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Abstract 

This document presents the work that was elaborated at the company Present 

Technologies as part of the academic discipline Internship/Industrial Project for the 

Master’s degree in Informatics and Systems, Software Development branch, at Instituto 

Superior de Engenharia de Coimbra. 

The area of the mobile web applications has grown exponentially over the last few years 

turning it into a very dynamic field where new development platforms and frameworks 

are constantly emerging. Thus, the internship consisted in the study of two new mobile 

operating systems, Tizen and Firefox OS, as well as two frameworks for packaging of 

mobile web applications – Adobe PhoneGap and Appcelerator Titanium. These platforms 

are in the direct interest of Present Technology since it pretends to use them in its future 

projects in general and in the Phune Gaming project in particular. Since Television is one 

of the Present Technologies’ business areas, during the course of the internship it was 

decided to perform additionally a study of two Smart TV platforms, namely Samsung 

Smart TV and Opera TV, which was considered as a valuable knowledge for the 

company. 

For each of the platforms was performed a study about its architecture, supported 

standards and the development tools that are provided, nevertheless the focus was on the 

applications and for this reason a practical case study was conducted. The case studies 

consisted in the creation of a prototype or packaging of an application, for the case of the 

packaging tools, in order to prove the feasibility of the applications for the Present 

Technologies’ needs. 

The outcome of the work performed during the internship is that it raised the awareness 

of Present Technology of the studied platforms, providing it with prototypes and written 

documentation for the platforms’ successful usage in future projects. 

Keywords (Subject): Mobile Web Applications, Mobile Operating 

Systems, Packaging Tools, Smart TV 

Keywords (Technology):  Tizen, Firefox OS, PhoneGap, Apache Cordova, 

Titanium, Samsung Smart TV, Opera TV 
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Resumo 

Este documento apresenta o trabalho que foi elaborado na empresa Present Technologies 

no âmbito da disciplina Estágio/Projecto Industrial do Mestrado em Informática e 

Sistemas, ramo de Desenvolvimento de Software, do Instituto Superior de Engenharia de 

Coimbra. 

A área das aplicações web mobile tem crescido exponencialmente nos últimos anos, 

transformando-a numa área muito dinâmica onde novas plataformas e frameworks de 

desenvolvimento surgem constantemente. Assim, o estágio consistiu no estudo de dois 

novos sistemas operativos móveis, Tizen e Firefox OS, bem como duas ferramentas de 

packaging de aplicações web mobile – Adobe PhoneGap e Appcelerator Titanium. Estas 

plataformas são do interesse direto da Present Technologies, uma vez que esta pretende 

usá-los nos seus projetos futuros, em geral, e no projeto Phune Gaming em particular. 

Visto que a Televisão é uma das áreas de negócios da Present Technologies, no decorrer 

do estágio, decidiu-se realizar também um estudo sobre duas plataformas de Smart TV, 

nomeadamente Samsung Smart TV e Opera TV, que foi considerado como um 

conhecimento valioso para a empresa. 

Para cada uma das plataformas estudadas foi realizado um estudo da sua arquitetura, 

standards suportados e as ferramentas de desenvolvimento que são fornecidas, no 

entanto, o foco era nas aplicações e por este motivo foi realizado um caso de estudo. Os 

casos de estudo consistiram na criação de um protótipo ou packaging de uma aplicação, 

para o caso das ferramentas de packaging, a fim de comprovar a viabilidade das 

aplicações para as necessidades da Present Technologies. 

O resultado do trabalho realizado durante o estágio é que ele aumentou o conhecimento 

da Present Technologies sobre as plataformas estudadas, fornecendo-lhe com protótipos e 

documentação escrita para o uso bem sucedido das plataformas em projetos futuros. 

Palavras Chave (Tema): Aplicações Web Mobile, Sistemas Operativos 

Móveis, Ferramentas de Packaging, Smart TV 

Palavras Chave (Tecnologia):  Tizen, Firefox OS, PhoneGap, Apache Cordova, 

Titanium, Samsung Smart TV, Opera TV 
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Glossary 

API Stands for “Application Programming Interface”. It represents a 

set of functions and protocols, which define how software 

components can interact. 

Client application Applications that communicate with another application in a 

central point called the server application, in order to use its 

services. 

Cloud An Internet-based computing architecture, which provides remote 

data storage and other computing services and resources. 

Device API An API which allows web applications to interact with the device 

hardware. 

Framework A set of software libraries and additional applications that can be 

used in applications. 

Platform Can have multiple meanings. In this report it is primary used to 

represent an abstract layer on which a given application runs, yet 

sometimes is used interchangeably with framework. 

Set-top box An electronic device, which receives digital signals and decodes 

them in order to be viewed on a television (TV) set. The signals 

can be from the TV broadcast or Internet data. 

Smart TV A TV technology, which besides the programming from the TV 

broadcast, provides Internet access and can run applications. 

Hence, it turns the TV devices into more interactive devices for the 

users.  

Smartphone A cellular phone, which besides the phone calls and text 

messaging capabilities, has Internet access and can run mobile 

applications. Thus, it can be considered a mobile personal 

computer. 

Tablet A mobile device that has Internet access and can run mobile 

applications. Its main input is from a touchscreen. 

W3C widget 

package 

A package, which contains all necessary files of a web application, 

therefore it is a complete standalone web application that does not 

depend on external resources. 
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1. Introduction 

This chapter presents the description of the internship exposing its initial proposal, 

subsequent changes, objectives and motivation. Also presented is the structure of the 

report. 

1.1 Internship Description 

The internship was performed within the scope of the academic discipline Internship/ 

Industrial Project for the Master’s degree in Informatics and Systems, Software 

Development branch, at Instituto Superior de Engenharia de Coimbra under the 

supervision of Professor Viriato Marques. The studies and case studies were conducted 

on the premises of the company Present Technologies (PTECH) in Coimbra under the 

supervision of Software Engineer Aurélio Santos. 

The internship began on January 2
nd

, 2013. It was on a full-time basis for the period of 

seven months and thus it came to an end on July 31
st
, 2013. The monitoring of the 

internship was carried out through regular meetings and weekly progress reports. 

The work performed during the internship consisted in studies of platforms for mobile 

web applications development, thus claiming at the end of the internship PTECH to have 

better understanding and knowledge of the studied platforms. Nevertheless, due to the 

dynamic changes in the mobile applications area and the PTECH’s business strategy and 

philosophy to work with emergent technologies, there were several changes to the initial 

proposal for the internship. The initial proposal and subsequent changes are discussed in 

the following subsections. 

1.1.1 Initial Proposal 

The initial proposal provided in Appendix 8.1 consisted of the fulfillment of three main 

tasks as follows: 

 T1 – Mobile Operating Systems: This task aimed at performing a study of a 

new mobile operating system (OS) called Tizen. The deliverables at the end of 

the task included a prototype for a Tizen web application and a document that 

describes Tizen, its architecture and application development. 
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 T2 – Web Applications Packaging Tools: This task consisted of study, 

evaluation and comparison of five tools for web applications packaging, namely 

PhoneGap, Appcelerator Titanium, Sencha Touch, Qt and Rhodes. These tools 

support various mobile OS’s, therefore to fulfill T2 an existing application had to 

be packaged by using each one of the five tools, in order to test its support for the 

respective mobile OS. The task required elaboration of a document describing 

the details of each tool along with a comparison between all of them. 

 T3 – Mobile Web Frameworks: T3 involved the study, evaluation and 

comparison of five frameworks for mobile application development, as follows: 

jQuery Mobile, jQTouch, Sencha Touch, Jo and Yiibu. The requirements for this 

task included development of prototypes using each one of the frameworks and a 

document with the frameworks’ details and comparison between them. 

 

1.1.2 Changes to the Initial Proposal 

PTECH intends to start developing Tizen applications using functionality such as push 

notifications and the Facebook Chat service; however, due to some limitations explained 

in detail in Appendix 9.1.2, this functionality could be implemented only using native 

code. Therefore, for T1 besides the prototype for Tizen web application, two more 

prototypes for Tizen native applications had to be created as prove of concept, in order to 

demonstrate the feasibility of these applications. Additionally, for this task it was defined 

to conduct a study of another emergent mobile OS – Firefox OS. The Firefox OS 

applications are completely web and thus this new platform could be of interest to the 

company. To determine this it was decided to develop a prototype for Firefox OS 

application and elaborate a document describing the details of the Firefox OS 

architecture and application development. Nevertheless, for this task the Tizen study 

remained as major focus. 

Taking into consideration the company’s needs and the scope of the internship, PTECH 

decided to exclude Sencha Touch, Qt and Rhodes from T2. The reason for this decision 

was based on an evaluation research which concluded that Sencha Touch is more limited 

than PhoneGap in terms of supported platforms (supports only Android and iOS) and 

device functionality. Qt, on the other hand, seems to be an established framework for 

developing applications written in C++, yet its support for web applications is recent. 
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The Qt’s support for mobile devices that PTECH is interested in will be available in a 

later version, thus it was not possible to analyze them during this internship. Finally, 

Rhodes provides an extensive set of device functionality along with good support for 

mobile OS’s; however, it has dependencies on Ruby, which is not used in the company. 

This is why it was decided to focus only on the studies of PhoneGap and Titanium. 

Due to the natural evolution of the PTECH’s objectives and needs, it determined instead 

of performing the study of the mobile web frameworks from T3, to conduct studies of 

two Smart TV platforms, namely Samsung Smart TV (SSTV) and Opera TV. The reason 

for this decision was based on the fact that the mobile web frameworks from T3 became 

less relevant to PTECH compared to the area of Smart TV, where the company wants to 

concentrate. There are still many doubts if any of these mobile web frameworks will be 

of some use to the company, since the design of the PTECH’s applications is always 

developed by the design team. However, such frameworks make it difficult to apply 

different themes. Instead, they are good for creating applications using patterns, yet 

PTECH rarely develops this kind of applications. Hence, the focus of this task was on 

SSTV and its study included description of the architecture and application development 

and creation of two prototypes. The study of Opera TV required elaboration of a 

document containing introduction to the Opera TV platform and details about the Opera 

TV Store and Opera TV Store applications. The practical part consisted of adapting an 

existing application to the platform. 

1.2 Objectives and Motivation 

After the changes the internship had the following objectives: 

 Study of two new mobile OS’s – Tizen and Firefox OS; 

 Study and comparison of two web applications packaging tools – PhoneGap and 

Appcelerator Titanium; 

 Study of two Smart TV platforms – SSTV and Opera TV. 

The motivation behind these objectives was the PTECH’s business strategy and need to 

acquire knowledge of the studied platforms so they can be used in its projects. To further 

understand the need of conducting the studies, following is a brief description of the 

company. 
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PTECH is a Portuguese IT company founded in 2000. Its mission as stated on the 

company’s web site
1
 is “research and development of innovative services and 

applications for the worldwide market, using emergent and state-of-the-art 

technologies”. PTECH covers four key business areas as follows: Mobile Solutions; 

Internet Services and Applications; Enterprise Applications and Television. Regarding 

the Mobile Solutions area, the company is already competent in many mobile platforms, 

such as Android, iOS, Symbian, Windows Phone to name a few, and is willing to spread 

its knowledge with new emergent platforms and frameworks. In the foreseeable future 

the company’s strategy is to focus on the Smart TV area. 

Currently, PTECH is developing a multiplayer gaming platform called Phune Gaming 

that allows casual games to be played online against real users. Phune Gaming is 

intended to be used on various device categories including mobile devices, desktop and 

Smart TV. At this moment the platform is targeted at Android and iOS; however, it is 

contemplated to support more platforms. Therefore, the studies of the various platforms 

during the internship allowed PTECH to gain more knowledge supported with practical 

experience and documentation, thus it can use them in its projects and especially in 

Phune Gaming. 

1.3 Report Structure 

The report is organized in the following order: 

 Chapter 1, Introduction, describes the internship, its initial proposal and changes 

and, in addition, the objectives it aims to achieve and the motivation behind 

them. 

 Chapter 2, Background, presents brief background information about the Mobile 

and Smart TV areas in order to introduce the reader to the technologies that are 

discussed in the following chapters. 

 Chapter 3, Mobile Operating Systems, reports the studies of Tizen and Firefox 

OS, including their overviews, architectures, supported APIs and the tools that 

are available for the application development. Also described are the applications 

that each platform supports. The chapter additionally provides an introduction to 

                                                 

1 http://www.present-technologies.com/profile.jsp 
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the case studies that were conducted for the two mobile OS’s and the conclusions 

of the studies. 

 Chapter 4, Web Applications Packaging Tools, presents the details of the two 

web applications packaging tools – PhoneGap and Titanium. The PhoneGap 

study includes: the PhoneGap overview and history, its comparison with Apache 

Cordova, the additional services provided by PhoneGap and the description of 

the PhoneGap case study. The Titanium study, by contrast, presents the Titanium 

architecture, supported application types and their specific features and 

introduction to the Titanium case study. The chapter further contains a 

comparison of the APIs of the two packaging tools, and the conclusions section 

draws the analogy between PhoneGap and Titanium. 

 Chapter 5, Smart TV, reports the studies that were performed for SSTV and 

Opera TV. For SSTV are presented the platform’s architecture, supported APIs 

and the contents of the latest Software Development Kit (SDK). Also described 

are the SSTV applications, their possible display types and contents, and 

information about the application testing and publishing. The SSTV study 

concludes with a description of the SSTV case studies and final conclusions. 

Regarding Opera TV its section introduces the overview, architecture, supported 

web standards and available tools. Furthermore, the Opera TV study presents the 

Opera TV Store, its architecture and applications. Finally are the description of 

the Opera TV case studies and the conclusions of the study. 

 Chapter 6, Conclusions, summarizes the work that was performed during the 

internship exposing its achievements, limitations and difficulties. The chapter 

concludes with an outline for the future work. 

 Chapter 7, Bibliography, makes available the bibliography and references that 

were used during the elaboration of the report. 

 Chapter 8, Appendices, presents the report’s publicly available appendices. 

 Chapter 9, Confidential Appendices, contains the confidential appendices. 
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2. Background 

This chapter presents some background information in order to introduce the reader to 

the technologies that were employed during the internship. For the sake of good 

organization and readability the chapter is divided in two sections – Mobile and 

Television. Nevertheless, it should be noted that the applications that were used in the 

Smart TV case studies are mobile web applications that were repurposed to be displayed 

on a TV screen and controlled by the TV controller as its main input interface. 

2.1 Mobile 

Over the last two decades mobile devices have undergone significant changes in their 

sizes and available functionality. Thus, the today’s smartphones are devices that combine 

the functionality of yesterday’s mobile phones and personal digital assistants (PDA). 

This gives the users opportunity to use the mobile phone’s voice calling and text 

messaging and beyond this to be able to manage their personal information, like 

contacts, notes, and calendar and at the same time have Internet access, features typical 

for PDAs. Some of the functions that a smartphone offers are: media players, web 

browser, digital camera, GPS navigation, high-resolution touch screen, sensors and many 

others. 

A mobile device is operated by a mobile OS, which typically consist of five functional 

layers that from bottom to top are described as follows [89]: 

 Kernel – the lowest layer is composed of hardware drivers, file system, memory 

and process management; 

 Middleware – this layer includes libraries for device management, 

communication and messaging engines, multimedia codecs, web page rendering 

engines, security subsystems, among others; 

 Application execution environment – the layer consists of various components  

for application management and APIs for implementing device functionality in 

applications; 

 User Interface (UI) framework – represents a set of Graphical User Interface 

(GUI) components that are specific to the mobile OS, such as buttons, input 

fields, tab bars, dialog boxes, menus, and many more; 
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 Application suite – makes available a set of built-in applications, for example 

contacts, photo gallery, calendar, browser and messages. 

Alongside the application suite other applications (sometimes referred in the texts as 

apps) developed by third party developers can be installed. Thus, the mobile OS provides 

these applications with access to the device resources and user data, such as sensors, 

camera, battery, geo location, contacts, among others. 

Nowadays, there are numerous mobile OS’s in the market. Table 1 summarizes the 

mobile OS’s that were used in the case studies conducted during the internship. Also 

presented in the table are the main characteristics of each OS. 

Table 1 Mobile OS’s overview 

OS 
Principal 

Developer 

Source 

model 

Programming 

Language 
Tools 

Package 

format 
App Store 

Android
2
 Google Open 

source 

Java, C++ Android 

SDK, NDK 

apk Google Play 

BlackBerry
3
 BlackBerry Closed and 

proprietary 

Java, Web BlackBerry, 

NDK 

BlackBerry 

WebWorks 

cod, bar BlackBerry 

App World 

iOS
4
 Apple Inc. Closed and 

proprietary 

Objective C iOS SDK 

and Xcode 

ipa App Store 

Firefox OS
5
 Mozilla Open 

source 

Web Simulator, 

Remote 

Debugger 

zip Firefox 

Marketplace, 

and others 

Tizen
6
 Samsung, 

Intel 

Open with 

proprietary 

components 

Web, C++ Tizen SDK wgt, tpk Tizen Store 

Windows 

Phone
7
 

Microsoft Closed and 

proprietary 

C# Windows 

Phone SDK 

xap Windows 

Phone Store 

 

As can be seen in the table the different mobile OS’s use specific programming 

languages for the app development. Thus, the apps that are developed for a particular OS 

                                                 

2 http://www.android.com/ 
3 http://us.blackberry.com/ 
4 http://www.apple.com/ios/ 
5 http://www.mozilla.org/en-US/firefox/os/  
6 https://www.tizen.org/ 
7 http://www.windowsphone.com/en-us 
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are known as native apps. They are normally installed as a binary executable file 

(consider Java, Objective C, C++ and C#) and when they are launched they interact 

directly with the OS, therefore they have full direct access to the mobile OS APIs. 

Another type of mobile apps exists, whose apps are created with web technologies (e.g. 

HTML, CSS, and JavaScript) and hosted on a remote server; thus they are called web 

apps. The web apps run within the browser of the device and therefore they have access 

only to a limited set of device or OS-specific APIs, which are exposed by the browser. 

The benefits of the mobile web applications are that they do not require downloading 

from the app store and installing the app and they provide instant application updates for 

all users; yet they need a constant network connection. 

There is third type of applications called hybrid apps, which are a combination of native 

and web parts. The application logic is usually written entirely with web technologies 

and the native code is used to create a container which is a web browser view that 

displays the contents of the web app. A web browser view, referred to as webview in the 

text, is a native UI component that renders web pages similarly to a regular web browser; 

however, unlike the regular browser it does not have navigation controls. The webview 

has a full access to the OS’s APIs and thus it represents a bridge between the device 

API’s and the web app. Developers can develop this bridge themselves or instead can 

use a framework, referred to as packaging tool in this report, such as PhoneGap or 

Titanium. 

The difference between these three types of mobile applications in terms of interaction 

with the device APIs is illustrated in Figure 1
8
. 

                                                 

8 Image courtesy of [48] 
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Figure 1 Mobile app types 

In order to prepare an application for deployment and distribution its contents have to be 

packaged in an archive file with specific file format. The packaging of a web application 

usually includes only the creation of an archive file with all source files and other 

resources, for example images, audio and configuration files. The native applications 

packaging, by contrast, implies the compilation and sometimes linking of the source 

code in order to generate a binary executable file. 

After the apps are packaged they can be distributed on the mobile OS respective online 

app store. 

2.2 Television 

Smart TV, also known as connected TV, is a technology that emerged in 2010 and 

provides the following key features: full Internet access, ability to install applications 

and ability to connect with other devices on the network such as desktop computers, 

smartphones and tablets. The Internet connection allows users to surf the Web right from 

their connected TV sets. Besides the Internet navigation, the application support brings 

the functionality a smartphone user is already familiar with to the TV screen. However, 

since the TV is usually placed in the living room it is more social device than a 

smartphone, and this should be considered in applications when sensitive information 

has to be entered. 

With Smart TV the TV no longer provides only passive programming. It allows 

interaction and thus the viewer is much more engaged with the content. Some modern 
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Smart TV sets have integrated camera, microphone, voice and motion sensors, therefore 

users can have video calls or control the device via voice and motion commands. 

A Smart TV normally has available an SDK, tools and an app store and thus provides a 

platform for application developers to develop and distribute their apps. The apps are 

web applications written in HTML5 and related web technologies. The HTML5 standard 

enables some benefits for the TV consumers such as [33]: 

 Web contents can be stored locally which enables apps to remain functional even 

without Internet connection; 

 The WebSockets technology provides a full communication channel between the 

Smart TV device and the server. This is beneficial for real-time delivery, such as 

weather updates and live sports results; 

 The HTML5 audio and video tags do not require plugins to launch audio and 

video and this allows to provide almost identical experience on mobile and TV 

environment; 

 The WebGL standard allows creation of 3D graphics for more compelling 

contents. 

The Smart TV technology can be incorporated in TV sets, set-top boxes (STB), Blu-ray 

players, game consoles and other players. Some Original Equipment Manufacturers 

(OEMs) that unveiled their Smart TV devices are: Samsung, LG, Sony, Toshiba, Philips, 

Panasonic and Vizio. Nevertheless, unlike the Mobile area in the Smart TV area no clear 

leaders exist thus far. 
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3. Mobile Operating Systems 

This chapter presents the studies of the mobile OS’s Tizen and Firefox OS. Since 

PTECH already intends to develop applications for Tizen, the focus of the chapter is on 

Tizen while the Firefox OS study aimed at familiarizing the company with the new OS. 

 

3.1 Tizen 

This section exposes the Tizen OS. It should be noted that Tizen is a new platform that is 

still under development and as result it undergoes various changes and updates. The 

study was performed in January 2013; therefore the information in the text presents the 

state of the platform at the time of the study. However, due to the emerging needs of  

PTECH, later on the study was reestablished and the Sections: 3.1.2.1 Architecture; 

3.1.2.2 API, 3.1.3.3 Native Applications, 3.1.4 Tizen Case Study and 3.1.5 Tizen 

Conclusions were updated corresponding to the changes in the Tizen SDK as of April 

2013. 

 

3.1.1 Tizen Overview 

Tizen (pronounced Tie Zen) is a new open source standards-based mobile OS that 

supports multiple device categories and provides an environment for developing 

applications for end users. The Tizen Project is hosted by the Linux Foundation
9
 and its 

engineering governance is provided by the Technical Steering Group composed of Intel 

and Samsung. The focus of the Technical Steering Group is on the platform development 

and delivery, while the Tizen Association
10

 is responsible for the Tizen’s in-market 

support and industry presence. The current members of the Tizen Association are: 

Huawei, Intel, NEC Casio, Fujitsu, NTT DOCOMO, Orange, Panasonic, Samsung, SK 

Telecom, Sprint, Vodafone and KT. 

 

                                                 

9 http://www.linuxfoundation.org/ 
10 http://www.tizenassociation.org/ 
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3.1.1.1 Tizen Objectives 

The main objectives of Tizen are as follows: 

 Tizen is intended to serve the industry as a strong independent device platform 

that is supported by a collaborative governance structure. The Tizen Project is 

hosted by the Linux Foundation which has a great influence and ability to attract 

companies to the project. 

 The Tizen Project aims to build a completely open OS, from the core, up through 

the core applications and user interfaces. Currently, there are several other OS’s 

that claim to be open; however they are normally controlled by a single entity 

and some of their components are proprietary. 

 Tizen is designed to support a variety of devices such as smartphones, tablets, 

notebooks, Smart TVs, and In-Vehicle Infotainment (IVI) systems. 

 The Tizen development will be completely transparent and rely on application 

developers’ feedback in order to improve the platform. 

 

3.1.1.2 Tizen History 

In February 2010 during the Mobile World Congress, Intel and Nokia announced 

MeeGo, a Linux-based free OS that was designed to target a variety of devices such as 

smartphones, notebooks, Smart TVs, and IVI systems. The aim of MeeGo was to merge 

the efforts of Intel and Nokia on their former projects Moblin and Maemo, respectively, 

into one new common project [54]. Subsequently, Nokia announced their strategy to use 

Windows Phone for future smartphones and abandoned MeeGo; however they continued 

developing MeeGo/Harmattan for the smartphone device Nokia N9. Intel collaborated 

with Samsung on a new mobile OS, Tizen, which would be based on Samsung Linux 

Platform (SLP), a platform that Samsung previously provided to the LiMo Foundation 

[41]. In September 2011, Intel announced that MeeGo would be transitioning to Tizen in 

2012 and in January 2012 the first Tizen source code and SDK preview were made 

available. 
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In Figure 2
11

 is presented the family tree of Tizen. It illustrates the Tizen’s parentage 

from components of MeeGo, SLP and the Samsung’s Bada platform. Mer
12

 is an open, 

mobile-oriented software distribution that is aimed at device manufacturers. It is based 

on the work from MeeGo and plans to share effort with the Tizen project. 

 

Figure 2 Tizen family tree 

 

3.1.1.3 Tizen Versions 

Tizen 1.0 Larkspur was released on April 30
th

, 2012. The platform consists of the 

following components [86]: Application Framework, Graphics and UI, Multimedia, 

Web, Messaging, Location, Security, System, Base, Connectivity, Telephony, Personal 

Information Management (PIM), Kernel. 

Tizen 2.0 Alpha SDK and source code were released on September 25
th

, 2012. This 

release has many improvements and additional features and tools such as: 

 Enhanced Web UI framework that provides new functionalities from HTML5 

and W3C APIs; 

 New Tizen Device APIs – Download, Notification, and Power; 

 Changes to the Web UI Framework related to the subservices and JavaScript 

algorithm, page specification and widgets; 

 The Tizen Device APIs – System and Contact, were altered; 

                                                 

11 Image courtesy of [5] 
12 http://merproject.org/ 
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 Many bugs in the Web UI framework were fixed; 

 New features were added to the Core system components – Application, System 

and Telephony; 

 Additional functionalities to the tools – Emulator, Emulator Manager, Web 

Simulator, UI Builder, JavaScript editor, etc.; 

 New platform SDK that helps platform development based on Open Build 

Service (OBS). 

The complete list of the new and changed features in this release, as well as the fixed 

bugs and known issues can be consulted in [88]. 

 

3.1.1.4 Devices 

Tizen 2.0 Alpha is targeted towards smartphones; however the platform is designed to 

provide support for multiple device categories, as follows [31]: 

 Smartphones – the smartphone technologies of Tizen include a flexible UI, 3D 

window effects, advanced multimedia, location-based service frameworks, 

sensor frameworks, multi-tasking and multi-touch capabilities and support for 

scalable screen resolution. 

 Tablets - for tablets is provided a touch-optimized UI with a suite of built-in 

applications for Web browsing, personal information management (PIM), and 

media consumption. 

 Netbooks – a rich user experience and improved performance will be available 

for netbooks. 

 IVI devices – IVI devices provide navigation and entertainment services in 

vehicles, such as cars, buses, airplanes, etc. Tizen has an open source project 

called Tizen IVI
13

, which will enable the development of applications for IVI 

devices. Thus, users can have Internet and multimedia experience while 

travelling. 

                                                 

13 https://wiki.tizen.org/wiki/IVI 
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 Smart TVs – for smart TVs, Tizen provides a complete open standards-based 

Linux stack, optimized for living room devices, such as TVs, STBs and Blu-ray 

players. 

 

3.1.2 Tizen Architecture, API and SDK 

In this subsection are presented the Tizen architecture, available APIs and contents of the 

Tizen SDK. 

 

3.1.2.1 Architecture 

As shown in Figure 3
14

, the Tizen architecture is composed of four subsystems that are: 

Web framework, Native framework, Core and Kernel. 

 

Figure 3 Tizen architecture 

 Web framework 

The Web framework enables the development of web apps. It supports many HTML5 

functionalities, for example: video, audio, 2D canvas, WebGL, CSS3, geolocation, 

vibration, WebSocket, and Web worker; and in addition it makes available various 

device APIs for device functionality such as alarm, messaging, Bluetooth and Near Field 

Communication (NFC). 

                                                 

14 Image courtesy of [28] 
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 Native framework 

The native framework allows the creation of native applications. It provides numerous 

services divided into the namespaces presented in Section 3.1.2.2.5. This framework 

additionally supports some standard open source libraries, such as: glibc, libxml2, 

libstdc++, OpenAL, OpenGL ES and OpenMP. 

 Core 

The Core subsystem consists of open source libraries and a set of APIs that are used by 

the Web and Native frameworks. The Core comprises the following components: 

Application Framework; Base; Connectivity; Graphics and UI; Location; Messaging; 

Multimedia; PIM, Security; System, Telephony; Web. Their details are presented in 

Appendix 8.2.1. 

 Kernel 

The kernel subsystem consists of Linux kernel and device drivers. 

 

3.1.2.2 API 

For the development of web and native applications Tizen provides the following API 

references: 

 Web framework: 

o Tizen Web Device API; 

o Web UI Framework; 

o W3C/HTML5 API; 

o Supplementary API; 

 Native framework: 

o Tizen Native API. 

These API references are described in the following subsections. 

 

3.1.2.2.1 Tizen Web Device API 

The set of Tizen Web Device APIs enables web applications to access device 

functionality such as: alarm; application launching; Bluetooth; calendar; call history; 
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contacts; downloads; file system; messaging; multimedia contents; NFC; notification; 

power; system information and settings. The description of the APIs in the set is 

provided in Appendix 8.2.2. 

 

3.1.2.2.2 Web UI Framework  

The Web UI framework provides services for creating GUI widgets, events, and different 

animations and effects. The services are based on a template making use of the 

JavaScript projects jQuery, jQuery Mobile and Globalization and work on a WebKit-

based web browser. Thus, the Web UI framework provides the following: 

 Web widgets – include Tizen  and jQuery Mobile widgets; 

 Web themes – make available CSS themes and resources; 

 Loader – supports the loading of configurations, for instance Web theme and 

internationalization set-up. 

 

3.1.2.2.3 W3C/HTML5 API 

Tizen supports APIs that are part of several W3C specifications, for functionality such 

as: Communication, Device, DOM, Forms and Styles, Graphics, Location, Media, 

Performance and Optimization, Security, Storage, UI and Widgets. A table with the 

Tizen support for W3C APIs for these functionalities is presented in Appendix 8.2.3.  

 

3.1.2.2.4 Supplementary API 

Tizen supports several non-W3C specifications that are widely used, such as WebGL, 

Typed Arrays, FullScreen API and viewport Mega Tag. The description of these 

specifications can be found in Appendix 8.2.4. 

 

3.1.2.2.5 Tizen Native API 

For the development of native apps, Tizen provides the following C++ namespaces: 

App; Base; Graphics; Io; Locations; Messaging; Net; Security; Social; Ui and Web. 

Their detailed list along with description is presented in Appendix 8.2.5.  
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3.1.2.3 SDK 

The Tizen SDK is a comprehensive set of tools for developing Tizen applications. It 

includes platform binaries and libraries, header files, Integrated Development 

Environment (IDE), tools and sample applications. The main contents of the SDK 

folders are presented in Table 2. 

Table 2 Tizen SDK folder contents 

Folder Contents 

documents General Tizen documentation 

ide Tizen IDE 

tools Tools available through the IDE 

platforms Tizen libraries, samples, and public header files 

Install-manager Tizen SDK Install Manager 

license Tizen SDK license 

 

3.1.2.3.1 Tizen IDE 

The Tizen IDE is based on the JavaScript Development Tools (JSDT) and Eclipse 

C/C++ Development Tools (CDT) [28]. The SDK provides all the necessary plugins for 

the Tizen IDE. As can be seen in Figure 4, the IDE has different wizards and tools that 

are useful for application creation and debugging. 
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Figure 4 Tizen IDE 

 

3.1.2.3.2 Tools 

The Tizen SDK provides several standalone tools that are useful for testing and 

debugging purposes. These tools are presented in the following subsections. 

3.1.2.3.2.1 Web Simulator 

The Tizen Web Simulator is a light-weight tool for testing mobile web applications. It is 

based on the Ripple-UI Framework (a browser-like component that provides emulation 

services) and runs on Google Chrome. The Web Simulator has the following features: 

 Supports running and debugging HTML5 applications; 

 Uses JavaScript back-end to simulate Tizen Web APIs; 

 Includes various configuration panels for simulating different events, such as 

device events, phone calls and messages. 

A screen shot of the Simulator is shown in Figure 5. 
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Figure 5 Tizen Web Simulator 

 

In the current version of the Simulator, the supported Tizen Web Device APIs are: Tizen, 

Alarm, Application, Calendar, Call, Contact, Geocoder, Location-Based Services (LBS), 

Media Content, Messaging, NFC, System Information, Time, and Power [28]. 

3.1.2.3.2.2 Emulator 

The Emulator is a virtual mobile device that can be used to test Tizen applications before 

deploying them to an actual device. The Emulator includes virtual CPU, memory, and 

various peripherals.  

A screen shot of the Emulator is presented in Figure 6. The Emulator can be started 

either through the Emulator Manager or using the command line, where different start-up 

options can be defined. While the application is running on the Emulator, various 

functions can be performed, such as using multi-point touch, network features, file 

sharing, among others. The Emulator can be controlled by control keys and menus. It 

supports various media formats and codecs and OpenGL ES acceleration; however, 
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compared to physical target devices it has some limitations and differences, which are 

described in detail in [28]. 

 

Figure 6 Tizen Emulator 

 

 

3.1.2.3.2.3 Emulator Manager 

The Emulator Manager, illustrated in Figure 7, is a tool that enables to create emulated 

devices and customize their hardware aspects, including display resolution and density, 

and RAM size. The Emulator Manager allows the creation of multiple Emulators which 

is useful in order to test multiple environments. 
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Figure 7 Emulator Manager 

 

3.1.2.3.2.4 Smart Development Bridge 

The Smart Development Bridge (SDB) is a command-line tool that manages multiple 

device connections. It provides basic commands for application development such as: 

file transfer; remote shell command; port forwarding for a debugger; viewing, filtering, 

and controlling device log output. For each connected device, the SDB creates a serial 

number, which is a string that uniquely identifies an Emulator or an actual device. By 

using this serial number, commands can be sent to a specific device in a list of connected 

devices. In order to use the SDB with an actual device, the device has to be set to the 

SDB mode.  

The SDB commands can be seen in Figure 8 and a detailed description for each 

command is available in [28]. 
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Figure 8 Smart Development Bridge 

 

3.1.3 Tizen Applications 

This section presents the Tizen applications which can be web, native and hybrid. 

 

3.1.3.1 Application Life Cycle 

The lifecycle of a mobile application is illustrated in Figure 9
15

. 

 

 

Figure 9 Application lifecycle 

 

                                                 

15 Image courtesy of [12]. 
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In the figure the main loop represents the app run time and the ellipses create, reset, 

pause, resume and terminate are the callback functions that can be implemented for an 

application. Each of these callbacks is invoked as follows: 

 Create – when the application is launched to facilitate the creation of the window 

and data allocation; 

 Reset – when the app is restarted during run time; 

 Pause – when the window of the application is sent to the background; 

 Resume – when the application window is restored back to the foreground; 

 Terminate – after the main loop is executed to terminate the application. 

During execution the app passes through several states as presented in Figure 10
16

. 

 

Figure 10 Application states 

 

When the application is launched it is in a ready state. Then, the create callback is called 

and the app enters in a created state where it is initialized. In the running state the 

application runs in the foreground of the screen and receives user inputs. Hence, it can be 

restarted by calling the reset callback. Moreover, the app can be paused passing it to the 

paused state and resumed, which returns it to the running state. The app is in a 

terminated state after calling the terminate callback. 

 

                                                 

16 Image courtesy of [12]. 
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3.1.3.2 Web Applications 

A Tizen web application is a composition of HTML (based on the HTML5 standard), 

CSS and JavaScript files. These files are distributed in a W3C widget package
17

 that can 

be installed on a device.  

The Tizen IDE provides several templates for the creation of Tizen web projects. The 

available templates in the current Tizen SDK are: Basic, Tizen Web UI Framework, 

jQuery Mobile, and Tizen Web UI Builder. Developers can create Tizen web projects by 

using these templates, by using their own user templates, or without using any template. 

Depending of the chosen template, the Tizen IDE automatically creates the files and 

folders needed for the project. A Basic Template project is illustrated in Figure 11. 

Although this is the recommended project structure, the developers are allowed to 

customize the project the way it serves best for their needs. 

 

Figure 11 Tizen web project structure 

Most of the contents in the figure are self-explanatory with exception of the WebContent 

folder, intended for the multimedia files used in the project, and the 

BasicTemplateDemo.wgt is the final widget package. The package is built using the IDE 

and after that it is ready to be installed on the Emulator or on an actual device. The 

configuration of the widget is set in the config.xml file. Each widget has exactly one 

configuration file and it is located at the root of the package. More details about the 

config.xml file can be found in Appendix 8.2.6. 

A Tizen application can be tested on an actual device or on the Emulator. As an 

alternative, a web app can be tested in the Web Simulator; however, as it was mentioned 

                                                 

17 http://www.w3.org/TR/widgets/ 
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before (Section 3.1.2.3.2.1) in the current version of the Tizen SDK, the Web Simulator 

does not support all Tizen Web Device APIs. 

 

3.1.3.3 Native Applications 

Tizen supports the development of native apps written in C++ or C (partially supported). 

The package file format of the Tizen C++ applications is the zip archive format with 

package file extension “.tpk”. The Tizen IDE provides the following project templates: 

Empty Application; Form-based Application; Library; OpenGL Application; Service 

Application; and Tab-based Application. The structure of a Form-based project is 

illustrated in Figure 12. 

 

Figure 12 Tizen native project structure 

The manifest.xml file contains all application-related information including application 

ID, version, type and privileges. The privileges allow the application to use features and 

services of the privileged APIs, which are Tizen native APIs responsible for handling 

platform and user-sensitive data. More information about the manifest.xml file is 

available in [28]. 

 

3.1.3.4 Hybrid Applications 

Tizen supports hybrid applications containing web and native parts. The package format 

of the hybrid apps is the zip archive with file extension “.wgt”. However, in the current 

release of the Tizen SDK the development of hybrid apps is not available. 
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3.1.4 Tizen Case Study 

For the practical part of the Tizen study three distinct case studies were conducted. The 

first one explored the Tizen web applications, more specifically a conversion of an 

existing web app into a Tizen web app and implementation of a Tizen device 

functionality using a Tizen Web Device API. The second and third case studies included 

implementation of two prototypes for Tizen native apps using Tizen Push Messaging 

service and Facebook Chat service, respectively. PTECH considers the three case studies 

confidential; therefore their description is presented in Appendix 9.1. 

 

3.1.5 Tizen Conclusions 

The following conclusions can be extracted from the Tizen study presented in the 

previous sections: 

 Tizen is an open source platform targeted at a wide variety of device categories. 

 The Tizen project is backed by leading device manufacturers, chip suppliers, and 

mobile operators. 

 It combines the effort on other projects such as MeeGo, SLP, and Bada as it was 

confirmed that Samsung will merge Bada with Tizen [75]. 

 Tizen provides a Web Framework allowing developers to use HTML5 and well-

known Web technologies to develop applications that are portable across 

multiple devices. 

 Tizen also offers a Native Framework, which enables the creation of interactive 

native application written in C++ or C (partially supported). 

 Hybrid applications containing native and web parts will be supported in the 

future. 

 The Tizen project relies on application developers’ feedback to improve the 

platform. It provides a vast documentation, many tools for creating and 

debugging, and other resources that facilitate the process of development and 

distribution. 

Compared to the dominating platforms in the mobile industry, Android and iOS, in terms 

of application development only Tizen offers the possibility to create apps that are 

completely web. Android and iOS do not support this option without using external 
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frameworks (e.g. PhoneGap). Furthermore, Tizen also allows the creation of native apps, 

thus it does not lose over the other two platforms in terms of performance. 

The participation of many handset manufacturers and carriers in the Board of Directors 

of the Tizen Association, as well as the combination of the efforts on MeeGo and Bada, 

are considered as some of the ingredients that may guarantee the success of Tizen [32]. 

However, whether this will happen will be known this year when Samsung launches its 

first smartphones based on the Tizen OS. 

 

3.2 Firefox OS 

This section presents the Firefox OS study. It exposes the state of the platform as of 

March 2013. Nevertheless, similarly to Tizen, Firefox OS is a new OS that is still under 

development; therefore some of the information in the text may be subject to change at 

some later point. 

 

3.2.1 Firefox OS Overview 

Firefox OS, also known by its project name Boot to Gecko or B2G, is a new open-source 

mobile OS developed by Mozilla. The platform is based on a Linux kernel and a Gecko-

based runtime engine and it is free from any proprietary technology [49]. The Firefox OS 

applications are web pages written in HTML, CSS, and JavaScript and they have 

enhanced access to the hardware and services of a mobile device. 

Currently, 17 operators are committed to the project as follows: América Móvil, China 

Unicom, Deutsche Telekom, Etisalat, Hutchison Three Group, KDDI, KT, MegaFon, 

Qtel, SingTel, Smart, Sprint, Telecom Italia Group, Telefónica, Telenor, TMN and 

VimpelCom [55]. 

Firefox OS is oriented to low-cost devices proving that they can have the same features 

and performance as high-end smartphones. The first devices running Firefox OS are 

manufactured by Alcatel (TCL), ZTE and LG. They are powered by Qualcomm 

Snapdragon mobile processors. The first devices will be available to consumers in 

Brazil, Colombia, Hungary, Mexico, Montenegro, Poland, Serbia, Spain and Venezuela 

[55]. 
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3.2.2 Firefox OS Architecture, API and Tools 

This subsection presents the platform’s architecture, an overview of the supported APIs 

and the tools that can be used during the development process. 

3.2.2.1 Architecture 

The Firefox OS architecture is illustrated in Figure 13
18

. 

 

Figure 13 Firefox OS architecture 

As can be seen in the figure the platform is composed of three main components as 

follows [39]: 

 Gaia – the top layer of the architecture is the UI of Firefox OS. It contains the 

home screen, lock screen, telephone dialer, camera and other apps. Gaia is 

entirely written in HTML, CSS, and JavaScript, and its interface with the lower 

layers is only through Open Web APIs. Third party applications can be installed 

beside Gaia. 

 Gecko – this is the application runtime that provides all support for HTML, CSS 

and JavaScript. Therefore, some of the Gecko’s components are: a layout engine, 

a JavaScript virtual machine, networking and graphics stacks and porting layers. 

 Gonk – the Firefox OS’s bottom layer consists of Linux kernel and Hardware 

Abstraction Layer (HAL). The kernel and some of the userspace libraries are 

                                                 

18 Image courtesy of [35] 
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common open source projects, including Linux, libusb and bluez. Other parts of 

the HAL are shared with the Android project, such as camera and GPS. Gonk is a 

porting target of Gecko, which means that there is a port of Gecko to Gonk. 

Thus, since the Firefox OS project has full control over Gonk, Gecko has direct 

hardware access on Gonk; however, it does not have this access on other 

platforms. 

 

3.2.2.2 API 

Firefox OS supports the following sets of APIs: 

 Firefox OS Device APIs – this set of APIs exposes device features to the Firefox 

OS apps. Thus, it includes functionality such as: alarm; browser; contacts; 

geolocation; notifications; radio; storage.  

 General Web APIs – consist of standard Web APIs that are supported by the 

Firefox browser, some of which are: DOM events; device orientation; history; 

HTML5 audio and video tags; network requests; online and offline events; touch 

events. 

 Firefox Marketplace Services – provides APIs that support publishing and 

managing apps on the Firefox OS Marketplace. 

The list of the available APIs and their descriptions can be seen in Appendix 8.3.1. 

 

3.2.2.3 Tools 

In this subsection are presented some of the available tools that can be used to test 

Firefox OS applications. 

 

3.2.2.3.1 Firefox OS Simulator 

Firefox OS Simulator is a tool that simulates a mobile phone environment. It is installed 

as an Add-On on the Firefox desktop browser. As can be seen in Figure 14 the Simulator 

is a complete simulation of Firefox OS providing a Home button and numerous pre-

installed apps. Nevertheless, some device APIs are dependent on hardware features; 
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therefore, although they work on an actual device, they may not work properly on the 

Simulator. 

 

Figure 14 Firefox OS Simulator 

 

3.2.2.3.2 Simulator Dashboard 

The Simulator Dashboard, shown in Figure 15, is a manager tab on the Firefox desktop 

browser that serves to launch the Firefox OS Simulator and install applications on it. In 

addition, the Dashboard provides a remote console for the Simulator and a port number 

for the Remote Debugger. 

 

Figure 15 Simulator Dashboard 
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3.2.2.3.3 Remote Debugger 

The Remote Debugger delivers the Firefox development tools to debug apps running on 

the Firefox OS Simulator or on an actual device. The main difference with the web 

content debugger is that the Remote Debugger runs on its own window, as can be seen in 

Figure 16. In order to use the Remote Debugger the Firefox desktop browser and the 

Firefox OS Simulator or the device need to be set up. However, currently the device 

debugging is disabled [79]; therefore, only the Simulator can be used to debug apps. 

More details about the Remote Debugger’s features can be found in [25]. 

 

Figure 16 Remote Debugger 

 

3.2.2.3.4 App Validator 

The App Validator 
19

 is an online tool that can be used before submitting an app to the 

Firefox Marketplace. The tool checks the manifest file of an app and shows the errors (if 

any) or warnings that should be considered. The App Validator is shown in Figure 17. 

 

                                                 

19 https://marketplace.firefox.com/developers/validator 
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Figure 17 App Validator 

 

3.2.3 Firefox OS Applications 

The Firefox OS applications are Open Web Apps (OWA), which are web apps written in 

HTML, CSS, and JavaScript. OWAs are intended to be standardized and therefore to be 

able to work on any browser, OS or device. The apps can be distributed through the 

Firefox Marketplace or any other website. Moreover, it should be noted that web apps 

can be published as any website; however there are several characteristics that make 

them different from a normal website such as: apps are installed by the user and can run 

offline; they are self-contained and do not require a browser window [44]. 

In order to install a website as a web app on a device, it has to have a manifest file.  

 App Manifest 

The app manifest is a JSON file which contains information that the browser needs to 

interact with the app. The manifest has the name manifest.webapp and is placed at the 

root of the application. The file may provide information for the app’s version; icons; 

permissions required by the app; locale strings to name a few; however the only required 

fields are the name and description for the app. For more details about the manifest file 

can be referred to [11]. 

 App Types 

The Firefox OS apps can be two main types as follows: 

 Hosted app – an app that is run from a server at a given domain and alternatively 

it can be installed on a device using JavaScript code; 

 Packaged app – a zip file containing all app resources such as HTML, CSS, and 

JavaScript files. This allows the zip file to be downloaded and installed on a 

device.  
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Both app types must have a valid manifest file. However, since the packaged apps can 

have access to some sensitive device APIs, they must be verified by the app store where 

the apps are distributed. There are three types of packaged apps based on their 

accessibility to the device APIs: 

 Plain packaged app – a regular app that is packaged in a zip file. It is signed on 

the marketplace, yet since it does not have access to certain sensitive device APIs 

it is not verified following any special process; 

 Privileged app – an app that is approved by an app store (e.g. Firefox 

Marketplace) in order to have access to sensitive APIs; 

 Certified apps – an app that is used for critical system functions, such as the 

default dialer or the system settings app on a device. Therefore, it must be 

approved by the OEM or carrier to use all device permissions explicitly (without 

requiring the user’s authorization). 

 

3.2.4 Firefox OS Case Study 

The objective of the Firefox OS case study was to explore the conversion of an existing 

web app into Firefox OS app and to implement one of the Firefox OS Device APIs, in 

order to estimate the effort needed for porting the PTECH’s apps to the new OS. After 

performing the case study, we can conclude that the process was very straightforward. 

Nevertheless, PTECH considers the practical part of the Firefox OS study confidential, 

and therefore its description is presented in Appendix 9.2. 

 

3.2.5 Firefox OS Conclusions 

Firefox OS is a new free open source mobile OS which is Web-based and runs OWAs, 

developed with HTML5 and related technologies. The OWAs are part of the Mozilla’s 

vision for Free Web aiming to standardize them and thus making the apps runnable on 

every browser, OS or a device. HTML5 and the other open web standards are likely to 

attract more developers to start developing apps for the new OS. Hence, Mozilla does not 

intend to create a new ecosystem, instead it wants to allow web developers to leverage 

their skills to create mobile apps that run on diverse devices. This means that even 
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existing websites and web apps can be easily transformed into Firefox OS apps as we 

proved in our case study. 

Firefox OS apps can be published on Firefox Marketplace or any other website creating 

multiple marketplaces. This is an important concept for the openness of the platform, 

because the multiple marketplaces will permit the developers to have a direct 

relationship with their customers and, additionally, carriers to bill the consumers for the 

apps they download. This is why Firefox OS is embraced by so many carriers. However, 

having multiple marketplaces raises some security and privacy concerns. Nevertheless, 

Mozilla assures that the users can expect security and privacy since Firefox OS is 

designed to protect the users from malicious apps as well as applications from one 

another [56]. 

In our opinion, Firefox OS has all the potential to compete with other Web-based OS’s, 

like Tizen for example, taking into account that it is developed by Mozilla, the company 

that develops the successful Firefox web browser. However, competing with platforms 

already established in the market like Android and iOS, will be challenging since these 

two OS’s are still the leaders in the market with 92 percent of global smartphone 

shipment during the first quarter of 2013 [6]. In terms of market position even the 

Mozilla’s goal is not to achieve “global domination” [57]. Rather, its goal is to provide 

an open source and low-priced mobile OS option to the end users and to prove that 

HTML5 is powerful enough to allow functionality competitive with the native 

applications of other mobile OS’s.  

Mozilla already presented the first official Firefox OS devices, Alcatel One Touch Fire 

and ZTE Open, at the Mobile World Congress in Barcelona [51]. They are expected to 

be available to the consumer later in 2013. 
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4. Web Applications Packaging Tools 

This chapter presents the studies of the web applications packaging tools Adobe 

PhoneGap and Appcelerator Titanium. It describes the state of the tools as of May 2013; 

however, since both, PhoneGap and Titanium, are under active development, some of the 

information presented in the text may be subject to change at some point in the future. 

4.1 PhoneGap 

PhoneGap is a free open source framework for developing cross-platform mobile 

applications. It currently supports eight mobile OS’s as follows: Android; Bada; 

BlackBerry; iOS; Symbian; Tizen; webOS and Windows Phone. PhoneGap has been 

downloaded over 1 million times and it is used by over 400 000 developers [2]. 

The PhoneGap applications are hybrid apps, thus they are created with standard web 

technologies such as HTML5, CSS3 and JavaScript; and they use webview providing 

them with enhanced access to device APIs. The web resources are hosted locally in the 

application and not on a remote HTTP server. As illustrated in Figure 18
20

 the UI of the 

app occupies 100% of the display’s width and height. PhoneGap uses the native 

webviews of the supported OS’s and since there is difference in the rendering engines, 

the UI of a PhoneGap app may not be consistent on the different platforms. 

 

Figure 18 PhoneGap app UI layer 

                                                 

20 Image courtesy of [71] 
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To enable device functionality in applications, PhoneGap provides a standard set of 

JavaScript APIs. These APIs handle the communication between the web app and the 

native OS, as illustrated in Figure 19
21

. Since the JavaScript APIs are built on web 

standards, the apps should be portable between the different OS’s with minimal or no 

changes. Nevertheless, PhoneGap supports only a limited set of native APIs; therefore, 

for a device functionality that is not exposed yet, PhoneGap allows the developers to 

create native plugins that provide the access to the required functionality. 

 

Figure 19 PhoneGap API 

 

A PhoneGap app is developed using web technologies; however, the application package 

is a binary archive in the format that the mobile OS uses. The final app can be distributed 

through the appropriate app store (refer to Table 1). 

 

4.1.1 PhoneGap History 

PhoneGap and PhoneGap Build were originally developed by Nitobi Software. In 2011, 

Adobe Systems Incorporated acquired Nitobi [3] and as a consequence of the acquisition 

they donated the PhoneGap codebase to Apache Software Foundation (ASF) for 

incubation. This contribution was provoked by Adobe/Nitobi’s desire to provide the 

PhoneGap code with proper stewardship, to maintain open and transparent governance, 

and moreover to facilitate the contribution of other large organizations [70]. 

Nevertheless, as a result of the donation, PhoneGap had to be renamed. Initially it was 

called Apache Callback; however, this name was considered too generic [38]. Later, it 

was changed to Apache Cordova after the Cordova Street in Vancouver, Canada, where 

                                                 

21 Image courtesy of [71] 
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the Nitobi’s office was situated when they developed PhoneGap. In October 2012, 

Apache Cordova became a top level project within the ASF [1].  

Currently, Cordova has contributors from Adobe, BlackBerry, Google, IBM, Intel 

Corporation and other independent contributors [20]. 

 

4.1.2 PhoneGap vs. Apache Cordova 

Many sources use the names PhoneGap and Cordova interchangeably; however, when 

speaking about the open source project more technically correct is to use the name 

Cordova, since PhoneGap is the Adobe’s distribution of Cordova and Cordova is an 

Apache project, as shown in Figure 20
22

. From PhoneGap explain the relationship 

between Cordova and PhoneGap as Cordova is the engine that powers PhoneGap [70]. 

Both, Apache Cordova and PhoneGap, are licensed under the Apache License, Version 

2.0. 

 

Figure 20 Apache Cordova and PhoneGap logos 

Comparing the distributions of Apache Cordova and PhoneGap for version 2.6.0, the 

PhoneGap distribution
23

 includes several supporting compiled files, such as the 

cordova.jar required for Android and the CordovaStarter-x.x.x.zip for the Windows 

Phone template. Otherwise, if the Cordova distribution [1] is used these files have to be 

built manually. 

 

                                                 

22 Image courtesy of [45] 
23 http://phonegap.com/ 
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4.1.3 PhoneGap Services 

Besides the functionality that corresponds to the one of Cordova, PhoneGap provides 

some optional services. These are described in the following subsections. 

 

4.1.3.1 PhoneGap Support 

PhoneGap allows subscriptions for paid technical support. The PhoneGap Support 

service comprises several packages that are divided based on factors, including number 

of developers, office hours and response time. More information can be found on [72]. 

 

4.1.3.2 PhoneGap Build 

PhoneGap Build is a paid service for mobile application packaging. As illustrated in 

Figure 21
24

, the service packages a web app in the Cloud for all supported mobile OS’s; 

therefore, the developer does not need to install the SDK for each target OS and build the 

projects manually. The application can be submitted to PhoneGap Build by uploading 

the application’s files or by referencing a GitHub
25

 repository. The PhoneGap Build 

service additionally provides a free plan with one private app and unlimited number of 

open source apps. 

 

Figure 21 PhoneGap Build 

 

                                                 

24 Image courtesy of [4] 
25 https://github.com/ 
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4.1.3.3 Hydration 

Hydration is a service that can be enabled through PhoneGap Build, as shown in Figure 

22. It improves the compilation time by pushing updates directly to the application 

installed on a device. This is achieved by compiling a native binary that serves as a 

container for the mobile app and checks for updates directly from the Cloud account. 

Hydration is intended to benefit the development process. Thus, when a developer 

uploads a new build, the tester is notified for the update upon restart of the application. If 

the tester accepts the new version, the app is updated automatically without the need of 

uninstallation and re-installation. 

 

Figure 22 Enable hydration 

Hydration can be enabled for a new application or for an existing one. Nevertheless, it 

currently supports PhoneGap version 2.0.0 or greater and only the platforms Android and 

iOS [47]. 

 

4.1.4 PhoneGap Case Study 

The practical part of the PhoneGap study included packaging of a web app for the 

following target OS’s: Android; iOS; Tizen; BlackBerry and Windows Phone. PTECH 

decided to package the Phune Gaming client application and required to use Cordova, 

thus the PhoneGap case study would help the company to choose between Cordova and 

PhoneGap. By the same token, PTECH required the app to be packaged with PhoneGap 

Build in order to have some estimation between the effort needed for packaging 

manually with Cordova and by using the automated tool. However, PTECH considers 

the case study confidential and therefore it is presented in Appendix 9.3. 
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4.2 Appcelerator Titanium 

Appcelerator Titanium is a free open source platform for developing native mobile 

applications written in JavaScript. Titanium is developed by Appcelerator Inc. and it was 

first introduced in December 2008 [10]. Its goal is to help developers use their JavaScript 

skills to create native mobile apps that run across multiple platforms [83]. Titanium 

supports the following platforms: Android; BlackBerry; iOS; Mobile Web and Tizen. 

The Titanium SDK in addition provides the Alloy framework, which allows mobile web 

applications to be designed under the Model-View-Controller (MVC) design pattern. 

Currently, Titanium has about 55 000 mobile applications deployed on 137 million 

devices [84] 

 

4.2.1 Titanium Architecture 

Titanium consists of the following components: 

 Titanium SDK – includes a set of Python scripts and other supporting tools that 

interact with the native SDK tools; 

 Titanium Mobile APIs – comprise JavaScript-based APIs, which expose access 

to native APIs; 

 Titanium Studio – an Eclipse-based IDE that supports creating, testing, 

debugging and distributing mobile apps; 

 Modules – enable to extend the Titanium’s core functionality in order to add 

support for device or OS-specific APIs. Developers can create their own modules 

and distribute or sell them through the Appcelerator Marketplace; 

 Appcelerator cloud services – the core API makes available various backend 

services, such as the analytics, which provide basic usage statistics about how 

often the application is used and on which platforms. 
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Titanium exists as a bridge between the application source code and the mobile OS. This 

architecture is presented in Figure 23
26

. 

 

Figure 23 Titanium architecture 

At the top layer is the developer’s application written in JavaScript and at the bottom 

layer is the native OS (Android, BlackBerry, iOS and Tizen) or the browser (for the 

Mobile Web platform). Between the top and the bottom layers resides the Titanium SDK 

with the Titanium APIs. Therefore, the developer writes the app in JavaScript calling the 

Titanium APIs and the Titanium Bridge, called Kroll, translates the calls into their native 

equivalents. 

Thus, at runtime the application consists of three major parts – the JavaScript source 

code, the platform-specific implementation of the Titanium API in native language and a 

JavaScript interpreter that evaluates the JavaScript code at runtime [18]. When the 

JavaScript code is evaluated, a proxy object, which is a native object that exposes a 

JavaScript API, is created. Then, this proxy object is returned to the JavaScript layer and 

the JavaScript engine creates a corresponding JavaScript object [83]. Therefore, the 

proxy object exists in the native and in the JavaScript layer and serves as a bridge 

between them. 

                                                 

26 Image courtesy of [83] 
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This is illustrated with the code snippet in Figure 24
27

. 

 

Figure 24 Example code illustrating proxies 

After the execution of the code, the creation of the proxy object and the invocation of its 

methods are visualized in Figure 25
28

. It can be seen that there are two objects – the 

JavaScript object and the native proxy object. 

 

Figure 25 Diagram of the executed code 

It should be noted that Titanium does not require a webview, although it can be used, and 

the JavaScript code is not cross-compiled to Java or Objective C; however, it is 

evaluated at runtime [18]. 

 

                                                 

27 Image courtesy of [83] 
28 Image courtesy of [83] 
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4.2.2 Titanium Applications 

The regular Titanium applications are native apps since the JavaScript APIs translate the 

developer’s code into native API calls. Nevertheless, Titanium additionally provides 

support for web and hybrid app development. The following subsections present features 

specific for the Titanium apps. 

 

4.2.2.1 Native Applications UI 

Although Titanium provides cross-platform mobile application development, the UI of 

the native apps is not identical across all platforms in order to preserve the native look 

and behavior that the target OS users are accustomed to. This is illustrated in Figure 26
29

, 

which demonstrates the UI differences of an example application running on the iOS and 

Android. 

 

Figure 26 UI differences 

 

                                                 

29 Image courtesy of [83] 
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4.2.2.2 Mobile Applications 

The mobile web apps implement Titanium functionality, such as: common UI elements, 

animations and 2D matrix operations; HTTP network access; local storage and cache; 

add-on modules in the form of CommonJS and Asynchronous Module Definition 

(AMD) modules. Titanium tends to provide this functionality whenever the browser of 

the supported devices permit and its access is identical on all platforms. Nevertheless, 

the mobile web apps have some limitations due to restrictions imposed by a vendor, 

platform and mobile browser. These limitations are as follows [83]: 

 Access to some platform-specific components (e.g. iOS local notifications, 

Android activities); 

 Access to native UI controls; 

 Full operation without a constant network connection; 

 Universal access to hardware sensors (e.g. the camera); 

 Access to some components that depend on the OS support (e.g. calendar, 

contacts); 

 Support for Titanium+Plus modules for iOS and Android, which are written in 

native language and cannot run in a browser. 

 

4.2.2.3 Hybrid Applications 

Titanium makes available the Ti.UI.WebView API, which provides access to the 

platforms’ native webview components. The webview can be positioned and resized the 

way it serves best for the developer’s needs and thus other UI components can be added 

to the remaining space. The web contents displayed in a webview can be hosted on a 

remote server or locally in the application resources. The major benefit of using remote 

web contents is the ability to update particular parts of the app without the need to update 

the whole application. The local web contents, on the other hand, enable to use the app 

even offline and furthermore this approach can decrease the loading time of the 

application. 

A bidirectional communication can be established between the native Titanium code and 

the JavaScript code running within the webview. This functionality is limited to the local 
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web contents; yet to interact with a remote web content the platform provides the 

evalJS() method which can be used to inject JavaScript code into a webview. 

When using webviews, it should be taken into consideration that the webviews are the 

heaviest native UI components, they take time to render and can affect the performance 

of the application [83]. 

 

4.2.3 Titanium Case Study 

Similarly to the PhoneGap case study, the Titanium case study included packaging of the 

Phune Gaming client application for all supported platforms. PTECH is interested in the 

hybrid app and therefore we used the project template, which allows apps with webview 

to be developed. Nevertheless, since this project further provides the option to create 

mobile web app, we decided to explore it as well, because, as expected, it would not 

require too much effort. PTECH considers the case study confidential; therefore, it is 

presented in Appendix 9.4. 

4.3 API Comparison 

Table 3 presents the comparison of the APIs provided by Cordova and Titanium. The 

first column lists the APIs in alphabetical order and the second and third column indicate 

with check marks () the Cordova and Titanium support, respectively. When the two 

platforms provide similar functionality the check marks are presented in bold to increase 

the readability of the table. In the cases when Cordova and Titanium use different API 

names for similar functionality, these are presented in the format: Cordova API / 

Titanium API. 

Table 3 API comparison 

API  Cordova Titanium 

Accelerometer   

Analytics   

Android   

Calendar   

Camera, Capture, Media / Media   

CloudPush (Push Notifications)*   
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API  Cordova Titanium 

Compass, Geolocation   

Connection / Network   

Contacts   

Device, Events / App, Platform   

Facebook*   

File / Filesystem   

Gesture   

Globalization / Locale    

Map   

Notification   

Splashscreen   

Storage / Database   

Stream   

UI (Create native user interface)   

XML   

Yahoo   

 

* Cordova provides plugins for this functionality. 

 

The Titanium Android API enables the access to some specific Android features (e.g. the 

Android Intents). Furthermore, it should be noted that some of the Titanium APIs were 

not considered; hence they are not presented in Table 3. The reason for their exclusion is 

that they are specific for Titanium and since the table does not present a textual 

description, they could cause some misunderstanding. Therefore, for the complete list of 

APIs and respective description, as well as which target OS they support should be 

referred to Cordova API Reference [7] and Titanium API Documentation [83]. 
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4.4 Packaging Tools Conclusions 

This chapter presented the studies of two packaging tools for cross-platform mobile app 

development – PhoneGap and Titanium. Both platforms are open source and are licensed 

under the Apache License, Version 2.0. Moreover, they are similar in that they require 

the use of JavaScript; expose access to device and OS-specific features and if any feature 

is not available, they allow the developers to create the missing functionality themselves 

as plugin/module. The PhoneGap and Titanium apps can be installed on a device and 

they are distributed via the app stores of the target mobile OS’s. 

Although at first the two platforms seem to be very similar, they differ in many aspects. 

The PhoneGap applications are hybrid apps – they are written in HTML, CSS and 

JavaScript that run within a native webview component. Titanium provides support for 

hybrid apps, yet it also supports the development of native apps written in JavaScript and 

mobile web apps that are accessed from the browser of a device. Therefore, PhoneGap 

aims at offering option web developers to reuse existing web apps to make them portable 

across multiple platforms. While this is possible with Titanium as well, Titanium wants 

primarily to provide a way for web developers to use their JavaScript skill in order to 

write native apps instead of learning a specific native programming language – Java, 

Objective C, or others. In terms of hybrid apps, the PhoneGap apps are displayed in full 

screen, whereas with Titanium the webview can be resized and positioned the way it 

serves best the developer’s needs. Therefore, Titanium seems to be more powerful and 

flexible platform. 

PhoneGap and Titanium further differ in their support for target mobile OS’s. PhoneGap 

has a larger spectrum of target OS’s since at the time of the study it supports Android, 

Bada, BlackBery, iOS, Symbian, Tizen, webOS and Windows Phone; whereas Titanium, 

provides support for Android, BlackBery, iOS, Mobile Web and Tizen. The difference in 

the supported OS’s can be explained with the scope of the device APIs. PhoneGap 

supports a smaller set of API that access device features thus it is easier to support new 

platforms. The scope of the Titanium API, on the other hand, is greater and therefore to 

implement the Titanium API on a new platform requires greater effort.  

Regarding the development process the two platforms take different approaches. 

Cordova (and PhoneGap) requires the creation of separate projects for each target 

platform. Titanium, by contrast, provides the Titanium Studio, which centralizes the 
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interaction with the native tools and thus creates a single codebase for all target 

platforms. Nevertheless, PhoneGap overcomes the problem with the separated projects 

by providing PhoneGap Build. 

In terms of performance both frameworks have their issues. Some developers have 

complained for performance problems related to memory leaks when developing 

complex applications with Titanium [93]. The problem of PhoneGap is that the apps are 

not native and the users may feel the difference if the app appears more as a web page 

than an application. Thus, PhoneGap apps for iOS may not be approved on the App 

Store if the apps do not satisfy the performance requirements.  

Finally, as a conclusion we must say that like all technologies for software development, 

both platforms have their strengths and weaknesses. Nevertheless, considering the hybrid 

apps, which are in the interest of PTECH, in our opinion, PhoneGap is the better choice 

for the PTECH’s needs. The reason for this is the support for more target platforms and 

that the PhoneGap functionality is more focused on the hybrid apps, whereas Titanium 

focuses on the native apps. In our case studies using the Phune Gaming client application 

we created the Cordova-based applications easier and obtained better results. The 

development with Titanium, on the contrary, was particularly problematic. Finally, in 

our practical experience we did not work with the native functionality neither for 

Cordova nor for Titanium, nevertheless if this is required we expect to be easier to make 

modifications or additions to the native functionality of Cordova, since its 

implementation is simpler compared to the one of Titanium. 

 



Smart TV 

 

53 

5. Smart TV 

This chapter presents the studies of the two Smart TV technologies that were addressed 

during the internship – SSTV and Opera TV. The SSTV study was conducted in February, 

2013 and the one of Opera TV in June, 2013. Hence, since the two platforms are under 

active development, some of the information in the text may be subject to change at some 

later point in time. Furthermore, SSTV is in the direct interest of PTECH; therefore, the 

focus was on it, while the Opera TV study aimed at introducing the company to the new 

platform. 

 

5.1 Samsung Smart TV 

SSTV is a platform that extends the user experience beyond the traditional TV providing 

the users with access to web contents. A user can navigate the Internet and obtain 

information about news, weather, sports, and much more on the TV screen. Nevertheless, 

the experience is not the same as viewing a web page on a personal computer due to the 

difference in the screen resolution, hardware specification and using the remote controller 

as the main interface with the TV.  

SSTV provides a place on the TV, called Smart Hub, which centralizes the management of 

users’ accounts and all the smart contents, thus allowing an instant access to applications, 

videos, photos, web browser and others. It allows search by using the remote controller, a 

wireless keyboard or voice, and also displays recommended applications to the users. The 

Smart Hub is presented in Figure 27
30

. 

                                                 

30 Image courtesy of [34] 
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Figure 27 Smart Hub 

 

5.1.1 Samsung Smart TV Architecture, API and SDK 

This subsection presents the various modules of the SSTV architecture, and also 

introduces in a concise manner the supported APIs and the SDK’s contents. 

 

5.1.1.1 Architecture 

Figure 28
31

 illustrates the architecture of SSTV, which is composed of the following 

components: Application Manager; Mapple Browser; Common Modules; Device APIs and 

Internet@TV. 

 

Figure 28 SSTV architecture 

                                                 

31 Image courtesy of [69] 
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 Application Manager 

The Application Manager is responsible for the management of applications for tasks, 

such as installing, running and deleting apps and also assists in the functions of the 

Common Modules component. Furthermore, the Application Manager handles the 

management of the user accounts. It supports the Single Sign-On (SSO) module, which 

gives to the users the convenience to enter once their account information and then the 

Application Manager encrypts and saves the user data, and sends it to applications 

whenever it is required. 

 Maple Browser 

The SSTV platform uses a Markup engine Platform for Embedded Systems (Maple), 

which is a browser engine for Consumer Electronics (CE) devices [76]. However, the 

2012 devices have an entirely new browser engine based on WebKit [9]. 

 Common Modules 

The common modules provide some general purpose objects that can be used in an 

application, such as: TVKeyValue; Widget; Input Method Editor (IME) and SSO. These 

objects are needed in order to run and display applications on the TV screen, recognize 

remote controller events, use plugins, and communicate with the Application Manager. 

The list of the Common Modules’ objects can be seen in Appendix 8.4.1. 

 Device APIs 

The Device APIs is a set of APIs that provide access to some middleware features of the 

digital TV (DTV), including: audio; download; filesystem; network; player; screen; time 

and video. The full list of Device APIs is provided in Appendix 8.4.2.  

 Internet@TV 

This component in the figure indicates that the platform has integrated Internet 

capabilities, which are required in order to run SSTV applications. 

 

5.1.1.2 API 

Besides the Device APIs, SSTV provides APIs for functionality, such as: advertisement; 

in-application purchase; interaction between the TV and a mobile device; convergence 
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application, among others. The summary of the supported APIs is presented in Appendix 

8.4.3. 

5.1.1.3 SDK 

The SSTV SDK is available for Windows, Linux and Mac OS and it contains all tools and 

APIs necessary for developing applications for SSTV. The latest SDK version is 4.0 and 

provides the tools for creating applications for 2013 TV platform, such as: 

 Eclipse-based IDE; 

 Visual editor; 

 JavaScript debugger; 

 Smart TV Emulators for TV models: 2011, 2012 and 2013. 

The changes in the various SDK releases are available in [80] and the technologies 

supported by the different TV platforms can be consulted in [81]. 

 

5.1.2 Samsung Smart TV Applications 

The SSTV applications are web applications that run on a DTV connected to the Internet. 

However, unlike the regular web pages, the SSTV applications can implement the SSTV 

APIs in order to use features that are specific for TV. This makes the apps more TV-

oriented which contributes to the better TV experience for consumers. 

Figure 29
32

 illustrates a comparison between a web page and a Smart TV application. As 

can be seen the main difference is in the screen resolution, hardware specifications and the 

usage of the remote controller as the main user interface. 

 

Figure 29 Web page vs. SSTV application 

                                                 

32 Image courtesy of [77] 
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5.1.2.1 Application Display Types 

In terms of positioning on the screen, an application can be full screen, single-wide or 

ticker, as shown in Figure 30
33

. The full screen applications occupy the full screen area, 

while the single-wide apps are displayed only on a part of the TV screen. The ticker type 

allows the application to remain on the bottom of the screen while the user does other 

things on the TV. It should be noted, however, that the apps launched in Europe can be 

only full-screen applications. 

 

Figure 30 Application display types 

 

5.1.2.2 Project Types and Application Structure 

The SSTV SDK makes available the following project types: 

 Basic – permits the creation of applications using the Visual Editor tool; 

 JavaScript – provides SSTV JavaScript APIs for greater control over application 

tasks and processes; 

 Flash – allows Flash functionality to be used in the application. 

 

As can be seen in Figure 31
34

 a SSTV application is composed of HTML, CSS and 

JavaScript files, the config.xml file and other resources. 

                                                 

33 Image courtesy of [77] 
34 Image courtesy of [69] 
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Figure 31 Application file structure 

 

The config.xml file contains information related to the settings of the application and the 

operating environment. This information is used by the Application Manager in order to 

manage the user accounts, control the application’s version and set the environment. The 

configuration of the config.xml file is provided in Appendix 8.4.4. 

 

5.1.2.3 Testing and Publishing 

A SSTV application can be tested on an Emulator or on an actual SSTV. Although the 

Emulator simulates running an application on the TV, it is recommended to test the app on 

an actual TV, since there are some aspects in which the TV differs from a computer 

environment, such as [26]: 

 Less memory is available on TV; 

 The response to the remote controller’s keys may have different timing; 

 Only certain keys are allocated to the application; 

 Audio and video playback may have different behavior; 

 The application may behave differently if the TV has a different browser version 

than the browser of the Emulator. 

In order to test an application on the TV and to prepare it for publishing, it has to be 

packaged using a SSTV IDE. After the app is packaged and tested it can be submitted to 

Samsung Apps
35

 where it goes through a certification process. Once the application is 

certified and published, the developer can upgrade it or remove it from the marketplace. 

                                                 

35 http://www.samsungapps.com 
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5.1.3 Samsung Smart TV Case Study 

For the SSTV study two case studies were conducted. The first one included the 

implementation of the remote controller’s key events handling in an existing JavaScript 

application in order to control it using the remote controller. The second case study aimed 

to examine the SSTV convergence application, which is a composition of two applications 

– a TV application and a client application that runs on an external device, such as a 

smartphone, desktop, tablet, and interacts with the TV application. PTECH considers the 

two case studies confidential and therefore they are presented in Appendix 9.5. 

 

5.1.4 Samsung Smart TV Conclusions 

SSTV is a platform that provides to the consumers many services that go beyond  the 

traditional TV allowing the user to access web content from the TV, play games, purchase 

items, talk with friends on social networks or via Skype video calls, command the TV 

using motion , voice control or external mobile device. Therefore, SSTV makes the TV 

experience more engaging for the consumers. 

From the developer’s point of view, the platform provides SDK with all APIs and tools 

needed to develop SSTV applications. It also makes available a developers website 

containing many articles and tutorials about the various functionality supported by the 

platform. Nevertheless, it has its weaknesses, since we find the organization and the search 

engine not very easy to procure the information that is looking for. Moreover, it lacks 

information about the SSTV architecture, a sufficient explanation for the API’s functions 

and available examples. However, besides these weaknesses we can conclude that the 

platform provides satisfactory information to start developing SSTV apps. 

In our case study we experienced several challenges related to the development tools. 

SSTV provides two IDEs – Eclipse-based IDE available in SDK 4.0 and SSTV IDE 

available in previous SDK versions. The Eclipse IDE requires to be run with administrator 

privileges in order to set the SSTV perspective. In addition, its packaging did not work 

properly and therefore we had to use the SSTV IDE to package the applications. 

Furthermore, there were some issues with rendering the pages on the Emulators. Samsung 

provides a SDK Emulator Image for Virtual Box, which crashed frequently, thus we used 
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the Emulator provided by the SDK; however, it did not display the app’s images. In order 

to solve this issue we had to specify the absolute paths in the source code. 

Another less pleasant aspect is that the developers are not able to upgrade their TVs to test 

applications developed with functionality that is not supported in their TV models, as it 

was in our case. Fortunately, Samsung seems to be working in this direction as they are 

developing an external device, called Evolution Kit, which enables a 2012 SSTV to evolve 

into the new 2013 SSTV [78]. 

 

5.2 Opera TV 

Opera TV is a platform that provides web functionality and environment for running web 

apps on connected TV devices that integrate Opera Device SDK. The Opera Device SDK 

is a toolkit intended for OEMs and therefore it is not available for app developers. It 

allows device manufacturers to build custom HTML5 and CE-HTML rendering based on 

the Presto engine.  

The Opera Device SDK powers a wide range of devices, such as: TVs, STBs, Blu-ray and 

other media players. Some of the brands that integrate the SDK in their devices are: 

Panasonic; Philips; Toshiba; Sharp; Boxee TV among others [74]. 

 

5.2.1 Opera TV Architecture, Web Standards and Tools 

This subsection presents the Opera TV architecture, supported web standards and tools 

available for app developers. 

 

5.2.1.1 Architecture 

Figure 32
36

 illustrates the architecture of the Opera TV platform. In the figure in blue are 

presented the contents and applications, in red (and black) the Opera components and in 

green the platform and third party components. 

                                                 

36 Image courtesy of [64] 
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Figure 32 Opera TV architecture 

 

Besides the Opera Presto HTML engine and the Opera Devices SDK, in the figure further 

can be seen the other Opera’s products as follows: 

 Hybrid TV option – a solution to run and display “red button” applications and 

other Hybrid Broadcast Broadband TV (HbbTV) applications; 

 TV browser – an Opera web browser for connected TVs; 

 TV Store – an HTML5-based storefront described in more detail in Section 5.2.2; 

 TV apps – web-based applications optimized to run on TV with different screen 

sizes and resolutions. More details are presented in Section 5.2.3. 

 

5.2.1.2 Supported Web Standards 

Some of the web standards that are supported in the latest Opera Device SDK version 3.4 

are as follows [61]: 

 HTML 4.01, 5 (draft) 

 HTML5 video 

 Encrypted Media Extensions v0.1 
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 Media Source Extensions v0.5 

 <track> subtitles/captions for HTML <video> 

 WebSocket 2.0 

 DOM fullscreen API 

 XHTML Basic, 1.0, 1.1 

 Web Forms 2.0 

 XML 

 CSS Level 1, 2, CSS3 

 DOM 2, 3 

 <canvas> 

 HTML5 Forms 

 HTTP 1.0, 1.1 

 SSL 3 and TLS 1.0, 1.1, 1.2 

 Unicode and legacy encodings 

 SVG 1.1 Basic and 1.2 Tiny, CSS TV, WebGL, HbbTV (option) 

The complete specification can be found on [92]. 

 

5.2.1.3 Tools 

For testing and debugging purposes, Opera provides the following tools: 

 Opera TV Emulator – enables to test HTML5 and CE-HTML contents developed 

to run on the Opera Device SDK as well as web applications for the Opera TV 

Store. It is packaged as Oracle VirtualBox and currently there are two versions 

available: Opera TV Emulator 3.3, which is compatible with Opera Device SDK 

3.1 to 3.3; and Opera TV Emulator 3.4 compatible with Opera Device SDK 3.4. 

 Opera Dragonfly– the built-in suite of developer tools of the Opera desktop 

browser, which also allows to connect to the Opera browser running on an actual 

device or on the Opera TV Emulator and perform remote JavaScript debugging, 

HTTP logs, RAM analysis, among others. 
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5.2.2 Opera TV Store 

The Opera TV Store, presented in Figure 33, is an HTML5-based storefront that shows a 

catalogue of TV-oriented web applications. It allows users to browse, search and interact 

with the applications using a standard remote controller. The Opera TV Store is based on 

the Opera Device SDK and runs on a device that has the SDK integrated. Currently, it is 

available on Sony Bravia TV 2012 models (EX, HX, NX series); Sony Bravia TV 2013 

models; Sony Blu-ray Disc Players 2012 and 2013 models. The complete list of retail 

devices can be found on [67]. 

 

Figure 33 Opera TV Store 

 

It should be noted that the Develop category illustrated in Figure 33 is only available after 

the TV device or the Opera TV Emulator is paired with the developer’s Opera TV Store 

Submission portal account. The exact steps that have to be followed for the pairing are 

described in [82]. The Develop category provides a URL-entry application, called URL 

Loader, which allows the URL of an application to be entered in order to test it before it is 

submitted for review. The apps that are already submitted are also available in the Develop 

category. 

In Figure 34 is presented the My Apps tab, which is a home screen that displays the 

installed applications in a grid layout. The user can navigate the apps using the four 

directional keys of the remote controller. 
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Figure 34 My Apps tab 

 

The Opera TV Store is fully Cloud-based and therefore the applications are not actually 

installed on the device. This is illustrated in Figure 35
37

 which presents the architecture of 

the Opera TV Store. 

 

Figure 35 Opera TV Store architecture 

 

When a user browses the categories of the Opera TV Store and “installs” an application, 

the application is added to the Portal dashboard (the My App tab) where it is displayed as 

a thumbnail image. Thereafter, when the application is launched it is displayed in a full-

screen mode. The full-screen application is not hosted directly on the Opera’s servers; 

instead the Opera TV Store contains the reference to the actual URL of the application, 

which is hosted on external servers. 

Some of the new features of the Opera TV Store are as follows [64]: 

                                                 

37 Image courtesy of [13] 
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 Companion SDK – allows developers to create companion apps that integrate 

Android or iOS phones/tablets with the TV, for example, to use them as a remote 

controller; 

 Side-by-side applications – enables the application to be run side by side with the 

broadcast stream; 

 Pre-roll advertisement – allows pre-roll video ads to be run before the application 

starts. 

 

A demonstration Opera TV Store is available from the Opera TV Emulator at the 

following URL: https://demo.tvstore.opera.com. 

 

5.2.3 Opera TV Store Applications 

The Opera TV Store applications are web applications written in HTML5, CSS3, 

JavaScript and other web technologies. They run from the Cloud and are optimized to be 

displayed on a TV screen and controlled by a standard remote controller. 

Existing HTML5 applications for desktop and mobile devices can be repurposed to run on 

TV following the recommendations for creating web content for TV and the design 

considerations for Opera TV Store that are accessible on [23] and [27], respectively. 

Currently, Opera TV Store provides two app templates namely Video player and RSS 

reader that developers can freely use and customize. These templates are available as zip 

files on [66]. 

Opera TV Store runs on Opera Device SDK, which uses the same rendering engine as the 

Opera desktop browser; nevertheless, there are still some differences due to platform-

specific APIs, remote controller keys handling, available RAM and others. Hence, it is 

recommended to test the apps on an actual device and/or Opera TV Emulator and in the 

Opera TV Store environment in particular. 

The apps can be submitted to the Opera TV Store Submission portal and then they are 

distributed to different OEMs; therefore, there is no need of separate submissions. The 

information and assets that have to be provided during submission are as follows [65]: 

 Company information – name, address, email; 

 Application name; 
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 Description of the application; 

 Author name; 

 Support email; 

 Thumbnail (JPG, 480x270 or larger, with 16:9 aspect ratio, 1MB max); 

 Application icons (JPG or PNG, 128x128px and 512x512px, 500kB max); 

 Screenshots of the application (JPG, 1280x720px or larger, with 16:9 aspect ratio, 

1MB max); 

 URL to full-screen version of the application hosted at the external server; 

 Languages supported by the TV application; 

 Type of the TV the application was designed for (e.g. ‘44” Full-HD TV’). 

When the app is submitted, the developer does not have access to the metadata; therefore, 

in order to make any changes a new version of the app has to be submitted. After the 

submission the app is evaluated according to the acceptance criteria available on [65]. If 

the app satisfies the criteria, it is additionally tested on reference devices, which may also 

include review process by device OEMs. If the app fails on any of the criteria or the tests, 

it is rejected and the developer is allowed to fix the problem and resubmit it. Once the app 

satisfies all criteria it is published on the Opera TV Store. 

 

5.2.4 Opera TV Case Study 

We performed two case studies as part of the Opera TV study. For the first case study the 

Phune Gaming client application had to be adapted to run on Opera TV and it was required 

to register any issue that we would encounter. This was very valuable information for 

PTECH, because Phune Gaming does not support officially the Opera web browser. 

During this case study we solved most of the problems by using workarounds; 

nevertheless, our findings will help the company to find better working solutions. The 

second case study included implementation of the remote controller’s key events handling 

in order to enable the navigation on the platform and Tic Tac Toe game via the remote 

controller. Since PTECH considers the two case studies confidential, they are presented in 

Appendix 9.6. 
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5.2.5 Opera TV Conclusions 

The Opera TV platform is aimed at end users, OEMs and developers and to each one of 

them it provides the respective benefits. To end-users Opera TV and the Opera TV Store 

in particular mean a comfortable “lean-back” web experience allowing them to browse 

web content and use applications on their connected TV devices. To OEMs Opera TV 

gives the opportunity to provide this TV web experience, which makes their devices more 

attractive to consumers. Finally, it allows developers to create HTML5-based applications 

that run across all devices that integrate the Opera Device SDK. Opera provides the 

developers with developer portal and tools, such as the Opera TV Emulator and Opera 

Dragonfly, thus they can create and test applications even without access to an actual 

device. 

Opera TV Store is still a new platform that is currently running only on Sony Bravia TV 

2013 and Sony Blu-ray Disc Players. Nevertheless, Opera is already established in the 

Smart TV market. Because of the support for web standards and performance 

improvements many OEMs choose to integrate the Opera Device SDK on their devices. 

As it was announced [59], even Samsung which develops its own Smart TV platform will 

launch Blu-ray players powered by Opera Device SDK.  

In our practical experience the implementation of the remote controller functionality was 

very simple compared to the one that we implemented for SSTV. The problems with 

Opera TV came from the fact that Phune Gaming does not officially support Opera, yet 

after the problems were solved it showed a proper behavior on the Emulator. Regarding 

the available documentation, at this time SSTV provides a more comprehensive 

documentation compared to Opera TV. The Opera TV documentation comprises articles 

about developing applications for TV; however, currently there is not much information 

about the platform’s specific features and how they can be implemented in applications. 
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6. Conclusions 

The area of the mobile web applications is a very dynamic field where new platforms 

and frameworks are constantly emerging. Thus, since PTECH is a company whose 

mission is to research and develop innovative services with new and state-of-the-art 

technologies, it had the need to conduct the studies of the two new mobile OS’s that run 

web applications, Tizen and Firefox OS, in order to prove whether it is advantageous to 

start developing applications for these platforms. PTECH is satisfied with the results that 

we obtained for Tizen and already started planning applications for Tizen. Although the 

Firefox OS study was not that profound compared to the one of Tizen, the Mozilla’s new 

OS is a potential target for Phune Gaming. 

The goal of the web applications packaging tools can be explained to some extent with 

the slogan “write once, run everywhere”. In the context of PTECH objectives this means 

to use PhoneGap or Titanium in order to make its existing web applications and the 

Phune Gaming client in particular target more platforms with less development costs. 

After performing the case studies we concluded that PhoneGap satisfies better this 

requirement, especially if PTECH decides to use PhoneGap Build it will decrease 

significantly the development time. 

Since PTECH intends to target the Smart TV area, during the course of the internship 

emerged the need to perform the studies of the two Smart TV technologies – SSTV and 

Opera TV. SSTV is more mature platform compared to Opera TV thus it provides more 

comprehensive documentation and tutorials for the developers. For the SSTV 

Convergence Application case study we did not find a way to perform the discovery in 

accordance with the company’s needs, nevertheless the problem was identified.  

Finally, what all technologies that were used have in common is that they all support 

HTML5, therefore the ultimate conclusion is that HTML5 is a technology with a great 

potential that allows applications to be developed for diverse platforms such as desktop, 

mobile and TV. 

6.1 Achievements 

All of the objectives defined in Section 1.2 were achieved. We performed the studies for 

Tizen, Firefox OS, PhoneGap, Titanium, SSTV and Opera TV. With these studies 
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PTECH gained better understanding and knowledge of the platforms it intends to use. 

For each one of the platforms we conducted a case study in order to prove its feasibility 

for the PTECH’s needs in practice. Thus, the company has working prototypes and 

findings that can use in its projects. Furthermore, for the case studies of PhoneGap, 

Titanium and Opera TV the Phune Gaming client application was used, therefore 

PTECH has concrete results which will consider for the implementation of Phune 

Gaming. In addition, for each one of the studies was elaborated a report to serve as 

internal reference material and the company’s wiki pages were updated, thus the 

information is easily accessible for the PTECH’s employees whenever it is needed. 

Personally, the internship gave me the opportunity to be in a company that is established 

in the area and working with its professionals helped me understand its needs and the 

decisions that have to be made in real situations. I further improved my research skills 

and the ability to apply the theory to practical work. Moreover, performing the internship 

in a company that works with new technologies arouse my interest in new technologies, 

to be aware of them and possibly to use them in my work. Finally, I gained knowledge of 

the app development for mobile and TV which I find to be two areas with very good 

career perspectives and I would like to specialize in them in the future.  

Therefore, considering the positive outcome for the company and my own professional 

growth in the area I can conclude that the internship was a success. 

6.2 Limitations and Difficulties 

The main limitation of the case studies that were conducted during the internship is 

caused by the fact that we did not have some of the actual devices for the testing. Tizen, 

Firefox OS, Opera TV and BlackBerry 10 are new platforms and thus PTECH could not 

acquire their devices by the end of the internship. For SSTV the company has an actual 

TV, yet its model does not support the functionality that PTECH intends to use. Hence, 

for these platforms we could test only on emulators, nevertheless we are aware that the 

applications may have different behavior when running on actual devices.  

Besides the hardware limitations, for the PhoneGap and Titanium case studies we faced 

some software limitations since Cordova supports older versions of Tizen and Bada, and 

the Titanium support for Tizen was recent. In addition, some of the target OS’s require 

the development to be only on specific platforms, such as iOS apps can be developed 
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only on Mac OS and Windows Phone 8 apps only on Windows 8. However, these 

problems were overcome with the help of PTECH, whenever it was possible they found 

an alternative solution that allowed me to fulfill the tasks. 

The main difficulty of this internship was that when I started it I had no background of 

the mobile application development as well as for TV. Moreover, I used existing 

applications whose source code I did not know, thus initially it was difficult to 

understand it. For the tasks of the packaging tools I needed to become familiar with the 

different platforms and the tools they use for the development process. I further consider 

difficulty the fact that the technologies that were used in the internship are new and 

rapidly changing platforms, thus the main source of information were the documentation 

and posts published on the platforms’ official websites. Nevertheless, these difficulties 

were overcome with time and now I can say with certainty that they greatly contributed 

to my learning. 

6.3 Future Work 

Referring to the limitations presented in the previous subsection the future work that 

would follow as a natural consequence from them is to repeat the tests on actual devices. 

PTECH already acquired a Tizen device and will perform the tests on it. In addition, the 

company plans to acquire an actual device running Firefox OS and a SSTV model 2013. 

This will allow the tests to be repeated on the respective actual devices and thus PTECH 

will gain more confidence in the behavior of the applications. 

The prototype for the Tizen Facebook Chat application performs the authentication using 

the DIGEST-MD5 authentication mechanism. However, Facebook provides one more 

authentication mechanism called X-FACEBOOK-PLATFORM, which permits to 

connect to Facebook Chat using the Facebook authentication. This mechanism is more 

desirable, because it provides a better user experience and integration with the Facebook 

Platform. Therefore, the prototype can be improved by implementing the X-

FACEBOOK-PLATFORM mechanism for the authentication. 

PTECH already started the creation of UI for Phune Gaming that is customized for TV in 

order to target SSTV and Opera TV Store. Regarding SSTV it will explore in depth how 

to perform the discovery for the Convergence Application in a more efficient way. The 

Phune Gaming problems on Opera TV are also part of the future work. 
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In the meantime the hybrid packaging was made available in Tizen. It should be 

explored since it can provide more flexibility for the PTECH’s applications. 

 

These are some of the points that the company will realize in the foreseeable future as a 

result of the work performed during the internship.  
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8. Appendices 

This chapter presents the publicly available appendices of the report. 

8.1 Internship Proposal 

 

PROPOSTA DE ESTÁGIO  
Ano Lectivo de 2012 / 2013 

Mestrado em Informática e Sistemas (Desenvolvimento de Software ou 
Tecnologias da Informação e do Conhecimento) 

  

 
 

TEMA 

Mobile Web Applications 
 
 

SUMÁRIO 
Este estágio tem como objectivo o estudo de várias ferramentas e frameworks 
orientadas ao desenvolvimento de aplicações web mobile. Pretende-se que no 
final do estágio a Present Technologies passe a ter conhecimento na área do 
desenvolvimento e packaging de aplicações web em diferentes plataformas 
mobile. 

 ÂMBITO 

A área mobile web tem vindo a crescer exponencialmente nos últimos anos, 
sendo que esta é uma área muito dinâmica onde estão constantemente a surgir 
novas plataformas e frameworks de desenvolvimento. Este estágio irá centrar-
se no estudo e avaliação em diferentes áreas: 

 Sistemas operativos mobile 

 Ferramentas de packaging  

 Frameworks para desenvolvimento  

 OBJECTIVOS 

O presente projecto pretende atingir os seguintes objectivos: 

 Estudo do sistema operativo Tizen 

 Estudo e avaliação de ferramentas de packaging para web 
applications 

http://www.deis.isec.pt/curso_mei.aspx
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 Estudo e avaliação de mobile web frameworks 

 PROGRAMA DE TRABALHOS  

O estágio consistirá nas seguintes actividades e respectivas tarefas: 

 

 T1 – Mobile Operating Systems: 

 Estudo da plataforma Tizen 

 T2 – Web applications packaging tools: 

 Estudo e avaliação da ferramenta PhoneGap 

 Estudo e avaliação da ferramenta Appcelerator 

 Estudo e avaliação da ferramenta Sencha Touch 

 Estudo e avaliação da ferramenta Qt 

 Estudo e avaliação da ferramenta Rhodes 

 Comparação das ferramentas estudadas 

 T3 – Mobile Web Frameworks: 

 Estudo e avaliação da framework jQuery Mobile 

 Estudo e avaliação da framework jQTouch 

 Estudo e avaliação da framework Sencha Touch 

 Estudo e avaliação da framework Jo 

 Estudo e avaliação da framework Yiibu 

 Comparação das frameworks estudadas 

 CALENDARIZAÇÃO DAS TAREFAS 

O plano de escalonamento dos trabalhos é apresentado em seguida: 

Tarefas

T1

T2

T3

Metas INI M1 M2 M3

N+4 N+5N N+1 N+2 N+3

Meses

N+6

 

INI    Início dos trabalhos 
M1 (INI + 4 Semanas)  Tarefa T1 terminada 
M2 (INI + 16 Semanas)  Tarefa T2 terminada 
M3 (INI + 28 Semanas)  Tarefa T3 terminada 
 

 RESULTADOS  

Os resultados do estágio serão consubstanciados num conjunto de documentos e 

deliverables a elaborar pelo estagiário de acordo com o seguinte plano: 
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M1:   

R1.1: Protótipo de uma aplicação web para o sistema operativo Tizen. 

R1.2: Documento que descreva o sistema operativo Tizen, a sua 

arquitectura e a forma de desenvolver aplicações para este. 

 

M2:   

R2.1: Packaging de uma aplicação recorrendo a cada uma das 

ferramentas estudadas. A aplicação deverá ser testada nos diferentes sistemas 

operativos suportados. A aplicação a testar será disponibilizada pela Present 

Technologies. 

R2.2: Documento com detalhes de cada ferramenta de packaging 

estudada e com um comparativo entre as mesmas. 

 

M3:   

R3.1: Desenvolvimento de um protótipo recorrendo a cada uma das 

frameworks estudadas. 

R2.2: Documento com detalhes de cada framework de desenvolvimento 

estudada e com um comparativo entre as mesmas. 

 LOCAL DE TRABALHO  

O estágio decorrerá nas instalações da Present Technologies, em Coimbra 
em regime de full-time. 

 METODOLOGIA  

A metodologia de desenvolvimento de software seguirá o processo de 
desenvolvimento interno da Present Technologies, baseado no modelo em 
cascata/waterfall. 

O acompanhamento do estágio será efectuado através de reunião regulares 
entre o orientador e o estagiário. 

 ORIENTAÇÃO  
ISEC: 

Nome (nome@isec.pt) 
Categoria 

Entidade de Acolhimento:  
Aurélio Santos (aurelio.santos@present-technologies.com) 
Software Engineer 

mailto:nome@isec.pt
mailto:aurelio.santos@present-technologies.com
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 CARACTERIZAÇÃO E REMUNERAÇÃO 

 

 Data de início: 02/01/2013 

 Data de fim: 31/07/2013 

 Horário: Será praticado o horário em vigor na Present Technologies 

Remuneração: O estágio será não remunerado 

 

8.2 Tizen 

This appendix contains the additional material that was elaborated for the Tizen study. 

 

8.2.1 Tizen Core Components 

The description of the Tizen Core subsystem’s components is as follows [86], [87]: 

 Application Framework – provides functionality for application management, 

including launching other applications using the package name, Uniform 

Resource Identifier (URI), or Multipurpose Internet Mail Extensions (MIME) 

type. In addition it notifies applications for common events, such as low 

memory, low battery, changes in screen orientation and push notifications. 

 Base – contains of Linux-based system libraries that provide features for 

database support, internationalization, and XML parsing. The Base is defined as 

self-sufficient and by using the packages in Base the system is able to boot itself 

to console/login. 

 Connectivity – provides functionalities for networking and connectivity, such as 

3G, Wi-Fi, Bluetooth, HTTP, and NFC. The Connection Manager is based on 

ConnMan
38

. 

 Graphics and UI – consist of the system graphic and UI stacks, which include 

Enlightenment Foundation Library
39

 (EFL), an X11-based window management 

system, Input Service Framework (ISF), and OpenGL ES
40

. 

                                                 

38 https://connman.net/ 
39 http://www.enlightenment.org/?p=about/efl 
40 http://www.khronos.org/opengles/ 
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 Location – provides Location-Based Services (LBS), which contain information 

for position, geocoding, satellite, and GPS status. It is based on GeoClue
41

, 

which delivers location information from GPS, Wi-Fi Positioning System 

(WPS), Cell ID, and sensors. 

 Messaging – supports functionality for sending and receiving SMS, MMS, and 

email messages; 

 Multimedia – it is based on GStreamer
42

 and provides functionality for playing 

and manipulation of audio, video, images, and VoIP. The Audio server 

functionality is based on PulseAudio
43

. 

 PIM – enables the managements of user data on the device, such as calendar, 

contacts, and tasks, and also enables retrieving data about the device context (e.g. 

device position). 

 Security – it is responsible for the security deployment across the system and 

consists of platform security enablers, such as: access control; certificate 

management, and secure application distribution. Security is based on Simplified 

Mandatory Access Control Kernel
44

 (SMACK). 

 System – provides system and device management functionality, including 

interfaces for accessing devices, such as: sensors; display; vibrator; monitoring 

devices and handling events (e.g. USB, MMC, charger, and ear jack events); 

power management. 

 Telephony – provides functionality for cellular and VoIP calls, such as: 

managing call-related and non-call-related information and services for Universal 

Mobile Telecommunications System (UMTS) and Code Division Multiple 

Access (CDMA). 

 Web – provides a complete implementation of Tizen Web API optimized for 

mobile devices. It includes the WebKit rendering engine. 

 

                                                 

41 http://www.freedesktop.org/wiki/Software/GeoClue/ 
42 http://gstreamer.freedesktop.org/ 
43 http://www.freedesktop.org/wiki/Software/PulseAudio/ 
44 http://schaufler-ca.com/ 
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8.2.2 Tizen Web Device APIs 

Table 4 provides the description for the APIs part of the Tizen Web Device API set [28]. 

Table 4 Tizen Web Device APIs 

API Description 

Tizen Provides basic definitions that are used in all other Tizen Web 

Device APIs, such as generic callback for success and error, 

WebAPIError and WebAPIException interfaces, and different 

types of filters. 

Alarm Provides functionality for setting and unsetting alarms. Each 

client application has its own alarm storage, thus it cannot see 

an alarm that is set by another application. 

Application Provides functionality for launching other applications and thus 

they can process a task and return the result to the caller 

application. 

Bluetooth Provides access to diverse Bluetooth functionalities. 

Calendar Provides functionality for creating, deleting, reading and 

updating items in specific calendars. 

Callhistory Provides access to call history for cellular and VoIP calls. 

Contact Provides functionality for creating, deleting, reading and 

updating contacts in specific address books. 

Content Provides functionality to discover multimedia contents on a 

device. 

Download Provides functionality for downloading remote objects by HTTP 

requests. 

Filesystem Provides access to the file system of a device. 

Messaging Provides functionality for sending and receiving SMS, MMS, 

and Email messages. 

NFC Provides access to NFC devices. 

Notification Provides functionality to notify the user for events that happen 

in the application. 

Power Provides functionality for requesting resource states related to 

the power management (e.g. display brightness). 

System Information Provides information for the hardware of a device, such as 

device’s display, storage, network and other capabilities. 
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API Description 

System Setting Provides functionality for system settings. 

Time Provides information about date, time and time zones. 

 

8.2.3 W3C/HTML5 API 

In Table 5 are presented the W3C APIs divided into categories based on their 

functionality [28]. Some of the APIs are stable while others are draft specifications and 

thus they are subject to change. 

Table 5 W3C APIs 

Category Specifications 

Communication  The WebSocket API 

 HTML5 Web Messaging 

 XMLHttpRequest Level 2 (Partial) 

 HTML5 The session history of browsing contexts 

(Partial) 

 Server-Sent Events 

Device  Touch Events (Partial) 

 Device Orientation Event Specification (Partial) 

 Battery Status API 

 Vibration API 

 HTML5 Browser state 

 The Screen Orientation API 

 The Network Information API 

DOM, Forms and 

Styles 
 HTML5 Forms (Partial)  

 Selectors API Level 1  

 Selectors API Level 2 (Partial) 

 Media Queries (Partial) 

 CSS 2D Transforms 

 CSS 3D Transforms  Module Level 3 (Partial) 

 CSS Animations Module Level 3 

 CSS Transitions Module Level 3 
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Category Specifications 

 CSS Colors Module Level 3 

 CSS Backgrounds and Borders Module Level 3 

(Partial) 

 CSS Flexible Box Layout Module (Partial) 

 CSS Multi-column Layout Module  (Partial) 

 CSS Text Module Level 3 (Partial) 

 CSS Basic User Interface  Module Level 3 (CSS3 

UI) (Partial) 

 CSS Fonts Module Level 3 (Partial) 

 Web Open Font Format (WOFF) File Format 1.0 

 HTML5 

Graphics  HTML5 The canvas element (Partial) 

 HTML Canvas 2D Context 

 HTML5 SVG 

Location  Geolocation API Specification 

Media  HTML5 The video element (Partial) 

 HTML5 The audio element (Partal) 

 getUserMedia (Partial) 

 Web Audio API 

 HTML Media Capture 

Performance and 

Optimization 
 Web Workers (Partial) 

 Page Visibility API 

 Timing control for script-based animation 

Security  Cross-Origin Resource Sharing 

 HTML5 iframe element 

Storage  Web Storage (Partial) 

 File API 

 File API: Directories and System (Partial) 

 File API: Writer (Partial) 

 HTML5 Application Cache 

 Web SQL Database 

 Indexed Database API (Partial) 
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Category Specifications 

UI  Clipboard API and events 

 HTML5 Drag and drop 

Widget  Widget Packaging and XML Configuration  

 Widget Interface 

 XML Digital Signatures for Widgets  

 Widget Access Request Policy 

 

8.2.4 Supplementary API 

Table 6 presents the non-W3C specifications supported by Tizen.  

Table 6 Supplementary specifications description 

Specification Description 

WebGL (Khronos Spec)  Describes an additional rendering context and support 

objects for the HTML 5 canvas element. 

Typed Arrays (Khronos 

Spec)  

Provides an API for interoperability with native binary data. 

FullScreen API (Mozilla 

Spec)  

Allows elements to be displayed in full screen mode 

programmatically. 

viewport MetaTag (Apple 

Spec)  

Allows the control of the viewport's size and scale. 

 

The supplementary specifications are partially supported in the current release. The list 

of the supported functionalities can be seen in [28]. 

 

8.2.5 Tizen Native API 

A list of all documented Tizen C++ namespaces along with brief descriptions is provided 

in Table 7 [58]. More information for each namespace in the list can be found in the 

Tizen Native API Reference on [28]. 
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Table 7 Namespace list 

Namespace Description 

Tizen The root namespace of the Tizen native framework 

Tizen::App Contains classes for application development 

Tizen::App::Package Contains classes and interfaces for a package 

Tizen::Base Contains classes and interfaces for basic features 

Tizen::Base::Collection Contains classes and interfaces for various collections 

Tizen::Base::Runtime Contains classes for running applications 

Tizen::Base::Utility Contains classes for various utilities 

Tizen::Content Contains classes and interfaces for content management and 

search services 

Tizen::Graphics Contains classes for drawing-related functionalities 

Tizen::Graphics::Opengl Contains interfaces for OpenGL 

Tizen::Io Contains classes and interfaces for performing basic I/O 

operations 

Tizen::Locales Contains classes that define culture-related information 

Tizen::Locations Contains classes and interfaces for location-related 

information and services 

Tizen::Media Contains classes and interfaces for media processing services 

Tizen::Messaging Contains classes and interfaces for messaging services 

Tizen::Net Contains classes and interfaces for network account, 

connection, and addressing utilities 

Tizen::Net::Bluetooth Contains classes and interfaces for Bluetooth services 

Tizen::Net::Http Contains classes and interfaces for HTTP 1.1 client 

programming 

Tizen::Net::Nfc Contains classes and interfaces for NFC services 

Tizen::Net::Sockets Contains classes and interfaces for Transmission Control 

Protocol (TCP) or User Datagram Protocol (UDP) socket 

programming 

Tizen::Net::Wifi Contains classes and interfaces for Wi-Fi management and 

Wi-Fi Direct functionalities 

Tizen::Security Contains classes and interfaces for security services 

Tizen::Security::Cert Contains classes and interfaces for managing the X.509 
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Namespace Description 

digital certificate 

Tizen::Security::Crypto Contains classes and interfaces for the cryptographic 

primitives 

Tizen::Shell Contains classes for phone shell management 

Tizen::Social Contains classes and interfaces for managing the user’s 

social information 

Tizen::System Contains classes and interfaces for System 

Tizen::Telephony Contains classes and interfaces of the Telephony service 

Tizen::Text Contains classes that encode and decode characters 

Tizen::Ui Contains classes and interfaces that act as the UI foundation 

for the applications 

Tizen::Ui::Animations Contains classes for animation-related functionalities 

Tizen::Ui::Controls Contains classes and interfaces for creating rich user 

interface components for the applications 

Tizen::Ui::Effects  Contains classes and interfaces for effect-related 

functionalities 

Tizen::Ui::Scenes Contains the classes for the scene management and its 

related functions 

Tizen::Uix Contains the Ui extension classes and the Tizen interfaces 

Tizen::Uix::Sensor Contains Sensor classes and Tizen interfaces 

Tizen::Uix::Speech Contains classes for speech-related functions 

Tizen::Uix::Vision Contains the classes for face-related functions 

Tizen::Web Contains classes to manage the history data 

Tizen::Web::Controls Contains classes and interfaces to interact with the browser 

engine 

Tizen::Web::Json Contains interfaces to manipulate JSON documents 

 

8.2.6 Tizen Web App Configuration File 

The Tizen IDE provides an editor for the config.xml file; thus it makes it easier to 

preserve the required XML schema. The only mandatory element of the configuration 

file is the widget element. All other elements and their respective attributes are optional. 

The optional elements that can be modified using the editor are described in Table 8 [28]. 
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Table 8 Configurations of the config.xml file 

Type Description 

Identifier Identifier for the widget. 

Version 
Widget version attribute, indicates the current version of the 

widget. 

Name 
Full human-readable name for a widget that is used, for example, in 

an application menu or in other contexts. 

Content 
Custom start file the user agent is expected to use when it 

instantiates the widget. 

Icon Custom icon for the widget. 

Author 
People or an organization associated with the creation of the 

widget. 

E-mail Email address associated with the author. 

Web Site 

IRI (a URL that contains characters from the Universal Character 

Set (UCS)) associated to author (e.g. a homepage, a profile on a 

social network, etc.). 

License 

Software license, which may include: a usage agreement, 

redistribution statement, and/or a copyright license terms under 

which the content of the widget package is provided. 

License URL 
Valid IRI or a valid path that points to a representation of a 

software and/or content license. 

Description Human-readable description of the widget. 

Widget UI 

Width 
Preferred viewport width of the instantiated custom start file. 

Widget UI 

Height 
Preferred viewport height of the instantiated custom start file. 

View Modes 
Author’s preferred view mode (full screen, floating, windowed, 

maximized, and minimized). 

 

The editor also allows the management of some Tizen specific information about the 

widget and the source code of the config.xml file, as well as the configuration of the 

elements: feature, access, preference and localization. The purpose of these elements is 

described below: 

 feature – indicates the Tizen APIs that the widget needs to access at runtime; 

 access – indicates the permissions that the widget needs to access network 

resources. All the URLs that the widget needs to access must be defined and for 
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each URL has to be indicated if the widget is allowed to access the URL sub-

domains; 

 preference – indicates the preferences that are associated with the widget the first 

time it is initiated; 

 localization – defines the localization for elements of the config.xml file. 

 

8.3 Firefox OS 

This appendix presents the additional material that was elaborated for the Firefox OS 

study. 

 

8.3.1 API Reference 

This subsection presents the API support of Firefox OS published on [8] as of March 

2013. Some of the Web APIs are still under development thus their current status can be 

consulted on [91]. 

8.3.1.1 Firefox Device APIs 

The Firefox OS Device APIs expose access to device’s features. These APIs are 

summarized in Table 9. 

Table 9 Firefox OS Device APIs 

API Description 

Alarm Provides access to the alarm settings of the device in order to 

schedule a notification or an application to be started. 

Audio Policy Introduces the concept of a hierarchy of audio channels which gives 

priority to the sounds of the different channels. 

Browser Allows the app to implement a browser. 

Contacts Gives access to the contacts from the device’s address book and from 

the SIM card. 

Desktop 

Notification 

Enables displaying notifications on the screen. 

Device Storage Allows manipulating picture, audio and video files stored on the 

device or on the SD card. 

FM Radio Provides access to the FM radio of the device to turn it on/off and 
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API Description 

change the radio stations. 

Geolocation Enables the app to obtain the user’s current location. 

Storage Allows utilizing storage without size limitation, for example for 

application caching or IndexedDB (an API that enables to store 

significant amounts of structured data).  

SystemXHR Permits anonymous cross-origin XMLHttpRequest 
45

even when 

Cross-Origin Resource Sharing (CORS) is not enabled in the target 

site. 

TCP Socket Supports the creation of TCP sockets and the communication over 

them. 

 

8.3.1.2 General Web APIs 

The General Web API consists of the standard Web APIs supported by the Firefox 

browser. These are presented in Table 10. 

Table 10 General Web APIs 

API Description 

Audio Uses the HTML5 <audio> tag to embed and manipulate audio 

content. 

Device orientation Detects changes in the device’s current orientation using the 

orientation sensors on the device. 

DOM events Lists all the events that can be used to interact with DOM objects. 

Geolocation Allows the app to request and use the current location of the user. 

History Enables the access to the browser’s history. 

IndexedDB Provides an interface for storing and retrieving large amounts of 

data on the device. 

Network requests Uses XMLHttpRequest to send and receive data via HTTP. 

Online and offline 

events 

Enables the app to respond to changes in the network connection. 

Screen orientation Detects changes in the screen orientation of the device.  

Storage Provides various ways to store small amounts of data on the 

                                                 

45 http://www.w3.org/TR/XMLHttpRequest/ 
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API Description 

device. 

Touch events Provides functionality for supporting touch events. 

Video Uses the HTML5 <video> tag to embed and manipulate video 

content. 

Web workers Allows scripts to be run in background threads.  

 

8.3.1.3 Firefox Marketplace Services 

The APIs presented in Table 11 support publishing and managing apps on the Firefox OS 

Marketplace. 

Table 11 Firefox Marketplace APIs 

API Description 

Marketplace Makes available all documentation related to the Marketplace. 

Payment Allows information about the available pricing tiers to be obtained and 

also processing in-app purchases. 

Submission Supports the process of publishing an app which includes validation, 

creation, update, etc. 

 

8.4 Samsung Smart TV 

This appendix presents the additional material that was elaborated for the SSTV study. 

 

8.4.1 Common Module’s Objects 

Table 12 [17] presents the objects provided by the Common Modules component. 

Table 12 Common Modules’ objects 

Object  Description 

TVKeyValue Defines TV key code. 

Widget Provides functions needed for running an application. 

Plugin Allows some plugin functions to be used. 

CimageViewer Enables JPEG files to be displayed in Samsung DTV (Digital 
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Object  Description 

Module Television). 

IME (Input Method 

Editor) Module 

Enables text input in applications via the remote controller. 

SSO Module Enables SSO in applications. 

Common popup IME Provides functions for the popup IME. 

IMECN Module Chinese IME Module 

 

8.4.2 Device APIs 

Table 13 presents the APIs in the Device API set along with their description [29]. 

Table 13 Device APIs 

API  Description 

AppCommon Deals with functions for key registration. 

Audio Controls audio related functions. 

Common Describes common functions of all plugins. 

Download Downloads file asynchronously to the DTV platform using 

HTTP or HTTPS protocol. 

External Widget 

Interface 

Provides functions for account management. 

Filesystem Controls the file system on the DTV platform. 

FrontPanel Displays the Blu-ray disc player. 

ImageViewer Displays JPEG image. 

IME Enables text input in applications. 

Network  Controls and gets network relative information. 

Nnavi Controls SSTV specific functions. 

Player Plugin for multimedia playback. 

Screen Deals with 3D effect functions of TV screen. 

TaskManager Deals with inter-task action of TV. 

Time Deals with time functions of TV. 

TV Handles the EPG (Electronic Program Guide) functions of 

TV. 
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API  Description 

TVMW Controls various functionalities on the DTV platform, 

including country, language, input source, etc. 

Video Controls video related functions. 

Window  Deals with channel and screen functions of TV. 

 

8.4.3 SSTV API Summary 

The APIs supported by the SSTV are summarized in Table 14. More details can be found 

on [29]. 

Table 14 SSTV API reference 

API Description 

Advertisement 

Service  

Provides advertisement functionality. 

AllShare  Provides a set of interfaces that are used for developing 

convergence services such as contents sharing, device 

control, etc.  

AppsFramework Includes the following APIs: Core, Scene Manager, Util, 

Service, and UI Components. 

Common Modules Provides information about some general purpose objects 

that can be used in applications.  

Convergence App Provides a REST-based interface to allow devices that 

support the HTTP protocol to communicate with a SSTV. 

Device Provides access to some middleware DTV features. 

File Allows the I/O functionality of build-in flash memory to be 

used. 

In-Application 

Purchase 

Enables users to purchase items using their Samsung Apps 

accounts. 

Interactive Remote Allows a SSTV application to be controlled by using a 

remote application launched on a smartphone. 

Interactive Mobile 

Device 

Supports the interaction between a mobile device and the 

SSTV.  

SEF (Service 

Extension 

Provides the functionality to call native C++ middleware 

from JavaScript. It has the same functions as Device API. 
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Framework) Plugin 

Web Device Enables the utilization of SSTV middleware functions, such 

as access to the file system, smart interactions, audio and 

video control, etc. The Web Device API is an alternative to 

the Device APIs. 

 

8.4.4 Configuration of SSTV config.xml 

Table 15 presents a description and possible values for each element of the config.xml 

file [16]. 

Table 15 Config.xml elements description 

Element Description Value 

<widget> The parent element for the application. - 

<ThumbIcon> An icon image displayed in the Application Manager. 

It is used in case of no focus and its size is 106 x 86 pixels. 

File path 

<BigThumbIcon> An icon image displayed in the Application Manager. 

It is used in case the focus is placed on an image and its 

size is 115 x 95 pixels. 

File path 

<ListIcon> An icon image displayed in the Application Manager. 

The size is 85 x 70 pixels. 

File path 

<BigListIcon> An icon image displayed in the Application Manager. 

The size is 95 x 78 pixels. 

File path 

<category> The category of the application. The possible values are: 

video; sports; game; lifestyle; information; education. 

String 

<autoUpdate> Defines whether to synchronize with the hub site.  y | n 

<apptype> The contents type of the application. 

11: HTML + JavaScript + Flash Player Object 

12: Adobe SWF (Ver. Flash Lite 3.1) 

13: Adobe SWF (Ver. Flash 10.1) 

14: Lua Script 

Number 

<contents> File path and name to the initial execution of contents. 

This tag is required only for the following application 

File Path 
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Element Description Value 

types: 

12: Adobe SWF (Ver. Flash Lite 3.1) 

13: Adobe SWF (Ver. Flash 10.1) 

14: Lua Script 

<channelType> Channel-bound Service Type (optional) root | child 

<channelRoot> Defines the root-child relation where the root is 

application ID (optional, only used when the channel-

bound service type is the child). 

When connected to more than one root, the roots are 

separated by ‘::’. 

Application 

ID 

<channelName> Channel information to be executed for channel-bound 

service (optional, only used when the channel-bound 

service type is the root). 

Each channel is separated by using ‘::’ (e.g.: 

AAA::BBB::CCC). 

String 

<channelDisplay> Defines whether the installed channel-bound service is 

displayed on the first main screen or not.  

y | n 

<cpname> Defines the application provider. String 

<cpauthjs> Defines the name of the JavaScript file, which allows the 

account information of application providers to be 

confirmed. This file has to be written in a defined format. 

String 

<login> Defines whether or not a service is available for login. If 

‘y’ is selected, ID and password have to be entered in the 

Integrated Sign-in site of the Application Manager for 

login. Validity verification should be performed in the 

JavaScript file defined in the <cpauthjs> element. 

y | n 

<ver> Defines the application version, which is needed for the 

application updates. 

x.xxx 

<mgrver> Defines the version of the Application Manager, which is 

required to run the application. 

x.xxx 

<fullwidget> Defines whether the application is full-screen or single-

wide. The display type affects the audio policy of the 

application when it is run. 

y | n 

<srcctl> If ‘y’ is selected, the TV source automatically switches 

from the current TV channel or external input to the 

y | n 
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internal media player and goes back when the application 

is completed. 

<childlock> Defines whether to use the childLock function. This 

function allows the user to lock an application. 

y | n 

<audiomute> Turns on/off the audio. If ‘y’ is selected the TV 

broadcasting sound is muted when entering the 

application. The ‘y’ value is selected for full screen and 

‘n’ for single-wide application. 

y | n 

<videomute> Turns on /off the video. If ‘y’ is selected, TV broadcasting 

is not displayed on the screen when entering the 

application. 

y | n 

<dcont> Sets the “Disable dynamic contrast” function, which 

adjusts TV contrast and brighten TV screen ratio by 

darkening the dark screen and lightening the light screen. 

Selecting ‘y’ turns off the Dynamic contrast, and selecting 

‘n’ turns on the Dynamic contrast. For full screen 

application ‘y’ should be selected to remove the sparkling.  

y | n 

<movie> Applications that play video files can cause problems as 

stated below: 

1. If the video file is played on a device connected to 

the HDMI port, such as a DVD player, sounds can 

get mixed, when executing an application 

converting sources (e.g. YouTube). 

2. Sparkling can happen at the entry of the 

application, due to the difference of frame rate 

between the TV image and video file. 

Such problems can be avoided by selecting ‘y’ – the 

HDMI device is stopped, or the frame rate is fixed. 

y | n 

<widgetname> Defines the name of the application. String 

<description> Provides a brief description of the application. String 

<width> 

<height> 

The screen area that the application will occupy. It is 

recommended to define 960 * 540 pixels – the DTV 

specification. 

Number 

<author> Defines the name of the author. String 

<network> This tag is used to check the network while the application 

is running. If the value is ‘y’ and the network test result is 

y | n 
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Element Description Value 

‘fail’, entry for the application can be blocked with a 

message that indicates the failure. 

If no value is selected, the default is ‘y’. 

<hubsite> This tag is used to define if the hub site has been 

authorized or not while the application is running. If the 

tag value is ‘y’, and the hub site has not been authorized, 

entry for the application can be blocked with a message 

that indicates the failure. 

If no value is selected, the default is ‘n’. 

y | n 

<pushNotice> Defines if the application provides Push Notification 

Service. 

If no value is selected, the default is ‘n’. 

y | n 

<pushControl> This tag is reserved for former Push Notification Service. 

If no value is selected, the default is ‘n’. 

y | n 

<pushUerbinding> Defines if Push Notification Service is provided for a 

specific user.  

If no value is selected, the default is ‘n’. 

y | n 

<flashplayer> The ‘y’ value is selected for applications that use 

embedded Flash player objects or a stand-alone Flash 

player. 

y | n 
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