriptions is provided

in Table 7 [58]. More information for each namespace in the list can be found in the

Tizen Native API Reference on [28].

Mobile Web Applications

90

Table 7 Namespace list

Namespace Description

Tizen The root namespace of the Tizen native framework

Tizen::App Contains classes for application development

Tizen::App::Package Contains classes and interfaces for a package

Tizen::Base Contains classes and interfaces for basic features

Tizen::Base::Collection Contains classes and interfaces for various collections

Tizen::Base::Runtime Contains classes for running applications

Tizen::Base::Utility Contains classes for various utilities

Tizen::Content Contains classes and interfaces for content management and

search services

Tizen::Graphics Contains classes for drawing-related functionalities

Tizen::Graphics::Opengl Contains interfaces for OpenGL

Tizen::Io Contains classes and interfaces for performing basic I/O

operations

Tizen::Locales Contains classes that define culture-related information

Tizen::Locations Contains classes and interfaces for location-related

information and services

Tizen::Media Contains classes and interfaces for media processing services

Tizen::Messaging Contains classes and interfaces for messaging services

Tizen::Net Contains classes and interfaces for network account,

connection, and addressing utilities

Tizen::Net::Bluetooth Contains classes and interfaces for Bluetooth services

Tizen::Net::Http Contains classes and interfaces for HTTP 1.1 client

programming

Tizen::Net::Nfc Contains classes and interfaces for NFC services

Tizen::Net::Sockets Contains classes and interfaces for Transmission Control

Protocol (TCP) or User Datagram Protocol (UDP) socket

programming

Tizen::Net::Wifi Contains classes and interfaces for Wi-Fi management and

Wi-Fi Direct functionalities

Tizen::Security Contains classes and interfaces for security services

Tizen::Security::Cert Contains classes and interfaces for managing the X.509

Appendices

 91

Namespace Description

digital certificate

Tizen::Security::Crypto Contains classes and interfaces for the cryptographic

primitives

Tizen::Shell Contains classes for phone shell management

Tizen::Social Contains classes and interfaces for managing the user’s

social information

Tizen::System Contains classes and interfaces for System

Tizen::Telephony Contains classes and interfaces of the Telephony service

Tizen::Text Contains classes that encode and decode characters

Tizen::Ui Contains classes and interfaces that act as the UI foundation

for the applications

Tizen::Ui::Animations Contains classes for animation-related functionalities

Tizen::Ui::Controls Contains classes and interfaces for creating rich user

interface components for the applications

Tizen::Ui::Effects Contains classes and interfaces for effect-related

functionalities

Tizen::Ui::Scenes Contains the classes for the scene management and its

related functions

Tizen::Uix Contains the Ui extension classes and the Tizen interfaces

Tizen::Uix::Sensor Contains Sensor classes and Tizen interfaces

Tizen::Uix::Speech Contains classes for speech-related functions

Tizen::Uix::Vision Contains the classes for face-related functions

Tizen::Web Contains classes to manage the history data

Tizen::Web::Controls Contains classes and interfaces to interact with the browser

engine

Tizen::Web::Json Contains interfaces to manipulate JSON documents

8.2.6 Tizen Web App Configuration File

The Tizen IDE provides an editor for the config.xml file; thus it makes it easier to

preserve the required XML schema. The only mandatory element of the configuration

file is the widget element. All other elements and their respective attributes are optional.

The optional elements that can be modified using the editor are described in Table 8 [28].

Mobile Web Applications

92

Table 8 Configurations of the config.xml file

Type Description

Identifier Identifier for the widget.

Version
Widget version attribute, indicates the current version of the

widget.

Name
Full human-readable name for a widget that is used, for example, in

an application menu or in other contexts.

Content
Custom start file the user agent is expected to use when it

instantiates the widget.

Icon Custom icon for the widget.

Author
People or an organization associated with the creation of the

widget.

E-mail Email address associated with the author.

Web Site

IRI (a URL that contains characters from the Universal Character

Set (UCS)) associated to author (e.g. a homepage, a profile on a

social network, etc.).

License

Software license, which may include: a usage agreement,

redistribution statement, and/or a copyright license terms under

which the content of the widget package is provided.

License URL
Valid IRI or a valid path that points to a representation of a

software and/or content license.

Description Human-readable description of the widget.

Widget UI

Width
Preferred viewport width of the instantiated custom start file.

Widget UI

Height
Preferred viewport height of the instantiated custom start file.

View Modes
Author’s preferred view mode (full screen, floating, windowed,

maximized, and minimized).

The editor also allows the management of some Tizen specific information about the

widget and the source code of the config.xml file, as well as the configuration of the

elements: feature, access, preference and localization. The purpose of these elements is

described below:

 feature – indicates the Tizen APIs that the widget needs to access at runtime;

 access – indicates the permissions that the widget needs to access network

resources. All the URLs that the widget needs to access must be defined and for

Appendices

 93

each URL has to be indicated if the widget is allowed to access the URL sub-

domains;

 preference – indicates the preferences that are associated with the widget the first

time it is initiated;

 localization – defines the localization for elements of the config.xml file.

8.3 Firefox OS

This appendix presents the additional material that was elaborated for the Firefox OS

study.

8.3.1 API Reference

This subsection presents the API support of Firefox OS published on [8] as of March

2013. Some of the Web APIs are still under development thus their current status can be

consulted on [91].

8.3.1.1 Firefox Device APIs

The Firefox OS Device APIs expose access to device’s features. These APIs are

summarized in Table 9.

Table 9 Firefox OS Device APIs

API Description

Alarm Provides access to the alarm settings of the device in order to

schedule a notification or an application to be started.

Audio Policy Introduces the concept of a hierarchy of audio channels which gives

priority to the sounds of the different channels.

Browser Allows the app to implement a browser.

Contacts Gives access to the contacts from the device’s address book and from

the SIM card.

Desktop

Notification

Enables displaying notifications on the screen.

Device Storage Allows manipulating picture, audio and video files stored on the

device or on the SD card.

FM Radio Provides access to the FM radio of the device to turn it on/off and

Mobile Web Applications

94

API Description

change the radio stations.

Geolocation Enables the app to obtain the user’s current location.

Storage Allows utilizing storage without size limitation, for example for

application caching or IndexedDB (an API that enables to store

significant amounts of structured data).

SystemXHR Permits anonymous cross-origin XMLHttpRequest
45

even when

Cross-Origin Resource Sharing (CORS) is not enabled in the target

site.

TCP Socket Supports the creation of TCP sockets and the communication over

them.

8.3.1.2 General Web APIs

The General Web API consists of the standard Web APIs supported by the Firefox

browser. These are presented in Table 10.

Table 10 General Web APIs

API Description

Audio Uses the HTML5 <audio> tag to embed and manipulate audio

content.

Device orientation Detects changes in the device’s current orientation using the

orientation sensors on the device.

DOM events Lists all the events that can be used to interact with DOM objects.

Geolocation Allows the app to request and use the current location of the user.

History Enables the access to the browser’s history.

IndexedDB Provides an interface for storing and retrieving large amounts of

data on the device.

Network requests Uses XMLHttpRequest to send and receive data via HTTP.

Online and offline

events

Enables the app to respond to changes in the network connection.

Screen orientation Detects changes in the screen orientation of the device.

Storage Provides various ways to store small amounts of data on the

45 http://www.w3.org/TR/XMLHttpRequest/

Appendices

 95

API Description

device.

Touch events Provides functionality for supporting touch events.

Video Uses the HTML5 <video> tag to embed and manipulate video

content.

Web workers Allows scripts to be run in background threads.

8.3.1.3 Firefox Marketplace Services

The APIs presented in Table 11 support publishing and managing apps on the Firefox OS

Marketplace.

Table 11 Firefox Marketplace APIs

API Description

Marketplace Makes available all documentation related to the Marketplace.

Payment Allows information about the available pricing tiers to be obtained and

also processing in-app purchases.

Submission Supports the process of publishing an app which includes validation,

creation, update, etc.

8.4 Samsung Smart TV

This appendix presents the additional material that was elaborated for the SSTV study.

8.4.1 Common Module’s Objects

Table 12 [17] presents the objects provided by the Common Modules component.

Table 12 Common Modules’ objects

Object Description

TVKeyValue Defines TV key code.

Widget Provides functions needed for running an application.

Plugin Allows some plugin functions to be used.

CimageViewer Enables JPEG files to be displayed in Samsung DTV (Digital

Mobile Web Applications

96

Object Description

Module Television).

IME (Input Method

Editor) Module

Enables text input in applications via the remote controller.

SSO Module Enables SSO in applications.

Common popup IME Provides functions for the popup IME.

IMECN Module Chinese IME Module

8.4.2 Device APIs

Table 13 presents the APIs in the Device API set along with their description [29].

Table 13 Device APIs

API Description

AppCommon Deals with functions for key registration.

Audio Controls audio related functions.

Common Describes common functions of all plugins.

Download Downloads file asynchronously to the DTV platform using

HTTP or HTTPS protocol.

External Widget

Interface

Provides functions for account management.

Filesystem Controls the file system on the DTV platform.

FrontPanel Displays the Blu-ray disc player.

ImageViewer Displays JPEG image.

IME Enables text input in applications.

Network Controls and gets network relative information.

Nnavi Controls SSTV specific functions.

Player Plugin for multimedia playback.

Screen Deals with 3D effect functions of TV screen.

TaskManager Deals with inter-task action of TV.

Time Deals with time functions of TV.

TV Handles the EPG (Electronic Program Guide) functions of

TV.

Appendices

 97

API Description

TVMW Controls various functionalities on the DTV platform,

including country, language, input source, etc.

Video Controls video related functions.

Window Deals with channel and screen functions of TV.

8.4.3 SSTV API Summary

The APIs supported by the SSTV are summarized in Table 14. More details can be found

on [29].

Table 14 SSTV API reference

API Description

Advertisement

Service

Provides advertisement functionality.

AllShare Provides a set of interfaces that are used for developing

convergence services such as contents sharing, device

control, etc.

AppsFramework Includes the following APIs: Core, Scene Manager, Util,

Service, and UI Components.

Common Modules Provides information about some general purpose objects

that can be used in applications.

Convergence App Provides a REST-based interface to allow devices that

support the HTTP protocol to communicate with a SSTV.

Device Provides access to some middleware DTV features.

File Allows the I/O functionality of build-in flash memory to be

used.

In-Application

Purchase

Enables users to purchase items using their Samsung Apps

accounts.

Interactive Remote Allows a SSTV application to be controlled by using a

remote application launched on a smartphone.

Interactive Mobile

Device

Supports the interaction between a mobile device and the

SSTV.

SEF (Service

Extension

Provides the functionality to call native C++ middleware

from JavaScript. It has the same functions as Device API.

Mobile Web Applications

98

API Description

Framework) Plugin

Web Device Enables the utilization of SSTV middleware functions, such

as access to the file system, smart interactions, audio and

video control, etc. The Web Device API is an alternative to

the Device APIs.

8.4.4 Configuration of SSTV config.xml

Table 15 presents a description and possible values for each element of the config.xml

file [16].

Table 15 Config.xml elements description

Element Description Value

<widget> The parent element for the application. -

<ThumbIcon> An icon image displayed in the Application Manager.

It is used in case of no focus and its size is 106 x 86 pixels.

File path

<BigThumbIcon> An icon image displayed in the Application Manager.

It is used in case the focus is placed on an image and its

size is 115 x 95 pixels.

File path

<ListIcon> An icon image displayed in the Application Manager.

The size is 85 x 70 pixels.

File path

<BigListIcon> An icon image displayed in the Application Manager.

The size is 95 x 78 pixels.

File path

<category> The category of the application. The possible values are:

video; sports; game; lifestyle; information; education.

String

<autoUpdate> Defines whether to synchronize with the hub site. y | n

<apptype> The contents type of the application.

11: HTML + JavaScript + Flash Player Object

12: Adobe SWF (Ver. Flash Lite 3.1)

13: Adobe SWF (Ver. Flash 10.1)

14: Lua Script

Number

<contents> File path and name to the initial execution of contents.

This tag is required only for the following application

File Path

Appendices

 99

Element Description Value

types:

12: Adobe SWF (Ver. Flash Lite 3.1)

13: Adobe SWF (Ver. Flash 10.1)

14: Lua Script

<channelType> Channel-bound Service Type (optional) root | child

<channelRoot> Defines the root-child relation where the root is

application ID (optional, only used when the channel-

bound service type is the child).

When connected to more than one root, the roots are

separated by ‘::’.

Application

ID

<channelName> Channel information to be executed for channel-bound

service (optional, only used when the channel-bound

service type is the root).

Each channel is separated by using ‘::’ (e.g.:

AAA::BBB::CCC).

String

<channelDisplay> Defines whether the installed channel-bound service is

displayed on the first main screen or not.

y | n

<cpname> Defines the application provider. String

<cpauthjs> Defines the name of the JavaScript file, which allows the

account information of application providers to be

confirmed. This file has to be written in a defined format.

String

<login> Defines whether or not a service is available for login. If

‘y’ is selected, ID and password have to be entered in the

Integrated Sign-in site of the Application Manager for

login. Validity verification should be performed in the

JavaScript file defined in the <cpauthjs> element.

y | n

<ver> Defines the application version, which is needed for the

application updates.

x.xxx

<mgrver> Defines the version of the Application Manager, which is

required to run the application.

x.xxx

<fullwidget> Defines whether the application is full-screen or single-

wide. The display type affects the audio policy of the

application when it is run.

y | n

<srcctl> If ‘y’ is selected, the TV source automatically switches

from the current TV channel or external input to the

y | n

Mobile Web Applications

100

Element Description Value

internal media player and goes back when the application

is completed.

<childlock> Defines whether to use the childLock function. This

function allows the user to lock an application.

y | n

<audiomute> Turns on/off the audio. If ‘y’ is selected the TV

broadcasting sound is muted when entering the

application. The ‘y’ value is selected for full screen and

‘n’ for single-wide application.

y | n

<videomute> Turns on /off the video. If ‘y’ is selected, TV broadcasting

is not displayed on the screen when entering the

application.

y | n

<dcont> Sets the “Disable dynamic contrast” function, which

adjusts TV contrast and brighten TV screen ratio by

darkening the dark screen and lightening the light screen.

Selecting ‘y’ turns off the Dynamic contrast, and selecting

‘n’ turns on the Dynamic contrast. For full screen

application ‘y’ should be selected to remove the sparkling.

y | n

<movie> Applications that play video files can cause problems as

stated below:

1. If the video file is played on a device connected to

the HDMI port, such as a DVD player, sounds can

get mixed, when executing an application

converting sources (e.g. YouTube).

2. Sparkling can happen at the entry of the

application, due to the difference of frame rate

between the TV image and video file.

Such problems can be avoided by selecting ‘y’ – the

HDMI device is stopped, or the frame rate is fixed.

y | n

<widgetname> Defines the name of the application. String

<description> Provides a brief description of the application. String

<width>

<height>

The screen area that the application will occupy. It is

recommended to define 960 * 540 pixels – the DTV

specification.

Number

<author> Defines the name of the author. String

<network> This tag is used to check the network while the application

is running. If the value is ‘y’ and the network test result is

y | n

Appendices

 101

Element Description Value

‘fail’, entry for the application can be blocked with a

message that indicates the failure.

If no value is selected, the default is ‘y’.

<hubsite> This tag is used to define if the hub site has been

authorized or not while the application is running. If the

tag value is ‘y’, and the hub site has not been authorized,

entry for the application can be blocked with a message

that indicates the failure.

If no value is selected, the default is ‘n’.

y | n

<pushNotice> Defines if the application provides Push Notification

Service.

If no value is selected, the default is ‘n’.

y | n

<pushControl> This tag is reserved for former Push Notification Service.

If no value is selected, the default is ‘n’.

y | n

<pushUerbinding> Defines if Push Notification Service is provided for a

specific user.

If no value is selected, the default is ‘n’.

y | n

<flashplayer> The ‘y’ value is selected for applications that use

embedded Flash player objects or a stand-alone Flash

player.

y | n

Mobile Web Applications

102

