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Abstract

We shall establish some new criteria for the oscillation of solutions of the
fourth-order difference equation

∆2
(
a(k)

(
∆2x(k)

)α)
+ q(k)f (x (g(k))) = 0

with the property that x(k)/k2 → 0 as k →∞.
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1 Introduction
Consider the fourth-order nonlinear difference equation

∆2
(
a(k)

(
∆2x(k)

)α)
+ q(k)f (x (g(k))) = 0, (1.1)
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where ∆ is the forward difference operator defined by ∆x(k) = x(k + 1) − x(k) and
α is the ratio of positive odd integers. We assume that a, q : NK → (0,∞) for some
K ∈ N0 = {0, 1, 2, . . .}, where NK = {K,K + 1, . . .}, g : NK → N0 is nondecreasing
such that g(k) ≤ k for all k ∈ NK and lim

k→∞
g(k) = ∞, and f : R → R is continuous

and nondecreasing satisfying xf(x) > 0 for x 6= 0.
By a solution of equation (1.1) we mean a nontrivial sequence {x(k)} satisfying

equation (1.1) for all k ∈ NK , whereK ∈ N0. A solution {x(k)} is said to be oscillatory
if it is neither eventually positive nor eventually negative, and it is called nonoscillatory
otherwise. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

The problem of determining the oscillation and nonoscillation of solutions of dif-
ference equations has been a very active area in the last three decades, and many refer-
ences and summaries of known results can be found in the monographs by Agarwal et.
al. [1,4,5]. The results of this paper complement those recently established in [2,3,6–9].

2 Main Results
We assume

∞∑
j=n0∈N0

(
1

a(j)

) 1
α

=∞,

lim
k→∞

1

k2

k−1∑
s=n0

s−1∑
j=n0

(
1

a(j)

) 1
α

> 0, lim
k→∞

1

k2

k−1∑
s=n0

s−1∑
j=n0

(
j

a(j)

) 1
α

> 0.

 (2.1)

Now we establish the following result.

Theorem 2.1. Let condition (2.1) hold. If x is a nontrivial solution of equation (1.1)
such that x(k)/k2 → 0 as k →∞, then

x(k) > 0, ∆x(k) > 0, ∆2x(k) < 0, ∆
(
a(k)

(
∆2x(k)

)α)
> 0 (2.2)

for k ≥ n0 ∈ N0 and

a(k)
(
∆2x(k)

)α → 0 and ∆
(
a(k)

(
∆2x(k)

)α)→ 0 as k →∞.

Proof. Let x be a nonoscillatory solution of equation (1.1), say, x(k) > 0 for k ≥ n0.
Summing equation (1.1) from n0 to k − 1 ≥ n0, we obtain

∆
(
a(k)

(
∆2x(k)

)α)
= ∆

(
a(n0)

(
∆2x(n0)

)α)− k−1∑
j=n0

q(j)f (x (g(j))) .

We claim that ∆
(
a(n0)

(
∆2x(n0)

)α)
> 0. To prove it, assume the contrary:

∆
(
a(n0)

(
∆2x(n0)

)α) ≤ 0.
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Then ∆
(
a(k)

(
∆2x(k)

)α) is nonpositive and nonincreasing for k ≥ n0, and for some
n1 > n0 + 1 we have

∆
(
a(n1)

(
∆2x(n1)

)α)
= ∆

(
a(n0)

(
∆2x(n0)

)α)− n1−1∑
j=n0

q(j)f (x (g(j))) ,

that is,

∆
(
a(k)

(
∆2x(k)

)α) ≤ ∆
(
a(n0)

(
∆2x(n0)

)α)
< 0 for k ≥ n1.

Consequently,
a(k)

(
∆2x(k)

)α → −∞ as k →∞,
irrespective of a(n0)

(
∆2x(n0)

)α. This in turn implies ∆x(k) → −∞ as k → ∞, and
hence x(k) → −∞ as k → ∞, contrary to the hypothesis that x(k) > 0 for k ≥ n0.
This contradiction proves

∆
(
a(n0)

(
∆2x(n0)

)α)
> 0.

Since n0 is arbitrary, we conclude that

∆
(
a(k)

(
∆2x(k)

)α)
> 0 for k ≥ n0.

Now it is easy to see that ∆
(
a(k)

(
∆2x(k)

)α) → 0 as k → ∞. If this is not true, then
there exists a constant C1 > 0 such that

∆
(
a(k)

(
∆2x(k)

)α)
> C1 for k ≥ n2 for some n2 ≥ n0.

However, this implies

x(k) ≥ C
k−1∑
s=n2

s−1∑
i=n0

(
i

a(i)

)1/α

for some constant C > 0 and n3 ≥ n2, which contradicts the asymptotic behavior
lim
k→∞

x(k)/k2 = 0.

Next we shall prove that ∆2x(k) < 0 for some k ≥ n0. If a(n0)
(
∆2x(n0)

)α
> 0,

then a(k)
(
∆2x(k)

)α
> 0 for k ≥ n0, and there would exist constants b1 > 0 and

n̄1 > n0 such that
a(k)

(
∆2x(k)

)α
> b1 for k ≥ n̄1.

However this again leads to the contradiction that

x(k) ≥ b
k−1∑
s=n0

s−1∑
i=n0

a1/α(i)

for some constant b > 0 and n̄2 > n̄1.
Moreover, we must have a(k)

(
∆2x(k)

)α → 0 as k → ∞, for otherwise we would
again be led to the contradiction that x(k)→ −∞ as k →∞. Continuing this process,
we deduce that ∆x(k) > 0 for k ≥ n0. This completes the proof.
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In order to characterize the behavior of solutions, we reformulate Theorem 2.1 as
follows.

Corollary 2.2. Let condition (2.1) hold and let x be a nontrivial solution of equation
(1.1) such that lim

k→∞
x(k)/k2 = 0. Then either

(I) x is oscillatory on [n0,∞), or else,

(II) ∆x(k) > 0 (∆x(k) < 0) for k ≥ n1 for some n1 ≥ n0 and x(k) (−x(k)) satisfies
the inequalities (2.2) of Theorem 2.1. In particular, x (−x) increases (decreases)
monotonically for k ≥ n0.

If x is a nontrivial solution of equation (1.1) such that x(k)→ 0 as k →∞, it cannot
satisfy the inequalities in (2.2) of Theorem 2.1. Thus we conclude by Corollary 2.2 that
such an x is oscillatory.

For k ≥ n0 ∈ N0, we let

Q(k) =

(
1

a(k)

∞∑
s=k+1

∞∑
j=s+1

q(j)

)1/α

.

Now we shall present the following comparison result.

Theorem 2.3. Let condition (2.1) hold. If the second-order difference equation

∆2y(k) +Q(k)f 1/α (y (g(k))) = 0 (2.3)

is oscillatory, then every solution x of equation (1.1) such that x(k)/k2 → 0 as k →∞
is oscillatory.

Proof. Let x be a nonoscillatory solution of equation (1.1), say, x(k) > 0 for k ≥ n0 ∈
N0. By Theorem 2.1, x satisfies the inequalities (2.2). Summing equation (1.1) twice
from k + 1 > n0 to u and letting u→∞, we get

−∆2x(k) ≥

(
1

a(k)

∞∑
s=k+1

∞∑
j=s+1

q(j)f (x (g(j)))

)1/α

≥ Q(k)f 1/α (x (g(k))) (2.4)

for k ≥ n0. Summing both sides of (2.4) from k + 1 ≥ n0 to u ≥ k + 1 and letting
u→∞, we find

∆x(k) ≥
∞∑

j=k+1

Q(j)f 1/α (x (g(j))) . (2.5)

Summing both sides of (2.5) from n0 to k − 1 > n0, we have

x(k) ≥ x(n0) +
k−1∑
s=n0

∞∑
j=s+1

Q(j)f 1/α (x (g(j))) .
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Now we define the sequence {ym(k)} by

y0(k) = x(k)

ym+1(k) = x(n0) +
k−1∑
s=n0

∞∑
j=s+1

Q(j)f 1/α (ym (g(j))) , m ∈ N0, k ≥ n0.

It is easy to check that the sequence {ym(k)} is well defined as an increasing sequence
and satisfies

x(n0) ≤ ym(k) ≤ x(k) for k ≥ n0 and m ∈ N0.

Hence there exists a sequence {y(k)} for k ≥ n0 such that

lim
m→∞

ym(k) = y(k)

and
x(n0) ≤ y(k) ≤ x(k) for k ≥ n0.

From Lebesgue’s dominated convergence theorem, it follows that

x(k) = x(n0) +
k−1∑
s=n0

∞∑
j=s+1

Q(j)f 1/α (x (g(j))) for k ≥ n0.

Taking the difference twice, we conclude that x is nonoscillatory, which contradicts the
hypotheses. This completes the proof.

The following result is immediate.

Theorem 2.4. Let condition (2.1) hold. Then every solution x of equation (1.1) such
that lim

k→∞
x(k)/k2 = 0 is oscillatory if one of the following conditions holds:

∫ ±∞
f−1/α(u)du <∞ and

∞∑
s=n0

∆g(s)
∞∑

j=s+1

Q(j) =∞;

lim sup
k→∞

1

k2

k−1∑
s=n0

∞∑
j=s+1

Q(j) > 1;

∫
±0
f−1/α(u)du <∞ and

∞∑
j=n0

Q(j)f 1/α (g(j)) =∞.

Next, we shall establish the following result.
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Theorem 2.5. Let condition (2.1) hold and assume that there exists a nondecreasing
sequence ξ such that g(k) < ξ(k) < k − 1 for k ≥ n0. Moreover, assume that

−f(−xy) ≥ f(xy) ≥ f(x)f(y) for xy > 0. (2.6)

If there exist a constant C ∈ (0, 1) and an n̄0 > n0 such that all bounded solutions of
the delay second-order difference equation

∆2y(k)− Cq(k)f
(
(ξ(k)− g(k)) a−1/α (ξ(k))

)
f (g(k)) f

(
y1/α (ξ(k))

)
= 0

are oscillatory, then every solution x such that lim
k→∞

x(k)/k2 = 0 is oscillatory.

Proof. Let x be a nonoscillatory solution of equation (1.1), say, x(k) > 0 for k ≥ n0 ∈
N0. By Theorem 2.1, we see that x satisfies (2.2). Thus there exist a constant b > 0 and
an n1 ≥ n0 such that

x (g(k)) ≥ bg(k)∆x (g(k)) for k ≥ n1. (2.7)

Using (2.6) and (2.7) in equation (1.1), we get

∆2 (a(k) (∆y(k))α) + b̄f (g(k)) f (y (g(k))) ≤ 0 for k ≥ n1, (2.8)

where y(k) = ∆x(k) for k ≥ n1 and b̄ = f(b). Clearly, we see that y(k) > 0,
∆y(k) < 0 and ∆ (a(k) (∆y(k))α) > 0 for k ≥ n1. Now for t ≥ s ≥ n1, we obtain

y(s) ≥ (t− s) (−∆y(t)) .

Replacing s and t by g(k) and ξ(k) respectively, we find

y (g(k)) ≤ (ξ(k)− g(k)) (−∆y (ξ(k)))

=
ξ(k)− g(k)

a1/α (ξ(k))
(−a (ξ(k)) (∆y (ξ(k)))α)

1/α for k ≥ n2 ≥ n1.
(2.9)

Using (2.6) and (2.9) in (2.8), we have

∆2z(k) ≥ b̄q(k)f (g(k)) f

(
ξ(k)− g(k)

a1/α (ξ(k))

)
f
(
z1/α (ξ(k))

)
for k ≥ n2,

where z(k) = −a(k) (∆y(k))α for k ≥ n2. Using an argument similar to that in
the proof of Theorem 2.3, we arrive at the desired contradiction. This completes the
proof.

The following result is immediate.

Theorem 2.6. Let condition (2.1) hold and assume that there exists a nondecreasing
sequence {ξ(k)} such that g(k) < ξ(k) < k for k ≥ n0. Then every solution x of equa-
tion (1.1) such that lim

k→∞
x(k)/k2 = 0 is oscillatory if one of the following conditions

holds:
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(i) f(x) = xα and either

lim sup
k→∞

k−1∑
j=ξ(k)

q(j)gα(j)

(
(ξ(j)− g(j))α

a (ξ(j))

)
(ξ(k)− ξ(j)) > 1

or

lim sup
k→∞

k−1∑
σ=ξ(k)

k−1∑
j=σ

q(j)gα(j)
(ξ(j)− g(j))α

a (ξ(j))
> 1;

(ii) f(x) = xβ , β ∈ (0, α) is the ratio of positive odd integers, and either

lim sup
k→∞

k−1∑
j=ξ(k)

q(j)gβ(j)

(
ξ(j)− g(j)

a1/α (ξ(j))

)β
(ξ(k)− ξ(j)) > 0

or

lim sup
k→∞

k−1∑
σ=ξ(k)

k−1∑
j=σ

q(j)gβ(j)

(
ξ(j)− g(j)

a1/α (ξ(j))

)β
> 0.
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