COMPARISON AND OSCILLATION THEOREM FOR SECOND-ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS OF MIXED TYPE

E. THANDAPANI, N. KAVITHA, AND S. PINELAS
Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai 600 005, India
Departamento de Matemática, Universidade dos Açores, Ponta Delgada, Portugal

Abstract

In this paper, we establish some comparison theorems for the oscillation of second order neutral difference equations of mixed type $$
\Delta\left(a_{n} \Delta\left(x_{n}+b_{n} x_{n-\sigma_{1}}+c_{n} x_{n+\sigma_{2}}\right)^{\alpha}\right)+q_{n} x_{n-\tau_{1}}^{\beta}+p_{n} x_{n+\tau_{2}}^{\beta}=0
$$ where α and β are ratio of odd positive integers, $\sigma_{1}, \sigma_{2}, \tau_{1}$ and τ_{2} are positive integers. Our results are new even if $p_{n}=c_{n}=0$. Examples are provided to illustrate the results.

AMS (MOS) Subject Classification. 39A10.

1. INTRODUCTION

In this paper, we shall study the oscillatory behavior of the second order nonlinear neutral difference equation of mixed type

$$
\begin{equation*}
\Delta\left(a_{n} \Delta\left(x_{n}+b_{n} x_{n-\sigma_{1}}+c_{n} x_{n+\sigma_{2}}\right)^{\alpha}\right)+q_{n} x_{n-\tau_{1}}^{\beta}+p_{n} x_{n+\tau_{2}}^{\beta}=0 \tag{1.1}
\end{equation*}
$$

where $n \geq n_{0} \in \mathbb{N}$, subject to the following conditions:
(H1) $\left\{a_{n}\right\}$ is a positive sequence for all $n \geq n_{0}$ and $\sum_{n=n_{0}}^{\infty} \frac{1}{a_{n}}=\infty$;
(H2) $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are nonnegative sequences such that $0 \leq b_{n} \leq b$ and $0 \leq c_{n} \leq c$, where b and c are constants;
(H3) $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are nonnegative real sequences and not eventually zero for many values of n;
(H4) $\sigma_{1}, \sigma_{2}, \tau_{1}$ and τ_{2} are nonnegative integers and α and β are ratio of odd positive integers.

We put $z_{n}=\left(x_{n}+b_{n} x_{n-\sigma_{1}}+c_{n} x_{n+\sigma_{2}}\right)^{\alpha}$. By a solution of equation (1.1), we mean a real sequence $\left\{x_{n}\right\}$ defined for all $n \geq n_{0}-\max \left\{\sigma_{1}, \tau_{1}\right\}$, and satisfies equation (1.1) for

