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Abstract

This note is concerned with the existence of nonoscillatory solutions of a linear retarded system.
Several criteria for nonoscillations are obtained, some of them regarding specific classes of continu-
ous and differentiable delay functions.
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1. Introduction

This work regards the existence of nonoscillations in the difference retarded functional

system
0
x(r)+/d[u(9)]x(r—r(9)) =0, (1)
-1

wherex(t) € R", r(0) is a real continuous and positive function [orl, 0], andv(0) is a
realn-by-n matrix valued function of bounded variation pal, 0].
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It will be also considered the relevant class of delay difference systems

P
x()+ Y Ajx(t—rj) =0, )
j=1
where theA ; aren-by-n real matrices and the; are positive real numbers such that<
--- <rp. As is well known, these systems can be obtained, from (1), under the assumption
thatv(9) is a step function with a number of jump points. Denoting by the Heaviside
function,v(6) can be given, for example, by

p
v(@):ZH(e—ej)Aj, (3)

j=1

for -1 <61 <--- <6, <0, where the delays,, are obtained through any function®),
continuous and positive dr-1, 0], which satisfyr(6;) =r;, for j =1,..., p.

Considering the valugr| = maxXr(©): —1 <6 < 0}, a continuous functiow : [—|7 ],
+oo[— R, is said a solution of (1) if satisfies this equation for every 0. A solu-
tion of (1), x(t) = [x1(¢), ..., x,(1)]7, is calledoscillatory if every componenty;(t),

j =1,...,n, has arbitrary large zeros. Whenever all solutions of (1) are oscillatory, we
will say that (1) is aroscillatory system. Otherwise, (1) is sambnoscillatory

We will say that a functiorp: [—1, 0] — R is nondecreasing (nonincreasing) #rc
[—1, 0], if for every 61,02 € J such thatd; < 62, one hasp(61) < ¢ (02) (respectively
¢ (02) < ¢(01)); if ¢ is nondecreasing (nonincreasing) and nonconstant an[—1, 0],
it will be called increasing (respectively decreasing).orif for every ¢ > 0, sufficiently
small, ¢ is increasing (decreasing) @ — ¢,0 + ¢] ([—&,0] if 6 =0, [-1, -1 + ¢] if
6 = —1) we will say tha® is a point of increase (respectively a point of decrease). of

Letting v(0) = [v;x(®)] (j,k=1,...,n) andfp € [—1, 0] such thatr(6p) = ||r|, as-
suming that(0) < ||| for everyd # 6p, in [1] is proven that (1) becomes nonoscillatory
whengy is a point of decrease of all the functiong (6). Moreover, it is shown that sys-
tem (2) is nonoscillatory whenever all the entries of the matrxare negative, where the
indexk is determined through the relatiop=max(r;: j=1,..., p}.

Here we will show that (1) and (2) can be nonoscillatory in a different framework. On
this purpose, matrix measures, already considered by several authors on the oscillation
theory of delay systems, will play an useful role. For a matter of completeness we will
report briefly, in the following, its definition and main properties.

For an induced norm - ||, in M, (R), we associate a matrix measyreM,, (R) — R,
which is defined for ang” € M,,(R) as

W(C) = lim HHrei=1
y—0F 14
where byl we mean the identity matrix. Notice that, for every matrix measure, one has
w(0) =0, u(+I) = =41 and for the case = 1, u(c) = ¢ for every real number.
Examples of matrix measures of a matfix= [c;;] € M, (R), are given by

C) = max i s C) = max P i s
11(C) lgkgn{ckwgc,u} Hoo(C) = M gn{c'/‘/+1§|c"kl}
J J
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which correspond, respectively, to the induced norm¥ji{R),

n n
Cll1= max Cikl (s C = max Cjkl (-
ici Kk@{;m} IClloo = ma> {};m}
j: =

/X

Independently of the considered induced norniMp(R), a matrix measurey, has
always the following properties (see [2]) for adye M, (R):

(i) u(yC)=yu(C),foreveryy >0,
(i) u(C1) — u(=C2) < u(C1+ C2) < u(C1) + u(C2) (C1, C2 € M, (R));
(i) —u(—C) < Rez < u(C), foreveryz € o (C),

where byo (C) we denote the spectrum of the matéix

As an immediate consequence of the property (iii) above, through an argument used in
[3] and [4], one has the following relationship between a matrix measure of a matrix and
its determinant:

(iv) u(C)<0=detC)<0,ifnisodd;
(v) u(C)<0=detC) >0, ifniseven.

Another important property of any matrix measure regards the fact (see [5]) thais
a real function of bounded variation ¢, b], if 1 is a realn-by-n matrix valued function
of bounded variation on an intervia, b]. Moreover, the following inequalities hold:

(vi) If ¢ € C([a, b]; R) is nonincreasing and positive, then

b b
M</¢(9)d[ﬂ(9)]> <f¢(9)d(u(n(9) —1(a))).

(vii) If ¢ € C([a, b]; R) is nondecreasing and positive, then
b b
M(fd)(@)d[n(@)]) < —f¢(9)d(u(n(b) —n(0))).

For a given reah-by-n matrix valued functiony, of bounded variation on the interval
[—1, 0], these properties give relevance to that the following functignandn; be con-
sidered:

no(®) =n(0) —n(0), n1(0) =n@®) —n(-1) (f €[-1,0]).
By An we will denote the differencg(0) — n(—1) = no(—1) = n1(0).

Letting
0
A(k):/exp(—kr(@))d[v(@)],

-1
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according to [6], we recall that denoting Whythe n-by-n identity matrix, the system (1) is
nonoscillatory if and only if there exists a reabuch that

det(/ + A(1)) =0,
thatis if and only if
M eR: leo(—AW). (4)
Taking the real function
s(v) =max{Rez: zeo(—AW)}, (5)
and assuming that
s(A) €o(—AM)), VrER, (6)

one has by [1, Theorem 1] that (1) is nonoscillatory if and only if there exists agesaich
thats(hg) > 1.

We recall that (6) is satisfied when, for each reakthe matrix—A (1) is essentially
nonnegative—that is, when at least its off-diagonal entries are nonnegative. This occurs
when, at least, the off-diagonal functiong (6) (j # k), of v(8) = [v;x(9)], are nonin-
creasing functions op—1, 0]. Assumption (6) also holds when for evetry: [—1, 0], v(0)
are symmetric or triangular matrices.

Thus assuming (6), by property (iii) of the matrix measures, we have that if

JoeR: u(A() < -1, @)

then (1) is nonoscillatory.
We make notice that (7) is also a sufficient condition for nonoscillations, when the
order,n, of (1) is an odd integer. In fact, (7) implies that
1(I+A00) <1+ u(AGo) <O,

and if n is an odd integer, by property (iv) of the matrix measures one has necessarily
det(/ + A(Ag)) <0.Thensince déf + A(L)) — 1, ash — +oo, we conclude that déet +
A(A)) = 0 for some reak and consequently that (1) is nonoscillatory.
In the following sections we will implicitly assume that either hypothesis (6) holds or
is an odd integer.

2. Nonoscillations for classes of continuous delays

Denote byC™ the set of all real continuous and positive functions[e, 0]. In this
section we start by obtaining several criteria of nonoscillations regarding some families of
delays inC™.

Theorem 1. If
u(Av) < -1, (8)

then(1) is nonoscillatory for all delay functions i .
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Proof. As A(0) = Av, under (8) one has (7) satisfied and the theorem follows.
Therefore for system (2) we obtain the following corollary.

Corollary 2. If

p
D onAan<-1,

j=1

then(2) is nonoscillatory for everyry, ..., rp) in Ri suchthaty <--- <rp.

Assuming that-1 < a < 8 <0, let C™(a, B) be the family of all functions irC+,
which are increasing of-1, o], constant oria, 8] and decreasing o8, 0].

Theorem 3. If

(uov1) isnondecreasing on[—1, «], (9)

(uwovg) is nonincreasing on [B, 0], (10)
and

(novo)(B) + un(v(B) — v(@)) + (novy)(a) < —1, (11)

then(1) is nonoscillatory for every delay function & («, 8).

Proof. By properties (i) and (ii) of the matrix measures, we have
n(A)) < u( /exp(—kr(@)) d[v(@)]) + exp(—Ar (@) u(v(B) — v(a))
-1
0

+,u(fexp(—kr(9))d[v(9)]). (12)
B

For . > 0, properties (vi) and (vii) imply that
1(AM)) < / exp(—r(8)) d(p 0 v1) (@) + exp(—Ar (@) £ (v(B) — v(@))

-1
0

— / exp(—Ar(8)) d(u o vo) (). (13)
B
Then by assumptions (9) and (10) we have
1(AMW) < (wovp) (@) +u(v(B) = v(e) + (o vo)(B),

and by (11) we conclude that, for evexry> 0, u(A(1)) < —1. Hence by (7) one has (1)
nonoscillatory for every delay function it («, 8). O
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Theorem 4. If
p(v(@) —v(®)) isnonincreasing of—1,«], (14)
n(v(®) —v(B)) isnondecreasing ofB, 0], (15)

and(11)is satisfied, theiil) is nonoscillatory for every delay function @ («, B).

Proof. From (12), properties (vi) and (vii) imply that, far< 0,
n(AM) < — / exp(—Ar(©)) du(v(e) — v(0)) + exp(—ir (@) u(v(B) — v(a))

-1
0

+ / exp(—1r(0)) du(v(6) — v(B)). (16)
B
Since exp—Ar(9)) < exp(—ir(w)) for everyf € [—1,«] U [B, 0], by (14) and (15) we
obtain
1(AG)) < exp(—ir(@)) (o vi)(@) +exp(—ir (@) u(v(B) — v(@))
+ exp(—2r (@) (14 0 v0) (B).

Then by (11) we have, for evedy< 0, u(A(1r)) < —1. Hence by (7) one has (1) nonoscil-
latory for every delay function i€t («, 8). O

Remark 5. Notice that each one of the conditions (9) and (14), implje® v1)(«) > 0

and each one of the assumptions (10) or (15) implies vg)(8) > 0. Therefore, in both
theorems we have to exclude the possibility of hawing 8, since in order to have the
inequality (11) satisfied, the term(v(8) — v(«)) must have a large preponderance. This
fact introduces some difficulty in the application of the Theorems 3 and 4 as it can be
observed through the following example.

Example 6. Consider (1) with

003 +502+%  —0+2
-6 +1 -89 —1]

For the matrix measure., we have
1 1 9 9
(MOOOVO)<_E)+MOO<V(_1_O>_v<_E>>+(Mwovl)(_l_O>
3 _ 1 _128 _ 4 13 _
(4,405 3D (4
10 5 5 5 10

(0) = [

N
ais Bl

)
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10093 1 5002 +99 -2 61 D

(Moo 0 V1) (0) = oo <|: —0-1 _89_8

100 20
= max{?eg’ +5092 + 109 — 3 —76 — 7}
100 20
=3 63 4+ 5007 + 100 — 3

is increasing, and fof € [—+5, 0],

—10053 _ 500299 6 ])

(Moo ©v0)(0) = oo <|: 9 89

100
- max{—Ta3 — 502 — 100, 79}
100
= —793 — 5092 -1

is decreasing. Hence by Theorem 3, the corresponding system (1) is nonoscillatory for
everyr € C* (-5, —15)-

Remark 7. Notice that for the scalar case of (1), that is foe= 1, the condition (11) in
Theorems 3 and 4 gives the assumption (8) of Theorem 1. So in the scalar case only this
theorem can be considered.

3. Nonoscillations for families of differentiable delays

Still assuming that-1 < a < B <0, let nowD™ («, ) be the family of all functions in
C™(a, B) which are differentiable on the intervig}-1, 0].

Theorem 8. If
p(v@) —v©)) <0, foroe[-1,al, 17
w(v®) —v(B)) <0, foroe[p,0l, (18)
n(v(g) —v(@) <0, (19)
and
min{( o v1) (@), u(v(B) — v(@)), (w0 o) ()} <O, (20)

then(1) is nonoscillatory for all delay functions iP* («, B).

Proof. Let r(9) be any delay function idD™ («, 8) andA < 0. Integrating by parts each
one of the integrals in the right-hand member of (16), we obtain
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1(A()) < exp(—ar(—=1)) (1 0 v1) (@) + exp(—Ar (@) (v (B) — v(@))

o

+ exp(—Ar(0)) (u o vo)(B) — /Aexp(—kr(@))u(v(oz) —v(0))dr ()
-1
0

+/Aex;3(—kr(9))u(v(9) —v(B))dr(6).
B
Then the assumptions (17), (18) and D™ (a, 8) imply that

1(AG)) < exp(—ar(—=1)) (1 0 v1) (@) + exp(—Ar (@) (v (B) — v(@))
+ exp(—1r(0)) (1 o vo) (). (21)
By (19) and (20), the right-hand member of (21) goes-t®, asi — —oo. Then there
existA < 0 such thafu(A(r)) < —1. Thus (1) is nonoscillatory for all delay functions in
D*(a,$). O
The following example illustrates Theorem 8.

Example 9. Consider the system (1) with

o+3 -0
V(0) = 2 —4-3 1
1 1 1
5 '9+4_1 —9“1‘?
: ; 3
Using the matrix measures, we have fow e (-1, 3],
3 3
2 o+2 0+3 0
Ml(V(—Z> — v(@)) =u1 0 40 +3 0
3 3
0 —6-3 643
—max9+329+3
- 4’ 2
3
=0+ - <0,
*3
and forg € [-1,0),
1 1
L —-6-1 —¢-1 0
Ml(u(@)—v(—;{)):;q 0 —40 -1 0
1 1
0 o+ —6-1
1 1
=max]—60——-,—20 — =
[0 i)
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On the other hand, as
_1 1
mi\v{=z)—vl—z))=m 2 0l]="%
0 = I
2 2

the corresponding system (1) is nonoscillatory for all delays in the @d?(sr%, —%).

In case of havingt = 8 = 6p € [—1, 0], we obtain the familyD™ (6p), of all differen-
tiable and positive functions which are increasing[efi, 6p] and decreasing off, 0].
If 6= —1, D*T(—1) is the class of all positive, differentiable and decreasing functions on
[—1, 0], which we will denote byD}". Forép = 0, we obtain the familyD;" of all positive,
differentiable and increasing functions pnl, 0].

The following corollary holds.

Corallary 10. If
n(v(o) —v(®)) <0, foro e[—1,60],
1(v(©) —v(fo)) <0, for b e [6o,0l,
and
min{ (1 0 v1)(60), (1 0 vo) (60)} <O,

then(1) is nonoscillatory for all delay functions i (6p).
The casesp = —1 andfp = 0 give rise, respectively, to the two corollaries below.

Corollary 11. If

(wov1)(0) <0, foree[-1,0],
and

u(Av) <0,

then(1) is nonoscillatory for all delay functions iﬁ)j.

Corollary 12. If

(movp)(®) <0, foroe[-1,0],
and

w(Av) <0,

then(1) is nonoscillatory for all delay functions iDl.+.

In the following example we illustrate the Corollary 12.



J.M. Ferreira, S. Pinelas / J. Math. Anal. Appl. 308 (2005) 714-729 723

Example 13. Let now

-5-1 2 5
_ 0 20
2 g-1 -%+6
Using the matrix measue.,, we have
19 0 o
2, o 5 7
(Moo 0 0)(0) = Hoo —-z0 50 O =max{—,—9, —9} <0
1 4 2°12°15
0 -30 20
for everyf € [—1, 0], and
-3 0 o0
(Av) =p i -2 9 —mad -t o2 Tl
Hoo il 2’ 12 15" 12
0 3 -5

Then by Corollary 12, the system is nonoscillatory for all delay functiorBiTn
The Corollary 12 applied to Eq. (2), enable us to obtain the following corollary.

Corollary 14. Let (r1,72,...,7,) € RY be such thaty <rp < -
nonoscillatory if

P P
M(ZM) <0, forevery2<; j<p, and “(ZAk> <0.
k=)

k=1

< rp. Then(2) is

Example 15. Consider the system

x(t)+ Arx(t —r1) + Apx(t —r2) + Azx(t —r3) + Aax(t —ra) =0, (22)
where
(4 -2 0 -2 0 1
Ai=|0 -3 -1], A= 0 4 2|,
|2 0 2 2 1 -2
-3 1 0 -5 1 3
Az=| 1 -4 1 and Az4=| 0 -2 -2
| 0 -1 -2 -6 -1 -8
We have

Hoo(Ag) =max{—1,0,-1} =0,
Hoo(Az+ Ag) =max—3, —4, -2} = -2,

Moo (A2 + Az 4+ Ag) =max{—4,0, -7} =0,
Moo(AL+ A2+ Az + Ag) =max—2, -4, -7} = -2
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Hence the system (22) is nonoscillatory for each family of delays-, r3, ra) € Ri such
thatry <rp <rz <ra.

Remark 16. Theorem 8 and all the corollaries obtained in this section can obviously be
applied to the scalar case of (1) and (2), respectively. However in that case, the proof of
Theorem 8 can be substantially simplified giving rise to [7, Theorem 1]. Moreover, the
scalar case of (1) and (2) present specific characteristics as it can be seen in the first part
of [7].

4. Mixed criteriafor nonoscillations

In this section we will describe several results involving conditions on the del&y)s,
and on the matrix function;(9), in order to have (1) nonoscillatory.
Theorem 17. Letr () be any delay function i+ («, ). If
(nov1)(®) >0, foreverydel[-1,0«], (23)
(novo)(®) >0, foreveryd e[B,0], (24)

and
o 0
/(M ov)(@)dInr(O) — /(M ovp)(@)dInr(H)
-1 B

< —¢[1+ (nov)(@) + u(v(B) — v(@)) + (Lo vo)(B)], (25)
then(1) is nonoscillatory.

Proof. Letx > 0. Integrating by parts the integrals in (13), we obtain

o

(AG)) < exp(—ir (@) (1 0 v1) (@) + / hexp(—ar(6)) (1 o v1) (60) dr (9)
-1

+exp(—ar (@) i (v(B) — v(@)) + exp(—Ar (@) (1 0 v0) ()

0
- fx exp(—Ar(6)) (1 o vo)(0) dr(6). (26)
B
Sincerr(9)e @ < =1 for everyd € [—1, 0] andx € R, by (23) and (24), we have

1(AM)) < exp(—=ir(e)[(1 o vi)(@) + p(v(B) = v(@)) + (1 o vo) (B)]

o 0
+ e_1|: /(u ov)(0)dInr@) — /(u o vo)(e)dlnr(Q):|.
-1 B
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On the other hand, by (25), the function

f)=-1- eXp(—?»r(Ot))[(M ovy)(a) + M(V(ﬂ) — V(a)) + (o vp) (/‘3)]
is such that

o 0
ef (0) > /(u ov) (@) dInr @) — /(u o) (@) dInr (@) = 0.
1 B

Thereforef (1) decreases te1, ash — +o0, and consequently there exists@> 0 such
that

o 0
£ ho) =e-l[ / (o vD)®)dInr@) — / (wo vo)<9>dlnr<e>].
1 B

Hencew (A (L)) < —1, which completes the proof.0

In Theorem 17 it is not possible to hawe= 8. In fact, in such circumstances, one easily
sees that the assumption (25) is in contradiction with (23) and (24). This means that the
theorem cannot be applied to (1), whe®) is in any class of functions of the tyge™ (6p),
even wherfg = —1 orfp = 0.

However, with some changes in the proof of Theorem 17(/io¥ v1) and(u o vg) both
nonnegative, is possible to have a different situation.

Theorem 18. Letr(8) be inD ' (a, B). If

(mov1)(®) <0, foreveryd e[—1,0«], 27)
(novp)(®) <0, foreveryd €[g,0], (28)
(10 vD) (@) + i (v(B) — (@) + (1 0 Vo) (B) < O (29)
and
o 0
/ (0 v1) (@) dr(0) — / (110 v0) (@) dr(0) < —er (@), (30)
J) /

then(1) is nonoscillatory.

Proof. Let A > 0. From (26) one has, by (27)—(29),
n(A)) < exp(—ir(@))[ (o v) (@) + (novo)(B) + m(v(B) — v(@))]

o 0
+ rexp(—ir (@) [ /(u o v1)(0) dr(0) — /(u 0 10)(0) dr(@):|
1 B

o 0
S/\eXp(—)\r(oz))[ [wer@are) - (u«ovo)(f?)dr(@)}-
21 B
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The function

20 = exp(ar(a))

A
is such thag (A) — +o0 asx — +oo or . — 0", and by (30),

o 0
min{g(1): A > 0} = er(a) < —[ /(u ov1)(0)dr(0) — /(u o vg)(0) dr(@):|.
-1 B
Therefore, there existsi@ > 0 in manner that
o 0
g(ho) = —|: /(M ov1)(0)dr(0) — /(M ° VO)(Q)d’"(Q)]a
-1 B
that is such that
o 0
1+ roexp(—ior(a)) |: /(M ov1)(0)dr(0) — /(M o vp)(0) dr(O)} =0.
-1 B

Thusu(A(rp)) < —1 and so (1) is a nonoscillatory systenta

Considering the case = 8 = 6p € [—1, 0] and, in particular, the case® = 0 and
6o = —1, is possible to obtain, respectively, the corollaries described in the sequel.

Corollary 19. Letr(9) be inD™ (6p). If

(nov1)(@) <0, foreveryd e[—1,600], (31)
(uovg)(@) <0, foreveryd [0, 0], (32)
and
6o 0
/(M ov1)(0)dr(6) — /(M o vp)(0) dr(0) < —er(6), (33)
-1 6o
then(1) is nonoscillatory.
Corollary 20. If
(nov1)(®) <0, foreveryde[—1,0], (34)

andr(9) in D;" is such that

0
/ (100 v1)(6) dr (6) < —er(0), (35)
]

then(1) is nonoscillatory.
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Corollary 21. If
(novp)(®) <0, foreveryd e[—1,0], (36)

andr(9) in D} is such that

0
f (100 v0) () dr(6) > er(—1), (37)
-1

then(1) is nonoscillatory.
Example 22. Let (1) withr(6) = —6 + ¢ (¢ > 0) and

v(@)_[—m 0 ]
& —1-1|

As v(0) is symmetric, using as matrix measureither o or 1, we have

[ 6 48
== = ——=—0<
(o vo)(0) u([_% 70 D %—=2=—-6<0,

for everyd € [—1, 0]. Since

0 0
48 24
/(u 0 v0)(8) dr(68) = —/ Doan=2"
] ]

the corresponding system (1), by the Corollary 21, is nonoscillatory for eveugh that
O<e< %—j - 1.

Forv(6) given by (3) withé, = 0, Corollary 20 enables us to conclude the following
corollary, relative to the system (2).

Corollary 23. If
J
“(ZAk> <0, fori<j<p, and
k=1
p—1 J
Z M(ZAk) (rjt1—rj) < —erp,
j=1 \k=1

then(2) is nonoscillatory.

Example 24. Let the system

x(®) + Arx (t — %) + Aox <t - %) + Asx (t — g) =0, (38)
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where
-8 0 1
A= 1 -9 -1/,
| -1 -1 -8
[—4 -3 -1 -7 -2 3
A= 0 =10 2 and Asz=| 1 9 -1
| 0 -1 -1 0O -1 -6
Since

Moo(A1) = oo(A1 + A2) = —6, Moo(A1+ A2+ A3) =—8

and

2 J
ZH’OO(ZAIC) (rjy1—71j) = too(A1)(r2 — 11) + oo (AL + A2)(r3 — 12)

j=1 k=1

the system (38) is nonoscillatory.

Remark 25. Relatively to the scalar case of (1) we would like to remark that Corollaries 20
and 21 are more general than [7, Theorems 10 and 11]. For the scalar case of (2), the same
holds to Corollary 23 with respect to [7, Corollary 14].

Comparing the results above with those obtained in [1, Section 2], one easily sees
through the examples given here that they are of different kind.

The methods we have followed here are very close to those used in [1, Section 3] to
show that (1) and (2) are oscillatory. To see in what measure the results obtained here are
in the complement of those obtained in [1], let us recall, for example, that by [1, Corollary
16], if r(@) isin Dl.+, (o (—vg))(®) <0 and(u o (—v1))(®) > 0, for everyd € [—1, 0],
and

0

/(Mo (—v)) @) dInr@6) <e, (39)

-1

then the system (1) is oscillatory. Comparing this situation with the one described in Corol-
lary 20, we would like to notice the following. By property (iii) of the matrix measures,
one has

—(r o (—v1))(0) < (Lo v1)(B),

and so, in particular, condition (34) impliég o (—v1))(#) > 0. But, assuming that (35) is
satisfied, one has
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0
/ (nov1)(8) dr (@)

0
—:/(MO(—Vﬂ)@)dHNTO)é
-1 —

(Q/memm@

So the inverse inequality of (39) is verified.
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