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Abstract: Some oscillation criteria for the oscillatory behavior of fourth order superlinear dynamic equations

on time scales are established. Criteria are proved that ensure that all solutions of superlinear and linear equations

are oscillatory. Many of our results are new for corresponding fourth order superlinear di¤erential equations and

fourth order superlinear di¤erence equations.

1 Introduction

This paper deals with the oscillatory behavior of the fourth order superlinear and/or linear dynamic equation

x�4 (t) + q (t)x (� (t)) = 0; (1)

on an arbitrary time scale T � R with supT = 1; where q : T ! (0;1) is rd-continuous function and  is the

ratio of positive odd integers.

We recall that a solution of equation (1) is said to be nonoscillatory if there exists a t0 2 T such that

x (t)x (� (t)) > 0 for all t 2 [t0;1) \ T; otherwise, it is said to be oscillatory. Equation (1) is said to be os-

cillatory if all its solutions are oscillatory.

In the last decade, there has been an increasing interest in studying the oscillatory behavior of �rst and second

order dynamic equations on time scales [1]-[7]. With respect to dynamic equations on time scales, it is fairly new

topic, and for general basic ideas and background, we refer to [1] and [2]. To the best of our knowledge, there are

no results for the oscillation of equation (1). Therefore the main purpose of this paper is to establish some new

criteria for the oscillation of equation (1). Our results are new even for the cases when T = R and T = Z:

2 Main Results

In order to prove our main results, we shall use the formula�
(x (t))

�
��

= �

Z 1

0

[hx� (t) + (1� h)x (t)]��1 x� (t) dh; (2)
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where x (t) is delta-di¤erentiable and eventually positive or eventually negative, which is a simple consequence of

Keller�s chain rule (see [1, Theorem 1.90]).

The following lemmas are needed in the proof of our main results.

Lemma 1 Assume that x (t) is an eventually positive solution of equation (1). Then there exists a t0 2 T such

that one of the following two cases holds:

(I) x (t) > 0; x� (t) > 0; x�� (t) > 0; x�3 (t) > 0; x�4 (t) < 0 for all t 2 [t0;1) \ T; (3)

(II) x (t) > 0; x� (t) > 0; x�� (t) < 0; x�3 (t) > 0; x�4 (t) < 0 for all t 2 [t0;1) \ T: (4)

The proof is easy and hence omitted.

In [1, Sec. 1.6], the Taylor monomials fhn (t; s)g1n=0 are de�ned recursively by

h0 (t; s) = 1; hn+1 (t; s) =

Z t

s

hn (u; s)�u; t; s 2 T \ [t0;1) ; n > 1:

Lemma 2 [4]. Let y (t) be an eventually positive solution of the equation

y��� (t) + �q (t) y (t) = 0

where �q (t) 2 Crd ([t0;1) ; (0;1)) and  is as in equation (1). If

y (t) > 0; y� (t) > 0; y�� (t) > 0 and y��� (t) 6 0 for t1 2 [t0;1) \ T; (5)

then

lim inf
t!1

ty (t)

h2 (t; t0) y� (t)
> 1: (6)

The following result is a straightforward extension of Lemma in [4] and hence we omit the proof.

Lemma 3 Assume that y (t) satis�es (5). IfZ 1

t0

�q (�) (h2 (� ; t0))

�� =1; (7)

then

y� (t) > ty�� (t) and y� (t) =t is eventually nonincreasing. (8)

Next, we shall state some su¢ cient conditions for the oscillation of second order dynamic equation

y�� (t) +Q (t) y (� (t)) = 0; (9)

where Q : T! (0;1) is rd-continuous,  is as in equation (1), which are needed in the proof of our main results.



Theorem 4 Equation (9) is oscillatory if one of the following conditions holds:

(i) Z 1

t0

Q (s)�s =1 for all  > 0; (10)

(ii)

lim sup
t!1

t

Z 1

t

Q (s)�s > c; c > 0; or
Z 1

t0

Z 1

s

Q (u)�u�s =1; when  > 1; (11)

(iii) There exists a positive nondecreasing delta di¤erentiable function � such that for every t1 2 [t0;1) \ T8>>>>><>>>>>:
(a1) lim sup

t!1

Z t

t1

�
� (s)Q (s)� 1

s
�� (s)

�
�s =1; or

(a2) lim sup
t!1

Z t

t1

"
� (s)Q (s)� 1

4

�
�� (s)

�2
� (s)

#
�s =1;

when  = 1: (12)

The proof of Theorem 4 is given in [5] and [6].

For t > t0; we let

Q (t) =

Z 1

t

Z 1

s

q (u)�u�s:(
We assume that there exists a rd-continuous function g : T! T such
that g(t) < t; g(t) is non�decreasing for t > t0 and limt!1 g(t) =1:

(13)

We also let �(t) = t� g(t) for t � t0; and assume thatZ 1

t0

(�(s)h2(g(s); t0))

q(u)�u =1: (14)

Now, we establish the following oscillation result for superlinear ( > 1) as well as linear ( = 1) equation (1).

Theorem 5 Let  > 1 and conditions (13) and (14), and condition (11) when  > 1; and (12) when  = 1 hold.

Moreover, assume that there exists a positive function � (t) 2 C1rd ([t0;1) ;R) such that for every constant k > 0;

and t > t1 2 [t0;1) \ T

lim sup
t!1

Z t

t1

"�
�(s)

�(s)
h2 (g(s); t0)

�
�� (s) q (s)� k �

� (s)

s

#
�s =1; (15)

then equation (1) is oscillatory.

Proof. Let x (t) be a nonoscillatory solution of equation (1), say, x (t) > 0 for t > t0 2 T: Then by Lemma 1,

there are two cases to consider:

Assume that x (t) satis�es Case (I). Then

x (t) = x (g(t)) +

Z t

g(t)

x� (s)�s



and since x�(t) is an increasing function for t > t0; we get

x (t) > (t� g(t))x� (g(t)) = �(t)x� (g(t)) for t > t1 > t0: (16)

Using (16) in equation (1) and setting y (t) = x� (t) in the resulting inequality, we have

y��� (t) + (�(t))

q (t) y (g(t)) 6 0 for t > t1: (17)

De�ne

W (t) = � (t)
y�� (t)

(y� (t))
 for t > t1: (18)

Then W (t) > 0 for t > t1 and by using the product rule, we �nd

W� (t) = �� (t)
y�� (t)

(y� (t))
 + �

� (t)

 
y��� (t)

�
y� (t)

� � y�� (t) ��y� (t)���
(y� (t))


(y� (� (t)))



!

= �� (t)
y�� (t)

(y� (t))
 + �

� (t)
y��� (t)

(y� (� (t)))
 � �� (t)

��
y� (t)

���
(y� (t))


(y� (� (t)))

 for t > t1: (19)

Using (17) �(19), we get

W� (t) 6 ��(t)�� (t) q (t)
�
y (g(t))

y� (� (t))

�
+ �� (t)

y�� (t)

(y� (t))
 � �� (t)

��
y� (t)

���
(y� (t))


(y� (� (t)))

 for t > t1: (20)

Thus,

W� (t) 6 ��(t)�� (t) q (t)
�
y (g(t))

y� (� (t))

�
+ �� (t)

y�� (t)

(y� (t))
 for t > t1: (21)

From (6) and (8), for any constant c; 0 < c < 1; we obtain�
y (g(t))

y� (� (t))

�
=

�
y (g(t))

y� (g(t))

� �
y� (g(t))

y� (� (t))

�
>
�
c
h2 (g(t); t0)

g(t)

� �
g(t)

� (t)

�
for t > t1: (22)

Also from (8), there exists a t2 > t1 2 [t0;1) \ T such that

y� (t) > ty�� (t) for t > t2: (23)

Using (22) and (23) in (21), we get

W� (t) 6 �c
�
�(t)

�(t)
h2 (g(t); t0)

�
�� (t) q (t) + �� (t)

1

t

�
y� (t)

�1�
for t > t2: (24)

Since y�(t) is an increasing function for t > t1; there exist a constant c2 > 0 such that

y� (t) > c1 for t > t2: (25)

Using (25) in (24), we get

c�W� (t) 6 �
�
�(t)

�(t)
h2 (g(t); t0)

�
�� (t) q (t) + c�c1�1

�� (t)

t
for t > t2:



Integrating the above inequality from t2 to t > t2; we have

�c�W (t2) 6 �
Z t

t2

"�
�(s)

�(s)
h2 (g(s); t0)

�
�� (s) q (s)� C

 
�� (s)

s

!#
�s;

where C = c�c1�1 ; which yields

lim sup
t!1

Z t

t2

"�
�(s)

�(s)
h2 (g(s); t0)

�
�� (s) q (s)� C

 
�� (s)

s

!#
�s 6 c�W (t2) <1 for all t > t2;

which contradicts (15).

Assume that x (t) satis�es Case (II). Integrating equation (1) from t > t0 to u > t and letting u!1; we get

x��� (t) >
�Z 1

t

q (s)�s

�
x (� (t)) for t > t0: (26)

Integrating (26) from t > t0 to u > t and letting u!1; we have

�x�� (t) >
�Z 1

t

Z 1

s

q (�)���s

�
x (� (t)) for t > t0;

or

x�� (t) +Q (t)x (� (t)) 6 0 for t > t0: (27)

By a comparison result (see [7]), the equation

y�� (t) +Q (t) y (� (t)) = 0 (28)

has a positive solution, while condition (11) or (12) implies the oscillation of equation (28), a contradiction. This

completes the proof.

The following corollary is immediate.

Corollary 6 In Theorem 5, let the condition (15) be replaced by

lim sup
t!1

Z t

t1

�
�(s)

�(s)
h2 (g(s); t0)

�
�� (s) q (s)�s =1; (29)

and

lim
t!1

Z t

t1

�� (s)

s
�s <1; (30)

then the conclusion of Theorem 5 holds.

Next, we present the following result.

Theorem 7 Let  > 1; conditions (11) and (14) hold and assume that there exists a function � (t) 2 C2rd ([t0;1) ;R)

such that

� (t) > 0; �� (t) > 0 and ��� (t) 6 0 for t > t0: (31)



If for t > t1 2 [t0;1) \ T

lim sup
t!1

Z t

t1

�
�(s)

�(s)
h2 (g(s); t0)

�
�� (s) q (s)�s =1; (32)

then equation (1) is oscillatory.

Proof. Let x (t) be a nonoscillatory solution of equation (1), say, x (t) > 0 for t > t0: Then by Lemma 1, there

are two cases to consider. The proof of Case (II) is similar to that of Theorem 5 - Case (II) and hence omitted.

Now, we consider Case (I). As in the proof of Theorem 5 we obtain the inequality (17). Next, we de�ne W by (18)

and apply the product rule to

W (t) =
�
� (t) y�� (t)

� �
y� (t)

��
for t > t1 2 [t0;1) \ T

to �nd

W� (t) =
h
�� (t) y�� (t) + �� (t) y��� (t)

i �
y� (� (t))

��
+ � (t) y�� (t)

��
y� (t)

����
:

Since y�� (t) > 0 and
��
y� (t)

���� 6 0 for t > t1; we see that
W� (t) 6 �� (t) y�� (t)

�
y� (� (t))

�� � �(t)�� (t) q (t) y (g(t))

(y� (� (t)))
 for t > t1: (33)

As in the proof of Theorem 5, we obtain (22) and hence (33) becomes

W� (t) 6 �� (t) y�� (t)
�
y� (� (t))

�� � �� (t)�(t)q (t)�ch2 (g(t); t0)
g(t)

� �
g(t)

� (t)

�
for t > t1: (34)

By applying (2), we have��
y� (t)

�1���
= (1� )

Z 1

0

�
hy� (� (t)) + (1� h) y� (t)

��
y�� (t) dh

6 (1� )
Z 1

0

�
hy� (� (t)) + (1� h) y� (� (t))

��
y�� (t) dh

= (1� )
�
y� (� (t))

��
y�� (t) : (35)

Using (35) in (34), we get

W� (t) 6 1

1�  �
� (t)

��
y� (t)

�1��� � c ��(t)
�(t)

h2 (g(t); t0)

�
�� (t) q (t) for t > t1:

Integrating this inequality from t1 to t; we obtain

�W (t1) 6 W (t)�W (t1) 6
1

1� 

h
�� (t)

�
y� (t)

�1� � �� (t1) �y� (t1)�1�i
� 1

1� 

Z t

t1

��� (s)
�
y� (s)

�1�
�s� c

Z t

t1

�
�(s)

�(s)
h2 (g(s); t0)

�
�� (s) q (s)�s:

Using condition (31) in the above inequality, we getZ t

t1

�
�(s)

�(s)
h2 (g(s); t0)

�
�� (s) q (s)�s 6W (t1) <1:



Taking lim sup of both sides of the above inequality as t ! 1; we obtain a contradiction to condition (32). This

completes the proof.

The following corollary is immediate.

Corollary 8 In Theorem 7, let conditions (31) and (32) be replaced by

lim sup
t!1

Z t

t1

�
�(s)

�(s)
h2 (g(s); t0)

�
� (s) q (s)�s =1;

then the conclusion of Theorem 7 holds.

Proof. The proof is similar to that of Theorem 7 by setting � (t) = t:

Finally, we establish the following result.

Theorem 9 In Theorem 5, let condition (15) be replaced by: for every constant � > 0

lim sup
t!1

Z t

t1

264��(s)
�(s)

h2 (g(s); t0)

�
�� (s) q (s)� �

�
� (s)

s

� ��� (s)�2
�� (s)

375�s =1; (36)

then the conclusion of Theorem 5 holds.

Proof. Let x (t) be a nonoscillatory solution of equation (1), say, x (t) > 0 for t > t0: Then by Lemma 1, there

are two cases to consider and the proof of Case (II) is similar to that of Theorem 5 - Case (II) and hence omitted.

Now, we consider Case (I). Proceeding as in the proof of Theorem 5 we obtain (17) and by de�ning W as in (18),

we obtain (19) and (22), that is,

W� (t) 6 �c�� (t) q (t)
�
�(t)

�(t)
h2 (g(t); t0)

�
+
�� (t)

� (t)
W (t)� �� (t)

y�� (t)
��
y� (t)

���
(y� (t))


(y� (� (t)))

 for t > t1: (37)

From (2),  > 1; we have��
y� (t)

���
= 

Z 1

0

�
hy� (� (t)) + (1� h) y� (t)

��1
y�� (t) dh

> 
�
y� (t)

��1
y�� (t) > 

�
y� (t1)

��1
y�� (t) := Cy�� (t) for t > t1;

where C = 
�
y� (t1)

��1
: Thus, (37) takes the form

W� (t) 6 �c�� (t) q (t)
�
�(t)

�(t)
h2 (g(t); t0)

�
+
�� (t)

� (t)
W (t)� C�� (t)

�
y�� (t)

�2
(y� (t))


(y� (� (t)))

 for t > t1: (38)

By (8), we see that y� (t) =t is nonincreasing, and hence

y� (t) >
�

t

� (t)

�
y� (� (t)) for t > t1: (39)

Using (39) in (38), we have

W� (t) 6 �c�� (t) q (t)
�
�(t)

�(t)
h2 (g(t); t0)

�
+
�� (t)

� (t)
W (t)� C

�
t

� (t)

�
�� (t)

�2 (t)
W 2 (t) for t > t1: (40)



By completing the square on the right-hand side of (40), we �nd

c�W� (t) 6 ��� (t) q (t)
�
�(t)

�(t)
h2 (g(t); t0)

�
+

1

4cC

�
� (t)

t

� ��� (t)�2
�� (t)

for t > t1:

Integrating this inequality from t1 to t; we have

�c�W (t1) 6 c� (W (t)�W (t1))

6 �
Z t

t1

264�� (s) q (s)��(s)
�(s)

h2 (g(s); t0)

�
� a

�
� (s)

s

� ��� (s)�2
�� (s)

375�s;
which yields

Z t

t1

264�� (s) q (s)��(s)
�(s)

h2 (g(s); t0)

�
� a

�
� (s)

s

� ��� (s)�2
�� (s)

375�s 6 c�W (t1) <1;

where a = 1=4cC; which contradicts (36). This completes the proof.

As an example, we let � (t) = 1 or t in Theorem 9 and obtain the following immediate result.

Corollary 10 In Theorem 9, let condition (36) be replaced by: for every constant � > 0

lim sup
t!1

Z t

t1

�
� (s) q (s)

�
�(s)

�(s)
h2 (g(s); t0)

�
� �

� (s)

�
� (s)

s

��
�s =1; (41)

then the conclusion of Theorem 9 holds.

Proof. Set � (t) = t in the proof of Theorem 9.

Corollary 11 In Theorem 9, let condition (36) be replaced by:

lim sup
t!1

Z t

t1

q (s)

�
�(s)

�(s)
h2 (g(s); t0)

�
�s =1; (42)

then the conclusion of Theorem 9 holds.

Proof. Set � (t) = 1 in the proof of Theorem 9.

Next, let T = R: In this case equation (1) takes the form

x(4) (t) + q (t)x (� (t)) = 0: (43)

Now Theorem 9 when applied to equation (43) becomes:

Theorem 12 Let  > 1;and condition (13) with T = R hold,Z 1

t0

�
(s� g(s))g2(s)

�
q (s) ds =1;



Z 1

t0

Z 1

s

Q (u) duds =1; when � > 1

and assume that there exist two nondecreasing functions � (t) ; � (t) 2 C1 ([t0;1) ; (0;1)) such that

lim sup
t!1

Z t

t1

"
� (s)Q (s)� 1

4

(�0 (s))
2

� (s)

#
ds =1; when  = 1;

where

Q (t) =

Z 1

t

Z 1

s

q (u) duds:

If for every constant � > 0; t > t1 2 [t0;1) \ T

lim sup
t!1

Z t

t1

"
s�� (s) q (s)� �

�
�0 (s)

�2
� (s)

#
ds =1;

then equation (43) is oscillatory.

When T = Z: In this discrete case equation (1) becomes

�4x (t) + q (t)x� (t+ 1) = 0: (44)

Now, Theorem 5 when applied to equation (44) takes the form:

Theorem 13 Let  > 1;and condition (13) with T = Z hold,
1X
s=t0

�
(s� g(s)) g2(s)

�
q (s) =1;

1X
s=t0

1X
u=s

Q (u) =1; when � > 1

and there exist two positive nondecreasing sequences f� (t)g and f� (t)g such that

lim sup
t!1

t�1X
s=t1>t0

"
� (s)Q (s)� (�� (s))

2

4� (s)

#
=1 when  = 1;

where

Q (t) =
1X
s=t

1X
u=s

q (u) :

If for every constant k > 0; and t > t1;

lim sup
t!1

tX
s=t0

��
s3

s+ 1

�
� (s+ 1) q (s)� k�� (s)

s

�
=1;

then equation (44) is oscillatory.

Remark 14 The results of this paper are presented in a form which is essentially new even for the corresponding

di¤erential equation (43) and di¤erence equation (44). The obtained results are also extendable to delay dynamic

equations of the form

x�4 (t) + q (t) (x� (� (t)))
�
= 0;

where � : T! T satis�es � (t) 6 t for t 2 T; �(t) is nondecreasing and lim
t!1

� (t) =1:



Remark 15 The literature is �lled with many criteria for the oscillation of the second order dynamic equations of

type (9), and so, one may apply those results rather than presented here.

Remark 16 We may employ other types of time scales, e.g., T = hZ with h > 0; T = qN0 with q > 1; T = N20 etc.,

see [1] and [2]. The details are left to the reader.
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