FUNCTIONAL DIFFERENTIAL EQUATIONS

VOLUME 17 2010, NO 1–2 PP. 1–10

OSCILLATION CRITERIA FOR SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH DAMPING AND MIXED NONLINEARITIES

E. THANDAPANI^{*}, S. MURUGADASS,[†] AND SANDRA PINELAS[‡]

Abstract. In this paper we present some oscillation criteria for the second order differential equation of the form

$$(r(t)x'(t))' + p(t)x'(t) + q(t)x(t) + \sum_{j=1}^{n} q_j(t)|x^{\alpha_j}(t)| \operatorname{sgn} x(t) = e(t), t \ge 0$$

where $r(t) \in C^1[0,\infty)$, p(t), q(t), $q_j(t)$, $e(t) \in C[0,\infty)$, r(t) > 0, $\alpha_1 > \ldots > \alpha_m > 1 > \alpha_{m+1} > \ldots > \alpha_n > 0$ ($n > m \ge 1$) without assuming that p(t), q(t), $q_j(t)$ and e(t) are nonnegative. In particular, for n = 1, we obtain some new oscillation criteria. The results obtained in this paper extend and improve some of the existing results.

AMS(MOS) subject classification. 34C10, 34C15

Key Words. Nonlinear differential equation, damping term, mixed nonlinearities, second order, oscillation.

1. Introduction. Consider the following second order differential equation of the form

(1.1)
$$(r(t)x'(t))' + p(t)x'(t) + q(t)x(t) + \sum_{j=1}^{n} q_j(t)|x^{\alpha_j}(t)| \operatorname{sgn} x(t) = e(t), t \ge 0$$

^{*} Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600005, India. e-mail: ethandapani@yahoo.co.in

[†] Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600005, India. e-mail: murugadasssm@gmail.com

[‡] Departamento de Matemtica, Universidade dos Aores, Portugal. e-mail: sandra.pinelas@clix.pt