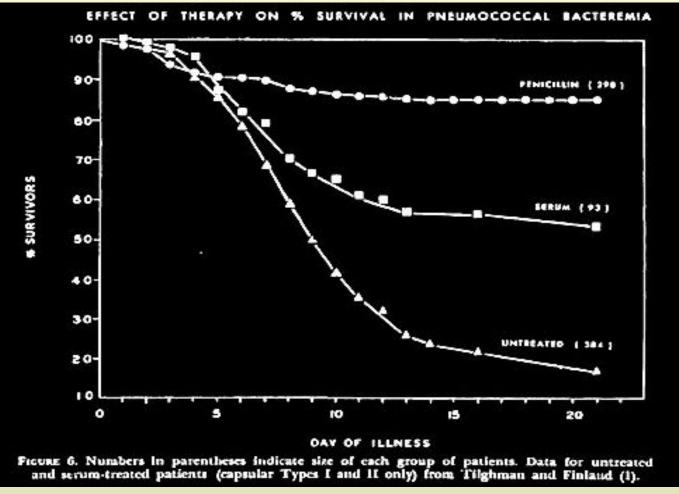


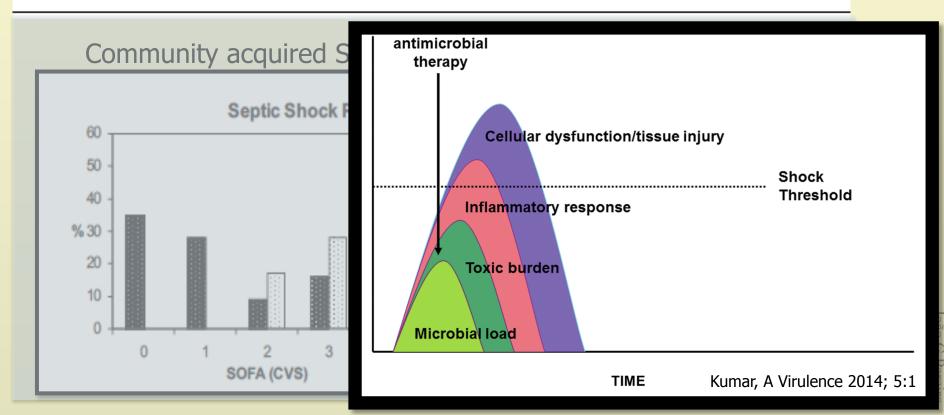
21st Infection and Sepsis Symposium

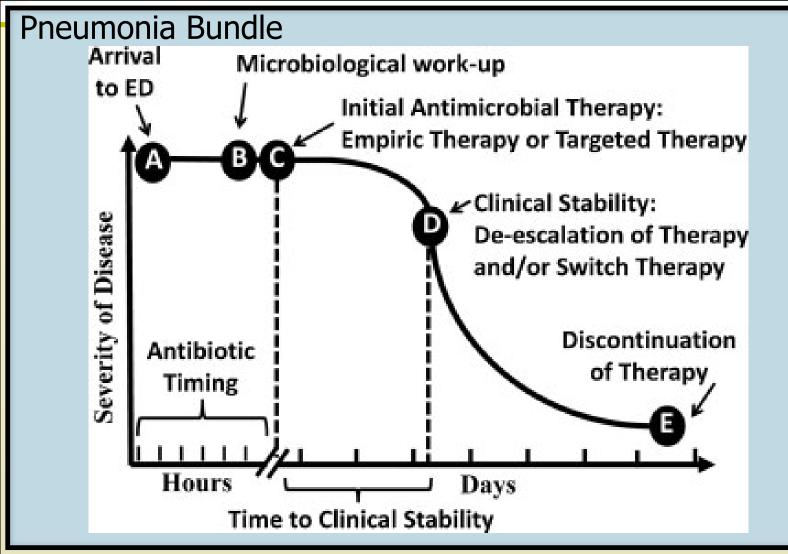
07 - 09 March 2016 | Sheraton Porto

Community Acquired Pneumonia


João Gonçalves Pereira, MD, PhD ICU Director Hospital Vila Franca Xira

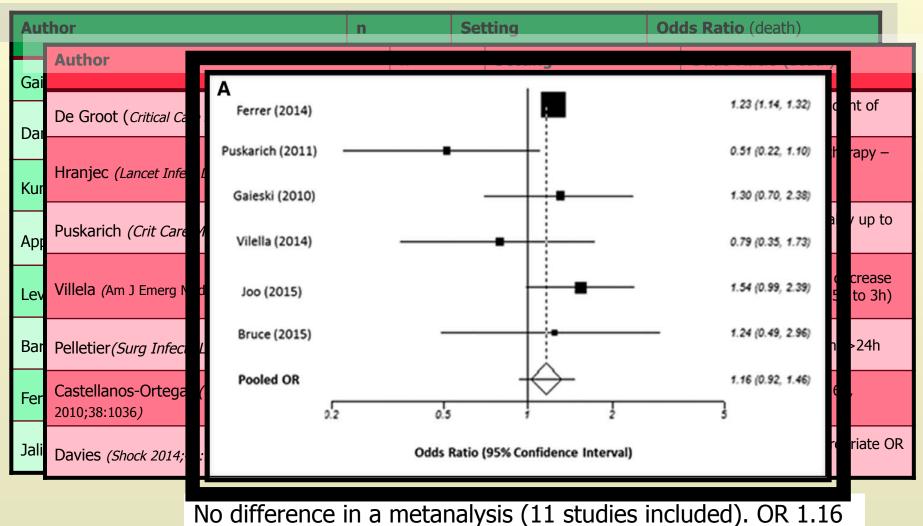
Maximizing the efficacy of antibiotic therapy

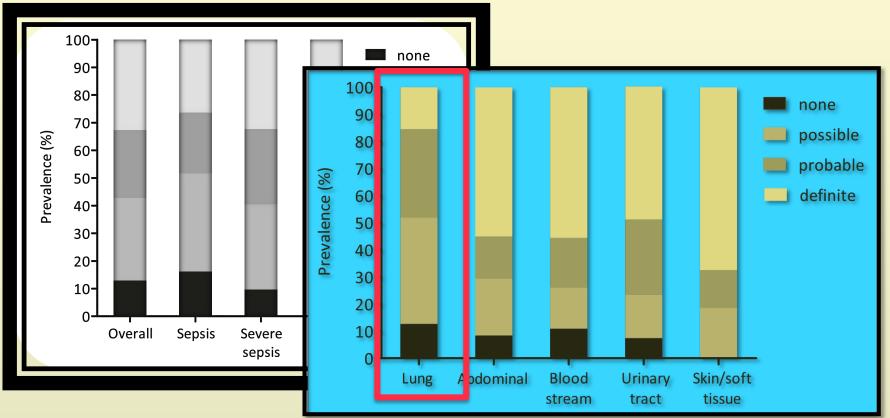

Survival in Bacteremic Pneumococcal Bacteremia Treated with Penicillin or Serum


Austrian Ann Intern Med 1964;60:759

Mas Practice de Xea Time until start of antibiotic therapy (CAP)

Time to First Dose, h	Patients, No.	In-hospital Mortality, % (95% CI)	30-d Mortality, % (95% CI)	30-d Readmission, % (95% Cl)	LOS Above the Median (5 d), % (95% Cl)
0-2	3578	7.4 (6.6-8.3)	12.5 (11.5-13.7)	12.6 (11.5-13.8)	43.6 (41.9-45.2)
>2-4	4810	6.3 (5.6-7.0)	10.9 (10.0-11.8)	13.5 (12.5-14.5)	41.0 (39.6-42.4)
>4-6	2331	6.9 (6.0-8.1)	11.7 (10.4-13.0)	13.3 (11.9-14.8)	42.9 (40.9-45.0)
>6-8	1095	7.2 (5.8-8.9)	13.0 (11.0-15.1)	13.1 (11.1-15.3)	46.1 (43.1-49.1)
>8	1957	8.0 (6.9-9.3)	13.8 (12.3-15.5)	15.0 (13.4-16.8)	47.2 (45.0-49.5)

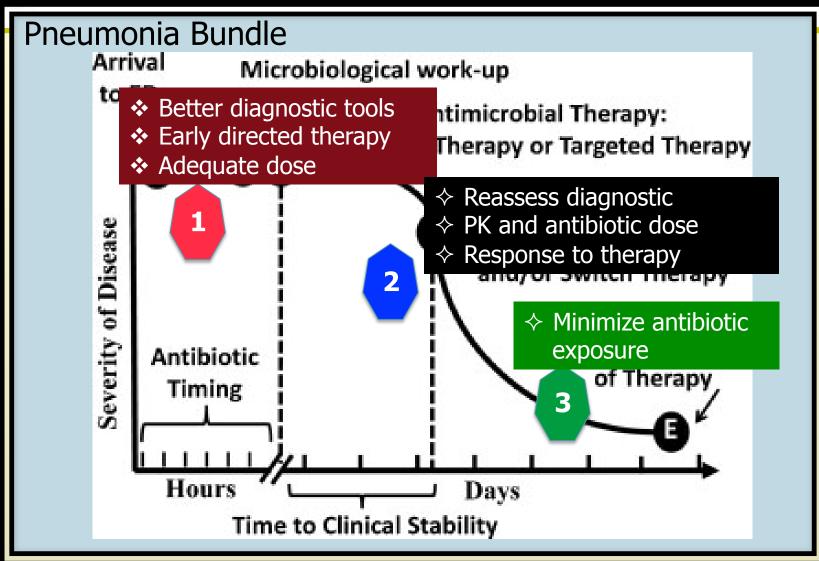




Early antibiotics and outcome

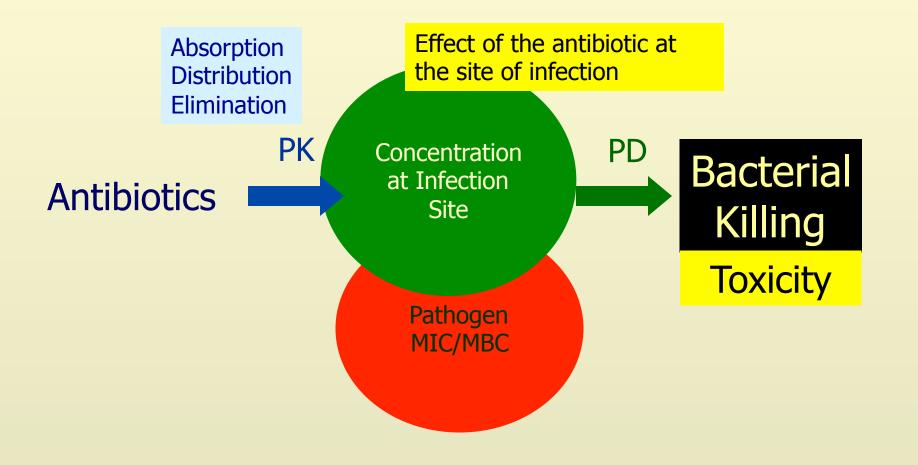
Accuracy of sepsis diagnosis

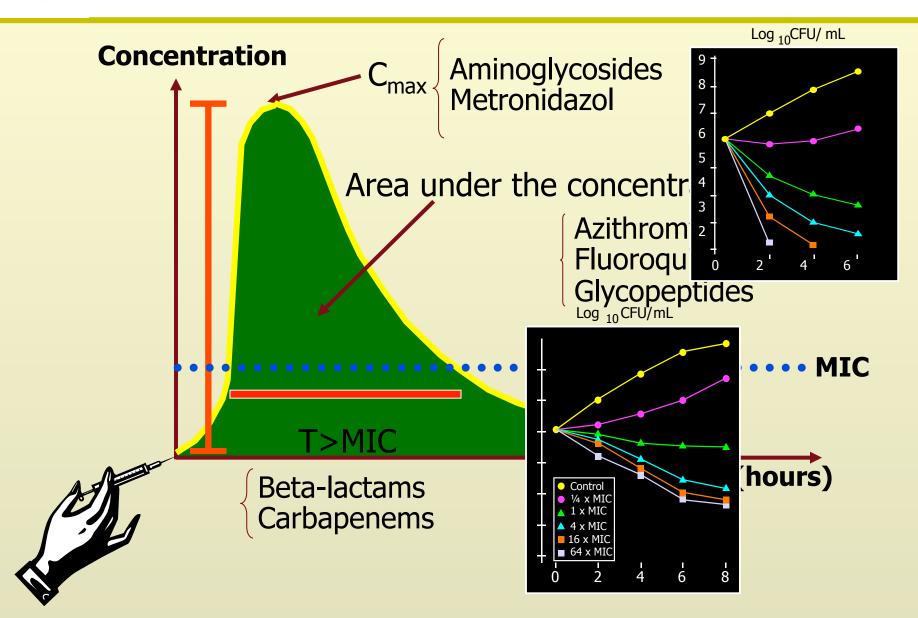
Infection rate in patients with presumed "sepsis" upon presentation



Klein Klouwenberg Crit Care 2015;19:319

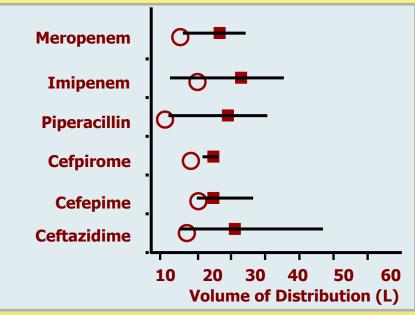
> Over 50% of patients with suspected pneumonia probably did not had infection

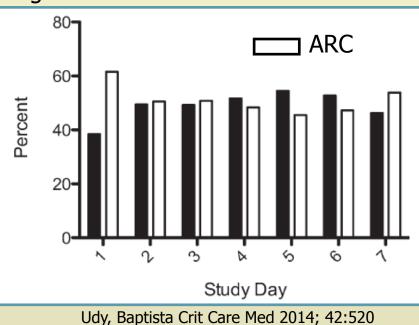

Antibiotics are of no use if patients are not infected (harm?)


Antimicrobial dose Pharmacokinetics

Dose antibiotics to maximize its exposure to bacteria

Patterns of Antimicrobial Activity




Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of β -lactams

- ✓ Two fold variability of PK parameters (Vd and Cl)
- ✓ Usually increase
- \checkmark No clear correlation with clinical parameters

Augmented Volume of Distribution

Augmented renal Clearance

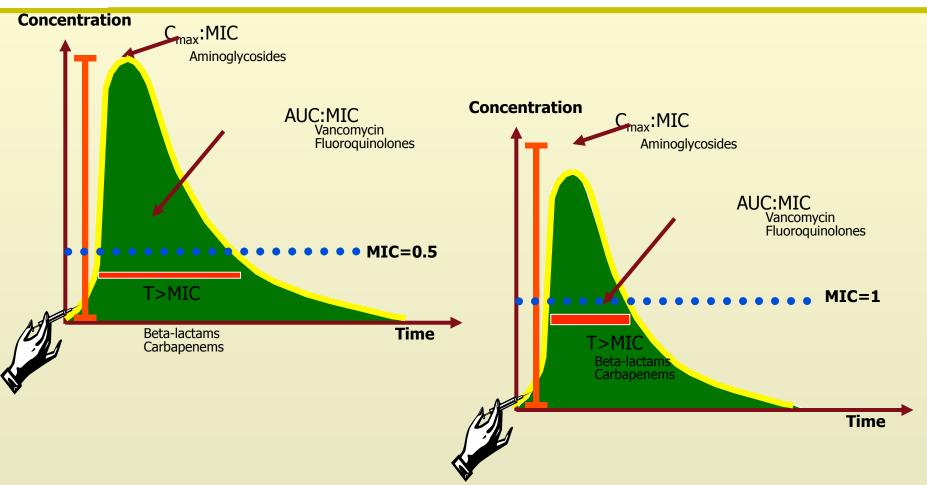
Dose of Antibiotics

Obesity

		Adjusted				
l	Variable	OR (95% CI)			
	1. Sex (Reference: Male)	0.88 (0.76-1.0	(3)			
	2. Age					
	20-34 yrs	1.00 (0.78-1.2	(7)			
	35–49 yrs	1.03 (0.84-1.2	6)			
	50–64 yrs	0.99 (0.82-1.2	.0)			
	65-70 yrs (Reference)	-				
	3. Socioeconomic Status					
	Low Income	1.00 (0.85-	•			
	Middle Income (Reference)	-	VEV DO			
	High Income	0.78 (0.56-	KEY PC			
	4. BMI Category		• Of th			
	Normal (Reference)	-	ontibi			
	Overweight	1.06 (0.89_	antibi			
	Obese	1.26 (1.03-	64%			
	5. Alcohol Consumption		 Signif 			
	Non-drinker	1.20 (1.01-	<i>u</i>			
	Moderate (Reference)	-	antibi			
	Heavy	0.98 (0.72-	use, a			
	6. MRSA	2.33 (1.78-1	-			
	7. History of Antibiotic Use	1.27 (1.08-	• Altern			
			necess			

OINTS

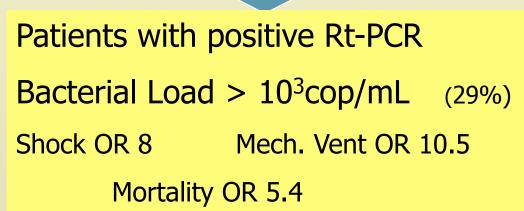
P-Value

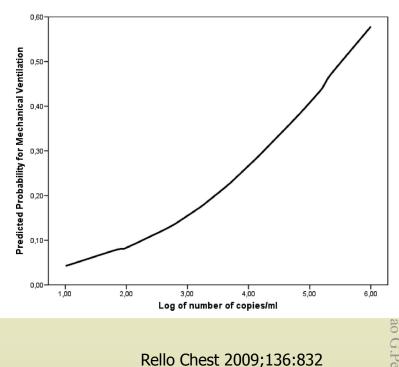

0.106

0.974 0.812 0.954

- ne 828 (13.4%) persons who suffered an otic treatment failure (ATF) event, nearly were either overweight or obese.
- ficant predictors of ATF were obesity, iotic resistance, recent history of antibiotic and being a non-drinker
- native antibiotic dosing strategies may be necessary when treating obese patients for acute infections as a means of reducing the risk of ATF.

Patterns of Antimicrobial Activity MIC and resistance

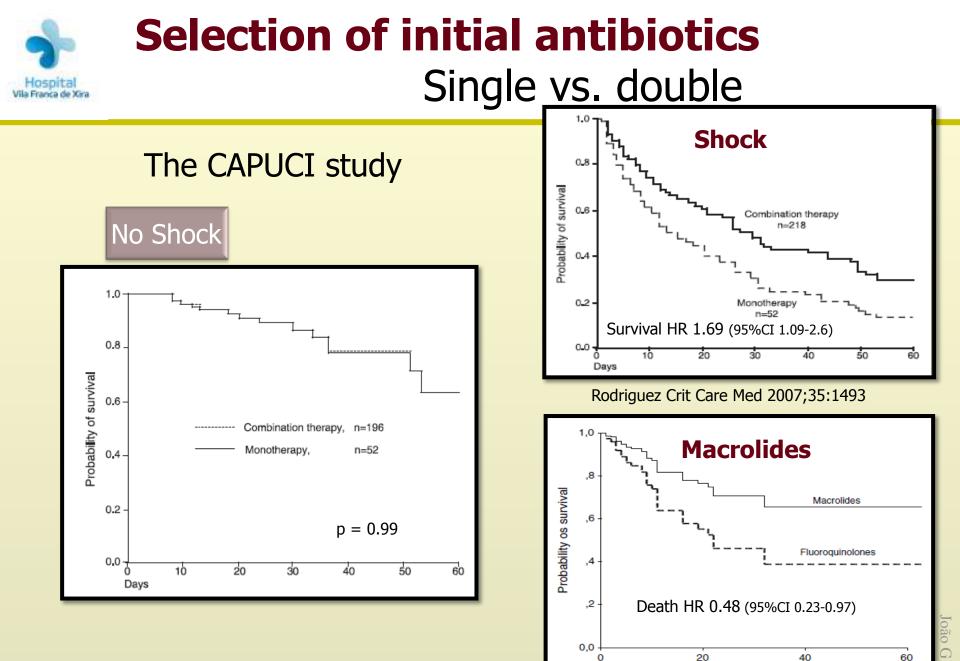

- ♦ Increase in MIC 0.5 \rightarrow 1mg/L: Bacteria remain sensitive.
- ♦ However AUC:MIC and Cmax:MIC decrease to one half; T>MIC also decreases
- ♦ Changes in PK may impact clinical efficacy



Bacterial load and mortality

Pneumococcal Pneumonia n=353

- Rt-PCR positive 26,3% (36,5% positive BC)
- Septic shock OR 6.29
- Mech. Ventilation OR 7.96
- Mortality OR 7.08



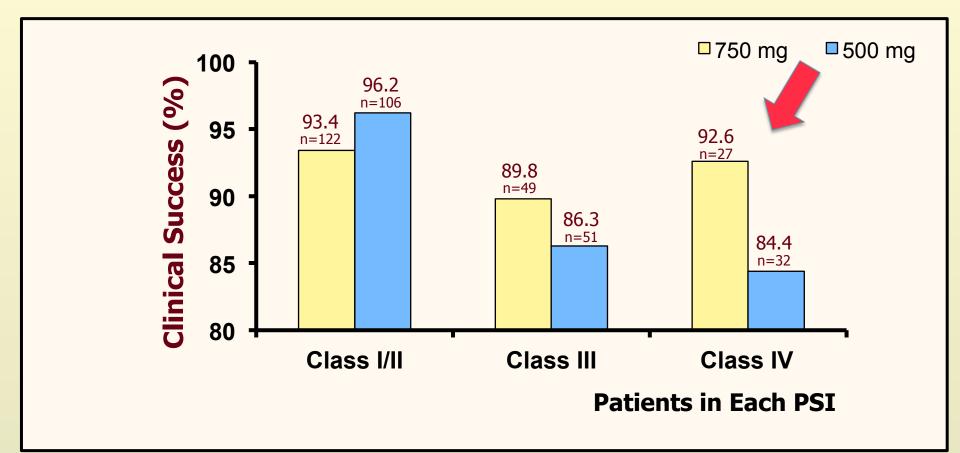
Selection of initial antibiotics Single vs. double

Use of a macrolide in CAP

Study or Subgroup	log[Risk Ratio]	SE	Weight	Risk Ratio IV, Random, 95% CI	Risk Ratio IV, Random, 95% Cl
Arnold 2013	-0.713		15.0%	0.49 [0.33, 0.72]	
Bratzler 2008		0.663	3.1%	1.00 [0.27, 3.67]	
Bratzler 2008	-0.357		14.3%	0.70 [0.46, 1.06]	
Karhu 2013	0.307	0.402	6.9%	1.36 [0.62, 2.99]	
Martin-Loeches 2010	-0.73	0.37	7.8%	0.48 [0.23, 1.00]	
Rodrigo 2013	-0.062	0.135	18.8%	0.94 [0.72, 1.22]	+
Shorr 2013	-1.298	0.506	4.9%	0.27 [0.10, 0.74]	
Sligl 2013	-0.131	0.337	8.8%	0.88 [0.45, 1.70]	
Wilson 2012	-0.049	0.108	20.4%	0.95 [0.77, 1.18]	+
Total (95% CI)			100.0%	0.75 [0.58, 0.96]	
Heterogeneity: Tau ² = 0.07; Chi ² = 18.68, df = 8 (P = 0.02); I ² = 57% 0.01 0.1 1 10 100					
Test for overall effect: Z = 2.31 (P = 0.02) Favors macrolide Favors non-macrolide					

Sligl Crit Care Med 2014; 42:420

Martin-Loeches Intensive Care Med 2010; 36:612


Days

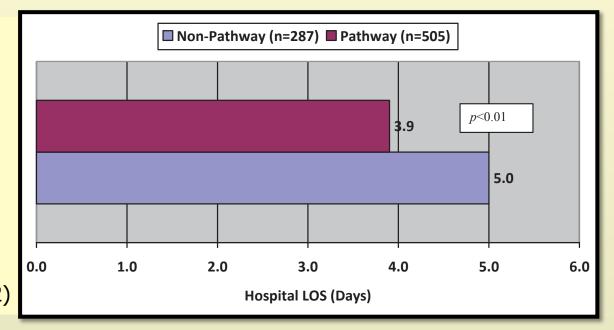
J.Pereira

Dose of Antibiotics

Clinical Success by PSI Class

*Clinically evaluable patients at the 7- to 14-day post therapy visit

Dunbar Clin Infect Dis. 2003;37:752

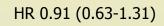

Frei et al. BMC Infectious Diseases 2011, **11**:188 http://www.biomedcentral.com/1471-2334/11/188

BMC Infectious Diseases

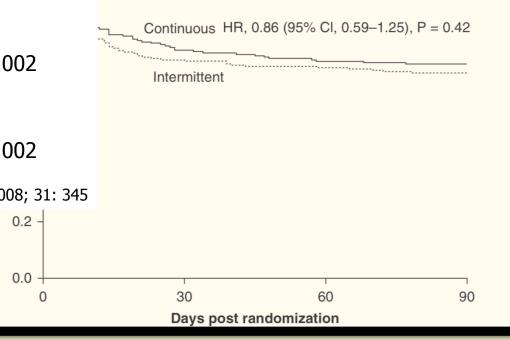
A clinical pathway for community-acquired pneumonia: an observational cohort study

- ♦ Lower adjusted 90d mortality (p=0.02)
- ♦ Lower LOS (3.9 vs. 5d, p<0.001)</p>

Frei, BMC Infect Dis 2011,11: 188


Joel M. Dulhunty^{1,2}, Jason A. Roberts^{1,2,3}, Joshua S. Davis^{4,5}, Steven A. R. Webb^{6,7}, Rinaldo Bellomo^{8,9}, Charles Gomersall^{10,11}, Charudatt Shirwadkar¹², Glenn M. Eastwood⁸, John Myburgh^{13,14}, David L. Paterson^{15,16}, Therese Starr^{1,2}, Sanjoy K. Paul¹⁷, and Jeffrey Lipman^{1,2}; for the BLING II Investigators for the ANZICS Clinical Trials Group*

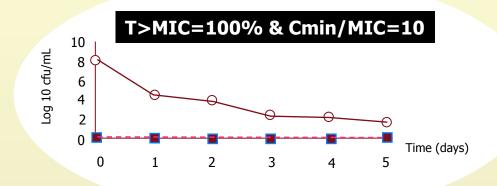
Clinical success

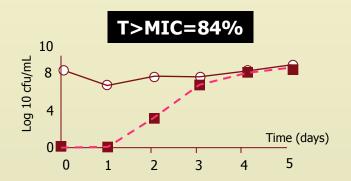

Cefepime or ceftazidime

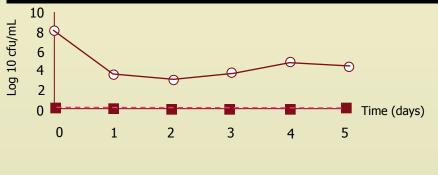
- AUIC≥250 Cure 79% vs. 33%; *P* = 0.002
- *T*>MIC of 100% Cure 82% vs. 33%; *P* = 0.002

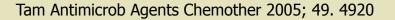
Mckinnon. Int J Antimicrob Agents 2008; 31: 345

ents with severe sepsis, there was no 3-lactam antibiotic administration nfusion.



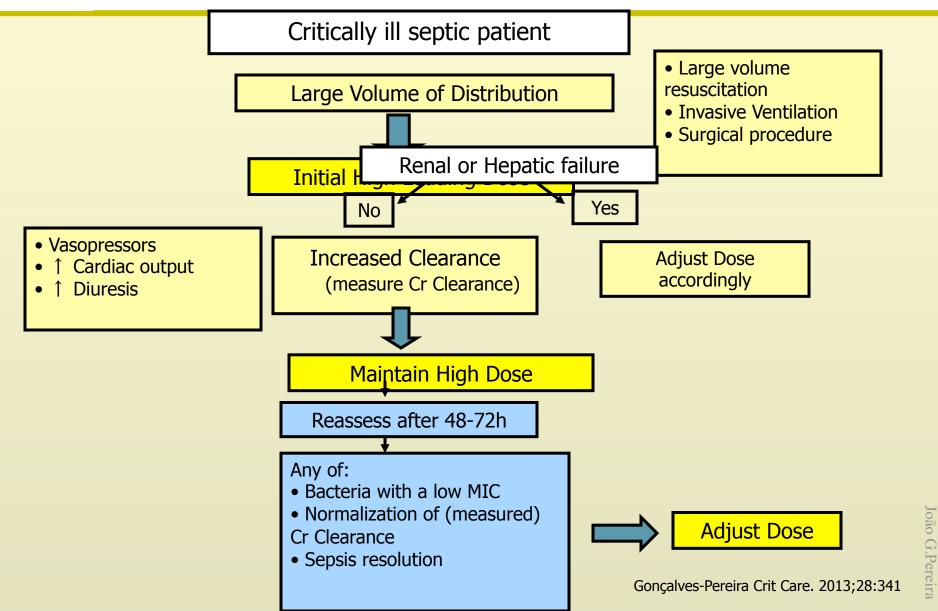

N=432


Optimization of minimum concentration/MIC ratio


T>MIC=100% Cmin/MIC=1.7+ tobramycin

 \bigcirc

Wild type

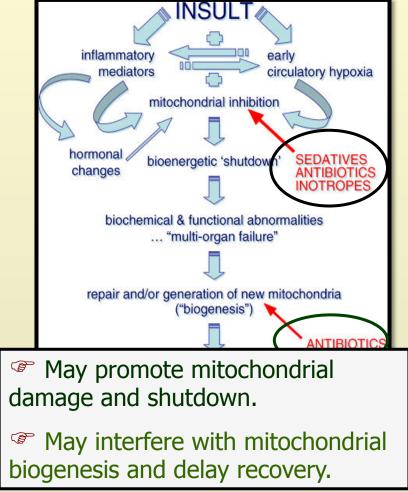

Amp C mutant

Dose modulation: A new concept of antibiotic therapy in Journal of the critically ill patient? $3, 3, 5, \star$ Critical Care

Joao Goncalves-Pereira MD^{a,*}, José-Artur Paiva MD, PhD^b

Accumulation and Toxicity

Ceftriaxone 2 g/d – Increase 2-3* from D1 to D7


Cr Cl	>50 mL/min	<50 mL/min		
Day 1	19,5 µg/mL	46,5 µg/mL		
Day7	38,5 µg/mL	125 µg/mL		

Heinemeyer Int Care Med 1990; 16; 448

Betalactamin-induced central nervous

side effects include confusion, disturbances of behaviour, hallucinations, asterixis, myoclonic jerks, and generalised convulsive or nonconvulsive seizures. Those are probably underreported but may contribute to morbidity and mortality.

Chatellier Int Care Med 2002; 28. 214

Singer. Plos Med 2005. e167

Duration of Antimicrobial Activity Reduction of exposure

Siegel et al (1999, [10])	Cefuroxime 750mg q8h IV, 2d, then cefuroxime axetil 500mg q12 PO, 5d, 7d in total	Cefuroxime 750mg q8h IV, 2d, then cefuroxime axetil 500mg q12 PO, 8d, 10d in total	52	No difference in clinical cure
Leophonte et al (2002, [11])	Ceftriaxone 1g IV qd, 5d	Ceftriaxone 1g IV qd, 10d	244	No difference in clinical cure
Dunbar et al (2003, [12])	Levofloxacin 750mg IV/PO qd, 5d	Levofloxacin 500mg IV/PO qd, 10d	528	No difference in clinical cure and bacteriological outcome
Dunbar et al (2004, [13])		Levofloxacin 500mg IV/PO qd,	149	Noninferiority in
(2004, [13])	3-7 d vs. 7-10	b C		riological
Leophonte et al (2004, [14])	No differe	nce in outcom	Ies	erence in al, bacteriological, and radiological efficacy
Tellier et al (2004, [15])	Telithromycin 800mg PO qd, 5d	Telithromycin 800mg PO qd, 7d	378	No difference in clinical cure and bacteriological outcome
Tellier et al (2004, [15])	Telithromycin 800mg PO qd, 5d or 7d	Clarithromycin 500mg PO bid, 10d	559	No difference in clinical cure and bacteriological outcome
El Moussaoui et al (2006, [16])	Amoxicillin 1g IV q6h, 3d	Amoxicillin 1g IV q6h, 3d, then amoxicillin 750mg PO q8h, 5d, 8d in total	119	Noninferiority in clinical and radiological success
File et al (2007, [17])	Gemifloxacin 320mg PO qd, 5d	Gemifloxacin 320mg PO qd, 7d	510	Non-inferiority in clinical, bacteriological, and radiological efficacy

"I see no hope for the future of our people if they are dependent on the frivolous youth of today, for they are reckless beyond words. When I was young, we were taught to be discreet, respectful of elders, but the present youth are exceedingly disrespectful and impatient." Hesiod, 700 BC