


 

 

 

 

 

 

 

 

 

Departamento  

de Engenharia Electrotécnica 

 

 

 

 

 

 

Network Distributed 3D Video Quality 

Monitoring System  
  

Trabalho de Projeto apresentado para a obtenção do grau de Mestre em 
Automação e Comunicações em Sistemas de Energia 

 

 

Autor 

Nuno Alexandre Bettencourt Martins 
 
 

 

 

 

Orientador 

Doutor Fernando José Pimentel Lopes 
Instituto Superior de Engenharia de Coimbra 

 
 
 

 
 

Coimbra, setembro, 2014 





Acknowlegments

I would like to declare my sincere acknowledgements to everyone that helped me during

this research work.

I would like to begin by expressing my gratitude to my supervisor, Professor Fernando

Lopes whose guidance and availability were essential for this project completion.
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Abstract

This project description presents a research and development work whose primary goal

was the design and implementation of an Internet Protocol (IP) network distributed

video quality assessment tool. Even though the system was designed to monitor H.264

three-dimensional (3D) stereo video quality it is also applicable to different formats of 3D

video (such as texture plus depth) and can use different video quality assessment models

making it easily customizable and adaptable to varying conditions and transmission

scenarios.

The system uses packet level data collection done by a set of network probes located

at convenient network points, that carry out packet monitoring, inspection and analysis

to obtain information about 3D video packets passing through the probe’s locations.

The information gathered is sent to a central server for further processing including 3D

video quality estimation based on packet level information.

Firstly an overview of current 3D video standards, their evolution and features is

presented, strongly focused on H.264/AVC and HEVC. Then follows a description of

video quality assessment metrics, describing in more detail the quality estimator used

in the work. Video transport methods over the Internet Protocol are also explained in

detail as thorough knowledge of video packetization schemes is important to understand

the information retrieval and parsing performed at the front stage of the system, the

probes.

After those introductory themes are addressed, a general system architecture is

shown, explaining all its components and how they interact with each other. The devel-

opment steps of each of the components are then thoroughly described.

In addition to the main project, a 3D video streamer was created to be used in the

implementation tests of the system. This streamer was purposely built for the present

work as currently available free-domain streamers do not support 3D video streaming.

The overall result is a system that can be deployed in any IP network and is flexible

enough to help in future video quality assessment research, since it can be used as

a testing platform to validate any proposed new quality metrics, serve as a network

monitoring tool for video transmission or help to understand the impact that some

network characteristics may have on video quality.
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Resumo

Este relatório de projeto apresenta o trabalho de pesquisa e desenvolvimento no qual

o principal objetivo foi o desenvolvimento e implementação de um sistema de determ-

inação da qualidade de v́ıdeo em redes IP distribúıdas. Apesar de ser destinado à mon-

itorização da qualidade de v́ıdeo 3D codificado usando a especificação H.264 para v́ıdeo

estereoscópico, é também posśıvel o seu uso para testar diversos outros formatos de

v́ıdeo 3D (tais como textura mais profundidade) assim como diferentes modelos de de-

terminação de qualidade de v́ıdeo, tornado-o numa solução facilmente personalizável e

adaptada a diversas condições e cenários de transmissão.

O sistema utiliza informações recolhidas por um conjunto de sondas, conveniente-

mente distribúıdas por diversos pontos da rede, responsáveis por monitorizar, inspecionar

e analisar pacotes de rede de maneira a obter informações acerca de v́ıdeo 3D que esteja

a passar pelas localizações das sondas. As informações recolhidas são enviadas para um

servidor central para serem processadas de modo a estimar a qualidade de v́ıdeo 3D.

Em primeiro lugar é apresentado um resumo da evolução e caracteŕısticas dos stand-

ards de v́ıdeo 3D, descrevendo em mais detalhe o H.264/AVC e o HEVC. Segue-se depois

a descrição de métricas para a determinação da qualidade de v́ıdeo, explicando a métrica

utilizada para validar o trabalho desenvolvido. Os métodos de transporte de v́ıdeo sobre

redes IP são também descritos, para que se possa perceber com o é efetuada a análise dos

pacotes de rede capturados e como deles são determinadas as informações necessárias ao

ńıvel das sondas do sistema.

Após a apresentação dos temas que definem o enquadramento do trabalho, segue-

se uma descrição da arquitetura geral do sistema, detalhando conceptualmente todos

os seus componentes e mostrando a forma como estes interagem para formar um todo

funcional. Apresenta-se seguidamente uma descrição pormenorizada dos vários passos

que foram implementados no desenvolvimento de cada um dos componentes do sistema

global.

Foi criado um emissor de v́ıdeo 3D como complemento ao projeto principal, para

que fosse posśıvel testar as implementações realizadas uma vez que não existe até ao

momento software livre capaz emitir v́ıdeo por uma rede IP.

O resultado é um sistema capaz de ser instalado em qualquer rede IP, flex́ıvel o sufi-

ciente para ajudar em futuros avanços no desenvolvimento de métricas de determinação

da qualidade de v́ıdeo, uma vez que pode ser usado como plataforma de testes para
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validar novas propostas de métricas de qualidade de v́ıdeo. Pode também servir para

monitorizar uma rede ajudando a perceber qual o impacto que algumas caracteŕısticas

da rede possam ter sobre a qualidade de v́ıdeo a ser transmitida.
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Chapter 1

Introduction

This chapter presents an introduction to the developed work, contextualizing the reader

and presenting the work objectives and the project structure.

1.1 Context and Motivation

With the increasing number of available services such as Video-on-Demand (VoD) and

television broadcast over the internet (IPTV), comes the exponential growth of data

traffic and bandwidth needs in the communication infrastructure. By 2018 video traffic

will represent about 80% of all traffic, not including traffic generated by Peer-to-Peer

(P2P) video sharing. Also, every second almost a million minutes of video content will

cross the network [7].

In some cases all these services are delivered over unreliable communication channels,

causing data losses and ultimately interfere with the user Quality of Experience (QoE).

For this reason, the effectiveness of each video service must be monitored and measured

for verifying its compliance with the system performance requirements, for benchmarking

competing service providers, for service monitoring and automatic parameter setting,

network optimization, evaluation of customer satisfaction and adequate setting of price

policies [8].

3D video is slowly gaining its place in the mass market due to the developments of

Video
Decoder

Video
Encoder

L

R

L

R

Quality Monitor

Network

Figure 1.1: 3D Video Quality Monitoring scenario
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CHAPTER 1. INTRODUCTION

immersive video technologies making 3D display devices more advanced and affordable

for the end user. Nowadays most of the 3D video solutions use multiplexed left and

right views, that need special glasses (passive anaglyphic, polarized, active shutter) to

channel each view to the correspondent eye, allowing depth perception. Autostereoscopic

displays are an emerging display technology that dispenses the need for the use of glasses,

opening the way for a more comfortable viewing experience.

Since 3D video is only now starting to become more ubiquitous the interest in 3D

video quality assessment is also growing. Due to their differing characteristics, video

quality assessment of two-dimensional (2D) is not applicable for 3D video content so

new video quality metrics are being developed and tested. Testing these new quality

measures is usually done on a controlled environment using simulated errors, but for the

cases where the video quality metric being tested is aimed for quality assessment in an

IP network, the use of real scenario data or real-time tests is yet to be fully investigated.

For these cases, there is a need for a software tool capable of gathering general

video data passing through the transmission network (Figure 1.1), to be used by any

video quality metric (2D or 3D) in real-time or use the stored real case scenario data to

understand the effect that network conditions may have on the transmitted video. This

Project Report explains the work involved in developing and deploying such a system,

capable of helping future investigations and developments in the video quality assessment

field.

1.2 Objectives

The overall objective of this work is to develop a 3D capable Video Quality Monitor

Tool. To achieve this, the following tasks were carried out:

• Study video quality assessment metrics to understand what parameters are usually

needed to implement a video quality metric;

• Learn about video transmission schemes. There are several standards for video

transmission over IP and one of them had to be chosen taking into consideration

several characteristics, such as error resilience, ease of implementation and what

parameters can be fed to a video quality algorithm;

• Create a system architecture capable of monitoring a video transmission network.

It must be flexible, modular and conceptually simple to understand and use, since

the goal is for the system to be used by several users;

• Develop network packet monitoring software capable of detecting and inspecting

video streams and generate usable packet level statistical data. This software must

2 Network Distributed 3D Video Quality Monitoring System
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be reliable and capable of retrieve data to be further used on several video quality

assessment models mainly for 3D video;

• Specify and implement a database for storage of all gathered data for future ana-

lysis. It has to be simple but at the same time avoid any data redundancy;

• Devise a way to test and implement several video quality assessment models. This

work is a platform to test new quality models or old ones under several testing

conditions, so there has to be a way anyone can implement a quality model;

• Design a Graphical User Interface (GUI) to configure and visualise the system

status and the quality being transmitted.

1.3 Outline

Chapter 2 presents a general description of 3D video, as well as a description of video

standards evolution, explaining in more detail the H.264 standard and the more recent

High Efficiency Video Coding (HEVC).

Chapter 3 describes video streaming protocols over IP networks and video packetiza-

tion techniques. Understanding how video is transmitted is of great importance because

the system is based on packet retrieval and information extraction from network packets.

Video quality metrics are presented in Chapter 4. In this chapter, a video quality

metric to use for testing purposes and validate the system implementation is also chosen.

In Chapter 5 the global system architecture is presented and described. It sums up

the system with a simplified description of the several components and describes how it

is supposed to operate. The constraints of system deployment and what steps must be

taken during actual operation are also explained. This Chapter also presents a detailed

description, from a development and implementation point-of-view, of each one of the

system components that comprise the video monitoring system.

Testing procedures and results of the finalized system are presented and discussed

in Chapter 6. Also the development of a 3D video streamer for testing purposes is also

described given its importance for the project.

Chapter 7 concludes this project description and proposes future developments to

improve or add features to the 3D capable video monitoring tool.
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Chapter 2

Video Coding

2.1 Video Standards

Standards help to maximize compatibility, interoperability, safety and quality. Typically

for a video coding standard, only the bitstream and syntax are standardized, so the codec

developers have freedom to optimize the encoder/decoder as they wish, as long as the

encoded result is compatible with the standard.

Fist video systems evolved from oscilloscopes and used CRTs to show a transmitted

signal modulated on a radio frequency carrier [9]. An early form of compression was

interlacing in which odd and even lines were transmitted alternatively, making possible

to save halve the bandwidth or double the vertical resolution.

In 1984, H.120 was standardized making it the first digital video coding technology

standard. It used Differential Pulse Code Modulation (DPCM), scalar quantization and

variable length code techniques for PAL and NTSC transmission.

In 1990 H.261 was created. It used a hybrid video coding scheme that is still the

basis of many coding standards. Motion between frames is estimated using data from

previously encoded frames, then the residual difference of that prediction is encoded

after being transformed to the frequency domain [10].

Motion JPEG used JPEG still image compression as basis [11]. Standardized in 1992

it basically encoded video as a series of individually encoded images, thus not taking

advantage of the temporal redundancy resulting on poor compression ratio. On the

other hand it enables easy frame-by-frame video edition.

MPEG-1 (1992) was designed to achieve acceptable video quality at 1,5 Mbit/s at

352 x 288 pixel resolution [12]. The lack of support for interlaced video formats lead

to the development of MPEG-2/H.262 release on 1993, supporting Standard Definition

(SD) (720 x 480 pixels) and High Definition (HD) (1920 x 1080 pixels) [13].

In 1995 H.263 was released with mobile phone video conferencing in mind enabling

video calls at low bitrates for mobile wireless communications [14][15].

In an effort to avoid paying royalties to international patent holding companies, the

People’s Republic of China standardized Audio Video Standard (AVS) in 2005. Its
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coding efficiency is comparable to H.264, but has lower computational complexity.

2.1.1 H.264/AVC

H.264/MPEG-4 part 10/AVC [16] is currently the leading standard in use and was de-

veloped by the ITU-T Video Coding Experts Group (VCEG) together with the ISO/IEC

JTC1 Moving Pictures Experts Group (MPEG), forming a group known as the Joint

Video Team (JVT). H.264/AVC is present in applications such as terrestrial, cable and

satellite HDTV broadcasting, Blu-ray disks and internet streaming (YouTube, IPTV).

It is a method and format for video compression. An encoder converts video into

a compressed format and a decoder converts compressed video back into uncompressed

format. It introduces several improvements when compared to previous standards and

was created with the increase of high definition popularity and the need for higher coding

efficiency.

C
on

tro
l D

at
a

Data Partitioning

Video Coding Layer

H320 MP4FF H323/IP MPEG2 RTP

Network Abstraction Layer

Coded Macroblock

Coded Slice/Partition

Figure 2.1: H.264 Layer Structure (adapted from [1])

It supports 21 Profiles for several applications making it a versatile codec.

Its main features are:

• Multiple Reference Frames: allow the video encoder to choose more than one

previously decoded frame to base each macroblock in the next frame. The use

of up to 16 previous frames as reference is allowed, considerably improving the

compression efficiency as well as the perceived quality;

• Flexible Motion Prediction Modes : H.264 supports motion compensated pre-

diction different block sizes. Each macroblock can be divided into smaller partitions

with a block size of 16x16, 16x8, 8x16 and 8x8;

• Search Range : the increased number of reference frames and the wide search

range leads to higher access frequency, and minimal impact on Peak signal-to-noise

ratio (PSNR) and bitrate performances;
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• Deblocking Filter : such filter is applied to blocks in a decoded frame to improve

the visual quality by smoothing the sharp edges between blocks that may have been

produced at coding time;

• Context-adaptive variable-length coding (CAVLC) and Context-adaptive

binary arithmetic coding (CABAC) : these two context adaptive coding

schemes are employed to improve coding efficiency by adjusting the code tables

according to the neighbouring information.

Video Coding Layer

The Video Coding Layer (VCL) defines the techniques for prediction, transforming and

encoding, in order to generate a compressed H.264/AVC bitstream.

The video color space used by H.264/AVC takes advantage of the human visual sys-

tem, that perceives scene content with more sensitivity to brightness and separating it

from color information. Color representation is therefore separated into three compon-

ents called luminance(Y) that represents brightness and chrominance(Cb and Cr), that

represent the color deviation from gray toward blue and red. The human visual system

is also more sensitive to luminance than to chrominance so H.264/AVC uses a sampling

structure called 4:2:0 where the chrominance component has one fourth of the luminance

samples.

Video is captured as a sequence of images (frames), typically between 25 and 30

frames-per-second (fps) to give the viewer the perception of continuous movement. H.264

explores the temporal redundancies present between contiguous frames by computing the

displacement between then, thus taking advantage of a reference picture to predict others

following using motion information. Depending on the prediction, there are three basic

frame coding types:

• I-frames, use intra picture prediction and are coded without using any reference

from other frames;

• P-frames, that support intra picture coding and inter picture predictive coding;

• B-frames, which support intra picture coding, inter picture predictive coding and

inter picture bi-predictive coding (combination of two predictions).

Frames are arranged by type into a Group of Pictures (GOP), including a I-frame and

all subsequent frame combinations until the next I-frame is present (Figure 2.2). I-frames

are the initial reference point to decode a video stream and are of great importance for

error propagation recovery.

Frames are divided into macroblocks, each with a luminance sample size of 16x16 and

8x8 samples of each one of the chrominance types. Macroblocks are then grouped into

Slices that divide a picture into portions that are individually encoded. This division
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I B B B P B B B P B

Figure 2.2: GOP frame reference relationship

plays an important role in error resiliency as it confines error propagation to a small area

of a picture.

The encoder forms a prediction of the current macroblock based on previously coded

data from the current frame using intra prediction, or from other frames using inter

prediction. The resulting prediction is then subtracted from the current macroblock

forming a residual.

Intra prediction uses 16x16 and 4x4 block sizes to predict the macroblock from pre-

viously coded pixels in the same frame [2]. This is done by extrapolating the values of

previously coded neighbouring pixels to form a prediction, then the prediction is sub-

tracted forming a residual block. Each block size has a number of possible prediction

modes: four modes (vertical, horizontal, DC and Plane) for a 16x16 block size; nine

modes for 4x4 (Figure 2.3).

Figure 2.3: 4x4 prediction modes [2]

The choice of intra prediction block size is a trade-off between prediction efficiency

and cost of signalling the prediction mode: a small 4x4 block gives a more accurate

prediction (good match to the actual data in the block ), meaning a smaller residual

thus, fewer bits are necessary to represent that particular block. However, for each 4x4

block the encoder has to signal its presence to the decoder meaning that more bits are

required to code this choice; larger blocks gives a less accurate prediction, but fewer bits

are required to code the choice.

Inter prediction uses a range of block sizes (16x16 to 4x4) to predict pixels in the

current macroblock using data from similar regions in previously coded frames. These

frames may occur before or after the current frame in display order. The offset between

the position of the current partition and the prediction region in the chosen reference
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picture is a motion vector that is differentially coded from other motion vectors in neigh-

bouring blocks.

The resulting residual samples are coded using a 4x4 or 8x8 integer transform, that

is an approximation to the Discrete Cosine Transform (DCT). The transform output is

a block of transform coefficients that is then quantized (divide each value by an integer,

keeping the integer part of the result). The Quantitization Parameter (QP) defines the

precision of the transform coefficients, in a way that a high QP value results in high

compression but produces poor decoded video quality.

Network Abstraction Layer

The Network Abstraction Layer (NAL) was designed to provide ”network friendliness”

enabling simple and effective customization of the use of the VCL for a broad variety

of systems [1] . It consists of a series of NAL Units (NALUs) that encapsulate the

data provided by the VCL (VCL NALU) and other types (Non-VCL NALU) such as

Sequence Parameter Sets (SPS) and Picture Parameter Sets (PPS) that contain control

information. Each NALU consist of a 1-byte NALU header followed by a raw byte

sequence payload (RBSP) containing control information or coded video data. The

NALU header (Figure 2.4) is comprised of the following fields:

• forbidden bit (1 bit): must be 0. If 1 the H.264 specification declares it as a

syntax violation;

• nal ref idc (2 bits): 00 indicates that the content of the NALU is not used as

reference picture for inter prediction, meaning that the NALU can be discarded

without risking the integrity of the decoded video. Values above 00 indicate that

the use of the NALU is required to maintain integrity;

• nal unit type (5 bits): this field specifies the NALU payload type according to

Table A.1

NAL UNIT Header NAL UNIT Payload

Forbidden
Bit NAL_REF_IDC NAL_UNIT_TYPE

3 4 5 6 70 1 2

Figure 2.4: NALU header structure

An Access Unit (AU) is a set of NALUs that once decoded result in a decoded

picture made up of one or more slices. Each slice consists of a Slice Header and Slice
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Data, that in turn is a series of coded macroblocks containing the information about its

type (Intra, Inter), prediction information, QP and residual data.

The NALUs can be mapped by several transport layer schemes or encapsulated in a

media file. This subject will be addressed in detail in Chapter 3.

2.1.2 HEVC

HEVC [4] coding standard was released on January 2013 by the ITU-T VCEG and the

ISO/IEC MPEG, together forming the Joint Collaborative Team on Video Coding (JCT-

VC). The main goal of this standard is to improve compression performance relative to

other existing standards, promising a bitrate reduction by half for equal perceptual video

quality, at the expense of increased computational complexity. HEVC is targeted to

handle two new Ultra Hight Definition (UHD) standards: UHDTV1 ”4K” (3840 x 2160

pixels) and UHDTV2 ”8K” (7680 x 4320 pixels) with frame rates ranging from 23,976

to 120 Hz as a progressive scan, and use parallel processing architectures. This means

that in the future service providers can deliver contents with double perceptual quality

using the same bandwidth of today’s HDTV, or add services on the saved bandwidth

due to HEVC use.

An HEVC compliant bitstream is produced by splitting each picture into blocks, this

partitioning is reported to the decoder. The first picture of a sequence is coded using

intrapicture prediction, the block of the remainnig pictures are typically coded using

interpicture temporally predictive modes. The resulting residual signal from those two

prediction schemes is transformed by a linear spatial transform, generating coefficients

that are then quantized, entropy coded, and transmitted together with the prediction

information.

So far this conceptual description is very similar to the one made about H.264, but

although both standards employ the same hybrid approach (intra/ interpicture prediction

and transform coding), HEVC has some interesting features that make it a standard for

the future.

One of these features is its Quadtree Coding Structure (Figure 2.5). A quadtree

is a tree data structure in which each node has exactly four children and are used

to recursively partition a two-dimensional space by subdividing it into quadrants. So

macroblocks in H.264 were replaced by Coding Tree Units (CTU) that in turn consists of

a Coding Tree Block (CTB) containing luma, croma and syntax elements. The size of a

CTB is chosen by the encoder and can be 64x64, 32x32 or 16x16 samples, generally larger

sizes enable better compression. CTBs support partitioning into smaller blocks following

the quadtree structure, generating Coding Units (CUs) and Coding Blocks (CBs). This

means that a CTB can have one CU or be split into several CUs. A CU is in turn the

root for the Prediction Units (PUs) and Transform Units (TUs). A Prediction Block

(PB) can have the size of a CU or be split furthermore being the supported sizes 64x64,
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32x32, 16x16, 8x8 and 4x4.
1656 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

Fig. 4. Subdivision of a CTB into CBs [and transform block (TBs)].
Solid lines indicate CB boundaries and dotted lines indicate TB boundaries.
(a) CTB with its partitioning. (b) Corresponding quadtree.

further splitting is possible, as signaled by a maximum depth
of the residual quadtree indicated in the SPS, each quadrant
is assigned a flag that indicates whether it is split into four
quadrants. The leaf node blocks resulting from the residual
quadtree are the transform blocks that are further processed
by transform coding. The encoder indicates the maximum and
minimum luma TB sizes that it will use. Splitting is implicit
when the CB size is larger than the maximum TB size. Not
splitting is implicit when splitting would result in a luma TB
size smaller than the indicated minimum. The chroma TB size
is half the luma TB size in each dimension, except when the
luma TB size is 4×4, in which case a single 4×4 chroma TB
is used for the region covered by four 4×4 luma TBs. In the
case of intrapicture-predicted CUs, the decoded samples of the
nearest-neighboring TBs (within or outside the CB) are used
as reference data for intrapicture prediction.

In contrast to previous standards, the HEVC design allows
a TB to span across multiple PBs for interpicture-predicted
CUs to maximize the potential coding efficiency benefits of
the quadtree-structured TB partitioning.

F. Slices and Tiles

Slices are a sequence of CTUs that are processed in the
order of a raster scan. A picture may be split into one or
several slices as shown in Fig. 5(a) so that a picture is a
collection of one or more slices. Slices are self-contained in
the sense that, given the availability of the active sequence
and picture parameter sets, their syntax elements can be parsed
from the bitstream and the values of the samples in the area of
the picture that the slice represents can be correctly decoded
(except with regard to the effects of in-loop filtering near the
edges of the slice) without the use of any data from other slices
in the same picture. This means that prediction within the
picture (e.g., intrapicture spatial signal prediction or prediction
of motion vectors) is not performed across slice boundaries.
Some information from other slices may, however, be needed
to apply the in-loop filtering across slice boundaries. Each slice
can be coded using different coding types as follows.

1) I slice: A slice in which all CUs of the slice are coded
using only intrapicture prediction.

2) P slice: In addition to the coding types of an I slice,
some CUs of a P slice can also be coded using interpic-
ture prediction with at most one motion-compensated
prediction signal per PB (i.e., uniprediction). P slices
only use reference picture list 0.

3) B slice: In addition to the coding types available in a
P slice, some CUs of the B slice can also be coded

Fig. 5. Subdivision of a picture into (a) slices and (b) tiles. (c) Illustration
of wavefront parallel processing.

using interpicture prediction with at most two motion-
compensated prediction signals per PB (i.e., bipredic-
tion). B slices use both reference picture list 0 and list 1.

The main purpose of slices is resynchronization after data
losses. Furthermore, slices are often restricted to use a maxi-
mum number of bits, e.g., for packetized transmission. There-
fore, slices may often contain a highly varying number of
CTUs per slice in a manner dependent on the activity in the
video scene. In addition to slices, HEVC also defines tiles,
which are self-contained and independently decodable rectan-
gular regions of the picture. The main purpose of tiles is to
enable the use of parallel processing architectures for encoding
and decoding. Multiple tiles may share header information by
being contained in the same slice. Alternatively, a single tile
may contain multiple slices. A tile consists of a rectangular
arranged group of CTUs (typically, but not necessarily, with
all of them containing about the same number of CTUs), as
shown in Fig. 5(b).

To assist with the granularity of data packetization, de-
pendent slices are additionally defined. Finally, with WPP, a
slice is divided into rows of CTUs. The decoding of each
row can be begun as soon a few decisions that are needed
for prediction and adaptation of the entropy coder have been
made in the preceding row. This supports parallel processing
of rows of CTUs by using several processing threads in
the encoder or decoder (or both). An example is shown in
Fig. 5(c). For design simplicity, WPP is not allowed to be
used in combination with tiles (although these features could,
in principle, work properly together).

G. Intrapicture Prediction

Intrapicture prediction operates according to the TB size,
and previously decoded boundary samples from spatially
neighboring TBs are used to form the prediction signal.
Directional prediction with 33 different directional orientations
is defined for (square) TB sizes from 4×4 up to 32×32. The

Figure 2.5: CTB partitioning and corresponding quadtree (adapted from [3])

Intra prediction specifies the 35 different prediction modes presented in Figure 2.6

(33 angular modes, a DC mode and an interpolation mode), much more than the 9

supported by H.264.

 

102 Rec. ITU-T H.265 (04/2013) 

2. The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the chroma location 
( xCb / 2, yCb / 2 ), the variable log2TrafoSize set equal to log2CbSize − 1, the variable trafoDepth set equal to 
0, the variable predModeIntra set equal to IntraPredModeC, and the variable cIdx set equal to 1 as inputs, and 
the output is a modified reconstructed picture before deblocking filtering. 

3. The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the chroma location 
( xCb / 2, yCb / 2 ), the variable log2TrafoSize set equal to log2CbSize − 1, the variable trafoDepth set equal to 
0, the variable predModeIntra set equal to IntraPredModeC, and the variable cIdx set equal to 2 as inputs, and 
the output is a modified reconstructed picture before deblocking filtering. 

8.4.2 Derivation process for luma intra prediction mode 

Input to this process is a luma location ( xPb, yPb ) specifying the top-left sample of the current luma prediction block 
relative to the top-left luma sample of the current picture. 

In this process, the luma intra prediction mode IntraPredModeY[ xPb ][ yPb ] is derived. 

Table 8-1 specifies the value for the intra prediction mode and the associated names. 

Table 8-1 – Specification of intra prediction mode and associated names 

Intra prediction mode Associated name 

0 INTRA_PLANAR 

1 INTRA_DC 

2..34 INTRA_ANGULAR2..INTRA_ANGULAR34 

 

IntraPredModeY[ xPb ][ yPb ] labelled 0..34 represents directions of predictions as illustrated in Figure 8-1. 

17       16       15      14     13      12       11       10       9        8        7        6         5        4        3 
2

18      19       20      21      22         23     24       25      26        27     28      29      30       31     32      33       34

0  : Intra_Planar
1  : Intra_DC

 

Figure 8-1 – Intra prediction mode directions (informative) 

 

IntraPredModeY[ xPb ][ yPb ] is derived by the following ordered steps: 

1. The neighbouring locations ( xNbA, yNbA ) and ( xNbB, yNbB ) are set equal to ( xPb − 1, yPb ) and 
( xPb, yPb − 1 ), respectively. 

Figure 2.6: HEVC prediction modes [4]

For inter prediction modes, non-square modes are allowed although a PB inter frame

cannot have the 4x4 size.

To generate a prediction for the current block the encoder must determine the best

PB size to use by testing all prediction modes at all PB sizes available and then choose the

best combination, based on Rate distortion Optimization (RDO). For example, to process

intra prediction mode decision, the encoder needs to measure the values of distortion for

each one of the 35 prediction modes and for every level of the PU subtree. Checking all

these possibilities is a very demanding computational task and prove to be impractical for

real-time encoding, so there are several schemes to enable smart mode decision without

running the totality of the encoding process described in [17] for fast Intra Prediction

mode decision, and [18] for Coding Tree Depth complexity reduction.

Network Distributed 3D Video Quality Monitoring System 11



CHAPTER 2. VIDEO CODING

This standard is receiving great attention from research groups around the world,

and although it is outside of the scope of this work, in the near future a similar approach

could be taken, to develop a system similar to the one being presented, to monitor HEVC

video quality

2.2 3D Video Coding

3D video is commonly known as a type of visual media that gives the viewer the per-

ception of depth. To accomplish this, a whole system, from acquisition, to storage and

display has to be in place while keeping interoperability and compatibility with existing

2D video infrastructures.

For professional 3D video capture, typically setups with 2 or 3 cameras are used. The

problem associated with multi-camera systems are temporal synchronization, geometrical

calibration [19] and colour balance between all cameras. There are also camera setups

equipped with depth sensors capable of depth enhanced 3D video. This means that 3D

video formats can be divided into two main classes [20]: video-only formats and depth-

enhanced formats. Video-only formats can be further divided into Classical Stereo Video

(CSV) with two views, Mixed Resolution Stero (MRS) video with one of the views

spatially sub-sampled and Multi-View Video (MVV) with more than two views. In

turn, depth-enhanced formats can also be sub divided into Video plus Depth (V+D),

Multi-View Video plus Depth (MVD) and Layered Depth Video (LDV). The advantage

to the inclusion of depth or disparity information into these video formats is that 3D

video reproduction can be adapted to any display, since all views are synthesized at the

decoding stage.

For the scope of this work only MVV coding schemes will be addressed. Apart from

support for 3D video MVV also enables free-viewpoint video, were the video direction

can be interactively changed and presented on a 2D display. All these features represent

great amount of data that needs to be efficiently compressed, while keeping backwards

compatibility.

2.2.1 H264/AVC Multi-View video Coding

The straightforward approach to encode MVV is to encode each one of the views separ-

ately treating them as independent videos ensuring backwards compatibility. Although

possible, such approach proves to be very inefficient when comparing it to H264/AVC

extension for Multi-View video Coding (MVC). Annex H of [16] describes all key features

and syntax elements of this standard.

Inter-view prediction is the concept introduced in MVC, that is responsible for ex-

ploiting spatial and temporal redundancy for compression purposes. Since cameras on a
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multiview scenario capture the same scene from nearby viewpoints there is great inter-

view redundancy (Figure 2.7), and temporal redundancy is also present [5].

The encoder is applied to the view sequences simultaneously enabling inter-view

predictive coding, resulting in dependant bitstreams to which information about camera

parameters may be included.

I B B B B B B B I B

P B B B B B B B P B

P B B B B B B B P B

P B B B B B B B P B

Camera 1

Camera 2

Camera 3

Camera 4

TIME

Figure 2.7: Picture prediction relation in MVC (adapted from [5])

To make backwards compatibility possible the MVC design states that the com-

pressed multiview stream must include a baseview bitstream, coded independently from

the other views. The remaining specifies a NALU header extension for NALUs of type

14 and 20 (Table A.1, Annex A). Since these NALU types were reserved for this pur-

pose, decoders conforming to one or more of the profiles specified before MVC, thus not

supporting it, will be capable of reproducing 2D video corresponding to the base view.

Any unknown information is discarded, keeping backwards compatibility.

NAL units created using the MVC profile have additional fields to the ones in Section

2.1.1 described in [21]. They are illustrated in Figure 2.8 and described bellow:

• (R) reserved zero bit (1 bit): reserved for future extension. Must be 0 and

should be ignored at reception;

• (I) idr flag (1 bit): specifies whether the view component is a view instantaneous

decoding refresh picture;

• (PRID) priority id (6 bits): a lower value indicates higher priority in relation to

other NALs;

• (VID) view id (10 bits): this component corresponds to the identifier of the view

the NALU belongs to;
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• (TID)temporal id (3 bits): temporal layer identification. A video bitstream can

have several temporal layers where all NALUs of one layer form a valid bitstream

with a given frame rate. The higher the temporal layer is, higher the frame rate;

• (A) anchor pic flag (1 bit): this field signals whether the view component is an

anchor picture;

• (V) inter view flag (1 bit): specifies if the view component is used for inter-view

prediction;

• (O)reserved one bit (1 bit): reserved for future extension. Must be 1 and should

be ignored at reception.

The contents and structure of the NALU fields is of great importance for the project,

since they will be used for network bitstream parsing purposes and data retrieval. NALUs

contain actual video data so their header information is used to categorize the type of

content they are carrying, and for this case, the information to retain is nal ref idc and

nal unit type (defined in Section 2.1.1). The nal ref idc field specifies the importance

of the content, and nal unit type specifies if the payload is part of the VCL (Type 1,5

and 20) and if the NALU contain an Instant Decode Refresh IDR picture (Type 5),

meaning that this NALU contains a payload that contains reference information and

will force decoder refresh. These combination of the content of these two fields will help

determine if the content of a network packet is from an I, B or P slice. From MVC

specific fields the ones used are the idr flag and view id, but for confirmation purposes

only since there are other ways to determine if a bitstream passing through the network

is from a 3D video stream or to determine if a picture is an IDR picture.

NAL UNIT Header NAL UNIT Payload

3 4 5 6 70 1 2 3 4 5 6 70 1 2 3 4 5 6 70 1 2 3 4 5 6 70 1 2

F NRI Type R PRID VID TIDI A V O

Figure 2.8: MVC NALU header structure
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Chapter 3

Video Transport

This chapter describes standardized methods to broadcast/transmit video over IP net-

works and their characteristics. Also video encapsulation methods are explained, giving

more emphasis to the encapsulation structure used in this project.

3.1 Video Packetization

3.1.1 Internet Protocol

The Internet Protocol [22] is datagram transport protocol used to relay data across

networks, and is the base of the internet. IP packets consist of a header containing ad-

dressing and control information for packet routing through the network, and a payload,

that consists of the data to be transmitted. The payload can carry several protocols for

data streaming such as RTP and UDP.

3.1.2 User Datagram Protocol

The User Datagram Protocol (UDP) protocol [23] enables computer applications to

send messages to other hosts on an IP network without prior communications to set up

a transmission channel. It provides checksums for data integrity and port numbers for

addressing different functions at the source and destination of the datagram. UDP is

used in situations where error checking and correction is not a necessity or is done by the

application, avoiding the overhead at the network interface level. Time-sensitive data

transmission such as video use this protocol because dropping packets is preferable over

waiting for delayed ones.
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3.1.3 Real-time Transport Protocol

The Real-time Transport Protocol (RTP) protocol [24] provides end-to-end delivery ser-

vices for data with real-time characteristics (video and audio). It provides payload type

identification, sequence numbering, time-stamping and deliver monitoring. Normally it

runs on top of UDP making use of its characteristics, and can be used with other suitable

underlying network or transport protocols.

Since RTP doesn’t provide any mechanism to guarantee quality-of-service, timely

or out-of-order data delivery, but the included sequence numbers allow the receiver to

reconstruct the packet sequence and detect packet losses.

H.264 video carriage over RTP is defined in [25], were NALUs are mapped into the

payload accordingly.

3.1.4 MPEG 2 Transport Stream

This packetization method is described in more detail than the previous ones because of

its importance for project development.

MPEG 2 Transport Stream (MPEG2-TS) [26, 27] was first specified in MPEG-2

Part 1. Due to its structure and flexibility is still in use and provides a way to transmit

several types of data (audio and subtitles in several different languages, 3D video, ... )

in the same stream while being compatible with all devices that may not support all its

features.

Before transmitting the different sources of data must be packetized and MPEG2-TS

does this by multiplexing data. Packet multiplexing is simply interleaving packets of

data from several elementary streams one after another to form a single MPEG2-TS

stream.

Synchronization is very important in multimedia and MPEG2-TS has several means

to maintain it between the elementary streams that are being decoded. This is achieved

by using Time Stamps and Clock References, that are added to the MPEG2-TS

stream at the time of multiplexation. There are two types of Time Stamps (Decoded

Time Stamp and Presentation Time Stamp) and they refer to a particular moment when

a video picture or sound frame should be decoded and presented on the output device.

They are represented by a 33 bit data field containing a time reference indicated by the

System Time Clock. The Clock References (42 bit data field) are used by the decoder

to update their own clock reference.

Packetized Elementary Streams

Elementary Streams (ES) are compressed data from a single source and all the attached

auxiliary data needed for synchronization and identification of the source (NALUs in

H.264). These sources are packetized into Packetized Elementary Streams (PES) that
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can be of fixed or variable length and it is comprised of a header and the stream data

(payload).

The PES packet structure can be seen in Figure 3.1. Its fields are described bellow:

• start code prefix : 24 bits all 0 except for the last one;

• stream id : 8 bits ranging from 0xBD to 0xFE and defines type of stream or an

ID for different streams of same type;

• PES packet lenght : 16 bits stating the number of bytes that follow. For video

packets, this field can have a value of 0 indicating an unspecified length;

• padding bytes : Bytes equal to 0xFF that are discarded at the decoder;

• marker bits : 2 bits with fixed valued bits usually all 1s ;

• PES scrambling control : 2 bits indicating scrambling mode;

• PES priority : 1 bit indicating that a PES packet has higher priority;

• data alignment indicator : 1 bit indicating if the payload starts with a video

Start-Code or audio sync-word ;

• copyright : 1 bit indicating if the PES has copyrights;

• original or copy : 1 bit indicating if stream is original;

• PTS DTS flags : 2 bits. 0 (decimal) indicates that there isn’t any PTS or DTS.

3 indicates presence of both and 2 means that only PTS is present;

• ESCR flag : 1 bit to indicate presence or a clock reference in PES header ;

• ES rate flag : 1 bit to indicate if bitrate value is present in PES header;

• DMS trick mode flag : 1 bit indicates if there is an 8-bit trick mode field;

• additional copy into flag : 1 bit indicates additional copyright information ;

• PES CRC flag : 1 bit to indicate presence of a CRC is present;

• PES extention flag : 1 bit indicating if PES header extension fields are present;

• PES header data lenght : 8 bits containing the length of the optional PES

header extension fields. ;

• PTS : Presentation Time Stamp defines when the output device should present

the decoded information;
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Figure 3.1: PES packet structure

• DTS : Decoding Time Stamp defines when a stream should be decoded (may have

a value of 0);

• ESCR : Elementary Stream Clock Reference;

• ES rate : Bitrate of a PES Stream;

• trick mode control : Indicates the trick mode applied to the video (fast forward,

pause, rewind, ...) ;

• additional copy info : contains copyright information;

• previous PES packet CRC : 16 bits containing information about previous PES

packet (excluding header fields);

• extension data : can include buffer sizes, sequence counters, bitrates...;

• stuffing data : no more than 32 stuffing bytes are allowed in one PES header;

• PES packet data : Bytes of data from the elementary stream;

All fields from this packetization technique had to be described due to their content

or structural importance in data parsing procedures. The start code prefix helps to

identify if a PES packet header is present, followed by the stream id that identifies

type of data the PES packet is carrying (audio, subtitles, video ...) and for the case of

video content the stream id is equal to 0xe0. PES packet lenght is one of the essential

fields to be retrieved for analysis, and if is 0, action needs to be taken to determine this

parameter in an other way. PTS and DTS are also used to determine the elapsed video

time passing through the network. Please note that two consecutive packets containing

a PTS must not be more than 700 ms apart. PES header data lenght is used to

determine where the payload (NALU) data starts.
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Program Streams

Program Streams (PS) are comprised of packs of multiplexed data. These packs contain

a header followed by a variable number of PES packets from several elementary stream

sources each one with an unique stream id. Additionally to PES packets, PS Packets also

contain descriptive information called PS Program Specific Information (PS-PSI), that

defines the program and its parts storing, for example, where I-pictures are stored en-

abling random access to several points of the stream. Program Streams are indicated for

media storage or transmission over networks where reliability possible video degradation

is not a problem.

Transport Streams

This stream type is suitable for transmission networks that suffer from occasional trans-

mission errors. It is also comprised of multiplexed data from PES packets and some

more descriptive data.

Generally variable length PES packets are further packetized into fixed 188 bytes

long Transport Stream (TS) packets. This division into constant length packets makes

error detection and recover easier.

A TS packet contains a TS Header, optionally secondary data called Adaptation

Field and some or all data from a PES packet. The Header contains synchronization

information, a Packet Identifier (PID) and information on timing and error detection,

all this described in detail below:

• sync byte: 8 bits. Fixed value of 0x47;

• transport error indicator: 1 bit indicating the presence of an uncorrectable bit

error in the current TS packet ;

• payload unit start indicator 1 bit signalling the presence of a new PES packet

or a new TS-PSI Section ;

• transport priority: 1 bit stating higher priority over other packets ;

• PID: 13 bits for Packet Identification;

• transport scrambling control: 2 bits to indicate presense of the scrambling

mode of the packet payload;

• adaptation field control: 2 bits to signal the presence of an adaptation field or

payload ;

• continuity counter: 4 bits. One for each PID incrementing every TS packet ;

• pointer field: 8 bits indicates the number of bytes until a new TS-PSI Section ;
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Additionally to the above fields exist some more optional ones which presence is sig-

nalled by the adaptation field control. They are called Adaptation Field contains

System Time Clock timing information called Program Clock Reference (PCR). This in-

formation is important for decoder synchronization and is transmitted with a periodicity

of at least 100 ms. The fields are described bellow:

• adaptation field lenght: 8 bits indicating the number of bytes following;

• discontinuity indicator: 1 bit signals discontinuity in clock reference or continu-

ity counter ;

• random access indicator: 1 bit if the next PES packet starts a video or audio

sequence;

• elementary stream priority indicator: 1 bit stating higher priority;

• PCR flag: 1 bit. PCR is present;

• OPCR flag: 1 bit. Original PCR is present;

• splicing point flag: 1 bit indicating that a splice countdown field is present;

• transport private data flag: 1 bit. Adaptation field has private data;

• adaptation field extension flag: 1 bit flag signaling presence of extension fields;

• program clock reference (PCR): 33 bits, value based on a 90kHz reference

clock + 6 padding bits + 9 bits extension based on a 27 MHz clock;

• original program clock reference (OPCR): same size as PCR, used to extract

a single program from a multiprogram TS;

• splice countdown: 8 bits with the number of remaining TS packets (same PID)

until the end of an audio frame or video picture;

• transport private data legth: 8 bits stating the number private data bytes fol-

lowing;

• private data bytes: private data;

• adaptation field extension lenght: 8 bits. Number of bytes of the extended

adaptation field;

• stuffing bytes: variable number of 8-bit values of 0xFF, to discarded by the

encoder.
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Figure 3.2: TS packet structure

From these fields sync byte helps confirm that a TS packet is present, payload unit start indicator

signals that a PES packet header is present, that is usually also followed by a NALU

header. PID identifies a packet that contains a certain type of stream, for 3D each one

of the views has a different PID. The continuity counter is used to identify packet loss

events and determine the number of packet losses per view. Adaptation field lenght

and adaptation field extension lenght are used to locate where in the bitstream is

the start of the payload without doing a byte-by-byte sweep.

There are three special TS streams (TS - Program Specific Information)that contain

additional information such as program descriptions and assignments of PES and PIDs.

The first type of stream is the Program Association Table (TS-PAT), and always has a

PID equal to 0, and is the first stream to be transmitted. For each program the TS-

PAT defines the association between the program number and a PID. Another special

stream is the Network Information Table, that carries data describing and characterizing

the network carrying the TS. Since this data is dependent of network implementation

it is considered Private data. The third type of stream are Program MAP Tables that

carry information about each one of the programs in the transmission stream such as

the assignments of the unique PID values for each of the PES streams. Although these

types of TS streams could be useful to this work they were not used or implemented,

since MVC streams can be identified without them, so implementing identification and

parsing of these TS streams would not add any value to the work, hence the lack of

description.
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Figure 3.3: Comparison between transport methods

3.1.5 MPEG2-TS transport methods

One of the two methods used to transport MPEG2-TS over IP networks is to carry these

packets over RTP (specified in [28] and [29] ).

The other method, and the one being used in the scope of this work, selects a number

of TS packets and adds them to the payload of the UDP datagram. For Ethernet

networks the Maximum Transmission Unit (MTU) has 1500 bytes, so 7 TS packets may

be transmitted on the same UDP packet (1500/188 ≈ 7). Comparison of the structure

of the several transport methods can be seen in Figure 3.3.

3.2 3D MPEG2-TS encapsulation

Prior to transmission MVC data has to be encapsulated into MPEG2-TS (Figure 3.4).

This is done by splitting the MVC encoded bitstream into ES from the same view, and

then encapsulate each one into PES packets. The resulting PES packets are in turn

split into pieces with TS packet payload size and encapsulated. Since the size of a PES

packet is variable, the number of TS packets needed to contain it also varies, and if the

remainder of a PES packet is not enough to fill one TS, the rest of the available space

is filled with 0xFF. This happens because a PES must start immediately after the TS

header, thus not allowing remainder free TS payload space to be filled with a new PES

packet header. For each one of the views present (two in 3D) TS packets have a different
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Figure 3.4: Illustration of MVC bitstream encapsulation into TS

To identify a 3D video stream at network level one must know the meaning of each

field of the bistream. Since a TS packet can carry very different data types (several video

views, audio channels and subtitles of different languages) by multiplexing their sources

into one single stream, data parse can be a very complex task since it involves several

variables from several packetization hierarchies.
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3D Video Qualiy Models

The importance of video quality measurement over IP networks is increasing due to the

exponential growth of available streaming services to the consumer. Understanding the

impact that packet loss events have in perceived video quality is therefore an important

matter. In [30] a brief analysis of the H.264 MVC performance over error prone IP

networks using RTP packetization is conducted, and in [31] the effects on video quality

of corrupted H.264 bitstreams is evaluated. The main methods to evaluate video quality

are subjective and objective techniques, being the former based on human observers

that evaluate the video quality of samples that are presented to them. Results from the

subjective methods are then used to compute Mean Opinion Score (MOS) and other

statistics. However, these results are subject to great variations due to environmental

conditions (lighting, viewing distance, shown video samples) and observer conditions

[32, 33]. Also, they are expensive and take a fair amount of time to produce results; An

objective video quality evaluation method enables automatic estimation of user perceived

video quality without the need of any human intervention thus making it a faster, reliable

and cheaper solution.

In objective techniques a set of quality related parameters of a video are gathered

and processed to generate an objective quality metric capable of predicting the MOS.

Depending on the information available from the original video, the objective methods

can be divided into three categories [34]:

• Full-Reference (FR): the original video is available to be used for comparison

with the distorted one. This proves to be impractical in cases were video quality

needs to be monitored in remote locations, were the reference is not available;

• Reduced-Reference (RR): only some features of the original video are needed

to determine the video quality. Although the needed data is much less than in the

FR methods, it has the same problem and is not an option when trying to measure

the quality at any point of the transmission channel;

• No-Reference (NR): these methods do not use any reference to compute video

quality. This represents a great advantage over the other two categories since
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it allows video quality assessment at any point of a transmission network. This

category can be further divided into two [35]:

– No-reference pixel-based: the video quality is estimated by using the de-

coded video;

– No-reference bit stream-only: the video quality estimation is done without

completely decoding the video to obtain decoded pixels. The needed inform-

ation is extracted from packet headers at the network-layer, as in the scope

of this work.

In [34] the most used quality metrics are detailed: Mean Square Error (MSE), PSNR

and Structural Similarity (SSIM) [36] whose mathematical expressions are Equations 4.1

, 4.2 and 4.3 respectively.

MSE =
1

N

n=1∑
N

(Xn − Yn)2 (4.1)

PSNR = 10 log10

L2

MSE
(4.2)

SSIM(x, y) =
(2uxuy + c1)(2σxy + c2)

(u2x + u2y + c
1
)(σ2

x+σ2
y + c2)

(4.3)

Where for the MSE Xn and Yn are the pixel values of the original and distorted

frames, and N is the total number of pixels in a frame. For the PSNR L is the maximum

pixel value in a frame. Although these metrics are widely used, they have no correlation

with the human visual system meaning that the results produced by them and video

quality perception from a human are far from each other, thus they cannot be used in

3D video quality assessments.

The SSIM uses structural information from the video, approximating a video quality

assessment metric to the perception of the human visual system. x and y are the original

and the distorted frame information, ux and uy are the mean of x and y. σx , σy and

σxy are the variance of x, y and the covariance between x and y. Finally c1 and c2 are

constants to avoid the denominator becoming very close to 0.

4.1 NR Quality Models

There are several quality models reported in the scientific literature for image or video

perceived quality prediction.
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In [37] the quality of JPEG stereoscopic coded images is assessed by analysing image

segments for disparities between views, comparing local features such as edge, flat and

texture areas. Also [38] proposes a NR model that uses decoded 3D video to evaluate

the video quality, by evaluating spatial and temporal inconsistencies.

A FR video quality metric was used in [39] in order to formulate a NR video quality

model for 2D video, using packet loss rate and the distance between two consecutive

Instant Decode Refresh (IDR) frames as inputs for video quality assessment. A similar

approach was taken in [40] for 3D videos generated by Depth-Image-Based Rendering

(DIBR), using packet layer parameters from impaired video sequences as input paramet-

ers to train a neuronal network with several layers, in order to determine the effect that

packet losses have on this type of video, thus defining a NR video quality assessment

model.

4.1.1 Proposed NR model

The NR model implemented in this work is explained in [6] and is the result of previous

research and development done in the 3DVQM project at Instituto de Telecomunicações.

The need to compare the development results lead to choose this model, since comple-

mentary information, in addition to scientific papers and reported results, is available

for testing the validity of the network monitoring system.

To develop this NR model several 3D video datasets with GOP size equal to 21 frames,

IBPBP GOP structure and QP ranging from 26 to 32, were encoded using H.264/AVC

Stereo High Profile (Figure 4.1 - 1), then encapsulated into MPEG2-TS (Figure 4.1 - 2).

After this, network loss conditions were simulated by subjecting the encapsulated files

to the loss of packets (Figure 4.1 - 3) in a controlled manner, in order to model different

types of impairments. These files were then decoded (Figure 4.1 - 4) and the results

compared with the original coding sequence to compute the SSIM drop (Figure 4.1 - 5)

Delta SSIM in equation 4.4, that corresponds to the difference between the SSIM of

the error-free stereo frame, EF SSIMx (SSIM=1) and that of the resulting frame after

a loss event D SSIMx.

Delta SSIMx = EF SSIMx −D SSIMx (4.4)

dSSIMn = pnL
n
fs + ...+ p2L

2
fs+p1Lfs+p0 (4.5)

This experience was repeated for several frame-size losses resulting in various point

clouds as exemplified in Figure 4.2, for each of the slice types P or B. These point clouds

were then fitted into polynomial equations of the format shown in Equation 4.5 were
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3.3. Proposed NR model 27

conduct these experiments a 3D video sequence obtained by concatenating 5 individual

sequences (Ballons 3.7(a), Champagne Tower 3.7(b), Kendo 3.7(c), Pantonime 3.7(d)

and Dog 3.7(e)) was encoded with H.264/AVC Stereo High Profile using the reference

software JM 18.2 (Figure 3.6 stage 1). This sequence has spatial resolution of 1024x768

pixels, 30 fps frame rate, and was encoded using GOP size equal to 21 frames and IBPBP

GOP structure. Three di↵erent datasets were created by encoding this sequence with

QP ranging from 26 to 32, achieving di↵erent PSNR and bitrates. These datasets are

described in Table 3.1. The resulting video stream was encapsulated into a TS stream

using the reference software FFMPEG (Figure 3.6 stage 2).

HHH HHH

H.264/AVC coding sequence

MPEG2 – TS encapsulation Packet loss events

H.264/AVC decoding process

SSIM computation

1

2 3

4

5

Figure 3.6: Experimental procedure.

To simulate network loss conditions, packetized streams were then subject to packet

loss events (Figure 3.6 stage 3). These have to be created according to a error pattern,

produced in a controlled manner, to better modeling individual types of impairments.

Aiming this, at present a single frame is lost in each loss event, but other impairment

models can be used [53].

Table 3.1: QP’s, PSNR and bitrate.

I-QP P-QP B-QP PSNR (dB) Bitrate (Kb/s)

Dataset-1 26 28 28 42 2847
Dataset-2 28 30 30 41 2225
Dataset-3 30 32 32 40 1727

Then, the corrupted TS stream was decoded using frame-copy for concealment of

lost frames, as depicted in stage 4 of Figure 3.6. The decoded frames were used to

Figure 4.1: SSIM computation [6]

dSSIMn is the Delta SSIM, n is the polynomial degree, Lfs is the lost frame size in

bytes and pn are the polynomial coefficients (Annex C).

4.1.2 Quality model overview

The objective of the proposed model is to estimate the quality degradation in isolated

stereo frames due to errors in TS packet transmission. Degradation is measured by the

difference between the SSIM of the error-free stereo frame (SSIM = 1) and that of the

displayed frame, assuming that frame-copy is used as concealment method. This method

does not take into account coding distortion, thus SSIM=1, for any correctly received

frame, meaning that errors due to lossy encoding are not taken into account in this

method.

The used NR model uses an estimate of each lost frame size and type. The lost frame

size is estimated from the average of the last frame sizes from the same view and type.

The GOP size and structure are an user input parameter, since this type of information

is in general static. In summary, quality estimation for this particular model needs the

following parameters from packet headers and user inputs as illustrated by Figure 4.3:

• T1: Continuity Counter - detection of TS packet losses;

• P1: PES packet length - provides frame size;

• A1: NAL unit type - frame type information;

• U1: GOP size;

• U2: GOP structure;
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Figure 3.9: Delta SSIM vs frame size for Dataset-3.

Figure 4.2: Delta SSIM vs frame size loss for one particular test Dataset[6]

Figure 4.3: Packet layer model structure [6]





Chapter 5

Distributed Architecture

As mentioned in Section 1.1 the objective of this work is,in short, to build a system

that is able to estimate the video quality of a service passing through an IP network.

This chapter overviews the architecture of the implemented system and its components,

focusing on a conceptual description, followed by a thorough description of every single

component from a development point-of-view.

5.1 Proposed Architecture

In order to estimate where the video transmission is being degraded, a way to measure

video quality in various network nodes between the source and receiver is needed. This

is achieved by installing network traffic monitoring Probes on various network nodes.

These Probes are capable of identifying, filter and interpret network packets carrying

video information and to temporally retain relevant data of the last instants of video

passing through the one particular network node where each one is installed. This data

is then relayed to a central Server where data from all Probes is concentrated, processed

and stored for future analysis.

The Server itself consists of a Probe Report Handler, a Graphical User Inter-

face GUI and a Database:

• The Probe Report Handler is responsible for concentrating all incoming information

from the Probes, treat it and store it into the database. It is also where any video

quality metric can be easily implemented using the data arriving from the Probes;

• The GUI presents status feedback from the Probes and video quality metric results.

It is also possible to configure Probe and video parameters.

• The Database stores all data gathered from the Probes as well as other relevant

information concerning the video transmission (GOP size and structure, bitrate,

...) and the Probes (IP, identification, geographical location, ...);
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Such implementation enables the identification of the network nodes where video

quality is being degraded. Also, information stored in the database can be used for

further analysis. Figure 5.1 illustrates the architecture described above.

3D Video Server

Receiver/Decoder

Receiver/Decoder

Probe 3

Network node Network node Network node

Probe 4

Probe n

Network node

Probe 1

Receiver/Decoder

Network node
Probe n-1

Data Manager/ GUI

Database

Probe Configuration

Graphical User Interface

Probe 2

Figure 5.1: Proposed system architecture overview: white arrows - video/network traffic;

grey arrows - Probe report data

Due to the IP network architectures, the Probes must be connected to a network hub

or a network switch with port mirroring capabilities.

The hub connects multiple devices to each other and works by broadcasting any signal

received in any port to every other ones, making packet monitoring possible to a Probe

connected to it, since even if a video stream is not destined for the Probe the hub will

output it to everyone of its ports. This type of device is now practically obsolete since

it only operates in half-duplex and if the devices connected to it increase, the available

bandwidth decreases. For testing purposes in early development stages, this option could

be considered, although a network switch is a better option.
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The network switch serves the same purpose as the hub, that is to connect several

devices together in a computer network, but with the difference that a switch uses packet

switching schemes to forward data more efficiently to the destination. It only transmits

received messages to the device for which the message was intended, making this a more

secure device. These features are great for a network implementation but they are not

particularly helpful for the development of the current project because the Probes need

to listen to network traffic that is not intended for them. To enable packet monitoring of

traffic passing through, the switch must have Port Mirroring capabilities. Port Mirroring

is used to send a copy of the network traffic in one port to another, enabling passive

Probe monitoring (Figure 5.2). Furthermore, the network adapter in the Probe must be

set to promiscuous mode in order to receive network packets that are not addressed to

it.

A

B

Probe
(promiscuous mode)

switch

Figure 5.2: Port Mirroring illustration

In summary, 3D or 2D video is streamed from the Video Streamer to a Receiver.

On its path there are a series of IP network switches with port mirroring capabilities,

where Probes are connected. Each one of the Probes is monitoring all network traffic

looking for MPEG2-TS packets. Once found, the Probe starts to parse packet data

and gather statistics that are reported to a server. The server stores and processes the

received statistical data, computes the desired quality metric and displays the video

quality metric results.

5.2 Probe

The Probes are scattered throughout the target IP network, monitoring all traffic and

compiling important information about the video passing through a particular node.

They are the base of the system since they feed data to a central point (Server) for

storage, further processing and presentation to the user. Probes are in reality a computer

running a Packet Monitor and Parser software written in C++ capable of implementing

all the previously described tasks.
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Figure 5.3: Probe high level block diagram

A Probe high level diagram is presented in Figure 5.3. A Probe starts by connecting

to the server and waiting for a reply containing a packet filter and a time window value

for video analysis. Once these parameters are received the filter is set, the Probe starts

the network monitoring procedures by capturing and storing packets complying with the

filter and storing then. Meanwhile another thread starts to analyse the captured packets

to determine if the video packets belong to a 3D video stream. After this parsing and

analysis for packet loss events, the Probe starts capturing and organizing all data to

be reported to the server. Another thread is monitoring the quantity of stored data,

constraining it to the amount correspondent to the last moments of video defined by the

defined time window. Finally, yet another thread running in parallel with all previous

ones, sends the data resulting from packet monitoring to the Server upon request. A

Probe operation flowchart can be observed in Figure 5.4 and may help to understand

the following subsections, where all main program threads are thoroughly described.

5.2.1 Packet Monitoring

Given that video bitrates are in general variable and can be very high, software imple-

mentations must be as fast, efficient, reliable and modular as possible. To accomplish

this, the most critical stages of development had to be identified at an early stage. For

obvious reasons, packet retrieval is the most important and the base module for the

whole project. Timely and robust packet capture routines capable of supporting 3D

video bitrates should be implemented before any kind of network packet frame analysis

is done.

To implement such software the WinPcap driver and library was used. This library

provides low-level network access allowing, for example, to choose the network hardware

to use, to change hardware settings to allow a computer network card to operate in

promiscuous mode (accept all traffic even if is not destined for it), packet filtering and

capture.
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Figure 5.4: Probe operation flowchart
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Based on this library, a main program thread (pcap loop) was developed with the

single objective of storing retrieved UDP packets into memory. A filter is set, usually with

the destination IP address and PORT of the video being transmitted (other combinations

are possible) and when a packet that fulfils the filter conditions arrives, it is stored. This

is the only action this thread is responsible for, in order to reduce the chances of packet

retrieval failure due to possible time spent on any other task. Packet storage is performed

by adding a pointer, pointing to the start of the retrieved network packet, to a list of

pointers making this a producer thread.

Each member of the resulting list of pointers is a structure of type frame (defined on

Code Example 5.1) with members pointing to other structures, defined to correspond to

each packet header type. So, to do a memory mapping of the captured raw information

and ease future parsing and validation actions during development four structures were

created (IP, UDP, TS and PES), defining each of their major fields with the size of the

correspondent data type. In this way all fields are easily and automatically accessible

just by pointing the first element of the structure to the location in memory where the

captured packet is. Also, using this scheme enables an efficient sweep through all TS

packets contained in a UDP one, by hopping in 188 memory byte strides, instead of

sweeping all data, byte by byte.

1 /∗ 4 bytes IP address ∗/
typede f s t r u c t i p a d d r e s s {

3 u char byte1 ;

u char byte2 ;

5 u char byte3 ;

u char byte4 ;

7 } i p a d d r e s s ;

9 /∗ IPv4 header ∗/
typede f s t r u c t ip header {

11 u char v e r i h l ; // Vers ion (4 b i t s ) + header l ength (4 b i t s )

u char to s ; // Type o f s e r v i c e

13 u shor t t l e n ; // Total l ength

u shor t i d e n t i f i c a t i o n ; // I d e n t i f i c a t i o n

15 u shor t f l a g s f o ; // Flags (3 b i t s ) + Fragment o f f s e t (13 b i t s )

u char t t l ; // Time to l i v e

17 u char proto ; // Protoco l

u shor t c r c ; // Header checksum

19 i p a d d r e s s saddr ; // Source address (4 byte s t r u c t )

i p a d d r e s s daddr ; // Des t ina t i on address (4 byte s t r u c t )

21 u i n t op pad ; // Option + Padding

} i p header ;

23

/∗ UDP header ∗/
25 typede f s t r u c t udp header{
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u shor t spor t ; // Source port

27 u shor t dport ; // Des t ina t i on port

u shor t l en ; // Datagram length

29 u shor t c r c ; // Checksum

}udp header ;

31

/∗∗Pointe r s to s p e c i f i c par t s o f captured nework frame ∗∗∗/
33 s t r u c t frame{

i p heade r ∗ ip ;

35 udp header ∗udp ;

TS header ∗TS; //may not e x i s t . F i r s t TS in UDP, o the r s every 188 byte

s t r i d e s

37 PES header ∗PES; //may not e x i s t . Point f i r s t . . . t e s t a f t e r .

} ;

Code Example 5.1: Packet structure example, missing definition of MPEG-TS and PES

for simplicity

In early development stages, to confirm the implemented thread packet retrieval reli-

ability, tests were performed involving 2D video streaming using VLC Media Player,

the network traffic analyser software Wireshark and two separate computers: one

running VLC (streaming) and Wireshark ; the other running also VLC (playback) and

the developed packet monitoring software. Since Wireshark is also based on WinPcap,

identical filtering options could be used. As expected, the number of packets detected

by Wireshark was the same as detected by the developed monitoring software.

5.2.2 Finding Video PIDs

Now that packet retrieval is assured, further analysis into their content can be performed.

With the packet filter defined above, there is no guarantee that every retrieved packet is

MPEG2-TS, so the first byte of every TS packet candidate (sync byte == 0x47) must

be checked.

Since it is assumed that the Probes know nothing about the incoming video, and thus

not knowing the actual point in the transmission (monitoring may start at any point in

a video streaming session), a second thread (PID finder) starts looking for video PIDs

in the captured packets (packet consumer) in order to identify what kind of video

is present (2D or 3D). This is done by sweeping through all TS packets contained in

UDP packets, and looking for a Payload Unit Start Indicator (Section 3.1.4) flag,

that indicates the start of a PES packet. If that PES packet contains video information

(stream id equal to 0xe0) the PID of that TS packet is stored for future use by other

threads. This is done until two different PIDs from TS packets containing video are found

or a specific time without finding a second PID has passed. The later condition meaning

that 2D video is being transmitted through the network. This operation discards every

packet it processes, but the number of discarded packets versus the packets needed for
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video quality assessment is negligible. Now, that video PIDs are available, all packets

containing unwanted PIDs can be automatically discarded, easing even more the parsing

task for the rest of the monitoring session.

5.2.3 Packet Parser

The Parser thread (Parse frames) is the more complex thread since it parses the bit-

stream, analyses it and organizes all the information in a coherent way to be handed

over to the Server. Figure 5.5 represents this function in a block diagram.

The information is gathered between PES packets in the following manner: a PES

packet header is identified and information of PID, lenght (if present), PTS and DTS

(if present) is stored; all following TS packets are scanned for NAL Units, storing its

Type and Nal Ref IDC; then, in between NAL Units all lost TS packets are counted.

The result is a list containing members with the structure in Code Example 5.2 for each

received/identified PES packet:

/∗After a l l netw . frames are parsed , r e s u l t i n g

2 i n f o i s s to r ed on a l i s t o f type PES info ∗/

4 typede f s t r u c t PES info{
u shor t PID ;

6 u shor t l enght ;

u char to ta lNa l ;

8 f l o a t PTS;

f l o a t DTS;

10 u char NalRefIDC [ 2 0 ] ;

u char NaluType [ 2 0 ] ;

12 u shor t Los t pkts [ 2 0 ] ;

}PES info ;

Code Example 5.2: Parsed information structure

Packet Loss Detection

Packet losses are responsible for the main contribution to video quality degradation,

so detecting them is very important. They are detected using the Continuity Counter

(CC) present in TS packet headers. A discontinuity in this 4 bits circular counter means

that some information was lost. The number of packet losses can only be estimated

by guessing the difference between the value of CC for the previous packet and for the

present one of the same stream. For 3D video there are two different CCs per view, so

if a CC from a previous packet is 3 and the present one is 5, one can say that at least

one packet was lost but it is also correct to say that maybe 16 packets were lost due to

counter overflow and restart.
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Figure 5.5: Parse frames program flowchart

Also, lost packet categorization is needed, i.e. a packet loss must be associated with

a NAL Unit Type and NAL REF IDC because depending on these parameters, the type

of packets lost (containing I, B or P slice information) have a different impact on the

perceived video quality.

To categorize NAL Units, a byte by byte sweep was implemented looking for the

start sequence signalling the presence of NAL Unit header (3 bytes 0x00, 0x00, 0x01) to

retrieve the NALU Type and the NAL REF IDC of NALUs containing VCL information

(NALU Type 1, 5 or 20). There is no way to know if a TS packet containing a NAL Unit

header has been lost so the number of lost packets is added to the previously detected

one.

To cope with the possible loss of a PES packet header, or when its ”length” field

is 0, some additional measures were implemented: if a packet PID changes and a PES

packet header is not present, this means that a TS packet that contained a PES header

was lost, thus the PTS cannot be determined. Additionally, if the length also cannot

be promptly retrieved, it can be estimated by counting the number of received and lost

TS packets between the present and the next PES packets and multiplying it by 184

(TS packet size minus header). Thus if a report arrives to the server without PTS, this

means that a packet containing a PES header was lost and that the reported length is

an estimation.
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5.2.4 Information constraint

As the video keeps being streamed packets are being parsed and information being stored.

The number of stored members in the resulting list starts to increase and to avoid filling

too much memory, this list has to be constrained.

This is done by yet another thread that keeps enough number of elements in the

list, corresponding to the information of the last moments of transmitted video. This

parameter (last moments of video) is set in seconds at the time of Probe initialization.

The transmission to the central server starts only when enough elements to meet this

requirement are in the list. Stored information constraint is done by using the difference

between PTS values of the last and first elements in list. If this difference is greater

than the set value, list elements are discarded until the PTS difference is lower or equal

than the set time window of video to analyse. In this way the network Probes can

dynamically send the information to the server, upon request, using a sliding time frame,

independently of the duration of the video being transmitted.

5.2.5 Report to Server

Now that all parsed information is available, it can be transmitted to the server. This is

done via network sockets, because they are easily implemented in several development

languages and system architectures, making it possible to treat a packet monitor Probe

as a black box, that provides the information necessary to be analysed on request.

Data transmission of the last available parsed data is done upon server request. The

information amount to be sent increases proportionally with the set size for the time

window of video to analyse.

Since the list storing the parsed information is constantly mutating, there is the

chance that the information at server request (transmission start) is not the same at

transmission end. So, to keep data consistency and prevent data access concurrency

between program threads, a copy of the information list has to be made before trans-

mission starts. For this reason, if a request for information is made to the Probe, it may

reply that sending a report is not possible. This happens because the sender thread has

to wait for permission to access the report data and, if it’s not promptly accessible, the

Probe informs the requester in order to not keeping it waiting. Please bare in mind that

all threads are running simultaneously in parallel, sharing variables. If done differently,

the Probes could not handle timely packet retrieval.

The report has the following format for each one of the PES packets identified by a

Probe within the specified time window: Base view PID; PID; PES Length; number

of NALUs in PES; PTS; DTS; Lost packets (array with size equal to the number

of NALUs); Nal REF IDC(array with size equal to the number of NALUs); NALU

type (array with size equal to the number of NALUs). The requester has the task to

organize all reported data for further processing upon reception as explained in Section
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5.3.1.

5.2.6 Usage and Versions

Once connected to a port mirroring switch, the user must assign an identification number

to the Probe, set the IP and PORT number of the server and choose the capture network

interface card to use (TS network parser.exe ID IP PORT net interface ). In this case,

a custom Server provides the means to automatically interact with the Probes, but this

can also be done manually, using any SSH client, for example PuTTY.

A Probe software variant was developed to allow the parsing and a analysis of local

TS files, helping in the validation of the parser results before network deployment. There

is also a stand-alone version of this software capable of calculating the video quality as-

sessment metric from Section 4.1 and reporting this value only. This version may also be

used to implement any NR video quality assessment model, although such implementa-

tion may not be as straightforward as the one explained in Section 5.3.1.

5.3 Server

The server is the system node responsible for initial configuration of the network dis-

tributed Probes, receive the bulk information from them, store it on a database and

show the information being received in a human readable format as shown in Figure 5.6.

In reality it is comprised of two servers: one socket server and one web server (Python

Tornado). The first one is responsible for handling the Probes and their data; the later

renders the web interface and enables the use of WebSockets. These two servers are

running in parallel sharing variables and establishing the bridge between the interface

and the Probes.

On start it waits for contact from the Probes requesting for basic configuration in-

formation such as time window size for analysis, video source/destination IP and PORT

combinations (for filtering purposes). The Probes wait for packets as explained in Scc-

tion 5.2 and start transmitting data to the server, when enough information is gathered

and the server requests it.

To avoid processing competition between threads, a round-robin approach on data

request to the Probes was adopted. In this way a scalable system could be implemented

and future changes to the code become easier.

For each one of the server connected Probes, data is requested and then collected

until the Probe signals the end of transmission. Then, the data is processed and stored

into a database. Before asking another probe for more information, the video quality

assessment metric is calculated and presented to the user on the web interface.

In the meanwhile, the server is always checking if a new Probe has checked in. If

so, a new thread is launched to enable configuration of the new Probe while the round-
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Figure 5.6: Server functional blocks

robin routine continues. Once configured the new Probe is added to the list of Probes

to be asked for data. The server supports virtually a limitless number of Probe connec-

tions, meaning that database storage and video quality metric calculation is assured. In

the current implementation the video interface supports the simultaneous display for 8

Probes.

5.3.1 Video Quality Assessment calculation

Since the server receives all data it is only natural to do the video quality assessment

metric calculations at this point. One of the objectives of this work was to develop a

way for easy implementation of any video quality assessment metric. This is done in a

well defined function within the server code where all variables are easily available for

use, as exemplified in Code Example 5.3. The code is in Python that is easily learnt

due to being a very high level programming language. In addition, any video quality

assessment algorithm can be tested in a real scenario with short metric implementation

times. Code Example E.1 shows how the video quality assessment metric explained in

Section 4.1 was implemented within the Server.

1 de f m e t r i c c a l c ( data ) :

3 m e t r i c r e s u l t = 0

#i t e r a t e through a l l e lements

42 Network Distributed 3D Video Quality Monitoring System



CHAPTER 5. DISTRIBUTED ARCHITECTURE

5 f o r index , PES in enumerate ( data ) :

7 PES[ ’ Probe ’ ]

PES [ ’ Base PID ’ ]

9 PES[ ’PID ’ ]

i n t ( PES [ ’ Lenght ’ ] )

11 i n t ( PES [ ’ total NAL ’ ] )

f l o a t ( PES [ ’PTS ’ ] )

13 f l o a t ( PES [ ’DTS ’ ] )

15 f o r NAL in PES [ ’NALS ’ ] :

i n t ( NAL[ ’ Los t packet s ’ ] )

17 NAL[ ’ Nalu type ’ ]

NAL[ ’ Nal REF IDC ’ ]

19

re turn m e t r i c r e s u l t

Code Example 5.3: Example of Probe data variables access

The video quality calculation function is called when a burst of data from one Probe

is received, and thus calculations are done for the last moments of video passing through

one Probe. All received data is organized into a list of dictionaries for easy iteration

between list elements and each element of the dictionary can be called by its name.

With this approach the user may center his efforts on video quality assessment metric

implementation instead of worrying about how information is received and organized.

Please note that there are some differences between this implementation and the

described NR model due to some implementation constraints. For example, one single

TS packet cannot be lost since, if a loss event happens, it will affect the UDP packet

that in turn transports 7 TS packets.

5.4 Graphical User Interface

To enable simple interaction with all system components, a Graphical User Interface

was created. It is possible to set all Probe related settings, start monitoring sessions and

have real time feedback of Video Quality, determined by any Video Quality Metric that

is being object of study. It was designed with simplicity in mind, to keep the user away

from the complexity of Probe connection and all the processing involved in receiving all

the information.

The interface communicates with the server program using the recent WebSocket

protocol, enabling fast and bidirectional information exchange between the web browser

and the server program. So all data received from the Probes can be processed and

presented to the user without being previously stored into a database, making it possible

a near rea-time video quality monitoring and Probe control.
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Figure 5.7: Interface: Probe Status and Configuration

The interface has three main areas: Connection and Probe Status; Probe configura-

tion and general video information; Monitoring area.

5.4.1 Connection and Probe Status

The area in the GUI destined for connection and Probe status verification is represented

in Figure 5.7. It shows the health of the WebSocket connection between the server

program and the browser and signals any new incoming information. Generally speaking

is a way to detect if the server program is actually running.

The Probe status field shows any complementary information about the Probes and

their state. For example, if a new Probe connects to the server, disconnects, reports an
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error occurrence or when it is ready to start transmission to the server.

5.4.2 Capture Configuration

This is a group of form fields that are used for Probe and session configuration (Figure

5.7). The mandatory fields, corresponding to a packet filter that will be used by a

probe, are ”destination IP”, ”destination PORT” and ”time window”. However, it is

recommended to fill all fields since they are stored into the database and can help in future

data retrieval and analysis. All fields correspond to one or several Probes, depending on

user selection.

The ”Manual commands” field is for single Probe communication and debugging pur-

poses. The user may send a command to a particular Probe, bypassing all implemented

automated procedures.

5.4.3 Video Quality Assessment Graphs

After all Probes are configured, the user may start a monitoring session. Once in this

mode the server will send the assigned configuration to the corresponding Probes that

may have already established a connection with the server. The server will then wait

for Probe feedback, stating that enough video information has been parsed to produce

a report. If a new Probe establishes a connection to the server in the meanwhile, it

will be configured accordingly, meaning that a Probe may be configured without being

previously connected.

The number of graphs showing the calculated video quality assessment metric present

in the interface will vary depending on the number of Probes previously configured. They

show the evolution of the last 40 quality values (Figure 5.9), enabling instant visual

comparison. Lastly, a bar graph shows the last calculated video quality assessment

metric value, by Probe (Figure 5.8). Furthermore, the quality values are dependent of

the quality metric being tested, for example in the case of the N-R quality model proposed

in Section 4.1.1, a value of 0 means that video is being transmitted without any errors

and, if any variation happens, it means that a probe detected a video degradation.

Bellow these two graphs is a table (Figure 5.10) with general information about the

video that was retrieved and that does not change that often, such as :

• Base PID: PID value of base view;

• PID : secondary view PID;

• Avg Nal : average number of NALU’s per PES packet;

• Avg Length : average PES packet length;

• Lost I, P and B : number of lost TS packets ordered by type, from the last Probe

to report data.
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Figure 5.8: Interface: Instant quality

Figure 5.9: Interface: Quality progress for a single Probe
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Figure 5.10: Interface: Table with general information from the captured video

5.5 Database

A database was designed to store all gathered information for future reference (Figure

5.11), so it had to be general purpose and independent of any specific implemented Video

Quality Metric. It could store quality information calculated in a particular experimental

session but the used metric must be well identified. The most correct way to do it is

to simply store all data from the Probes along with reception timestamps and other

relevant information regarding the particular video being object of study in a particular

session. This generic storage scheme means that the available data for future analysis

is kept flexible and can be used to test new VQA schemes without constraints. The

disadvantage is the database will ending up storing a huge number of members in its,

tables very fast, since all data from all the Probes is gathered.

All information can be available just by queering the database for the wanted data to

perform off-line tests for a real case scenarios or for various network testing conditions.

5.5.1 Table description

This section describes each one of the tables that form the database, and how they relate

to each other to form a coherent and redundancy free database (Figure 5.11):

Session

This table stores general information about a monitoring session.

• idsession: (primary key) identifies a particular monitoring session;

• description: field describing a session with complementary information;

• video transmited: (foreign key) links to video info table;

• src ip: source IP of video stream;

• src port: source PORT of video stream;

• dst ip: destination IP of video stream;

• dst port: destination PORT of video stream;
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Lost_Type_RefIDC

idLost_packets INT

PES INT

Nal_Ref_idc SMALLINT

Nalu_type TINYINT

Lost_packets TINYINT

Indexes

PES_info

idPES_info INT

Probe INT

Base_PID MEDIUMINT

PID MEDIUMINT

Lenght INT

total_NAL TINYINT

PTS FLOAT

DTS FLOAT

time_stamp INT

session INT

Indexes

Probes

idProbes INT

ip VARCHAR(45)

Hops_from_receiver INT

Description VARCHAR(45)

Create_date DATE

Indexes

time_stamp_table

idtime_stamp_table INT

time_stamp TIMESTAMP

Indexes

session

idsession INT

descriptin VARCHAR(45)

video_transmited INT

src_ip VARCHAR(45)

src_port INT

dst_ip VARCHAR(45)

dst_port INT

time_window_size INT

timestamp DATETIME

Indexes

video_info

idvideo_info INT

file_name VARCHAR(45)

description VARCHAR(45)

gop_size INT

gop_structure VARCHAR(45)

bitrate INT

resolution_heigth INT

resolution_width INT

3D BOOL

Indexes

Figure 5.11: Entity Relationship Diagram of the system database

• time window size: time window size of the last moments of video to be gathered

by the Probes;

• timestamp: (foreign key) links to time stamp table. States the session start.

Video info

To help in future analysis of the stored information, the streamed videos have to be

identified. Also there are important intrinsic characteristics that can be used in video

quality assessment.

• idvideo info: (primary key) identifies a particular video to be streamed and its

characteristics;

• file name: file name of the video;

• description: more particular information other than the present fields;

• gop size: distance between two I-frames;

• gop structure: specifies the order intra- and inter-frames are arranged within a

video stream;

• bitrate: encoding bitrate;

• resolution height;

• resolution width;

• 3D: boolean to state if the video is 3D or 2D.
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Probes

Their identification and geographical distribution is important, and it is stored into this

table.

• idProbes: (primary key) probe unique identification number;

• IP: probe IP address;

• hops from receiver: contains the distance from the receiver a probe is, in net-

work node hops;

• description: additional data about Probe location;

• create date: date it was added to the system.

Time stamp table

Since there will be intensive use of repeated timestamps throughout the database, this

simple table helps to prevent information redundancy.

• id time stamp table: (primary key) identifies a particular timestamp;

• time stamp: actual timestamp value;

PES info

Each burst of information sent by the Probes contain several PES specific data:

• idPES info: (primary key) unique identification for each received PES related

data;

• Probe: (foreign key) link to Probes table. Identifies which Probe sent this piece

of data;

• Base PID: base view PID;

• PID: actual PID of this particular PES. If Base PID is equal to PID, means that

this PES is from base view;

• Lenght: PES lenght;

• Total NAL: Number of NAL units in PES;

• PTS: Presentation Timestamp. If 0 this PES header was not present and its length

was a prediction;

• DTS: Decoding Timestamp. May be 0;

• time stamp: (foreign key) links to Time stamp table;

• session: (foreign key) links to Session. Points to the session this data refers to.
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NALUS

Every entry of this table stores data referring to individual NAL Units.

• idNALU: (primary key) identifies every NAL unit;

• PES: (foreign key) links to PES info, relating a PES with the several NALUs it

contains;

• Lost packets: lost TS packets in a particular NALU;

• Nalu type: NALU type;

• Nalu ref idc: NAL reference IDC.

After some test runs of the system, the database had enough entries to test its

structure by querying for some interesting values. Off-line data processing is out the

scope of this work, but for future reference, some examples of data querying are presented

here. All values resulting from these examples are from tests done during debugging and

system reliability tests so they may not have a specific practical meaning.

Query 5.4 presents the amount of lost packets sorted by type in a particular session:

s e l e c t p r o b e s i n f o . p e s i n f o . PID ,

2 sum( p r o b e s i n f o . l o s t t y p e r e f i d c . l o s t p a c k e t s ) as ’ l o s t packets ’ ,

p r o b e s i n f o . l o s t t y p e r e f i d c . Nalu type from p e s i n f o

l e f t j o i n p r o b e s i n f o . l o s t t y p e r e f i d c

4 on p r o b e s i n f o . p e s i n f o . idPES info = p r o b e s i n f o . l o s t t y p e r e f i d c .PES

group by p r o b e s i n f o . l o s t t y p e r e f i d c . Nalu type ;

Code Example 5.4: Example of a Database query

5.6 Future HEVC implementation

This software code can be used for a similar implementation for the latest Video Standard

or any other, being MPEG-TS packetization the only constraint to prevent an over

complicated adaptation.

If the HEVC bitstream is packetized into MPEG-TS, only the function responsible

for NAL Unit parsing and identification has to be modified, because only the NALU

header will be different. Figure 5.12 shows the NALU header fields. They are described

in Annex B of [4] and [41]:

• forbidden zero bit : this bit must be 0. This bit exists to enable transport of

HEVC video over MPEG-2 transport systems (avoidance of start code emulations);
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NAL UNIT Header NAL UNIT Payload

3 4 5 6 70 1 2 3 4 5 6 70 1 2

0 NAL Unit Type reserved_zero_bits
(layer id) Temporal ID + 1

Figure 5.12: HEVC NALU header fields

• NAL Unit Type (6 bits): this field specifies the NAL Unit type. If this value

is less than 32, means that a NAL Unit is a VCL NAL Unit and carries video

information;

• layer id (6 bits): equal to zero (for now). Anticipating to be used in the future

for scalable or 3D video coding extensions, and may identify additional layers for

example, spatial scalable layer, a quality scalable layer, a texture view, or a depth

view;

• Temporal ID + 1 (3 bits): this field specifies the temporal identifier of the NAL

unit plus 1. A TID value of 0 is illegal to ensure that start code emulation does

not happen.

From the above information it seems premature to do an implementation with 3D

video quality assessment in mind, since the standard does not yet define the presence of

this type of video at NALU level. This leaves 2D as the only option but, from a develop-

ment point-of-view, parsing the HEVC NALU header is easily implemented and only a

Probe code function needs to be changed. With this change, information to retrieve also

changes but is also simple to add new variables to the structure responsible for storing

the data from the network parsed frames. The rest of the Probe code should work with

minor changes while server and database must also be changed to accommodate the new

variables.

Other obvious requirement is the quality metric that has to be fitted for HEVC in a

similar way as the one described in Chapter 4 in order to understand the effects packet

loss have on decoded video.

Another problem is the lack of tools available for HEVC MPEG2-TS packetization,

streaming and reproduction over the network.However, as soon as these problems are

solved, a version similar to the developed system should work with minor changes.
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Functional tests

This Chapter firstly describes a MPEG2-TS 3D video streamer, specially developed to

enable testing of the Probe software during the development stages as well as final sys-

tem testing. The implemented video quality assessment metric is also tested for several

video sequences and network packet losses, analysing the resulting video impairments.

Furthermore, the test setup and results for the final version of the network monitoring

system are presented in order to assess reliability and solution behaviour upon deploy-

ment.

6.1 MPEG2-TS 3D Video Streamer

In order to test the video stream parser code on early development stages, only 2D video

streams were used since a public domain 3D video streamer solution did not exist. This

was done until the point in development that, for further advances, 3D video streams

had to be used. Thus to be able to continue with the project, a basic MPEG-TS video

streamer was created. It took multiplexed 3D MPEG-TS video files and read the TS

packets contained within them, 7 at a time (the maximum a UDP packet can carry as

explained in Section 3.1.5 ) and streamed them via an UDP socket to the receiver. This

was done having no concerns on packet transmission timings, meaning all data was being

dumped to the network at the fastest possible speed the network or interface network

card could support. This meant the video playback at the receiver had poor quality

because its buffer was overflowing with video data and packets were being discarded upon

reception. Also the packet retrieval Probes and Wireshark had problems to recognize all

packets at such speeds. To attenuate the problem, and since the objective was to detect

packet losses, another version of this software was created to delay packet transmission.

Transmission rate was simply determined by dividing the number of packets to transmit

by the video duration. Such approach also produced bad video quality at the receiver

because not all packets have the same importance or impact on the video being played,

thus they cannot be treated as equals. From a development point-of-view this was good

enough for testing purposes because all packets were being streamed and received within
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the same time as the video duration, enabling 3D video tests.

After more progress was made on 3D video packet monitoring, there was the need

to test the implemented code with an actual streamer capable of produce an acceptable

video playback at the receiver. 2D Video could be properly tested using VLC or FFM-

PEG, but there was no way to know if all developments could cope with Full HD 3D

Video bitrates. Some very time consuming attempts to modify the FFMPEG source

code to make it capable of streaming 3D video were also conducted. This proved to be

too complex for the scope of this particular project and should maybe considered as a

project on itself, since all H264 MVC standard would have to be implemented into this

code. Trying to bypass the checks FFMPEG does before start streaming also proved to

be difficult, since for each bypass done a new group problems surfaced and keeping track

of all the problems to tackle proved to be very difficult.

TS AUX

Parse File

Identify
video PES

Calculate 
PTS

Count TS
packets
between

two
consecutive
video PES

Store
PTS and
TS count

Figure 6.1: Auxiliary file generation for 3D video Streamer

The two solutions left were to buy a professional 3D streaming solution or develop a

streamer capable of producing acceptable results. Of course the faster solution was the

second since it could be based on the first versions of the previously developed software.

It has to be capable to deliver a satisfactory video quality independently of the video

being transmitted. This meant developing a program capable of interpret the MPEG-TS

file prior to transmission to understand the packet transmission timing. The program

(Figure 6.1) analyses the file to transmit (only the first time the file is submitted for

transmission) and creates an auxiliary file containing two columns: the first contains the

PTS of every PES packet in the file; the second has the number of TS packets between two

consecutive PES packets. This file is then used to get the difference between two different

consecutive PTS values and to see if the video is 2D or 3D (if two consecutive PTS values

are equal the video is 3D). The difference between the PTS values gives the presentation

periodicity of a PES packet, so all the data of one PES has to be transmitted on that

time frame independently of its size, resulting in UDP packet bursts to the network.

Knowing if a video is 3D or 2D is necessary since (in this implementation) transmission

periodicity of a 3D PES packet is half periodicity fo a 2D packet. This does not mean,
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that 3D PES packets contains double the information but that two PES packets need

to be transmitted in the same period. Of course in the case of the 3D video a relation

between the size of Base View packets and Auxiliary View ones could be used in order

to determine the transmission time for that particular PES packet. However, since the

generalization for the periodicity value produced acceptable results the streamer code

was left this way. Figure 6.2 presents a simplified block diagram for the video Streamer

operation.

AUX

TS

Difference between
PTS sets a period

Network

Periodic Task

Reads the number
of TS packets set in

AUX file

UDP packetization
and transmission

Streamer

Figure 6.2: 3D video Streamer block diagram

This code is also capable of simulating random and periodic packet losses, a feature

that proved to be very useful to test the Probe reliability. The streamer signals when a

packet is ”lost” (not transmitted) and the Probes have to react accordingly.

6.1.1 Packet loss using the Gilbert-Elliot model

In the early stages of the 3D video implementation, a very simple packet loss scheme was

implemented to ease the debugging task, by simulating periodic packet losses at several

user defined packet loss percentages. Of course this does not accurately characterize a

lossy network, so a way to simulate packet losses had to be studied and implemented.

Based on [42] the Gilbert-Elliot packet loss model was chosen, since packet losses usually

occur in bursts and not in a Bernoulli random manner, thus making this a great model

to use for demonstration purposes.

This model was introduced in [43] and [44], and is a stochastic packet loss model

based on a two-state Markov process (Figure 6.3). It simply has a Bad (packet not

transmitted) state, a Good (packet transmitted) state and the transition probabilities

p and q, between these two states. In short, once a packet is transmitted the system

transits to the Bad (S1) state or remains in the Good (S0) state; if a packet is not

transmitted the system transits to the Good state or remains in the Bad state. Since the
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S0 S1

p

q

1-p 1-q

Good Bad

Figure 6.3: Gilbert-Elliot model representation

model only retains the previous state, the probability of a packet not being sent depends

on the state the system is currently at. The transition probabilities may be calculated

from the average packet loss rate (PLR) and the mean burst length (MBL). From [45]:

p = P (Si+1 = 1 | Si = 0) =

[
MBL ·

(
1

PLR
− 1

) ]−1

(6.1)

q = P (Si+1 = 0 | Si = 1) =
1

MBL
(6.2)

frac1PLR > 1 +
1

MBL
, 0 < PLR < 1 , MBL ≥ 1 (6.3)

The streamer version using this model loops through a list of PLR ranging from

0.5% to 4% , that give enough degradation for demonstration purposes and a MLB of

3 UDP packets since the Continuity Counter of a TS packet ranges from 0 to 15 and

a UDP packet carries 7 TS packets, a burst length of 3 is already too much for an

accurate packet loss detection, so there is no point in making this value greater. The

streamer is very similar to the previously developed versions until the transmission point,

where the model decides if an already assembled UDP packet is transmitted or discarded
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(packet loss simulation). A simple Python script in Annex E shows an example of the

Gilbert-Elliot model implementation.

6.2 Test Environment

To properly test the system and prevent error occurrence due to external conditions

it had to be isolated from the existing network infrastructure. There is huge network

pollution with all kinds of broadcast packets being transmitted at any given time. The

objective of network isolation is to make sure the only traffic passing through is video

from the transmitter to the receiver. Also this is the only way to test more than two

Probes at a time. To have more than two Probes operating, the test scenario presented

in Figure 6.4 was created, where:

• 1: Receiver 1;

• 2: Probe 1;

• 3: Server: Quality Monitor / 3D video Streamer;

• 4: Probe 2;

• 5: Receiver 2.

• 6: Network switch with port mirroring capabilities (HP ProCurve 2810-24G).

Prior to testing, the switch had to be configured to assign a mirroring port, the two

other ports to be mirrored and the switch IP address. After this, all satellite components

could be connected to form a working network, paying attention to connect the Streamer

and Receiver to the mirrored ports and the remaining Probe to the mirror port. The

Server can be connected to any other of the remaining switch ports.

Network Distributed 3D Video Quality Monitoring System 57



CHAPTER 6. FUNCTIONAL TESTS

Figure 6.4: Experimental setup

6.3 Reliability tests

The most basic test was to stream a Full HD 3D video sequence to the receiver and visu-

ally confirm, using VLC, if it was being played without any artefacts or jitter. Although

3D video is transmitted, VLC plays it discarding all data from secondary views.

Another test that had to be performed was Probe connection to the Server and asso-

ciated configuration. This is done by submitting the mandatory configuration values set

in the interface (streaming destination IP, PORT and video time window to analyse) and

connect every Probe by assigning an Identification number, Server IP and PORT and

select a network interface. The interface should show that there are new Probe connec-

tions and show their identification numbers as well as information about configuration

status.

Now that every component is tested individually, it is time for a full test with all

Probes reporting to the Server, and to observe the video quality assessment metric being

determined in 3 different points of the network. As expected, no packet losses were

detected by the Probes (for the Streamer node it is obvious that such thing cannot happen

since all outgoing data is captured) and as a result all results were shown accordingly in

the GUI.

Reliability was tested with all the following combinations: stopping/starting stream-

ing at random, Probes react by considering packet losses until MPEG-2 TS Continu-

ity Counter synchronization is retained again; disconnect/connect Probes from/to the

Server, assigning a different ID and/or keeping the same. In what concerns the server, if

a Probe is disconnected, a timeout is raised when data is to be requested to that Probe

and it is removed from the request queue. When a Probe reconnects with the same ID

or a new one it will be added to the request queue only if the ID is not already part of

the queue.
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Overall, the system behaves well under the above conditions, although it is possible

that a never foreseen condition could cause an unexpected failure or data loss.

6.4 NR Video Quality Model Tests

In order to determine the effect packet losses have the on video being transmitted, and

to assess if the implemented metric would work in a real case scenario, some tests were

performed using only one probe located on the receiver and a streamer/server running the

version of the MPEG2-TS 3D Video Streamer capable of network packet loss simulation.

6.4.1 NR Model Parameters

In Section 4.1.1 the proposed N-R model is defined by Equation 4.5 whose parameters

had to be chosen from Tables C.1 and C.2. To decide on a Dataset of parameters to use,

every one of the possibilities for Equation 4.5 was plotted in function of the number of

bytes lost (Figure 6.5). This allowed to evaluate which one of the combinations would

better behave once implemented in the video quality monitor. Keeping in mind that a

PES packet may be comprised of several TS packets that can be as much as 700, meaning

that for this case a PES packet length is 128000 bytes (700×184 TS packet payload size).

One has to guarantee that if a portion of a packet with these characteristics is lost the

metric will still be able to compute a valid result. For example, all Cubic functions from

all Datasets cannot be used because at a certain point they would start measuring video

improvements with packet loss increase. The same can be said for Quadratic functions

in Figures 6.5a, 6.5c,6.5f and 6.5f, for greater packet loss values, meaning that a pair of

Quadratic dSSIM functions per Dataset that could be used does not exist. This leaves

only the Linear functions from which Dataset 2 was selected, leaving Equations 6.4 and

6.5 to be implemented on the video quality assessment monitor.

dSSIMP = 2.61× 10−05Lfs − 0.04488 (6.4)

dSSIMB = 4.38× 10−05Lfs − 0.006689 (6.5)

6.4.2 NR Model Tests

For these tests the video sequences used were Dog (Figure 6.6a) , Ballons (Figure 6.6b),

Bullinger (Figure 6.6c) and ESTG Bus Stop (Figure 6.6d) were used. Dog and Balloons
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(c) Dataset 2, B frames
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(d) Dataset 2, B frames
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Figure 6.5: dSSIM in function of packet losses

sequences are originally too short for these tests (300 frames, 10 seconds), so each one

of the views was concatenated with itself to form a 2 minutes sequence. Bullinger and

ESTG Bus Stop already had enough length. To encode the sequences Dog, Balloons

and Bullinger into H.264/AVC MVC-3D FRIM Encoder software from Intel was used

enabling the creation of H.264 elementary streams (ES) that were then multiplexed into

MPEG2-TS using tsMuxeR software. ESTG Bus Stop sequence is different from the

others because it was produced by Instituto de Telecomunicações using a 3D Digital HD

Video Camera Recorder (Sony HXR-NX3D1U NXCAM) that produces already packet-

ized MPEG2-TS video stream files that can be used without any further processing. The

videos used have their main characteristics enumerated in Table 6.1.

To test the video quality model each one of the TS encapsulated video streams was

transmitted using the 3D Video Streamer software version capable of simulating UDP

packet losses, with varying packet loss percentage of 0.1%, 0.5%, 1%, 2%, 4% and 8%.

There is no need for testing further from 8% because subjective video quality degradation
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(a) Dog (b) Balloons

(c) Prof. Bullinger (d) ESTG bus stop

Figure 6.6: Video sequences used for metric evaluation

at this point is already too much. The Probe was configured to analyse the last 5 seconds

of the transmitted video. The Server, upon receiving a Probe report calculates the dSSIM

for the base and secondary views as follows: for each report entry, lost packets from each

type (I, P or B) are counted; dSSIM is calculated for P and B using Equations 6.4 and

6.5; for I type packets, dSSIM is 1 (total loss); the average of all calculated dSSIMs (by

view) is performed and stored for further processing. The same will happen for a 2D

video, and the base-view dSSIM can be used as a 2D video quality indicator for devices

supporting only H.264 2D video streams. Figure 6.7 is the result of these procedures

where results are organized by Probe report.

The computed results are then averaged to produce an average dSSIM value for

a given UDP packet loss percentage. Figure 6.9 shows these results and Figure 6.8

compares the base and secondary views for one single video sequence.

From analysing the Figures 6.9a and 6.9b one can conclude that comparison between

the determined video quality of the videos is not possible because they all evolve in the

same way with packet losses. The quality from a video passing through the network

can only be compared with the quality from the same video, or one with the same

characteristics, passing at another network point.
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Table 6.1: Video sequence characteristics

Sequence Resolution Frames Bitrate (Mbbps) Framerate (fps)

Dog 1280x960 1800 20 30

Balloons 1024x768 3000 20 30

Bullinger 432x240 1622 20 25

ESTG Bus 1920x1080 1152 22 23.976
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Figure 6.7: Calculated dSSIM values by Probe report

Still images taken from the video sequences, present in Annex F, help to understand

the impact that the UDP packet losses have on the quality of the video being transmitted.
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Figure 6.8: Base and secondary views dSSIM comparison
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Figure 6.9: dSSIM in function of UDP packet loss percentage





Chapter 7

Conclusions and future work

This chapter concludes this project report, presenting some conclusions about this re-

search and development work and some future research perspectives in the field of 3D

video network quality monitoring.

7.1 Conclusions

The subject addressed in this project description was the creation of a set of tools to

help further develop the research in the field of objective quality evaluation of 3D video

over packet-loss-prone transmission channels. All the objectives proposed in Section 1.2

were achieved.

The developed system performs well, is flexible, reliable, scalable, easily deployable

and customizable. The modular architecture enables the Probes to be treated as a black

box that gives feedback about the content of the video stream passing through a given

IP network point, enabling the deployment as a stand-alone monitoring device or the

integration on a distributed monitoring system. The Server is the bridge between the

Probes and the GUI. It is responsible for establishing communication with the Probes

and ask for their monitoring results in order to calculate any video quality assessment

metric. The Server also supports virtually unlimited Probe connections at any point of

a monitoring session, storing all received data and presenting it in a GUI. The GUI was

created with functionality in mind and was kept as simple as possible. It enables setting

all parameters for Probe configuration as well as parameters for the network monitoring

session. Although this project only covers data storage into a database, it was created

to reduce data redundancy and keep all tables and relations as coherent and simple as

possible, thus easing the future task of data querying.

One of the main objectives is to enable the implementation of any video quality

metric for testing. In Section 5.3.1 there is an example showing how all variables from

the Probes are accessible within the Server, abstracting future users from Probe report

acquisition an processing, leaving them the task of implementing their own video quality

model. In addition, in Annex B, the metric explained in Section 4.1 is fully implemented

Network Distributed 3D Video Quality Monitoring System 65



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

for illustrative purposes.

As a complement to the developed system, required for system development and test,

a 3D video streamer software was developed. It produces a good video quality at the

receiver and was of great help for test and validation. A version that simulates packet

losses was used, in order to assess the effect that the packet loss percentage has on the

video quality, as well as to calculate video quality metric results.

7.2 Future work

Although this research work presents a powerful set of software tools that may help in

future developments regarding 3D video quality assessment, there are several aspects

that can be addressed in the future and that may lead to a higher performance of the

network monitor or to widen this field of study.

• Probe support for more network packetization schemes. As explained in

Section 3.1.5 there are several packetization schemes that could be implemented in

the Probe source code. This would enable, for example, the study of the impact

that packet losses for each one of the transmission methods has in perceived video

quality.

• Inclusion of depth-enhanced video formats. Implement identification and

parsing of 3D video using depth information for view rendering, as specified in

Annex I of H.264 specification [16].

• Implement other NR video quality assessment metrics for several other

video formats such as V+D or MVD and compare relative video impairment for

the same network conditions.

• Analyse the data captured by the Probes. The data from the database can

be used off-line to conceive new video quality assessment metrics, to be subjected

to data mining, or for neuronal network training.

• HEVC implementation and support. This subject was already addressed and

explained in detail on Section 5.6. Objective video quality assessment metrics for

this standard are yet to be explored and a tool like the one developed on the scope

of this work would help a lot.

• Embedded Probe Version. Port the Probe code to an embedded platform to

improve mobility, installation requirements and the reduction of power consump-

tion for long monitoring sessions.
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Appendix A

NAL Unit Types

Table A presents all NALU types for H.264. MVC corresponds to the column containing

Annex G and Annex H NAL unit type class.
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Table A.1: NAL unit type codes, syntax element categories, and NAL unit type classes

nal unit
type

Content of NAL unit and
RBSP syntax structure

Annex A

NAL unit
type class

Annex G and
Annex H
NAL unit
type class

Annex I

NAL unit
type class

0 Unspecified non-VCL non-VCL non-VCL

1
Coded slice of a non-IDR picture
slice layer without partitioning rbsp( )

VCL VCL VCL

2
Coded slice data partition A
slice data partition a layer rbsp( )

VCL not applicable not applicable

3
Coded slice data partition B
slice data partition b layer rbsp( )

VCL not applicable not applicable

4
Coded slice data partition C
slice data partition c layer rbsp( )

VCL not applicable not applicable

5
Coded slice of an IDR picture
slice layer without partitioning rbsp( )

VCL VCL VCL

6
Supplemental enhancement information
(SEI) sei rbsp( )

non-VCL non-VCL non-VCL

7
Sequence parameter set
seq parameter set rbsp( )

non-VCL non-VCL non-VCL

8
Picture parameter set
pic parameter set rbsp( )

non-VCL non-VCL non-VCL

9
Access unit delimiter
access unit delimiter rbsp( )

non-VCL non-VCL non-VCL

10 End of sequence end of seq rbsp( ) non-VCL non-VCL non-VCL

11
End of stream
end of stream rbsp( )

non-VCL non-VCL non-VCL

12 Filler data filler data rbsp( ) non-VCL non-VCL non-VCL

13
Sequence parameter set extension
seq parameter set extension rbsp( )

non-VCL non-VCL non-VCL

14
Prefix NAL unit
prefix nal unit rbsp( )

non-VCL
suffix

dependent
suffix

dependent

15
Subset sequence parameter set
subset seq parameter set rbsp( )

non-VCL non-VCL non-VCL

16..18 Reserved non-VCL non-VCL non-VCL

19
Coded slice of an auxiliary coded
picture without partitioning
slice layer without partitioning rbsp( )

non-VCL non-VCL non-VCL

20
Coded slice extension
slice layer extension rbsp( )

non-VCL VCL VCL

21

Coded slice extension for depth view
components /*specified in Annex I */
slice layer extension rbsp( ) /*
specified in Annex I */

non-VCL non-VCL VCL

22..23 Reserved non-VCL non-VCL VCL

24..31 Unspecified non-VCL non-VCL non-VCL
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Appendix B

Function responsible for quality
metric calculation

This Annex contains the portion of the Server code responsible for video quality cal-

culation. It should be treated as an example to help future implementations and to

understand the dynamics of this code, since this particular function should be edited to

accommodate the calculation of any new metric. The entry parameter for this function

is a report (list of data) from a single probe. The returned values from this function is

sent to the GUI.

1 de f m e t r i c c a l c ( data burs t ) :

3 dSSIM B = 0 #Base

LostP B = 0

5 LostB B = 0

LostI B = 0

7 dSSIMP B = 0

dSSIMB B = 0

9 dSSIMI B = 0

B elements = 0

11

dSSIM A = 0 #Aux i l i a r

13 LostP A = 0

LostB A = 0

15 LostI A = 0

dSSIMP A = 0

17 dSSIMB A = 0

dSSIMI A = 0

19 A elements = 0

21 dSSIMT B = 0 #Fina l r e s u l t base

dSSIMT A = 0 #Fina l r e s u l t a u x i l i a r

23

f o r index , PES in enumerate ( data burs t ) :

25

i f PES [ ’ Base PID ’ ] == PES[ ’PID ’ ] : #base view
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27

B elements = B elements + 1

29

LostP B = 0

31 LostB B = 0

LostI B = 0

33

f o r NAL in PES [ ’NALS ’ ] :

35

i f i n t ( NAL[ ’ Los t packet s ’ ] ) > 0 :

37

i f ( ( i n t (NAL[ ’ Nal REF IDC ’ ] ) > 0) and ( i n t (NAL[ ’

Nalu type ’ ] ) != 5 ) ) :#P s l i c e

39 LostP B = LostP B + i n t ( NAL[ ’ Los t packet s ’ ] )

41 e l i f ( ( i n t (NAL[ ’ Nal REF IDC ’ ] ) == 0) and ( i n t (NAL[ ’

Nalu type ’ ] ) != 5 ) ) :#B s l i c e

LostB B = LostB B + i n t ( NAL[ ’ Los t packet s ’ ] )

43

e l i f ( ( i n t (NAL[ ’ Nal REF IDC ’ ] ) > 0) and ( i n t (NAL[ ’

Nalu type ’ ] ) == 5 ) ) :#I s l i c e

45 LostI B = LostI B + i n t ( NAL[ ’ Los t packet s ’ ] )

47 i f LostP B > 0 :

i f i n t ( PES [ ’ Lenght ’ ] ) <= 0 : #not p o s s i b l e ( in theory ) ,

j u s t prevent ion

49 dSSIMP B = 1

e l s e :

51 dSSIMP B = ( LostP B ∗188) ∗ 0.0000261 + 0.0448

53 dSSIMT B = dSSIMT B + dSSIMP B

55 e l i f LostB B > 0 :

i f i n t ( PES [ ’ Lenght ’ ] ) <= 0 : #not p o s s i b l e ( in theory ) ,

j u s t prevent ion

57 dSSIMB B = 1

e l s e :

59 dSSIMB B = ( LostB B ∗188) ∗ 0.0000438 + 0.006689

61 dSSIMT B = dSSIMT B + dSSIMB B

63 e l i f LostI B > 0 :

65 dSSIMT B = dSSIMT B + 1.0 #ALL IS LOST!

67 e l s e : #a u x i l i a r view

69 A elements = A elements + 1
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71 LostP A = 0

LostB A = 0

73 LostI A = 0

75 f o r NAL in PES [ ’NALS ’ ] :

77 i f i n t ( NAL[ ’ Los t packet s ’ ] ) > 0 :

79 i f ( ( i n t (NAL[ ’ Nal REF IDC ’ ] ) > 0) and ( i n t (NAL[ ’

Nalu type ’ ] ) != 5 ) ) :#P s l i c e

LostP A = LostP A + i n t ( NAL[ ’ Los t packet s ’ ] )

81

e l i f ( ( i n t (NAL[ ’ Nal REF IDC ’ ] ) == 0) and ( i n t (NAL[ ’

Nalu type ’ ] ) != 5 ) ) :#B s l i c e

83 LostB A = LostB A + i n t ( NAL[ ’ Los t packet s ’ ] )

85 e l i f ( ( i n t (NAL[ ’ Nal REF IDC ’ ] ) > 0) and ( i n t (NAL[ ’

Nalu type ’ ] ) == 5 ) ) :#I s l i c e

LostI A = LostI A + i n t ( NAL[ ’ Los t packet s ’ ] )

87

89 i f LostP A > 0 :

i f i n t ( PES [ ’ Lenght ’ ] ) <= 0 : #not p o s s i b l e ( in theory ) ,

j u s t prevent ion

91 dSSIMP A = 1

e l s e :

93 dSSIMP A = ( LostP A ∗188) ∗ 0.0000261 − 0 .0448

95 dSSIMT A = dSSIMT A + dSSIMP A

97 e l i f LostB A > 0 :

i f i n t ( PES [ ’ Lenght ’ ] ) <= 0 : #not p o s s i b l e ( in theory ) ,

j u s t prevent ion

99 dSSIMB A = 1

e l s e :

101 dSSIMB A = ( LostB A ∗188) ∗ 0.0000438 + 0.006689

103 dSSIMT A = dSSIMT A + dSSIMB A

105 e l i f LostI A > 0 :

107 dSSIMT A = dSSIMT A + 1.0 #ALL IS LOST!

109

111 dSSIMT A = dSSIMT A / A elements

dSSIMT B = dSSIMT B / B elements
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113

re turn [ dSSIMT B , dSSIMT A ]

Code Example B.1: Example of VQA metric calculation
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VQA Metric parameter tables
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Table C.1: Curve fitting coefficients for P-frames

Linear Quadratic Cubic

Dataset-1

p0=0.03596

p1=3.66E-06

-

-

p0=0.03596

p1=3.66E-06

p2=9.26E-10

-

p0=0.05365

p1=9.29E-06

p2=-1.19E-09

p3=4.22E-14

Dataset-2

p0=-0.04488

p1=2.61E-05

-

-

p0=3.89E-02

p1=6.11E-06

p2=8.92E-10

-

p0=4.74E-03

p1=1.78E-05

p2=-1.87E-10

p3=2.72E-14

Dataset-3

p0=-0.1276

p1=9.01E-05

-

-

p0=-0.2097

p1=1.43E-04

p2=-6.66E-09

-

p0=-0.03292

p1=-2.92e-05

p2=3.86E-08

p3-3.28E-12

Table C.2: Curve fitting coefficients for B-frames

Linear Quadratic Cubic

Dataset-1

p0=0.01636

p1=3.05E-05

-

-

p0=-1.83E-02

p1=5.69E-05

p2=-3.48E-09

-

p0=-1.90E-02

p1=5.78E-05

p2=-3.77E-09

p3=2.57E-14

Dataset-2

p0=0.006689

p1=4.38E-05

-

-

p0=-2.04E-03

p1=5.34E-05

p2=-1.80E-09

-

p0=1.30E-02

p1=2.57E-05

p2=1.07E-08

p3=-1.50E-12

Dataset-3

p0=-0.006671

p1=5.65E-05

-

-

p0=2.07E-03

p1=6.29E-05

p2=-1.54E-09

-

p0=2.01E-02

p1=2.13E-05

p2=2.23E-08

p3=-3.69E-12
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Graphical User Interface

This Annex shows how the GUI when viewed on a Web Browser.
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Figure D.1: Graphical User Interface Layout
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Appendix E

Function implementing the

Gilbert-Elliot model

import random

2 #v a r i a b l e s to change

4 BL = 3

PLR = 0.05

6

#####################

8

10 maxBL = 7

12 p = 1/(BL∗ ( (1/PLR)−1) ) #p c a l c u l a t i o n

r= 1.000/BL #q c a l c u l a t i o n

14

pr in t p , r

16

burst = 0

18 l o s s = Fal se

20 whi le 1 :

22 i f l o s s == 0 :

burst = 0

24 pr in t ”LOSS : ” , l o s s #show s t a t e

l o s s = ( random . random ( ) < p )

26

e l i f l o s s == 1 :

28 burst = burst + 1

30 i f burst <= maxBL :

p r i n t ”LOSS : ” , l o s s #show s t a t e

32 l o s s = ( random . random ( ) < (1− r ) )

Network Distributed 3D Video Quality Monitoring System 81



APPENDIX E. FUNCTION IMPLEMENTING THE GILBERT-ELLIOT MODEL

e l s e :

34 l o s s = Fal se

e l s e :

36 pr in t ”ERROR”

Code Example E.1: Example of Gilbert-Elliot model implementation
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Appendix F

Pictures ilustrating video

degradation

This Annex shows still images taken from video being transmitted for several packet loss

levels, as explained in Section 6.4. Some less noticeable impairments are signalled.

F.1 Dog sequence

Figure F.1: Still image from DOG sequence, for 0.1% UDP packet losses
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Figure F.2: Still image from DOG sequence, for 0.5% UDP packet losses

Figure F.3: Still image from DOG sequence, for 1% UDP packet losses
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Figure F.4: Still image from DOG sequence, for 2% UDP packet losses

Figure F.5: Still image from DOG sequence, for 4% UDP packet losses
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Figure F.6: Still image from DOG sequence, for 8% UDP packet losses
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F.2 Balloons sequence

Figure F.7: Still image from Balloons sequence, for 0.1% UDP packet losses

Figure F.8: Still image from Balloons sequence, for 0.5% UDP packet losses
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Figure F.9: Still image from Balloons sequence, for 1% UDP packet losses

Figure F.10: Still image from Balloons sequence, for 2% UDP packet losses
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Figure F.11: Still image from Balloons sequence, for 4% UDP packet losses

Figure F.12: Still image from Balloons sequence, for 8% UDP packet losses
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F.3 Bullinger sequence

Figure F.13: Still image from Bullinger sequence, for 0.1% UDP packet losses

Figure F.14: Still image from Bullinger sequence, for 0.5% UDP packet losses
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Figure F.15: Still image from Bullinger sequence, for 1% UDP packet losses

Figure F.16: Still image from Bullinger sequence, for 2% UDP packet losses

Figure F.17: Still image from Bullinger sequence, for 4% UDP packet losses
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Figure F.18: Still image from Bullinger sequence, for 8% UDP packet losses
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F.4 ESTG Bus Stop sequence

Figure F.19: Still image from ESTG Bus Stop sequence, for 0.1% UDP packet losses

Figure F.20: Still image from ESTG Bus Stop sequence, for 0.5% UDP packet losses
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Figure F.21: Still image from ESTG Bus Stop sequence, for 1% UDP packet losses

Figure F.22: Still image from ESTG Bus Stop sequence, for 2% UDP packet losses

Figure F.23: Still image from ESTG Bus Stop sequence, for 4% UDP packet losses
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Figure F.24: Still image from ESTG Bus Stop sequence, for 8% UDP packet losses
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