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Abstract

In this paper, using fixed point method we prove the generalized Hyers-Ulam stability
of a quadratic quartic functional equation for fixed integers k with k 6= 0, ±1 in para-
normed spaces.
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1 Introduction and Preliminaries

A basic question in the theory of functional equations arises as follows: When is it true that
a function, which approximately satisfies a functional equation, must be close to an exact
solution of the equation?

If the problem accepts a unique solution, we say the equation is stable. The first stability
problem concerning group homomorphisms is related to a question of Ulam [30] in 1940.

“Let G be a group and G′ be a metric group with metric d(·, ·). Given ε > 0 does there
exists a δ > 0 such that if a function f : G → G′ satisfies the inequality d(f(xy), f(x)f(y)) <
δ for all x, y ∈ G, then there exists homomorphism H : G → G′ with d(f(x), H(x)) < ε for
all x ∈ G?”

In 1941 D.H. Hyers [11] gave the first affirmative partial answer to the question of Ulam
for Banach spaces. He proved the following celebrated theorem.

Theorem 1. ([11]) Let X, Y be Banach spaces and let f : X → Y be a mapping satisfying

‖f(x + y) − f(x) − f(y)‖ ≤ ε (1)

for all x, y ∈ X. Then the limit

a(x) = lim
n→∞

f(2nx)
2n

(2)

exists for all x ∈ X and a : X → Y is the unique additive mapping satisfying

‖f(x) − a(x)‖ ≤ ε (3)

for all x ∈ X.

Aoki [2] generalized Hyers theorem for additive mappings. In 1978, a generalized version
of the theorem of Hyers for approximately linear mappings was given by Th.M. Rassias [24].
He proved the following:


