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Abstract

In this work we study the oscillatory behavior of the delay differential equation
of mixed type

x′(t) =
∫ 0

−1
x (t− r(θ)) dν(θ) +

∫ 0

−1
x (t + τ(θ)) dη(θ).

Some criteria are obtained in order to guarantee that all solutions are oscillatory.
The existence of nonoscillatory solutions is also considered.
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1 Introduction

The aim of this work is to study the oscillatory behavior of the differential equation of
mixed type

x′(t) =

∫ 0

−1

x (t− r(θ)) dν(θ) +

∫ 0

−1

x (t + τ(θ)) dη(θ), (1.1)

wherex(t) ∈ R, r(θ) andτ(θ) are nonnegative real continuous functions on[−1, 0].
The advanceτ(θ) will be assumed such that

τ(θ0) > τ(θ) ∀θ 6= θ0,
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where
τ(θ0) = max {τ(θ) : θ ∈ [−1, 0]} .

Bothν(θ) andη(θ) are real functions of bounded variation on[−1, 0], andη(θ) is atomic
at θ0, that is, such that

η(θ+
0 )− η(θ−0 ) 6= 0. (1.2)

The equation (1.1) represents a wide class of linear functional differential equations of
mixed type. The same equation is considered by Krisztin [5] in basis of some math-
ematical applications appearing in the literature, such as in [1] and [6] (see also [2]).
Whenη(θ) is the null function, one obtains a retarded functional differential equation
whose oscillatory behavior is studied in [3,4].

As usual, we will say that a solutionx of (2.1) oscillates if it has arbitrary large zeros.
Notice that for equations, this definition coincides with the nonexistence of an invariant
cone as is considered an oscillatory solution in [5]. When all solutions oscillate, (2.1)
will be called oscillatory.

By [5, Corollary 5], under the condition (1.2), the oscillatory behavior of (2.1) can
be studied through the analysis of the real zeros of the characteristic equation

λ =

∫ 0

−1

exp (−λr(θ)) dν(θ) +

∫ 0

−1

exp (λτ(θ)) dη(θ). (1.3)

Letting

M(λ) =

∫ 0

−1

exp (−λr(θ)) dν(θ) +

∫ 0

−1

exp (λτ(θ)) dη(θ),

the equation (1.1) is oscillatory if and only ifM(λ) 6= λ for every realλ. So, if either

M(λ) > λ, ∀λ ∈ R (1.4)

or
M(λ) < λ, ∀λ ∈ R (1.5)

then we can conclude that equation (1.1) is oscillatory. In case of havingM(λ) = λ for
some realλ, there exists at least one nonoscillatory solution.

2 Oscillations and Nonoscillations independent of De-
lays and Advances

For ν(θ) andη(θ) monotonous on[−1, 0], some general criteria for oscillations can be
obtained independently of either the delays or the advances.

Theorem 2.1. (i) Letν(θ) andη(θ) be increasing functions on[−1, 0]. If∫ 0

−1

τ(θ)dη(θ) > e−1, (2.1)

then equation(1.1) is oscillatory independently of the delays.
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(ii ) If ν(θ) andη(θ) are decreasing functions on[−1, 0] and∫ 0

−1

r(θ)dν(θ) < −e−1, (2.2)

then(1.1) is oscillatory independently of the advances.

Proof. We first prove (i). SinceM(λ) > 0 for everyλ ∈ R, one hasM(λ) > λ for
everyλ ≤ 0. Forλ > 0 we have

M(λ)

λ
=

∫ 0

−1

exp (−λr(θ))

λr(θ)
r(θ)dν(θ) +

∫ 0

−1

exp (λτ(θ))

λτ(θ)
τ(θ)dη(θ),

and as
exp(−u)

u
> 0 and

exp u

u
> e for everyu > 0, we obtain

M(λ)

λ
> e

∫ 0

−1

τ(θ)dη(θ) > 1.

Therefore (1.4) is verified.
Now we show (ii). We haveM(λ) < 0 for everyλ ∈ R and soM(λ) < λ for every

λ ≥ 0. Through the same arguments one has

M(λ)

λ
> −e

∫ 0

−1

r(θ)dν(θ) > 1

for everyλ < 0, which implies (1.5).

Remark2.2. Denoting

mr = min {r(θ) : θ ∈ [−1, 0]} , mτ = min {τ(θ) : θ ∈ [−1, 0]}

and considering the differences∆ν = ν(0) − ν(−1), ∆η = η(0) − η(−1), in the case
(i) of the Theorem 2.1, the assumption (2.1) is fulfilled whenevermτ∆η > e−1. In the
case (ii) of the same theorem, also condition (2.2) is satisfied ifmr∆ν < −e−1.

Example 2.3. By Theorem 2.1, for every delay functionr(θ) and any increasing func-
tion ν(θ), the equation

x′(t) =

∫ 0

−1

x (t− r(θ)) dν(θ) +

∫ 0

−1

x (t + (θ + 2)) dθ

is oscillatory since ∫ 0

−1

(θ + 2)dθ = 1.5 > e−1.
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Example 2.4.Analogously for every advance functionτ(θ), the equation

x′(t) =

∫ 0

−1

x (t− (θ + 3)) d(−θ) +

∫ 0

−1

x (t + τ(θ)) dη(θ),

whereη(θ) is a decreasing function, is oscillatory since∫ 0

−1

(θ + 3)d(−θ) = −2.5 < −e−1.

In case that the functionsν(θ) andη(θ) have an opposite type of monotonicity, one
obtains nonoscillations, as is stated in the following theorem.

Theorem 2.5. (i) If ν(θ) is decreasing andη(θ) is increasing, then(1.1) is nonoscil-
latory independently of the delays and advances.

(ii ) If ν(θ) is increasing andη(θ) is decreasing, then(1.1) is nonoscillatory indepen-
dently of the delays and advances.

Proof. We prove only (i) as (ii) can be obtained analogously. Letν(θ) be decreasing
andη(θ) increasing on[−1, 0]. Forλ > 0 one has

M(λ) ≥
∫ 0

−1

exp (−λr(θ)) dν(θ) + exp (λmτ ) ∆η

and ∣∣∣∣∫ 0

−1

exp (−λr(θ)) dν(θ)

∣∣∣∣ ≤ exp (−λmr)

∫ 0

−1

|dν(θ)| . (2.3)

ThenM(λ)− λ → +∞ asλ → +∞. On the other hand, forλ < 0, we have

M(λ) ≤ exp (−λmr) ∆ν +

∫ 0

−1

exp (λτ(θ)) dη(θ)

and ∣∣∣∣∫ 0

−1

exp (λτ(θ)) dη(θ)

∣∣∣∣ ≤ exp (λmτ )

∫ 0

−1

|dη(θ)| , (2.4)

which imply thatM(λ) − λ → −∞ asλ → −∞. So there is at least oneλ0 ∈ R
such thatM(λ0) = λ0 and so (1.1) is nonoscillatory independently of the delays and
advances.

Example 2.6.The equation

x′(t) =

∫ 0

−1

x (t− r(θ)) d(1− θ) +

∫ 0

−1

x (t + τ(θ)) dθ

is nonoscillatory for every delays and advances.
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3 Monotonic Differentiable Delays and Advances

In this section we analyze the oscillatory behavior of (1.1) for the relevant case where
both delays and advances are monotonous. So in the remainder of this section, the delays
and advances will be assumed monotonous differentiable functions on[−1, 0]. For the
sake of simplicity we will normalize the functionsν(θ) andη(θ) in the following way:

a) if r(θ) is increasing, thenν(0) = 0,
b) if r(θ) is decreasing, thenν(−1) = 0,
c) if τ(θ) is increasing, thenη(0) = 0,
d) if τ(θ) is decreasing, thenη(−1) = 0.

With regard of condition (1.4) we obtain the following theorem.

Theorem 3.1.Let

δ = min

{
−e

(
mr∆ν

mτ∆η

) mτ
mr+mτ

(
mτ

mr

+ 1

)
∆η,

e

mr

(1 + ln (−mr∆ν))

}
.

If
r′(θ)ν(θ) ≥ 0 andτ ′(θ)η(θ) ≥ 0 for everyθ ∈ [−1, 0] (3.1)

and ∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ) < δ, (3.2)

then the equation(1.1) is oscillatory.

Proof. Assumptions a), b), c) and d) jointly with (3.1) imply that∆ν ≤ 0 and∆η ≤ 0.
However the valueδ defined above has no meaning when either∆ν or ∆η are equal
to zero. This way, implicitly we are assuming that∆ν < 0 and∆η < 0. One easily
notices thatM(0) = ∆ν + ∆η. SoM(0) < 0. Let λ 6= 0. Integrating by parts both
integrals of (1.3) we have

M(λ) = exp (−λr(0)) ν(0)− exp (−λr(−1)) ν(−1)

+ exp (λτ(0)) η(0)− exp (λτ(−1)) η(−1)

+

∫ 0

−1

λ exp (−λr(θ)) ν(θ)dr(θ)−
∫ 0

−1

λ exp (λτ(θ)) η(θ)dτ(θ). (3.3)

By (3.1) and the inequalityu exp(−u) ≤ e−1, we obtain

M(λ) ≤ exp (−λr(0)) ν(0)− exp (−λr(−1)) ν(−1)

+ exp (λτ(0)) η(0)− exp (λτ(−1)) η(−1)

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
.
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For r(θ) increasing andτ(θ) increasing, one has by a) and c)

M(λ) ≤ − exp (−λr(−1)) ν(−1)− exp (λτ(−1)) η(−1)

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
.

For r(θ) increasing andτ(θ) decreasing, by a) and d) we have

M(λ) ≤ − exp (−λr(−1)) ν(−1) + exp (λτ(0)) η(0)

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
.

For r(θ) decreasing andτ(θ) increasing, we have by b) and c)

M(λ) ≤ exp (−λr(0)) ν(0)− exp (λτ(−1)) η(−1)

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
.

For r(θ) decreasing andτ(θ) decreasing, by b) and d) one has that

M(λ) ≤ exp (−λr(0)) ν(0) + exp (λτ(0)) η(0)

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
.

So, for all possible cases one obtains

M(λ)− λ ≤ exp (−λmr) ∆ν + exp (λmτ ) ∆η − λ

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
.

Let λ > 0. Then

M(λ)− λ < M(λ) ≤ exp (−λmr) ∆ν + exp (λmτ ) ∆η

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
.

The functionf : R → R given by

f(λ) = exp (−λmr) ∆ν + exp (λmτ ) ∆η

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
has an absolute maximum at

λ0 =
1

mr + mτ

ln
mr∆ν

mτ∆η
,
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and in view of (3.2)

f(λ0) =

(
mr∆ν

mτ∆η

) mτ
mr+mτ

(
mτ

mr

+ 1

)
∆η

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
< 0.

Therefore, for everyλ > 0,
M(λ)− λ < 0.

Forλ < 0, one has

M(λ)− λ ≤ exp (−λmr) ∆ν − λ

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
.

The functiong : R → R given by

g(λ) = exp (−λmr) ∆ν − λ

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
attains its absolute maximum at

λ1 =
1

mr

ln (−mr∆ν) ,

and by (3.2) it is

g(λ1) = − 1

mr

− 1

mr

ln (−mr∆ν)

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
< 0.

Thus, also
M(λ)− λ < 0

for everyλ < 0. Hence (1.5) holds and (1.1) is oscillatory.

Example 3.2.By Theorem 3.1 the equation

x′(t) =

∫ 0

−1

x (t− (θ + 2)) d

(
−1

2
θ

)
+

∫ 0

−1

x (t + (4− θ)) d(−4θ − 4)

is oscillatory. In fact, forθ ∈ [−1, 0], we have

r(θ) increasing, r′(θ)ν(θ) = −1

2
θ ≥ 0, with ν(0) = 0

τ(θ) decreasing, τ ′(θ)η(θ) = 4θ + 4 ≥ 0, with η(−1) = 0
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and∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ) =

∫ 0

−1

(
−1

2
θ

)
d ln(θ + 2)

+

∫ 0

−1

(−4θ − 4)d ln(4− θ) ≈ 0.65602 < δ

since

−e

(
mr∆ν

mτ∆η

) mτ
mr+mτ

(
mτ

mr

+ 1

)
∆η = 4e

(
1

2

1

16

) 4
1+4

(4 + 1) ≈ 3.3979

and
e

mr

(1 + ln (−mr∆ν)) ≈ 0.83411.

Theorem 3.3. If

r′(θ)ν(θ) ≥ 0 andτ ′(θ)η(θ) ≥ 0 for everyθ ∈ [−1, 0] (3.4)

and

1 + emr∆ν <

∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ) < 1− emτ∆η, (3.5)

then the equation(1.1) is oscillatory.

Proof. As in Theorem 3.1 one has∆ν ≤ 0 and∆η ≤ 0. Forλ = 0, we have

M(0) = ∆ν + ∆η < 0

since by (3.5) one cannot have both∆ν and∆η equal to zero. Notice that for every
u > 0 we have

exp(−u) < 1, exp(u) > 1,
exp(−u)

u
> 0 and

exp u

u
> e. (3.6)

Let λ > 0. By (3.3) and (3.6) we have, forτ(θ) increasing

M(λ)

λ
< −eτ(−1)η(−1) +

∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ),

and forτ(θ) decreasing

M(λ)

λ
< eτ(0)η(0) +

∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ).

Therefore
M(λ)

λ
< emτ∆η +

∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ) < 1
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and consequently
M(λ) < λ for every λ > 0.

If λ < 0, then by (3.3) and (3.6) we have forr(θ) increasing

M(λ)

λ
> er(−1)ν(−1) +

∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ)

and
M(λ)

λ
> −er(0)ν(0) +

∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ)

for r(θ) decreasing. Thus

M(λ)

λ
> −emr∆ν +

∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ) > 1

and also
M(λ) < λ for every λ < 0.

Then (1.5) is verified and (1.1) is oscillatory.

We illustrate this theorem through the following example.

Example 3.4.Through Theorem 3.3 one can show that the equation

x′(t) =

∫ 0

−1

x (t− (7− 2θ)) d(−θ − 1) +

∫ 0

−1

x (t + (−θ + 1)) d(−3θ − 3)

is oscillatory. As a matter of fact, forθ ∈ [−1, 0] one has

r′(θ) = −2, ν(−1) = 0,

τ ′(θ) = −1, η(−1) = 0

and

1− emτ∆η ≈ 9.1548,

1 + emr∆ν ≈ −18.028,

while ∫ 0

−1

(−θ − 1) d(7− 2θ)−
∫ 0

−1

(−3θ − 3)d(−θ + 1) = −0.5.

Remark3.5. Notice that Theorem 3.1 cannot be applied to the equation of Example 3.4
since∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ) ≈ 1.2898

≮
e

mr

(1 + ln (−mr∆ν)) ≈ 1.144.
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On the other hand, Theorem 3.3 cannot be used in the equation of Example 3.2 since∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ) ≈ −1.75 ≯ 1 + emr∆ν ≈ −0.35914.

Similar results can be obtained through the use of condition (1.4), as is stated in the
two following theorems.

Theorem 3.6.Let

ε = max

{
−e

(
mτ∆η

mr∆ν

) mr
mr+mτ

(
mr

mτ

+ 1

)
∆ν,− e

mτ

(1 + ln (mτ∆η))

}
.

If
r′(θ)ν(θ) ≤ 0 andτ ′(θ)η(θ) ≤ 0 for everyθ ∈ [−1, 0] (3.7)

and ∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ) > ε, (3.8)

then the equation(1.1) is oscillatory.

Proof. We will follow closely the proof of Theorem 3.1. Here the assumptions a), b),
c), d) and (3.7) imply that∆ν ≥ 0 and∆η ≥ 0. As the valueε above has no meaning
when either∆ν = 0 or ∆η = 0, we implicitly are assuming that∆ν and∆η are both
positive real numbers. Forλ = 0 one has then

M(0) = ∆ν + ∆η > 0.

Let λ 6= 0. Integrating again by parts both integrals which define the functionM(λ),
the assumptions (3.7) and the inequalityu exp(−u) ≤ 1 imply that

M(λ) ≥ exp (−λr(0)) ν(0)− exp (−λr(−1)) ν(−1)

+ exp (λτ(0)) η(0)− exp (λτ(−1)) η(−1)

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
.

The arguments used in proof of Theorem 3.1 enable us to conclude that

M(λ) ≥ exp (−λmr) ∆ν + exp (λmτ ) ∆η

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
and

M(λ)− λ ≥ exp (−λmr) ∆ν + exp (λmτ ) ∆η − λ

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
.
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Lettingλ < 0, analogously to the proof of Theorem 3.1 we obtain

M(λ)− λ > M(λ) ≥ exp (−λmr) ∆ν + exp (λmτ ) ∆η

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
≥

(
mτ∆η

mr∆ν

) mr
mr+mτ

(
mr

mτ

+ 1

)
∆ν

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
> 0.

Forλ > 0, we have in the same way

M(λ)− λ ≥ exp (λmτ ) ∆η − λ

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
≥ 1

mτ

+
1

mτ

ln (mτ∆η)

+e−1

(∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ)

)
> 0.

Hence
M(λ)− λ > 0 for every λ ∈ R

and (1.1) is oscillatory.

Example 3.7.By Theorem 3.6 the equation

x′(t) =

∫ 0

−1

x (t− (2θ + 4)) d
(
−θ2

)
+

∫ 0

−1

x(t + θ + 3)dθ

is oscillatory. In fact, for everyθ ∈ [−1, 0] we have

r(θ) increasing, r′(θ)ν(θ) = −2θ2 ≤ 0, with ν(0) = 0,

τ(θ) increasing, τ ′(θ)η(θ) = θ ≤ 0, with η(0) = 0.

Moreover∫ 0

−1

ν(θ)d ln r(θ) +

∫ 0

−1

η(θ)d ln τ(θ) =

∫ 0

−1

(
−θ2

)
d ln(2θ + 4)

+

∫ 0

−1

θd ln(θ + 3) ≈ −0.48898 > ε
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since

−e

(
mτ∆η

mr∆ν

) mr
mr+mτ

(
mr

mτ

+ 1

)
∆ν = −e

(
2

2

) 2
4
(

2

2
+ 1

)
≈ −5.4366

and
− e

mτ

(1 + ln (mτ∆η)) = −e

2
(1 + ln 2) ≈ −2.3012.

Theorem 3.8. If

r′(θ)ν(θ) ≤ 0 andτ ′(θ)η(θ) ≤ 0, for everyθ ∈ [−1, 0] (3.9)

and

1− emτ∆η <

∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ) < 1 + emr∆ν, (3.10)

then the equation(1.1) is oscillatory.

Proof. As before, one has∆ν ≥ 0 and∆η ≥ 0, and (3.10) implies that either∆ν > 0
or ∆η > 0. Therefore

M(0) = ∆ν + ∆η > 0.

Let λ > 0. By (3.3) and (3.6) we have, forτ(θ) increasing

M(λ)

λ
> −eτ(−1)η(−1) +

∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ)

and
M(λ)

λ
> eτ(0)η(0) +

∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ)

for τ(θ) decreasing. So, for every realλ > 0,

M(λ)

λ
> emτ∆η +

∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ) > 1

and consequently
M(λ) > λ.

If λ < 0, by (3.3) and (3.6) we have

M(λ)

λ
< er(−1)ν(−1) +

∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ)

whenr(θ) is increasing, and

M(λ)

λ
< −er(0)ν(0) +

∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ)
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for r(θ) decreasing. So, for every realλ < 0,

M(λ)

λ
< −emr∆ν +

∫ 0

−1

ν(θ)dr(θ)−
∫ 0

−1

η(θ)dτ(θ) < 1

and consequentlyM(λ) > λ.

Example 3.9.Let

x′(t) =

∫ 0

−1

x (t− (2− θ)) d(θ + 1) +

∫ 0

−1

x (t + (2θ + 3)) dθ.

By Theorem 3.8 the equation is oscillatory since∫ 0

−1

(θ + 1)d(2− θ)−
∫ 0

−1

θd(2θ + 3) = 0.5

and

1− emτ∆η = 1− e ≈ −1.7183,

1 + emr∆ν = 1 + 2e ≈ 6.4366.

Nonoscillations appear in situations as given in the following theorem.

Theorem 3.10. (i) If for everyθ ∈ [−1, 0]

r′(θ)ν(θ) ≤ 0 and τ ′(θ)η(θ) ≥ 0,

then(1.1) is nonoscillatory.

(ii ) If for everyθ ∈ [−1, 0]

r′(θ)ν(θ) ≥ 0 and τ ′(θ)η(θ) ≤ 0,

then(1.1) is nonoscillatory.

Proof. We will prove only (i) as analogous arguments enable to obtain (ii). Let then

r′(θ)ν(θ) ≤ 0 and τ ′(θ)η(θ) ≥ 0

for everyθ ∈ [−1, 0]. Integrating by parts the first integral in (1.3) we have∫ 0

−1

exp (−λr(θ)) dν(θ) = − exp (−λr(−1)) ν(−1) + λ

∫ 0

−1

exp (−λr(θ)) ν(θ)dr(θ).

Therefore withλ < 0 we obtain forr(θ) increasing∫ 0

−1

exp (−λr(θ)) dν(θ) ≥ − exp (−λr(−1))

(
ν(−1)− λ

∫ 0

−1

ν(θ)r′(θ)dθ

)
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and forr(θ) decreasing∫ 0

−1

exp (−λr(θ)) dν(θ) ≥ exp (−λr(0))

(
ν(0) + λ

∫ 0

−1

ν(θ)r(θ)dθ

)
.

As both right-hand parts of these inequalities tend to+∞ asλ → −∞, by (2.4) we
have lim

λ→−∞
M(λ)− λ = +∞ for every monotonous delay functionr(θ). Analogously,

integrating by parts the second integral in (1.3)∫ 0

−1

exp (λτ(θ)) dη(θ) = − exp (λτ(−1)) η(−1)− λ

∫ 0

−1

η(θ) exp (λτ(θ)) dτ(θ)

with λ > 0, we have forτ(θ) increasing∫ 0

−1

exp (λτ(θ)) dη(θ) ≤ − exp (λτ(−1))

(
η(−1) + λ

∫ 0

−1

η(θ)τ ′(θ)dθ

)
and forτ(θ) decreasing∫ 0

−1

exp (λτ(θ)) dη(θ) = exp (λτ(0))

(
η(0)− λ

∫ 0

−1

η(θ)τ ′(θ)dθ

)
.

This enables to conclude that, asλ → +∞,∫ 0

−1

exp (λτ(θ)) dη(θ) → −∞

exponentially, for every monotonous advance functionτ(θ). In view of (2.3), the same
conclusion holds for the functionM(λ) − λ. Thus there exists aλ0 ∈ R such that
M(λ0) = λ0 and consequently (1.1) is nonoscillatory.

Example 3.11.Through (i) of Theorem 3.10 one easily sees that the equation

x′(t) =

∫ 0

−1

x (t− (2− θ)) d ((−θ − 1)(2θ − 1)) +

∫ 0

−1

x (t + (θ + 3)) d (θ(−θ − 1))

is nonoscillatory. Notice that in this example we cannot use Theorem 2.5 sinceν(θ) and
η(θ) are not monotonic functions on[−1, 0].
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