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Abstract

In this work we study the oscillatory behavior of the delay differential equation
of mixed type

0 0
2 (t) = /_11‘(t—r(0)) dl/(@)—l—/_lac(t—l—T(Q))dn(G).

Some criteria are obtained in order to guarantee that all solutions are oscillatory.
The existence of nonoscillatory solutions is also considered.
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1 Introduction

The aim of this work is to study the oscillatory behavior of the differential equation of
mixed type

(1) :/_1x(t—r(0))dz/(9)—|—/_1x(t+7(9))dn(0), (1.1)

wherez(t) € R, r(#) and7(0) are nonnegative real continuous functions[en, 0].
The advance () will be assumed such that

7—<00) > 7—(0) Vo 7& 007
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where
7(60) = max {7(0) : 6 € [-1,0]}.

Bothv(#) andn(6) are real functions of bounded variationjef, 0], andn(#) is atomic
atf,, that is, such that

n(6s) —n(fy) # 0. (1.2)
The equation (1.1) represents a wide class of linear functional differential equations of
mixed type. The same equation is considered by Krisztin [5] in basis of some math-
ematical applications appearing in the literature, such as in [1] and [6] (see also [2]).
Whenr(0) is the null function, one obtains a retarded functional differential equation
whose oscillatory behavior is studied in [3, 4].

As usual, we will say that a solutianof (2.1) oscillates if it has arbitrary large zeros.
Notice that for equations, this definition coincides with the nonexistence of an invariant
cone as is considered an oscillatory solution in [5]. When all solutions oscillate, (2.1)
will be called oscillatory.

By [5, Corollary 5], under the condition (1.2), the oscillatory behavior of (2.1) can
be studied through the analysis of the real zeros of the characteristic equation

0

)\:/ exp(—/\r(é’))dv(9)+/ exp (A7(0)) dn(8). (1.3)

-1 -1

Letting
0

M()) = / exp (—Ar(8)) du(6) + / exp (A7(6)) dn(6).

-1 -1

the equation (1.1) is oscillatory if and onlyif (\) # X for every real\. So, if either
M) > A, VYIeR (1.4)

or
M) <A, VAER (1.5)

then we can conclude that equation (1.1) is oscillatory. In case of having = X for
some real\, there exists at least one nonoscillatory solution.

2 Oscillations and Nonoscillations independent of De-
lays and Advances
Forv(#) andn(f#) monotonous oii—1, 0], some general criteria for oscillations can be
obtained independently of either the delays or the advances.
Theorem 2.1. (i) Letv(¢) andn(6) be increasing functions or-1, 0]. If
0
/ 7(0)dn(0) > e, (2.1)

-1
then equatior{1.1) is oscillatory independently of the delays.
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(if) If v(0) andn(#) are decreasing functions da-1, 0] and

/0 r(0)dv(0) < —e ™, (2.2)

then(1.1)is oscillatory independently of the advances.

Proof. We first prove (i). Sincel/(\) > 0 for every X € R, one hasM(\) > A for
every\ < 0. For\ > 0 we have

uo " (=N O) o0y + / OO ) 40),

A _1 Ar(0) 1 AT(0)
and asEM > 0and2PY < ¢ for everyu > 0, we obtain
u u
M 0
)(\A) > e/ 7(0)dn(0) > 1.
-1

Therefore (1.4) is verified.
Now we show (ii). We havé/()\) < 0 for every\ € R and solM () < A for every
A > 0. Through the same arguments one has

0

MR —e/ r(0)dv(0) > 1
A -1

for every\ < 0, which implies (1.5). O]

Remark2.2. Denoting

m, =min{r(@): 6 € [-1,0]}, m, =min{7(0): 6 € [-1,0]}

and considering the differencéss = v(0) — v(—1), An = n(0) — n(—1), in the case
(i) of the Theorem 2.1, the assumption (2.1) is fulfilled whenexenn > ¢~'. In the
case (ii) of the same theorem, also condition (2.2) is satisfieg £ < —e ",
Example 2.3.By Theorem 2.1, for every delay functiotif) and any increasing func-
tion v(#), the equation

2 (t) = /_19(: (t —r(0))dv(9) + /_1 z(t+(0+2))do
is oscillatory since .
/ (0+2)d) =1.5>¢e .

-1
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Example 2.4. Analogously for every advance functietif), the equation
2 (t) = /i x(t—(0+3))d(—0)+ /01 z (t+ 7(0)) dn(6),
wheren(0) is a decreasing function, is oscillatory since
/01(9 +3)d(—0) = —2.5 < —e .

In case that the functiong#) andr(6) have an opposite type of monotonicity, one
obtains nonoscillations, as is stated in the following theorem.

Theorem 2.5. (i) If v(0) is decreasing and(0) is increasing, theifl.1)is nonoscil-
latory independently of the delays and advances.

(if) If v(0) is increasing and)(¢) is decreasing, the(iL.1)is nonoscillatory indepen-
dently of the delays and advances.

Proof. We prove only (i) as (ii) can be obtained analogously. Lgt) be decreasing
andn(#) increasing orj—1, 0]. For A > 0 one has

M(\) > /_i exp (—Ar(0)) dv(0) + exp (Am,) An
and o
< exp (-Am,) [ [an(o)]. 23)

ThenM(\) — A — +oo asA — +oo. On the other hand, fox < 0, we have

‘/_0 exp (—Ar(6)) dv(0)

1

M(N\) <exp(—im,)Av + /_1 exp (A7(0)) dn(0)
and

‘/_01 exp (A(6)) d”(e)’ < exp (Amy) /_i jdn(6)] (2.4)

which imply thatM(\) — A — —oco asA — —oo. So there is at least ong € R
such thatM (\y) = Ao and so (1.1) is nonoscillatory independently of the delays and
advances. O

Example 2.6. The equation
2 (t) = /lx (t—7r(0)d(1—0)+ /1 z(t+7(0))db

is nonoscillatory for every delays and advances.
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3 Monotonic Differentiable Delays and Advances

In this section we analyze the oscillatory behavior of (1.1) for the relevant case where
both delays and advances are monotonous. So in the remainder of this section, the delays
and advances will be assumed monotonous differentiable functiopslon|. For the

sake of simplicity we will normalize the functiong#) andn(9) in the following way:

a) if () is increasing, them(0) = 0,
b) if (0) is decreasing, them(—1) = 0,
c) if 7(#) is increasing, then(0) = 0,
d) if 7() is decreasing, them(—1) = 0.

With regard of condition (1.4) we obtain the following theorem.

Theorem 3.1. Let

§ = min {—e (m’“A”) e (m + 1) An,— (1 + ln(—mrAl/))} .

m,An My My
If
r'(0)v(8) > 0and7'(0)n(0) > 0 for everyd € [—1,0] (3.1)
and
0 0
/ v(0)dInr(0) —|—/ n(@)dInT(0) < 4, (3.2)

then the equatiofil.1)is oscillatory.

Proof. Assumptions a), b), ¢) and d) jointly with (3.1) imply that < 0 andAn < 0.
However the valu@ defined above has no meaning when eitheror Ay are equal
to zero. This way, implicitly we are assuming thar < 0 andAn < 0. One easily
notices thatV/ (0) = Av + An. SoM(0) < 0. Let A # 0. Integrating by parts both
integrals of (1.3) we have

M) = exp(=Ar(0)) ¥(0) — exp (=Ar(=1)) v(-1)

+exp (A7(0)) 7(0) — exp (A7(=1)) n(—1)

+/_1)\exp(—)\r(9))u(9)dr(6) — /_1)\exp (AT(0))n(0)dr(0).(3.3)
By (3.1) and the inequality exp(—u) < e~ !, we obtain
M(A) < exp (=Ar(0) v(0) — exp (=Ar(~1)) v(~1)
+exp (A7(0)) n(0) — exp (Ar(—1)) n(—1)

e (/_1 V(0)dInr(6) + /O n(e)dlm(e)> |

-1
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Forr(0) increasing and(6) increasing, one has by a) and c)

M) < —exp(=Ar(=1))v(=1) = exp (Ar(=1)) n(-1)

e (/_01 V(0)dnr(6) + /_in(e)dlm(e)) |

Forr(#) increasing and(f) decreasing, by a) and d) we have

M(A) < —exp(=Ar(=1))¥(=1) + exp (A7(0)) 1(0)

et (/01 v(0)dInr(0) + /01 n(e)dlm(e)) :

Forr(6) decreasing and(f) increasing, we have by b) and c)

M) < exp (=Ar(0)) ¥(0) — exp (A(=1)) n(=1)

tel ( /_ 01 v(0)dInr(6) + /_ 01 n(@)dW(@)) .

Forr(0) decreasing and(f) decreasing, by b) and d) one has that

M(A) < exp (=Ar(0)) #(0) + exp (A7(0)) n(0)

et (/_01 v(0)dInr(0) + /_01 n(e)dlm(e)> :

So, for all possible cases one obtains

M(A) — X < exp(—=Am,)Av +exp (Am,) An — A

+et (/_01 v(0)dInr(0) + /_(1 n(e)dlm(e)) :

MA) —X < ) <exp (—Am,) Av + exp (Am,) An

( 0)dInr (0 /_i n(9)d1n7(9)> .

The functionf : R — R given by

Let A > 0. Then

f(A) = exp(—Am,)Av +exp (Am,) An

tet (/i v(0)dInr(0) + /01 n(e)dlm(e))

has an absolute maximum at

1 m,Av
)\0 = In N
m, +m; m‘rAn
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and in view of (3.2)

Therefore, for every > 0,
M(\) — A <0.

For A < 0, one has

M) =X < exp(—=Am,)Av — A

e </_01 V(0)dnr(6) + /:n(e)dlm(e)) |

The functiong : R — R given by
g(\) = exp(—=Im,)Av — A

te (/i v(0)dInr(0) + /01 n(e)dlm(e))

attains its absolute maximum at

1
A = —1In(—m,Av),
my
and by (3.2) itis
1 1
g(Al) = —E — E In <—mTAV)

+e! (/_01 v(0)dInr(d) + /_01 n(&)dlnT(é’)) <0.

M) —A<0
for every\ < 0. Hence (1.5) holds and (1.1) is oscillatory. O

Thus, also

Example 3.2. By Theorem 3.1 the equation

x’(t):/ox(t—(9+2))d<—%6’> +/_Ox(t+(4—6))d(—40—4)

-1 1

is oscillatory. In fact, fo® € [—1, 0], we have

: : 1 :
r(#) increasing, r'(0)v(0) = —59 >0, with v(0) =0
7(0) decreasing, 7'(0)n(0) =40+ 4 >0, withn(—1) =0
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and

/Olu(e)dlnr(e) / 0)dIn (6 :/0(—%9>d1n9+2)

+/ —40 — 4)dIn(4 — 0) ~ 0.65602 < ¢

since

mr 4
m, Ay \ mrtrr (m 11\
_ r T An =4 4+1)=~3.
e(mTAn) (mr ) n 6(216) (44 1) ~ 3.3979

- (1+1n(—m,Av)) ~ 0.83411.

My

and

Theorem 3.3.If
r'(0)v(8) > 0and7'(0)n(0) > 0 for everyd € [—1, 0] (3.4)

and
1+em,Av < /0 v(0)dr(0) — /0 n(0)dr(0) < 1 —em,An, (3.5)

-1 -1
then the equatiofil.1)is oscillatory.

Proof. As in Theorem 3.1 one hasy < 0 andAn < 0. For\ = 0, we have
M(0)=Av+An <0

since by (3.5) one cannot have battv and An equal to zero. Notice that for every
u > 0 we have

exp(—u)

exp(—u) < 1, exp(u) > 1, > 0and22Y - ¢ (3.6)
u

Let A > 0. By (3.3) and (3.6) we have, for(#) increasing

@ < —eT(—1>n(—1>+/ u(@)dr(9>—/ n(0)dr(6),

-1 -1

and forr () decreasing

M <o)+ [ voaro) - [ o))

-1 -1

Therefore

0 0

V(0)dr(0) — / n(0)dr () < 1

-1

@ < emTAn—l—/

-1
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and consequently
M(\) < A forevery A > 0.

If A <0, then by (3.3) and (3.6) we have fof9) increasing

@ > er(—1)v(-1) +/ v(0)dr(6) —/ n(0)dr(0)

-1 -1

and

0 0

V(G)df’(@)—/ n(0)dr(0)

-1

M(X)
> —er(0)v(0) +/

-1

for r(0) decreasing. Thus

0

M 0
% > —em, Av +/ v(0)dr(0) —/ n(0)dr(0) > 1
-1 -1
and also
M(X\) <X forevery \<O0.
Then (1.5) is verified and (1.1) is oscillatory. O

We illustrate this theorem through the following example.

Example 3.4. Through Theorem 3.3 one can show that the equation

x’(t):/Ox(t—(7—29))d(—0—1)—|—/Oaz(t+(—9+1))d(—39—3)

-1 -1

is oscillatory. As a matter of fact, f@r € [—1, 0] one has

r'(0) = -2, v(-1)=0,
7(0)=-1, n(-1)=0

and

1 —em,An =~ 9.1548,
1+em,Av ~ —18.028,

while ) )
/ (—0 — 1) d(7 — 20) —/ (=30 — 3)d(—0 + 1) = —0.5.

Remark3.5. Notice that Theorem 3.1 cannot be applied to the equation of Example 3.4
since

/O v(0)dlnr(0) + /0 n(@)dInT(0) ~ 1.2898

-1 -1

£ £ (14 1In(—m,Av)) ~ 1.144.

r
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On the other hand, Theorem 3.3 cannot be used in the equation of Example 3.2 since
0 0
/ V(0)dr(0) — / n(0)dr(6) ~ —1.75 % 1 + em, Av ~ —0.35914.
-1 -1

Similar results can be obtained through the use of condition (1.4), as is stated in the
two following theorems.

Theorem 3.6. Let

£ = max {—e (mTAn) mr+mT (mr + 1) Av, _c (1+1In (mTAU))} :
m

m,Av -

r'(8)v(0) < 0and7'(9)n(6) < 0 for everyd € [—1,0] (3.7)
and

/_O V(0)dInr(6) +/0 n(0)dInT(0) > =, (3.8)

1 -1
then the equatiofil.1)is oscillatory.

Proof. We will follow closely the proof of Theorem 3.1. Here the assumptions a), b),
c), d) and (3.7) imply that\r > 0 andAn > 0. As the values above has no meaning
when eitherAr = 0 or Anp = 0, we implicitly are assuming thakr and An are both
positive real numbers. For= 0 one has then

M(0) = Av+ An > 0.

Let A # 0. Integrating again by parts both integrals which define the functign),
the assumptions (3.7) and the inequaldityxp(—u) < 1 imply that

M(A) > exp(=Ar(0))v(0) —exp (=Ar(=1)) v(-1)
+exp (AT(0)) 7(0) — exp (AT(=1)) n(—1)

te (/0 v(0)dInr(0) + /O n(e)dlm(e)) :

-1 -1

The arguments used in proof of Theorem 3.1 enable us to conclude that

M(N) > exp(—Am,)Av +exp (Am,) An
et (/ V(H)dlﬂ?“(ﬁ)—l-/ n(@)dlnr(@))

-1 -1

and

M) — X > exp(—Am,) Av +exp (Am,) An — A
et (/_ V(0)dInr(6) +/ n(&)dlnr(@)) |

1 -1
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Letting A < 0, analogously to the proof of Theorem 3.1 we obtain

M) =X > M(N) >exp(—=Am,) Av + exp (Am,) An
+et (/ v(0)dInr(0) +/ T](H)dlnT(H))

-1 -1
mey

my+mr
(22)7 (22
m, Av ms

te! ( / 0 v(0)d1nr(0) + / 0 n(@)dlm(e)) > 0.

-1 -1

For A > 0, we have in the same way

MO) =X > exp(Ams) Ay — A
+e ! (/0 v(0)dInr(0) + /0 n(&)dlrw(@))

-1 -1
1 1
— + —In(m,;An)
m;  mg

v

+e ! (/0 v(0)dInr(6) + /0 n(@)dlnr(&)) > 0.

-1 -1

Hence
M) —XA>0 forevery AeR

and (1.1) is oscillatory.

Example 3.7.By Theorem 3.6 the equation

0 0
7'(t) = / x(t—(20+4)d(—6%) + / z(t+ 60+ 3)do
-1 -1
is oscillatory. In fact, for every € [—1, 0] we have
r(0) increasing, r'(0)v(0) = —260* <0, with v(0) = 0,
7(6) increasing, 7'(0)n(f) =6 < 0, with n(0) = 0.

Moreover

/0 V(0)dnr(6) + /0 n(6)dIn7(0) = /0 (—6) dIn(20 + 4)

-1 -1

117

0
+ / Od1n(0 + 3) ~ —0.48808 > ¢
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since
m,An v m, B 2 i 2 N
—e <mTA1/> (mT + 1> Av = —e (5) (5 + 1> ~ —5.4366
and . .
—— (1 +1In(m,;An)) = —=(1+1n2) ~ —2.3012.
m, 2
Theorem 3.8.If
r'(0)v(8) < 0and7'(8)n(h) <0, for everyd € [—1,0] (3.9)
and
0 0
1 —em;An< / v(0)dr(0) — / n(0)dr(0) < 1+ em,Av, (3.10)
-1 -1

then the equatiofil.1)is oscillatory.

Proof. As before, one haar > 0 andAn > 0, and (3.10) implies that eithexv > 0
or An > 0. Therefore
M(0) = Av+ An > 0.

Let A > 0. By (3.3) and (3.6) we have, for(#) increasing

0 0

u(@)dr(&)—/ n(0)dr(0)

-1

@ > —er(—1)n(-1) +/

-1

and

0 0

v(0)dr(9) - / n(0)dr(6)

-1

@ > e7(0)n(0) +/

-1
for 7(#) decreasing. So, for every reat> 0,

0 0

v(0)dr(0) — / n(0)dr () > 1

-1

M
ﬂ > em,An —i—/
A 1

and consequently
M(X) > A

If A <0, by (3.3) and (3.6) we have

0 0

v0)r(®) ~ [ 0()ar(o)

-1

M(X)
T < 67“(—1)V(—1) +/

-1
whenr () is increasing, and

0 0

V(0)dr(0) — / n(0)dr(0)

-1

M(X)
< —er(0)rv(0) +/

-1
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for (#) decreasing. So, for every reak 0,

0 0

v(0)dr () — / n(0)dr(9) < 1

-1

M
ﬂ < —em,Av —i—/
A 1

and consequently/(\) > . O
Example 3.9. Let
0 0
x'(t) :/ x(t — (2—8))d(9+1)+/ z(t+ (20 +3)) do.
-1 -1
By Theorem 3.8 the equation is oscillatory since
0 0
/ 0+ 1)d(2—0)— / 0d(20 +3) = 0.5
-1 —1

and
l—em,An=1—-—e =~ —1.7183,
l+em,Av=1+2e =~ 6.4366.
Nonoscillations appear in situations as given in the following theorem.
Theorem 3.10. (i) If for everyfd € [—1,0]
r(@)v(@) <0 and 7'(6)n(d) >0,
then(1.1)is nonoscillatory.
(i) If for everyd € [—1,0]
r(@)v(@) >0 and 7'(6)n(d) <0,
then(1.1)is nonoscillatory.

Proof. We will prove only (i) as analogous arguments enable to obtain (ii). Let then
r(@)v(@) <0 and 7' (0)n@) >0

for everyf € [—1,0]. Integrating by parts the first integral in (1.3) we have

0

/ exp (—Ar(0)) dv(0) = —exp (=Ar(=1))v(-1) + /\/ exp (—=Ar(6)) v(0)dr(6).

-1 -1
Therefore with\ < 0 we obtain forr(¢) increasing

0

/ " exp (—AH(8)) du(6) > — exp (—Ar(—1)) <y(—1> 1 / u(@)r’(@)d&)

-1 -1
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and forr(6) decreasing

0

/ : exp (—Ar(0)) du(6) > exp (—\r(0)) (1/(0) + A /

-1 -1

V(Q)T(Q)dé’) .

As both right-hand parts of these inequalities tend-te»s as\ — —oo, by (2.4) we
haveAlim M(X\) — A = +oo for every monotonous delay functietd). Analogously,

integrating by parts the second integral in (1.3)

/_ exp (A7(6)) dn(8) = — exp (Ar(~1)) 7(~1) — A / 0(8) exp (Ar(8)) dr (6)

1 -1
with A > 0, we have forr(6) increasing

0

[ e (7)) < —exp Or(-1) (n-va

-1 -1

n<e>7'<e>de)

and forr(#) decreasing

0

[ esp (@) (o) = exp (170) (w0 -2

-1 -1

77(0)7"(0)d9> )

This enables to conclude that, &s— oo,

0
[ e (6)) dn(o) — o
-1

exponentially, for every monotonous advance functig#). In view of (2.3), the same
conclusion holds for the functiod/(\) — A. Thus there exists &, € R such that
M(X\p) = Ao and consequently (1.1) is nonoscillatory. O

Example 3.11.Through (i) of Theorem 3.10 one easily sees that the equation

0

yc’(t):/ x(t—(2—9))d((—9—1)(29—1))+/ 2 (t+(0+3))d(0(—0 — 1))

-1 -1

is nonoscillatory. Notice that in this example we cannot use Theorem 2.5:gif\cend
n(#) are not monotonic functions dr-1, 0].
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