
OSCILLATORY MIXED DIFFERENCE SYSTEMS
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The aim of this paper is to discuss the oscillatory behavior of difference systems of mixed
type. Several criteria for oscillations are obtained. Particular results are included in regard
to scalar equations.
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1. Introduction

The aim of this work is to study the oscillatory behavior of the difference system

Δx(n)=
�∑

i=1

Pix(n− i) +
m∑

j=1

Qjx(n+ j), n= 0,1,2, . . . , (1.1)

where x(n)∈Rd, Δx(n)= x(n+ 1)− x(n) is the usual difference operator, �,m∈N, and
for i = 1, . . . ,� and j = 1, . . . ,m Pi and Qj are given d× d real matrices. For a particular
form of the scalar case of (1.1), the same question is studied in [1] (see also [2, Section
1.16]).

The system (1.1) is introduced in [9]. In this paper the authors show that the existence
of oscillatory or nonoscillatory solutions of that system determines an identical behavior
to the differential system with piecewise constant arguments,

ẋ(t)=
�∑

i=1

Pix
(
[t− i]

)
+

m∑

j=1

Qjx
(
[t+ j]

)
, (1.2)

where for t ∈R, x(t)∈Rd and [·] means the greatest integer function (see also [8, Chap-
ter 8]).

By a solution of (1.1) we mean any sequence x(n), of points in Rd, with n = −�, . . . ,
0,1, . . . , which satisfy (1.1). In order to guarantee its existence and uniqueness for given
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2 Oscillatory mixed difference systems

initial values x−� , . . . ,x0, . . . ,xm−1, denoting by I the d× d identity matrix, we will assume
throughout this paper that the matrices P1, . . . ,P� ,Q1, . . . ,Qm, are such that

det
(
I −Q1

) �= 0, if m= 1,

detQm �= 0, if m≥ 2,

Pi = 0, for every i= 1, . . . ,�,

(1.3)

with no restrictions in other cases (see [8, Chapter 7] and [9]).
We will say that a sequence y(n) satisfies frequently or persistently a given condition,

(C), whenever for every ν∈N there exists a n > ν such that y(n) verifies (C). When there
is a ν∈N such that y(n) verifies (C) for every n > ν, (C) is said to be satisfied eventually
or ultimately.

Upon the basis of this terminology, a solution of (1.1), x(n) = [x1(n), . . . ,xd(n)]T , is
said to be oscillatory if each real sequence xk(n) (k = 1, . . . ,d) is frequently nonnegative
and frequently nonpositive. If for some k ∈ {1, . . . ,d} the real sequence xk(n) is either
eventually positive or eventually negative, x(n) is said to be a nonoscillatory solution of
(1.1). Whenever all solutions of (1.1) are oscillatory we will say that (1.1) is an oscillatory
system. Otherwise, (1.1) will be said nonoscillatory.

Systems of mixed-type like (1.1) can be looked as a discretization of the continuous
difference system

x(t+ 1)− x(t)=
�∑

i=1

Pix(t− i) +
m∑

j=1

Qjx(t+ j). (1.4)

When Qm = I , one easily can see that, through a suitable change of variable, this system
is a particular case of the delay difference system

x(t)=
p∑

i=1

Ajx
(
t− r j

)
, (1.5)

where the Aj are d×d real matrices and the r j are real positive numbers.
As is proposed in [8, Section 7.11], we will investigate, here, conditions on the matrices

Pi and Qj (i= 1, . . . ,�, and j = 1, . . . ,m) which make the system (1.1) oscillatory. For that
purpose we will develop the approach made in [3], motivated by analogues methods used
in [6, 7] for obtaining oscillation criteria regarding the continuous delay difference system
(1.5).

We notice that for mixed-type differential difference equations and the differential
analog of (1.4), those methods seem not to work in general. In fact, for such equations
the situation is essentially different since one cannot ensure, as for (1.5), that the corre-
sponding Cauchy problem will be well posed, or guarantee an exponential boundeness
for all its solutions (see [11]).
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According to [9] (or [8, Chapter 7]) the analysis of the oscillatory behavior of the
system (1.1) can be based upon the existence or absence of real positive zeros of the char-
acteristic equation

det

(
(λ− 1)I −

�∑

i=1

λ−iPi−
m∑

j=1

λjQj

)
= 0. (1.6)

That is, letting

M(λ)=
�∑

i=1

λ−iPi +
m∑

j=1

λjQj , (1.7)

one can say that (1.1) is oscillatory if and only if, for every λ∈R+ =]0,+∞[,

λ− 1 /∈ σ
(
M(λ)

)
, (1.8)

where for any matrix C ∈Md(R), the space of all d× d real matrices, by σ(C) we mean
its spectral set.

Based upon this characterization we will use, as in [3], the so-called logarithmic norms
of matrices. For that purpose, we recall that to each induced norm, ‖ · ‖, in Md(R), we
can associate a logarithmic norm μ :Md(R)→R, which is defined through the following
derivative:

μ(C)= (‖I + tC‖)′|t=0, (1.9)

where C ∈Md(R). As is well known, the logarithmic norm of any matrix C ∈Md(R)
provides real bounds of the set Reσ(C) = {Rez : z ∈ σ(C)}, which enables us to handle
condition (1.8) in a more suitable way. Those bounds are given in the first of the following
elementary properties of any logarithmic norm (see [4, 5]):

(i) Reσ(C)⊂ [−μ(−C),μ(C)] (C ∈Md(R));
(ii) μ(C1)−μ(−C2)≤ μ(C1 +C2)≤ μ(C1) +μ(C2) (C1,C2 ∈Md(R));

(iii) μ(γC)= γμ(C), for every γ ≥ 0 (C ∈Md(R)).
In regard to a given finite sequence of matrices, C1, . . . ,Cν, in Md(R), and on the basis

of a logarithmic norm, μ, we can define other matrix measures with some relevance in
the sequel such as

a
(
Ck
)= μ

( k∑

i=1

Ci

)
, b

(
Ck
)= μ

( ν∑

i=k
Ci

)
, for k = 1, . . . ,ν. (1.10)

In the same context, these measures give rise to the matrix measures α and β considered
in [10] as follows:

α
(
C1
)= a

(
C1
)= μ

(
C1
)
, α

(
Ck
)= a

(
Ck
)− a

(
Ck−1

)
, for k = 2, . . . ,ν;

β
(
Cν
)= b

(
Cν
)= μ

(
Cν
)
, β

(
Ck
)= b

(
Ck
)− b

(
Ck+1

)
, for k = 1, . . . ,ν− 1.

(1.11)
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In the sequel whenever the values a(−Ck), b(−Ck), α(−Ck), and β(−Ck) are consid-
ered, we are implicitly referring to the values above with respect to the finite sequence
−C1, . . . ,−Cν.

Notice that by the property (ii) above, these measures are related with the correspond-
ing logarithmic norm μ in the following way:

a
(
Ck
)≤

k∑

i=1

μ
(
Ci
)
, b

(
Ck
)≤

ν∑

i=k
μ
(
Ci
)
, (1.12)

α
(
Ck
)≤ μ

(
Ck
)
, β

(
Ck
)≤ μ

(
Ck
)
, (1.13)

for every k = 1, . . . ,ν.
With respect to the measures α and β the following lemma holds.

Lemma 1.1. Let C1, . . . ,Cν, be a finite sequence of d×d real matrices.
(a) If γ1 ≥ ··· ≥ γν ≥ 0 is a nonincreasing finite sequence of nonnegative real numbers,

then

μ

( ν∑

i=1

γiCi

)
≤

ν∑

i=1

γiα
(
Ci
)
. (1.14)

(b) If 0≤ γ1 ≤ ··· ≤ γν is a nondecreasing finite sequence of nonnegative real numbers,
then

μ

( ν∑

i=1

γiCi

)
≤

ν∑

i=1

γiβ
(
Ci
)
. (1.15)

Proof. We will prove only inequality (1.14). Analogously one can obtain (1.15).
Applying the property (ii) of the logarithmic norms, one has

μ

( ν∑

i=1

γiCi

)
= μ

⎛
⎝γν

ν∑

i=1

Ci +
ν−1∑

i=1

(
γi− γν

)
Ci

⎞
⎠≤ γνμ

( ν∑

i=1

Ci

)
+μ

( ν−1∑

i=1

(
γi− γν

)
Ci

)
.

(1.16)

On the other hand, since

ν−1∑

i=1

(
γi− γν

)
Ci =

(
γ1− γ2

)
C1 +

(
γ2− γ3

)
C1 +

(
γ3− γ4

)
C1 + ···+

(
γν−1− γν

)
C1

+
(
γ2− γ3

)
C2 +

(
γ3− γ4

)
C2 + ···+

(
γν−1− γν

)
C2 + ···

+
(
γν−2− γν−1

)
Cν−2 +

(
γν−1− γν

)
Cν−2 +

(
γν−1− γν

)
Cν−1,

(1.17)
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and γi+1 ≤ γi, for every i= 1, . . . ,ν− 1, we have by the properties (ii) and (iii) of the loga-
rithmic norms,

μ

( ν∑

i=1

γiCi

)
≤ γνμ

( ν∑

i=1

Ci

)
+
(
γν−1− γν

)
μ

( ν−1∑

i=1

Ci

)

+
(
γν−2− γν−1

)
μ

( ν−2∑

i=1

Ci

)
+ ···+

(
γ2− γ3

)
μ

( 2∑

i=1

Ci

)
+
(
γ1− γ2

)
μ
(
C1
)
.

(1.18)

Thus

μ

( ν∑

i=1

γiCi

)
≤ γν

[
μ

( ν∑

i=1

Ci

)
−μ

( ν−1∑

i=1

Ci

)]
+ γν−1

[
μ

( ν−1∑

i=1

Ci

)
−μ

( ν−2∑

i=1

Ci

)]

+ ···+ γ2

[
μ

( 2∑

i=1

Ci

)
−μ

(
C1
)
]

+ γ1μ
(
C1
)
,

(1.19)

which is equivalent to (1.14). �

In view of the examples which will be given in the sections below we recall the follow-
ing well-known logarithmic norms of a matrix C = [cjk]∈Md(R):

μ1(C)= max
1≤k≤d

{
ckk +

∑

j �=k

∣∣cjk
∣∣
}

, μ∞(C)= max
1≤ j≤d

{
cj j +

∑

k �= j

∣∣cjk
∣∣
}

, (1.20)

which correspond, respectively, to the induced norms in Md(R) given by

‖C‖1 = max
1≤k≤d

{ d∑

j=1

∣∣cjk
∣∣
}

, ‖C‖∞ = max
1≤ j≤d

{ d∑

k=1

∣∣cjk
∣∣
}
. (1.21)

With respect to the norm ‖C‖2 induced by the Hilbert norm in Rd, the corresponding
logarithmic norm is given by μ2(C) = maxσ((B + BT)/2). For this specific logarithmic
norm, some oscillation criteria are obtained in [3].

2. Criteria involving the measures α and β

By (1.8) and the property (i) of the logarithmic norms, we have that (1.1) is oscillatory
whenever, for every real positive λ,

λ− 1 /∈ [−μ
(−M(λ)

)
,μ
(
M(λ)

)]
. (2.1)

This means that (1.1) is oscillatory if either

μ
(
M(λ)

)
< λ− 1, ∀λ∈R+, (2.2)

or

μ
(−M(λ)

)
< 1− λ, ∀λ∈R+. (2.3)
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Depending upon the choice of the matrix measures proposed, one can obtain several
different conditions regarding the oscillatory behavior of (1.1).

Theorem 2.1. If for every i= 1, . . . ,�, and j = 1, . . . ,m,

α
(
Pi
)≤ 0, β

(
Qj
)≤ 0, (2.4)

β
(
Pi
)≤ 0, α

(
Qj
)≤ 0, (2.5)

�∑

i=1

(i+ 1)i+1

ii
β
(
Pi
)
<−1, (2.6)

then (1.1) is oscillatory.

Proof. By the property (ii) of the logarithmic norms, one has

μ
(
M(λ)

)≤ μ

( �∑

i=1

λ−iPi

)
+μ

( m∑

j=1

λjQj

)
. (2.7)

For every real λ ∈]1,+∞[, inequalities (1.14) and (1.15) and assumption (2.4) imply
that

μ
(
M(λ)

)≤
�∑

i=1

λ−iα
(
Pi
)

+
m∑

j=1

λjβ
(
Qj
)≤ 0. (2.8)

Then, for every real λ > 1, we conclude that

μ
(
M(λ)

)
< λ− 1, (2.9)

since in that case λ− 1 > 0.
Let now 0 < λ≤ 1. From (2.7) and inequalities (1.14) and (1.15), we obtain

μ
(
M(λ)

)≤
�∑

i=1

λ−iβ
(
Pi
)

+
m∑

j=1

λjα
(
Qj
)
, (2.10)

and by assumption (2.5) we have

μ
(
M(λ)

)≤
�∑

i=1

λ−iβ
(
Pi
)
. (2.11)

But as

maxλ>1

(
λ−i

λ− 1

)
=− (i+ 1)i+1

ii
, (2.12)

we conclude that, for every real 0 < λ≤ 1,

�∑

i=1

λ−iβ
(
Pi
)≤−(λ− 1)

�∑

i=1

(i+ 1)i+1

ii
β
(
Pi
)
. (2.13)
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Thus by (2.6),

μ
(
M(λ)

)≤−(λ− 1)
�∑

i=1

(i+ 1)i+1

ii
β
(
Pi
)
< λ− 1, (2.14)

also for every real 0 < λ≤ 1. �

As a corollary of Theorem 2.1, we obtain the following statement.

Corollary 2.2. Under (2.4) and (2.5), if

�∑

i=1

β
(
Pi
)
<−1

4
, (2.15)

then (1.1) is oscillatory.

Proof. Since (i+ 1)i+1/ii ≥ 4 for every positive integer, the condition (2.15) implies (2.6).
�

The condition (2.15) is a result of (2.6) through a substitution involving the lower
index of the family of matrices Pi. A condition involving the largest index, m, of the family
of matrices Qj is stated in the following theorem.

Theorem 2.3. Under (2.4) and (2.5), if β(Pi) �= 0, for some i= 1, . . . ,�, and

(
m

∑m
j=1α

(
Qj
)

∑�
i=1β

(
Pi
)

)1/(m+1)( �∑

i=1

β
(
Pi
)
)(

1
m

+ 1
)
≤−1, (2.16)

then (1.1) is oscillatory.

Proof. As in the proof of Theorem 2.1, we have

μ
(
M(λ)

)
< λ− 1, (2.17)

for every real λ > 1.
Recalling inequality (2.10), we obtain by (2.5), for every real 0 < λ≤ 1,

μ
(
M(λ)

)≤ λ−1
�∑

i=1

β
(
Pi
)

+ λm
m∑

j=1

α
(
Qj
)
, (2.18)

since λ−i ≥ λ−1 and λj ≥ λm. The function

f (λ)= λ−1
�∑

i=1

β
(
Pi
)

+ λm
m∑

j=1

α
(
Qj
)

(2.19)

is strictly concave and

f (λ)≤
(
m

∑m
j=1α

(
Qj
)

∑�
i=1β

(
Pi
)

)1/(m+1)( �∑

i=1

β
(
Pi
)
)(

1
m

+ 1
)
. (2.20)
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By (2.16) we have then, for every real 0 < λ≤ 1, μ(M(λ))≤−1 < λ− 1, and consequently
condition (2.2) is fulfilled and system (1.1) is oscillatory. �

By use of (2.3), the following theorem is stated.

Theorem 2.4. If for every i= 1, . . . ,� and j = 1, . . . ,m,

α
(−Pi

)≤ 0, β
(−Qj

)≤ 0, (2.21)

α
(−Qj

)≤ 0, β
(−Pi

)≤ 0, (2.22)

m∑

j=1

j j

( j− 1) j−1 β
(−Qj

)
<−1, (2.23)

then (1.1) is oscillatory.

Proof. For every λ≥ 1, as in (2.8), we have

μ
(−M(λ)

)≤
�∑

i=1

λ−iα
(−Pi

)
+

m∑

j=1

λjβ
(−Qj

)
, (2.24)

and by (2.21)

μ
(−M(λ)

)≤
m∑

j=1

λjβ
(−Qj

)
. (2.25)

Since for j > 1,

max
λ>1

(
λj

1− λ

)
=− j j

( j− 1) j−1 , (2.26)

and for j = 1,

sup
λ>1

(
λ

1− λ

)
=−1, (2.27)

we can conclude (under the convention 00 = 1) that

m∑

j=1

λjβ
(−Qj

)
< (λ− 1)

m∑

j=1

j j

( j− 1) j−1 β
(−Qj

)
, (2.28)

for every real λ≥ 1. So by (2.23), we obtain

μ
(−M(λ)

)
< (λ− 1)

m∑

j=1

j j

( j− 1) j−1 β
(−Qj

)≤ 1− λ, (2.29)

for every real λ≥ 1.
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On the other hand, for every 0 < λ < 1, as in (2.10), by (2.22), we have

μ
(−M(λ)

)≤
�∑

i=1

λ−iβ
(−Pi

)
+

m∑

j=1

λjα
(−Qj

)≤ 0 < 1− λ, (2.30)

and consequently system (1.1) is oscillatory. �

Corollary 2.5. Under (2.21) and (2.22), if

m∑

j=1

β
(−Qj

)
<−1 (2.31)

then (1.1) is oscillatory.

Proof. Clearly (2.31) implies (2.23). �

Remark 2.6. In case of having m> 1, (2.31) can be replaced by
∑m

j=1β(−Qj)≤−1.

We illustrate these results with the following example.

Example 2.7. Consider system (1.1) with d = � =m= 2, and

P1 =
[−1 1

−1 −4

]
, P2 =

⎡
⎢⎣
− 1

10
−1

0 −1

⎤
⎥⎦ ,

Q1 =
[−9 −2

3 −10

]
, Q2 =

[−8 1

−2 −10

]
.

(2.32)

Through the logarithmic norm μ1, we have

a
(
P1
)= μ1

(
P1
)= 0= μ1

(
P2
)= b

(
P2
)
,

a
(
P2
)= μ1

(
P1 +P2

)= b
(
P1
)=− 1

10
,

a
(
Q1
)= μ1

(
Q1
)=−6= μ1

(
Q2
)= b

(
Q2
)
,

a
(
Q2
)= μ1

(
Q1 +Q2

)= b
(
Q1
)=−16,

(2.33)

and consequently

α
(
P1
)= 0, α

(
P2
)=− 1

10
, β

(
Q1
)=−10, β

(
Q2
)=−6,

β
(
P1
)=− 1

10
, β

(
P2
)= 0, α

(
Q1
)=−6, α

(
Q2
)=−10.

(2.34)

Since

3
√

2× 160
(
− 1

10

)(
1
2

+ 1
)
≈−1.0260 <−1, (2.35)

we can conclude, by Theorem 2.3, that the correspondent system (1.1) is oscillatory.
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Notice that, as

2∑

i=1

(i+ 1)i+1

ii
β
(
Pi
)= 22×

(
− 1

10

)
− 33

22
× 0=−2

5
,

2∑

i=1

β
(
Pi
)=− 1

10
,

(2.36)

Theorem 2.1 and Corollary 2.2 cannot be applied to this system. The same holds to The-
orem 2.4 and Corollary 2.5 since the respective conditions (2.21) and (2.22) are not ful-
filled.

Through the application of inequalities (1.13), from Theorem 2.1, Corollary 2.2, The-
orem 2.4, and Corollary 2.5, the corollaries below extend results contained in [3, Theorem
2].

Corollary 2.8. Let μ(Pi) ≤ 0, μ(Qj) ≤ 0, for every i = 1, . . . ,�, and j = 1, . . . ,m. If one of
the inequalities

�∑

i=1

(i+ 1)i+1

ii
μ
(
Pi
)
<−1,

�∑

i=1

μ
(
Pi
)
<−1

4
, (2.37)

is satisfied, then system (1.1) is oscillatory.

Corollary 2.9. Let for every i= 1, . . . ,�, and j = 1, . . . ,m, μ(−Pi)≤ 0, μ(−Qj)≤ 0. If one
of the inequalities

m∑

j=1

j j

( j− 1) j−1 μ
(−Qj

)
<−1,

m∑

j=1

μ
(−Qj

)
<−1, (2.38)

is verified, then system (1.1) is oscillatory.

Example 2.10. Consider system (1.1) with d = 2, � = 3, m= 2,

P1 =
[−2 −1

1 −7

]
, P2 =

[−1 2

1 −4

]
, P3 =

[−5 0

−2 −1

]
,

Q1 =
[−1 1

0 −5

]
, Q2 =

[−2 0

−1 −1

]
.

(2.39)

With respect to the logarithmic norm μ1, we have

μ1
(
P1
)=−1, μ1

(
P2
)= 0, μ1

(
P3
)= μ1

(
Q1
)=−1, μ1

(
Q2
)=−1,

μ1
(
P1
)

+μ1
(
P2
)

+μ1
(
P3
)=−2.

(2.40)

Then the corresponding system (1.1) is oscillatory by Corollary 2.8. Remark that Corol-
lary 2.9 cannot be used in this case.
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When d = 1, one has μ(c)= c, for every logarithmic norm, μ, and any real number, c.
As a consequence also α(c)= β(c)= c. So, all the results involving logarithmic norms and
the matrix measures α and β can easily be adapted to the scalar case of (1.1), that is, to
the equation

Δx(n)=
�∑

i=1

pix(n− i) +
m∑

j=1

qjx(n+ j), (2.41)

where pi and qj are real numbers, for i= 1, . . . ,�, and j = 1, . . . ,m.

Remark 2.11. The scalar case correspondent to Corollary 2.9 is in certain a sense an ex-
tension of [1, Theorem 6] (or [2, Theorem 1.16.7]).

3. The measures a and b

Through the use of the matrix measures a and b, different criteria are obtained through
the following theorems.

Theorem 3.1. If for every i= 1, . . . ,�, and j = 1, . . . ,m,

a
(
Pi
)≤ 0, b

(
Qj
)≤ 0, (3.1)

a
(
Qj
)≤ 0, b

(
Pi
)≤ 0, (3.2)

b
(
P1
)
< 0,

�∑

i=1

b
(
Pi
)≤−1, (3.3)

then (1.1) is oscillatory.

Proof. Recall inequality (2.8) and notice that for every real λ,

�∑

i=1

λ−iα
(
Pi
)= λ−1a

(
P1
)

+
�∑

i=2

λ−i
[
a
(
Pi
)− a

(
Pi−1

)]

=
�∑

i=1

λ−ia
(
Pi
)−

�−1∑

i=1

λ−(i+1)a
(
Pi
)

=
�−1∑

i=1

λ−i
(
1− λ−1)a

(
Pi
)

+ λ−�a
(
P�
)
,

(3.4)

m∑

j=1

λjβ
(
Qj
)=

m−1∑

j=1

λj
[
b
(
Qj
)− b

(
Qj+1

)]
+ λmb

(
Qm

)

=
m∑

j=1

λjb
(
Qj
)−

m∑

j=2

λ( j−1)b
(
Qj
)

= λb
(
Q1
)

+
m∑

j=2

λj
(
1− λ−1)b

(
Qj
)
.

(3.5)
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Therefore, for every λ > 1, we have by (3.1)

�∑

i=1

λ−iα
(
Pi
)≤ 0,

m∑

j=1

λjβ
(
Qj
)≤ 0, (3.6)

taking into account that λ−i(1− λ−1) > 0, for i= 1, . . . ,�− 1, and λj(1− λ−1) > 0, for j =
2, . . . ,m. Thus, for every λ > 1, we obtain μ(M(λ))≤ 0 and in consequence

μ
(
M(λ)

)
< λ− 1. (3.7)

Recalling now inequality (2.10), first observe that, analogously,

�∑

i=1

λ−iβ
(
Pi
)=

�∑

i=1

λ−ib
(
Pi
)−

�∑

i=2

λ−(i−1)b
(
Pi
)

= λ−1b
(
P1
)

+
�∑

i=2

λ−i(1− λ)b
(
Pi
)
,

(3.8)

m∑

j=1

λjα
(
Qj
)=

m∑

j=1

λja
(
Qj
)−

m−1∑

j=1

λ( j+1)a
(
Qj
)

= λma
(
Qm

)
+

m−1∑

j=1

λj(1− λ)a
(
Qj
)
.

(3.9)

Therefore, letting 0 < λ≤ 1, (3.2) implies that

�∑

i=1

λ−iβ
(
Pi
)≤

�∑

i=1

b
(
Pi
)− λ

�∑

i=2

b
(
Pi
)
, (3.10)

since λ−i ≥ 1 for every i = 1, . . . ,�. On the other hand, as λj(1− λ) ≥ 0 for every j =
1, . . . ,m− 1, we have again by (3.2)

m∑

j=1

λjα
(
Qj
)≤ 0. (3.11)

Thus

μ
(
M(λ)

)≤
�∑

i=1

b
(
Pi
)− λ

�∑

i=2

b
(
Pi
)
, (3.12)

for every 0 < λ≤ 1. If the sum
∑�

i=2 b(Pi)= 0, then we obtain by (3.3)

μ
(
M(λ)

)≤
�∑

i=1

b
(
Pi
)≤−1 < λ− 1 (3.13)
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for every 0 < λ ≤ 1. Otherwise the right-hand term of (3.12) is the straight line deter-
mined by the points (0,

∑�
i=1 b(Pi)) and ((

∑�
i=1 b(Pi))/(

∑�
i=2 b(Pi)),0), which stays under

the straight line λ− 1 when λ runs the interval ]0,1], taking into account (3.3) and that
(
∑�

i=1 b(Pi))/(
∑�

i=2 b(Pi)) > 1. Hence, for every 0 < λ≤ 1,

μ
(
M(λ)

)
< λ− 1. (3.14)

Thus (1.1) is oscillatory and the proof is complete. �

Theorem 3.2. Under (3.1) and (3.2), with b(P1) < 0, if

(
m
a
(
Qm

)

b
(
P1
)
)1/(m+1)

b
(
P1
)( 1

m
+ 1
)
≤−1, (3.15)

then (1.1) is oscillatory.

Proof. For λ > 1, one can follow the proof of Theorem 3.1.
Let now 0 < λ≤ 1. The equalities

�∑

i=1

λ−iβ
(
Pi
)= λ−1b

(
P1
)

+
�∑

i=2

λ−i(1− λ)b
(
Pi
)
,

m∑

j=1

λjα
(
Qj
)= λma

(
Qm

)
+

m−1∑

j=1

λj(1− λ)a
(
Qj
)

(3.16)

imply

μ
(
M(λ)

)≤ λ−1b
(
P1
)

+ λma
(
Qm

)
, (3.17)

for every real 0 < λ≤ 1. The function

g(λ)= λ−1b
(
P1
)

+ λma
(
Qm

)
(3.18)

is strictly concave and

g(λ)≤
(
m
a
(
Qm

)

b
(
P1
)
)1/(m+1)

b
(
P1
)( 1

m
+ 1
)

(3.19)

for every real λ. Then by (3.15),

μ
(
M(λ)

)≤−1 < λ− 1, (3.20)

for every 0 < λ≤ 1, and (1.1) is oscillatory. �
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Theorem 3.3. If for every i= 1, . . . ,� and j = 1, . . . ,m,

a
(−Pi

)≤ 0, b
(−Qj

)≤ 0, (3.21)

a
(−Qj

)≤ 0, b
(−Pi

)≤ 0, (3.22)

b
(−Q1

)
< 0,

m∑

j=1

b
(−Qj

)≤−1, (3.23)

then (1.1) is oscillatory.

Proof. By (3.4) and (3.5), one has, for every real λ,

μ
(−M(λ)

)≤
�−1∑

i=1

λ−i
(
1− λ−1)a

(−Pi
)

+ λ−�a
(−P�

)

+ λb
(−Q1

)
+

m∑

j=2

λj
(
1− λ−1)b

(−Qj
)
.

(3.24)

If λ≥ 1, we have by (3.21)

μ
(−M(λ)

)≤ λ
m∑

j=1

b
(−Qi

)−
m∑

j=2

b
(−Qj

)
, (3.25)

since λj ≥ λ for every λ≥ 1. If
∑m

j=2 b(−Qj)= 0, then

μ
(−M(λ)

)≤ λ
m∑

j=1

b
(−Qj

)≤−λ < 1− λ. (3.26)

Otherwise, for λ≥ 1, the right-hand term of (3.25) is a half line passing through the point
((
∑m

j=2 b(−Qj))/(
∑m

j=1 b(−Qi)),0), with a slope not larger than the slope of 1− λ. Then
taking into account (3.23), one has

(∑m
j=2 b

(−Qj
))

(∑m
j=1 b

(−Qi
)) < 1, (3.27)

and consequently μ(−M(λ)) < 1− λ, for every λ≥ 1.
Let now 0 < λ < 1. By (3.8) and (3.9), one obtains

μ
(−M(λ)

)≤ λ−1b
(−P1

)
+

�∑

i=2

λ−i(1− λ)b
(−Pi

)

+ λma
(−Qm

)
+

m−1∑

j=1

λj(1− λ)a
(−Qj

)
,

(3.28)
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and by assumption (3.22), we have

μ
(−M(λ)

)≤ 0 < 1− λ (3.29)

for every 0 < λ < 1.
Thus (1.1) is oscillatory, which achieves the proof. �

The following example illustrates the use of these results.

Example 3.4. Consider now system (1.1) with d = 2, � =m= 3,

P1 =
⎡
⎢⎣
− 2

15
− 1

15
1 −5

⎤
⎥⎦ , P2 =

⎡
⎢⎣

1
15

0

−1 2

⎤
⎥⎦ , P3 =

⎡
⎢⎣
−1

5
0

−2 −6

⎤
⎥⎦ ,

Q1 =
[−15 0

1 −11

]
, Q2 =

[
1 2

1 1

]
, Q3 =

[−6 −1

−1 −10

]
.

(3.30)

By use of the logarithmic norm μ∞, we obtain

a
(
P2
)= a

(
Q2
)= 0, a

(
P3
)= b

(
P3
)= b

(
P1
)=−1

5
, a

(
Q3
)= b

(
Q1
)=−19,

b
(
Q2
)=−4, b(Q3)=−5, a

(
Q1
)=−3, b

(
P2
)=− 2

15
, a

(
P1
)=− 1

15
.

(3.31)

The condition (3.15) is satisfied, since its left-hand term is equal to

(
3

19
−1/5

)1/4(
− 1

5

)(
1
3

+ 1
)
=− 4

15
4
√

285≈−1.0957. (3.32)

Then the correspondent system (1.1) is oscillatory.
Notice that for this system, Theorem 2.1, Corollary 2.2, and Theorems 2.3 and 3.1

cannot be used since

α
(
P3
)= a

(
P3
)− a

(
P2
)= 1

5
,

b
(
P1
)

+ b
(
P2
)

+ b
(
P3
)=−1

5
− 2

15
− 1

5
=− 8

15
.

(3.33)

By use of inequalities (1.12), from Theorems 3.1 and 3.3, one can state results involv-
ing only the logarithmic norm μ. However, such results are less general than those already
described in Section 2. Nevertheless, for the scalar equation (2.41), the correspondent re-
sults involving the measures a and b are more general than those obtained with the mea-
sures α and β. In fact, notice that for any given finite sequence of real numbers, c1, . . . ,cν,
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we have

a
(
ck
)=

k∑

i=1

ci, b
(
ck
)=

ν∑

i=k
ci,

ν∑

k=1

a
(
ck
)= νc1 + (ν− 1)c2 + ···+ 2cν−1 + cν =

ν∑

k=1

(ν− k+ 1)ck,

ν∑

k=1

b
(
ck
)= νcν + (ν− 1)cν−1 + ···+ 2c2 + c1 =

ν∑

k=1

kck.

(3.34)

Moreover, for the finite sequence, −c1, . . . ,−cν, one has

a
(− ck

)=−a(ck
)
, b

(− ck
)=−b(ck

)
, (3.35)

and consequently

ν∑

k=1

a
(− ck

)=−
ν∑

k=1

(ν− k+ 1)ck,
ν∑

k=1

b
(− ck

)=−
ν∑

k=1

kck. (3.36)

Therefore Theorems 3.1, 3.2, and 3.3 can be, respectively, rewritten, as the following
corollaries.

Corollary 3.5. If

a
(
pi
)=

i∑

k=1

pk ≤ 0, b
(
pi
)=

�∑

k=i
pk ≤ 0, for every i= 1, . . . ,�,

a
(
qj
)=

j∑

k=1

qk ≤ 0, b
(
qj
)=

m∑

k= j

q j ≤ 0, for every j = 1, . . . ,m,

�∑

i=1

pi < 0,

(3.37)

and either

�∑

i=1

ipi ≤−1, (3.38)

or

(
m

∑m
j=1 qj

∑�
i=1 pi

)1/(m+1)( �∑

i=1

pi

)(
1
m

+ 1
)
≤−1, (3.39)

then (2.41) is oscillatory.
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Corollary 3.6. If for every i= 1, . . . ,� and j = 1, . . . ,m,

a
(
pi
)=

i∑

k=1

pk ≥ 0, b
(
pi
)=

�∑

k=i
pk ≥ 0, for every i= 1, . . . ,�, (3.40)

a
(
qj
)=

j∑

k=1

qk ≥ 0, b
(
qj
)=

m∑

k= j

q j ≥ 0, for every j = 1, . . . ,m, (3.41)

m∑

j=1

qj > 0,
m∑

j=1

jq j ≥ 1, (3.42)

then (2.41) is oscillatory.

Example 3.7. The equation

Δx(n)=−x(n− 3) + x(n− 2)− x(n− 1)− x(n+ 2) (3.43)

is oscillatory, by Corollary 3.5 through condition (3.38).

Example 3.8. Still by Corollary 3.5, the equation

Δx(n)=− 1
10

x(n− 3)− 1
5
x(n− 1)− 3x(n+ 1)− 5x(n+ 2) (3.44)

is oscillatory through condition (3.39) since

(
2
−8
−3/10

)(
− 3

10

)(
1
3

+ 1
)
≈−1.5057. (3.45)

(Notice that condition (3.38) is not fulfilled in this case.)

Example 3.9. The equation

Δx(n)= 3x(n− 3)− x(n− 2) + 2x(n− 1) + x(n+ 1)− x(n+ 2) + x(n+ 3) (3.46)

is oscillatory, by Corollary 3.6.
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