Communications in Applied Analysis 16 (2012), no. 1, 87–96

OSCILLATION OF NONLINEAR DIFFERENCE EQUATIONS WITH DELAYED ARGUMENT

S. PINELAS¹ AND R. KOPLATADZE²

¹Departamento de Matematica, Universidade dos Acores Portugal *E-mail:* sandra.pinelas@clix.pt

²Department of Mathematics of Tbilisi State University University st. 2, Tbilisi 0186, Georgia *E-mail:* r_koplatadze@yahoo.com

ABSTRACT. The following difference equation with delayed argument

$$\Delta^2 u(k) + F(k, u(\tau(k))) = 0$$

is considered, where $F: N \times R \to R$, $\tau: N \to N$, $\tau(k) \leq k$ for $k \in N$, $\lim_{k \to +\infty} \tau(k) = +\infty$ and $\Delta u(k) = u(k+1) - u(k)$, $\Delta^2 = \Delta \circ \Delta$. In the paper sufficient (necessary and sufficient) conditions are established for all proper solutions of the above equation to be oscillatory.

AMS (MOS) Subject Classification. 34K06, 34K11.

1. INTRODUCTION

Consider the difference equation

$$\Delta^2 u(k) + F(k, u(\tau(k))) = 0, \qquad (1.1)$$

where $F: N \times R \to R$, $\tau: N \to N$, $\Delta u(k) = u(k+1) - u(k)$ and $\Delta^2 = \Delta \circ \Delta$. Everywhere it will be assumed that

$$F(k, x)$$
 sign $x \ge 0$ for $k \in N$ and $x \in R$, (1.2)

$$\tau(k) \le k \quad \text{for} \quad k \in N, \quad \lim_{k \to +\infty} \tau(k) = +\infty$$
(1.3)

and

$$\sup\{|F(i,x)|: i \ge k\} > 0 \text{ for } k \in N, \quad x \ne 0.$$
(1.4)

For any $n \in N$, denote $N_n = \{n, n+1, \dots\}$.

Definition 1.1. For $n \in N$ put $n_0 = \min\{\tau(k) : k \in N_n\}$. A function $u : N_{n_0} \to R$ is said to be a proper solution of (1.1), if it satisfies (1.1) on N_n and

$$\sup\left\{|u(i)|:i\geq k\right\}>0\quad\text{for}\quad k\in N.$$

Received March 24, 2011

1083-2564 \$15.00 ©Dynamic Publishers, Inc.