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Abstract

This note is concerned with the oscillatory behavior of a linear retarded system. Several criteria
are obtained for having the system oscillatory. Conditions regarding the existence of nonoscillatory
solutions are also given.
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1. Introduction

The oscillation theory of delay equations has received a large amount of attention dur-
ing the last two decades, as one can see through the textbooks [1-5] and references therein.
However, excepting discrete difference systems and particular results which can be ob-
tained through some studies regarding differential systems of neutral type, some gaps can
be found in the literature with respect to functional retarded systems.

The aim of this note is to study the oscillatory behavior of the system

0
x(t) = /x(t —r(©)d[v®]. (1)
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wherex(t) € R", r(9) is a real continuous function dr-1, 0], positive on[—1, O[, and
v(0) is a reak-by-n matrix valued function of bounded variation pal, 0], which in case
of havingr (0) = 0 will be assumed atomic at zero, that is, such that

0
im [ Jd[n)]] =0,
y—0t

-V
where for a given normj, - ||, in the spacéV, (R), of all realn-by-n matrices, by
b

[1dmo|

a

we mean the total variation af on an intervala, ] C [—1, 0]. Notice that when(9) is
positive on[—1, 0], no atomicity assumption on the functioris necessary.

The system (1) for(#) = —r6 (r > 0) andd € [—1, 0], is the class of linear retarded
functional systems

0
X(t)=/X(t+9)d[n(9)], 2)

—r

wheren () = v(0/r) is assumed to be atomic at zero. This is the most common general
linear retarded functional system appearing in the literature (see [6]). Our preference on
system (1) regards the possibility of understanding more clearly the role of the delays on
the oscillatory behavior of functional retarded systems.

Considering the valugr || = maxX{r(9): —1 < 6 < 0}, a continuous function : [— 7|,
+oo[ — R, is said a solution of (1) if satisfies this equation for every 0. A solu-
tion of (1), x(t) = [x1(?), ..., x.(1)]7, is calledoscillatory if every componenty; (1),
j =1,....n, has arbitrary large zeros; otherwis€) is said anonoscillatory solution.
Whenever all solutions of (1) are oscillatory we will say that (1) issaillatory system.

Both systems (1) and (2) include the important class of the delay difference systems

p
x(t)=>_ Ajx(t—rj, 3)
j=1

where theA; aren-by-n real matrices and the; are positive real numbers. This case
corresponds to have in (1),as a step function of the form

14
v(@):ZH(G—Gj)Aj, (4)
j=1

whereH denotes the Heaviside functionl <6, < --- <6, <0, andr(0) is any contin-
uous and positive function dr-1, 0] such that(6;) =r;, for j =1,..., p.

The oscillatory behavior of this class of systems is studied in [7]. A specific treatment
for discrete difference systems is included in [3].

As is well known the systems (1), (2), and (3) can be looked, respectively, as particular
cases of the differential systems of neutral type
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%(x(t) —/x(t —r(9))d[v(9)]> =/x(t—r(9))d[n(9)],

0

d
E<x(t)_/x(f+9)d[v(9)]> =/x(t+9)d[n(9)], (5)

—r —r

14 14
%(x(t)—ZAﬂ(t—q)):ZBjx(t—rj). (6)
j=1 j=1

Several criteria for having (6) oscillatory can be found in [2—4], but in all of them, the ma-
tricesB; cannot be null, which excludes necessarily the system (3). In [8], the Theorem 3.3
and the Corollaries 4.2 and 4.3, are oscillation criteria obtained in the regard of the systems
(5) and (6), which can as well include the systems (2) and (3), respectively. However the
results which will be presented here are of different kind.

According to [9], the analysis of the oscillatory behavior of solutions of the system (1),
can be based upon the existence or absence of real zeros of the characteristic equation

0
det|:I — / exp(—M(G))d[v(G)]] =0, (7)
-1
where byl we mean the:-by-n identity matrix. In fact, in this framework, one can con-
clude that (1) is oscillatory if and only if (7) has no real roots, that is, if and only if
0
1¢ 0( f exp(—1r (6)) d[v(@)]) ®)
-1
for everyi € R; nonoscillatory solutions will exist, whenever (7) has at least a real root.
We will denote byBV, the space of all functions of bounded variatign[—1, 0] —

M, (R). The spaceBVi, of all real functions of bounded variation dn-1, 0], will be
denoted simply byBV. For¢ € BV by

0
/ |de(0)
-1

we will mean the total variation o on [—1, 0]. We natice that ifp € BV,, and with
J. k=1,...,n,n00)=I[nj®)], then each function;; € BV. The matrix

0
n] =[/\dnjk(9>|}.
-1

will also be considered.
For anyn € BV,, we can formulate the right and left hand limit matrices at any point
6 € [—1,0], n(67) andn(6-), as well as the right and left hand oscillation matrices

27©)=n0%) —n@®) and 2,©0)=n0O)—n©").

’
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Nonnegative matrices enable us to consider monotoiig-n matrix valued functions.
For this purpose we recall thatraby-n real matrixC = [cj¢] (j,k=1,...,n) is said
to be nonnegative (positive) whenewst > 0, (respectivelyc;, > 0) for every j, k =
1,...,n. These properties will be expressed as usual, through the notatign® and
C > 0, respectively. More generally given tweby-n real matricesC and D, we will say
thatC < D (C < D) if D — C > 0 (respectivelyD — C > 0).

Therefore we will say that a function:[—1, 0] — M,,(R) is hondecreasing (nonin-
creasing) on a interval C [—1, 0], if for every 61,02 € J such thatd; < 62 one has
n(61) < n(B2) (respectivelyyn(02) < n(61)); n will be said increasing (decreasing) an
if n is nondecreasing (respectively, nonincreasing)yoand there exist;, 6> € J such
that 61 < 62 and n(61) < n(B2) (respectivelyn(62) < n(61)). If for every ¢ > 0, suffi-
ciently small,n is increasing (decreasing) il — ¢,0 +¢] ([—¢,0]if 6 =0,[—1, —1+¢]
if &6 =—1) we will say thaty is a point of increase of (respectively, a point of decrease
of n).

As is well known, any functio € BV can be decomposed as the difference of two
nondecreasing functions and 8: ¢ = @ — 8. This decomposition is not unique and a
particular decomposition af is given by

where byyp andy, we denote, respectively, the positive and negative variati@n wfich
are defined as follows. For eagle [—1, 0], let 3y be the set of all partition® = {—1 =
6o, 61, ..., 0k = 6} of the interval[—1, 6] and to eachP € 3y associate the sets

A(P)={j: $(6)) —¢(©;-1) >0} and B(P)={j: ¢(;) —$(6;-1) <0}.
Theng andyr are defined as

0(0) = sup{ Y (60 —906;-1): Pe 213@},

JEA(P)

¥ (6) =sup{ > 60— ®;-1)]: Pe %}
JEB(P)
(wheneverA(P) or B(P) are empty, we make(9) =0, v (0) = 0). One easily sees that
both ¢ andv are nondecreasing functions such th&#) = ¢(0) — ¥ (9), for everyé e
[—1,0].

These facts can be extended for functigns BV,,. In fact, since for each € [—1, 0]
we haven(9) = [njx@)] (j,k=1,...,n) wheren;, € BV, for every j,k =1,...,n,
then decomposing each function, (j,k = 1,...,n) as the difference of two nonde-
creasing functionsy;; and S, the n-by-n matrix valued functionsA(9) = [« (6)],
B(0) = [B«(0)], are both nondecreasing functionsBW,,, and for every < [—1, 0], we
have

n(0) =A@©) — B(©). (10)

If for every j,k =1,...,n, we decompose each functignp, according to (9) then we
obtain

ne) =) —-w@), (11)
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with @(0) = [¢jx(0)] and¥ (8) =[x (0)], wherep;, andy ;. are, respectively, the pos-
itive and negative variation of;x (j,k=1,...,n).

2. Nonoscillatory solutions

Nonnegative matrices can play some role on the study of the oscillatory behavior of the
system (1).

According to the Perron—Frobenius theorem, a nonnegative n@ti¥, (R) has sev-
eral important spectral properties (see [10,11]). As a matter of fact, denoting®ythe
spectrum ofC and byp (C) the spectral radius af, one has thgb (C) € o (C). Moreover,
p(C)>0ifC>0and0< C <D= p(C) < p(D).

For a matrixC € M,,(R), considering the upper bound

s(C) =max{Rez: z € o (O)},

of the set Re(C) = {Rez: z € o(C)}, thens(C) = p(C) € o(C) wheneverC > 0.
Through that same theorem, one can conclude @} € o (C), if C = [cji] (j, k =
1,...,n),isessentially nonnegative—thatis, if the off-diagonal entries @f (c j; for j # k)
are nonnegative real numbers.

Therefore, if the matrix

0
/ exp(—Ar () d[v(®)] (12)
-1
is essentially nonnegative, for every réalthe spectral set
0
a( /exp(—M(O))d[v(G)])
-1
is dominated by the value
0
s(V) =s< /exp(—M(G))d[v(G)]),
-1
that is,
0
s(1) € a( / exp(—Ar(6)) d[u(@)]) VA eR. (13)
-1
On this purpose, we notice that for every r@éathe matrix (12) is nonnegative when the
function v is nondecreasing oft-1, 0], and is essentially nonnegative when fap) =
k@] (j,k=1,...,n), the off-diagonal functions;(9) (j # k) are nondecreasing on

[—1, 0]. Moreover the assumption (13) is also fulfilled when for eaeh[—1, 0], v(0) is
a symmetric real matrix.
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Under (13), the continuous dependence of the spectrum with respect to parameters en-
able us to handle condition (8) in a more suitable manner.

Theorem 1. Under assumption (13), the system (1) is oscillatory if and only if s(1) < 1,
for everyreal .

Proof. Noticing that
0

/exp(—kr(@)) d[v®)]

-1

sG] <

)

we claim that lim— 100 s(A) = 0.
In fact, if »(9) is a positive function ofi—1, 0], then letting

m(r)=min{r©): —1<6 <0},
one has for every real > 0
0

/ exp(—Ar(8))d[v(®)]

-1

9

0
gexp(—)\m(r))/”d[u(e)]
-1

and sas(L) — 0 asA — +o00.
If () is a positive function ofi—1, O[ andr(0) = 0, as then(9) is atomic at zero, for
everye > 0 there exists a real > 0 such that

[l <5

Thus takingng = min{r(0): —1<6 < —y} > 0, we have for every real > 0

0

/exp(—kr(@)) d[v(©®)]

-1

0

/ exp(—Ar(6))d[v(0)] H

4

-y

/ exp(—Ar(6))d[v(0)]

-1

< +

—y 0
< exp(—Amo) f la[v®)]] + / [a[v@®]].
-1 -V

and by consequence, fararbitrarily large, we conclude that
0

/exp(—kr(@)) d[v®)]

-1

<Eé&.
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Hence, also in this case(A) — 0 asi — +oo.

Therefore supposing that (1) is oscillatory and that for some xeét is s(1o) > 1,
by continuity, there exists a reah > A such thats(i1) = 1, which, in view of (13),
contradicts (8). O

Remark 2. The proof of this theorem enable us to conclude that under the assumption (13),
the system (1) has at least a nonoscillatory solution whené¥gr> +o00, asir — —oo.

Taking a decomposition aof € BV,, according to (10),
v=A— B,

where A, B € BV,, are nondecreasing functions, the matrix (12) is decomposed into the
difference
0

0 0
/exp(—)\r(e))d[u(e)] =/exp(—kr(9))d[A(9)] —/exp(—kr(e))d[B(O)].
-1 -1 -1

The following theorem states the existence of, at least, a nonoscillatory solution.

Theorem 3. Let 6p € [—1, 0] be such that »(6g) = ||r||. If either
2, (60) > |B| or £ (6)>|B|
then (1) has at least a nonoscillatory solution.

Proof. Let us assume, for example, trrag(eo) > |B|.
Fore > 0 small enough, we have

0 Oo+¢
/exp(—)\r(@))d[A(@)]> / exp(—Ar(6)) d[A@®)].
-1 6o

By application of a mean value property of the functions of bounded variation, we can
obtain for every real. <0,

Oo+¢
/ exp(—Ar(6)) d[A(0)] = exp(—ir (6o + 8¢)) (A(Bo + ) — A(60)),

to

for somes €10, 1[, depending upon, g, ¢ andA. Then, making — 0", we have

0

/exp(—)\r(e))d[A(e)] > exp(—Alrll) 2 (o).

-1

On the other hand, for every relak 0, the following matrix inequality holds
0
0< /exp(—)\r(@))d[B(@)] < exp(—Alr)|Bl,

-1
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and by consequence
0
—/exp(—)\r(@))d[B(e)] > —exp(—Allr|)|Bl.
-1
Therefore, for every real < 0, we have that
0
/exp(—)\r(@))d[u(e)] > exp(—Alrll) (21 (6o) — | BI). (14)
-1
As the matrix.(zj{ (6o) — | B| is positive, this means in particular that also
0
/exp(—)\r(@))d[u(e)] >0,
-1
for everyi < 0. Thus not only assumption (13) is fulfilled but also
0
s(1) =p< /exp(—)\r(@))d[u(e)]).
-1
But from (14) we can conclude that
0
p( /eXp(—kr(G))d[v@)]) = eXp(—erll)P(Qj{(@o) —|BJ)
-1

and by consequencér) — +o0, asi — —oo. Hence by the Remark 2, (1) has at least a
nonoscillatory solution. O

The behavior of the function at the pointdg € [—1, 0] where is attained the absolute
maximum of the delay function(9), has a specific relevance, as was already shown in [12]
for the scalar case of (1).

Theorem 4. Let 6 € [—1, 0] be such that r(6p) = ||r|| and r(0) < ||r|| for every 6 £ 6p. If
6o is a point of increase of v, then (1) has at least a nonoscillatory solution.

Proof. For a matter of simplicity, let us assume thgt= —1.
Considering the decomposition of given by (11), then for some > 0, the matrix
¥ (0) is constant oi—1, —1+ ¢] and by consequence, on this interval

P0)=v(O)—C,
for some reah-by-n real matrixC. Therefore
0

/exp(—)\r(@)) d[v(9)]

-1
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0

:/exp(—xr(e))d[qb(e)]— / exp(—Ar(9))d[¥ (6)]

—1+e

—1+¢ 0
> / exp(—Ar(©))d[®©)] — / exp(—Ar(©)) d[¥ (9)].

-1 —1+e

Take O< § < ¢ such that
m=min{r©6): 6 € [-1, =14 6]} > M =max{r(6): 6 € [-1+¢,0]}.
One easily can see that the following matrix relations hold, for everyiread:

0
0< / exp(—Ar(6)) d[¥ (0)] < exp(—AM)|¥|,
—1+e
—1+e

/ exp(—2r(9)) d[@(6)] = exp(—im) (P (=1 + &) — P(-1)).

-1
Thus we obtain for every real < 0,

—1+¢

/ exp(—Ar(0))d[® ()] = exp(—am) (v(—1+ &) — v(=1)),
-1
0

— / exp(—Ar(6))d[¥ (0)] > — exp(—AM)|¥ |,

—1+e¢

which imply that

/exp(—)\r(e)) d[v(9)]

> exp(—am)[(v(=1+ &) —v(=1)) — exp(r(m — M))|¥|]. (15)

Since the nonnegative matrix egm — M))|¥ | tends to the null matrix, as — —oo,
we can conclude that there exists a real nunibel0 sufficiently large, such that, for every
A< —L, (v(=14¢)—v(=1)) — exp(r(m — M))|¥| is a positive matrix. Thus, for every
A < —¢£, we have, in particular,

0

/exp(—)\r(@))d[u(e)] >0,

-1
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and so assumption (13) is satisfied in a way that
0

s(V) =,0< /exp(—)\r(e))d[u(e)]).

-1
Moreover (15) implies that, for every< —¢,

0

p( /exp(—)\r(e)) d[u(@)])

-1
> exp(—im)p((v(=1+¢&) — v(=1)) — exp(A(m — M))|¥]).

Since the right hand member of this inequality tends-te, asr — —oo, we can state, as

in Theorem 1, that (1) has at least a nonoscillatory solutiamn.

Theorem 4 can be applied to the system (3) and the following corollary can easily be
obtained.

Corollary 5. If ry, =max{r;: j=1,..., p} and A; > 0 then (3) has at least a nonoscilla-
tory solution.

Proof. As a matter of fact, ifA; > 0 thengy is a point of increase af(9) = Zj.’zl H(O —
6;)A ;. Therefore choosing(f) continuous and positive dr-1, 0] in manner that (6;) =

lIr]l andr (@) < ||r|| for everyé £ 6;, one can conclude by Theorem 4 that (3) has at least
a nonoscillatory solution. O

Similar arguments enable us to state the following theorem.

Theorem 6. If v isincreasing on [—1, 0] and nonconstant on [—1, O[ then (1) has at |east

a nonoscillatory solution.

Proof. Sincev is increasing ofi—1, O[, there exisby, 62 € [—1, O[ such thab1 < 62 and
A =v(62) —v(61)

is a positive matrix. Then the following matrix relation holds for every vedl O:

0 6o
/exp(—)\r(e))d[u(e)] > /exp(—xr(e))d[u(e)] > exp(—am)A,
-1 01

where
m =min{r(): 6 € [61,62]} > 0.

Thus as before, assumption (13) is fulfilledy) — +o0, ash — —oo, and (1) has at least
a nonoscillatory solution. O
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3. Explicit conditionsfor oscillations

As is well known matrix measures are a relevant tool on the oscillation theory of delay
systems. For a matter of completeness we recall briefly, its definition and the properties
which will be used in the sequel.

For each induced nornj; ||, in M, (R), we associate a matrix measureM,, (R) — R,
which is defined for ang” € M, (R) as

I1+yCl—-1
Y,

where byl we mean the identity matrix.
Well known matrix measures of a matiix= [c;« | € M, (R), are

w(C)= lim
y—0t

#1(C) =max{ckk+2|cjk|: k=1,...,n},
J#k

[oo(C) = max{c,j + ) lejil: j=1.. n}
ket j
which correspond, respectively, to the induced norngj{R) given by:

n
||C||l=maX{ Z'C-/kl: k=1,...,n},

j=1

n
||C||oo=max:Z|cjk|: j=1,...,n}.

k=1
Independently of the considered induced norVip(R), a matrix measure has always
the following properties (see [13]):

(i) s(C) <p©) <(Cl.
(i) u(C1) — u(=C2) < pu(C1+ C2) < u(C1) + u(C2) (C1, C2 € M, (R)).
(i) u(yC)=yu(C),foreveryy >0.

If n € BV, the continuity ofu on M, (R) implies thatu o n € BV; in consequence, with
[a, b] C [—1, 0], the following inequalities hold (see [8]):

(iv) If ¢ € C([a, b]; R) is nonincreasing and positive, then

b b
M</¢(9)d[n(9)]> </¢(9)d(u(n(9)—n(a)))-

(v) If ¢ € C(la, b]; R) is nondecreasing and positive, then

b b
M(/fb(@)d[n(@)]) <—/¢(9)d(u(n(b)—n(9))).
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By (i), if for some matrix measurg,
0
y,( /exp(—kr(@))d[v(@)]) <1 VieR, (16)
-1
we can conclude that system (1) is oscillatory.
For anyn € BV,,, the functions)g andn; of BV,,, given, respectively, by
no(®) =n(0) —n(@), n1@)=n®)—n(=1) (©e[-1,0],

will be considered in the sequel.
In the following theorem we obtain conditions for having (1) oscillatory with respect to
the family of all monotonic delay functions.

Theorem 7. If on [—1, 0], i o v1 isSnonincreasing and u o vg is nondecreasing then (1) is
oscillatory for all monotonic delay functionsr(6).

Proof. Assume that : [—1, 0] — R is a monotonic function.
By (iv) and (v), if r(0) is nonincreasing we have that

0

0
M( /exp(—M(O))d[v(G)]) g/exp(—kr(e))d(uovl)(e), if 2 <0,
-1

-1
0

0
y,( /exp(—kr(@))d[v(@)]) < —/exp(—kr(e))d(uo ) (0), ifA>=0, (17)
-1 -1
and ifr(9) is nondecreasing,
0 0
M( /exp(—M(O))d[v(G)]) < /exp(—kr(e))d(uo v1)(©@), if A>=0,
-1

-1
0 0

y,( /exp(—kr(@))d[v(@)]) < —/exd—kr(e))d(uo vo)(0), if A<0. (18)
-1 -1
Then take, respectively, fare R, the functions
12 exp(—ar @) d(uov) @),  if A <0,
gA) =1 n(Av), if A=0,
— /2 exp(—Ar(8)) d(j 0 vo)(6), if A >0,

— [0, exp(—ir(6))d(j 0 v0) (), if A <0,
h()) =4 n(Av), if A=0,
[ exp(—ar©) d(uov1) (@),  if A>0,
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whereAv = v(0) — v(—1). Noticing that
0
g0 =h0")=- / d(povp)(0) = M(VO(—]-)) = M(V(O) - 1)(—1))

-1
and

0
g(07) =h(0%) =/d(u ov1)(®) = u(v1(0)) = u(v(0) — v(-1)),
1

one can conclude thgtandh are both continuous iR.
Since on—1, 0], 1 o v1 is nonincreasing and o vg is nondecreasing, one has

g(L) <0 VieR,
if (@) is nonincreasing and
h(A) <0 VreR,
if 7(0) is nondecreasing. Hence, fai®) monotonic, by (17) and (18) one has (16) satisfied,
which achieves the proof.0
Remark 8. The assumptions in the Theorem 7,06 v1 be nonincreasing and o vg be
nondecreasing are fulfilled, if one assumes as in [14], thatifah € [—1, 0],
b1<62 = u(v(62) —v(61)) <O0. (19)
As a matter of fact, ib1 < 62, one has by (ii),
(1 0 v1)(62) = (1 0 v1) (B1)
= u(v(62) = v(=1) — u(v(61) — v(-1))
< u(v(62) —v(=1) —v(1) + v(=1) = u(v(62) — v(h1)) <O,
and
(1 2 0)(61) — (1 0 v0) (62)
= w(v(0) = (@) — u(v(0) — v(62))
< u(v(0) —v(B1) —v(0) + v(62)) = n(v(H2) — v(61)) <O.

Following [8] let us define

J j-1
a(Ar) = u(Ay), a(Aj)=n (ZAk> /L( Ak) forj=2,...,p,

k=1 k=1

p p
BA) =n(4,),  BA)=p (Zm) u( > Ak)

k=j k=j+1

forj=1,...,p—1.
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Therefore, with respect to the system (3), from the Theorem 7 we can state the following
corollary.

Corollary 9. Iffor j =1,..., p, a(A;) <0and B(A;) < 0, then system (3) is oscillatory
for every family of delays (r1, .. ., rp) €RY.

In particular, as by (ii)
a(Aj) < u(Aj), B(Aj) < u(Aj),
we obtain as in [7]:

Corollary 10. If u(Ax) <0, foreveryk =1, ..., p, then (3) isoscillatory for every family
of delays (r1, ..., rp) € RE.

In the following we will analyze what happens whef®) is not a monotonic function
on[-1,0].
For that purpose we notice that by property (ii) of the matrix measures,

0

M(/ exp(—ir(6)) d[u(e)]>

Op—6 Oo+34

g;L( / exp(—kr(@))d[v(@)])+u( / exp(—xr(e))du(e))
-1 0o—34
0
+u< / exp(—M(G))dv(G)), (20)
Oo+8

for everyfp € [—1, 0] ands > 0, small enough.

Theorem 11. Let r(0) bedifferentiableand positiveon [—1, 0], increasing on [—1, 6p — 61,
constant on [6p — 8, 6o + 8] and decreasing on [6g + §, 0]. If

p (6o + 8) — v (6o —98)) <0, (21)

1(vo—8) —v(©) <0, (Lov1)(®)>0, foreverybe[-160—35],  (22)

/L(U(G)—v(90+5)) <0, (uovg)(®) >0, foreverydel6g+3,0], (23)
and

6o—38 0

/ (wovn)(©@)d(logr®) — | (uovo)(®)d(logr®) <e, (24)

-1 Oo+6

then (1) is oscillatory.
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Proof. We will prove that (16) holds.
Forx =0, by (20), (21) and the first part of (22) and (23) we can conclude that

n(v(0) — v(-1)
< p(v(0) —v(bo+8)) + p(v(bo+8) — v(fo — )
+ (v — 8) —v(=1)) <O0.
Let nowx < 0. By (20) and the properties (iv) and (v) of the matrix measures we obtain

0

u(_/ exp(—ir(6)) d[v(@)])

< - / exp(—Ar(6)) du(v(bo — 8) — v(6))

-1

+ exp(—Ar (60)) (v (6o + 8) — v(Bo — 3))
0

+ / exp(—Ar (6)) djt (v(8) — v(Fo + ).
6o+48

Therefore, integrating by parts, we have

0

,L( / exp(—ir(6)) d[u(@)])

-1

< exp(—Ar(—1))2(v(Bo — 8) — v(—1))
6o—§

- / rexp(—ir(0))(v(Bo — 8) — v(6)) dr(0)
-1

+ exp(—Ar (Bo)) (v (6o + 8) — v(Bo — 8)) + exp(—Ar (0)) u(v(0) — v(Bo + 8))
0

+ / rexp(—Ar(0))u(v(0) — v(fo +8)) dr ().

6o+35
Then by (21) and the first part of (22) and (23) we state that, for every),

0

M( fe—“@d[u(e)]) <0.

-1

Consider now. > 0. By the same arguments,
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M( exp( Ar(9)) [v(@)])

< exp( Ar (00 — 8))u(v(Bo — 8) — v(—1))
+ /_ rexp(—ar(©))(u o v1) () dr ()
+ ;;p(—xr(eo))u(u(eo +8) — v(6o — 9))
+ exp(—Ar B+ 8)) (v (0) — v(6o +8))
0
- / rexp(—Ar(0)) (1 o vo)(0) dr(6)

Oo+4
6p—38 0
< / rexp(—Ar(6))(u o v1)(6) dr(F) — / rexp(—Ar(0)) (1 o vo)(0) dr(6).
-1 Oo+6

Noticing that the function: exp(—u) has an absolute maximum at= 1, we obtain for
everyd € [—1, 0]
-1

e
rexp(—ir(9)) < @)

Asr(9)isincreasingini—1, 6o— &[ and decreasing if¥o+ 8, 0], by the second part of (22)
and (23) we obtain
0
M( f exp(—1r(6)) d[v(@)])
-1
Hp—3

0
. 1[ (rov)®) o [ (ov)®) dr(@)}
e r(6) r(0)
-1 0o+5

and (24) implies
0
M( /exp(—xr(e))d[u(e)]> <1
-1
for everya > 0.
This achieves the proof.O

Example 12. Let us consider the system (1) for
2_6 ; 3

—62— 20, if —1<6<-3,

r@=1 % if —2<0<-2

5 5’
-02-20+ 5, if —2<0<0,
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v(@):[9(9+§) 3 }

4 —(O+He+D
With respect to the matrix measung,, (21) is satisfied since

2 3 -3 0
_S) o 22Y ) = 25

n(1(5) (=) = (8 ) <

The same holds to assumptions (22) and (23), since for évery-1, —3/5],

3 —0(6+2) 0
_2) - — 25

“°°<”< 5) ”(9)>‘“°°([ 0 (9+%)<9+1>D

=<9+g)(9+1)<0,

Moo (v(0) —v(=1)) = ([ %—(9+§0)(9+1)D
9(9 é)—:—; 0,
and, for every € [—2/5, 0],
w(”(e)_v<_§>>:“°° ([9(93_%) —(9+§)(2+1)+2%D
9(9+§> 0,
m@my—wm)=um([_“%+%)_%+@j%x9+b}>

3 3
=—+(06+=)O+D >0
5+( +5>( +1)

Moreover, as

-3/5 0
/ (@) —v(=1) dr () — / n(0) —v(d)) dr ()
®) ©)
21 -2/5
-3/5 0
O+3E@+1(29+9 (0 +2)(20 + %)
z_/ & d9+/ > df
J 0(6+32) ©+1(0-1)
8 36 . 6

condition (24) is also verified and so the corresponding system (1) is oscillatory.
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Making in the Theorem 13, = 0, we obtain the following corollary.

Corollary 13. Let r:[-1,0] — R* be differentiable on [—1, 0], increasing on [—1, 6]
and decreasing on [6p, O]. If for every 6 € [—1, 6p],

w(v(o) —v(©) <0,  (nov1)(®) =0, (25)
for 0 € [, O]
n(v@®) —v(0) <0,  (rovg)(®) >0, (26)
and
6o 0
f (1o v1)(®)d(logr(9)) — / (novo)(®)d(logr()) <e, (27)
-1 Ao

then (1) is oscillatory.
This corollary is illustrated in the following example.

Example 14. Consider (1) with- () = —6(0 + 1) and

00+D(O+3) 5
0 —60-7]

For the matrix measure1, we have for every € [—1, —1/2]

2w 0,2,

1
:—9(9—1—1)(94—5) <0,

v(6) =[

1
1) — v(—1) = 1 ([9(9 FHE+y) O GD

1
=9(9+1)(9+§> =0,

and for every € [—1/2, 0],

oo D) [0 2,

1
:9(94-1)(94-5) <0,

_ 1
Ml(v(O)—v(G))=M1([ PO+ 0E+3) 6%})

:—9(9—1—1)(9—1—%) > 0.
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Therefore conditions (25) and (26) of the Corollary 13 are fulfilled. The same holds to
assumption (27), since

oo+ P00+ 16+
R N L YA _ _ 2) 4(—
/ 6D d(—6(6 +1)) / @+ D) d(—6(6 +1))
-1 -1/2

Y ; 1 1
:/(9+§)(29+1)d9+/(9+§>(29+1)d9=6<e.

-1 -1/2

Hence the corresponding system (1) is oscillatory.

Now, assuming that = 0, as before, and further thég = —1, the following corollary
can be stated.

Corollary 15. Leton[—1, 0], be (o vo)(0) = 0, (o v1)(8) < 0 and r(9) positive, differ-
entiable and decreasing. Then system (1) is oscillatory if

0
/(u ovp)(0) d(logr(9)) > —e. (28)
-1

Proof. Just notice that, in this case, (25) is fulfilled, sincé) = 0. On the other hand,
assumption (26) becomes equivalent(too vg)(#) > 0 and (u o v1)(#) < 0, for every
6 € [—1, 0], while (27) gives rise to (28). O

Analogously, fors = 0 andép = 0, we obtain the following corollary.

Corollary 16. Leton[—1, 0], be (o vo)(0) < 0, (Lo v1)(#) > 0and r(9) positive, differ-
entiable and increasing. Then system (1) is oscillatory if

0
/(u ov1)(0)d(logr(6)) <e.
-1

The following example illustrates the Corollary 15.
Example 17. Let us consider (1) for
62 —6
V() = [ ) _29} and r(#)=1-—6.
We have, for the matrix measurg.,

2
(oo 0 ¥0) (6) = fo ([ A D

=max—6%—0,0}=—-00+1) >0,
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for everyf € [—1, 0], and

02—-1 —6—1
(Mooovl(e))zﬂoo <[ 041 _29_21|>
=max6’+6,—0—1}=60+1) <0,

for everyd € [-1,0]. As
0

0
60+1) 2 [ e 21°
/ 1-0 d@—/(—@—Zﬁ‘m)d@—[—E—29—"1(1—9) i|l

= % —24+In4x-0,2> —e,

the corresponding system (1) is then oscillatory.
Considering in (1)p(6) given by (4), for—-1 <61 < --- <6, <0, andr () differen-
tiable, decreasing and positive pral, O], one obtains the system (3) with = r(6;) for

j=1...,p,suchthaty > --- > r,. In this situation we can apply the Corollary 15 and
consequently obtain the following, corollary.

Corollary 18. Let

p J
M(ZAk>>o and u(ZAk><O, (29)

k=j k=1

forevery j =1,..., p. Then system (3) is oscillatory if
P P .
ZM<ZAk) log— > —e. (30)
— — rj—1
j=2  \k=j

Proof. The conditions corresponding @ o vg)(6) > 0 and(u o v1)(0) <0 in the Corol-
lary 15, are in this case, respectivemz,’(’:j A >0 andu(zizl Ay) <0, for every

j=1...,p.
On the other hand, as thgw(z,f:l Ar) =0, (28) becomes,

0
/ (novo)(@)d(logr())
-1

02 » Op
Z/I/L(ZAk) d(|OgV(9))+"'+ / I/L(Ap)d(l()gr(e))
o \k=2 6o

0
+ / 1(0) d(1ogr )
Op
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rp rp—1

=,U«<2Ak)|09:_i+“ +M< Z Ak>|09—+M(Ap)|Og—
k

which proves the corollary. O

An analogous result can be obtained for (3) through the Corollary 16, by considering
the system (1) with/(6) given by (4), for—1< 6, < --- <6, <0, andr(6) differentiable
and increasing ofi—1, 0]. In fact, now one obtains the system (3) with=r(6;) for
j=1,..., p,suchthat; < --- <r,. Hence the following corollary can be stated.

Corollary 19. Let

14 J
M(ZM)éO and M(ZM)?O,
y

k=j k=1
forevery j =1,..., p. Then system (3) is oscillatory if
Zu(ZAk) Iog— <e
j=1

The following example illustrates the Corollary 18.

Example 20. Let us consider the system

(t) =Awx|¢ ! + Aox |t 3 + Azx|t > (31)
X =A1x ) 2X > 3X 2)
where
-3 -5 1 2 -1 1
] B ] Pt
We have

u1(Ag) =max—2, -4} =-2<0,

pa(A1+ A2) = 1 ([j :ﬂ) =max-1, -1} = -1<0,

Hi(AL+ Ag+ Ag) = iy ([‘33 :§]> — max(0, -5} =0,

ja(Az + Ag) = i1 ([g Z’D —max2,5)=5>0,
n1(Az) =max3, -2} =3>0.
So, (29) is satisfied. The same holds to (30), since



JM. Ferreira, S Pinelas/ J. Math. Anal. Appl. 285 (2003) 506-527 527

3 3
r2 r3
nw E Al In—=+pn E Al In—=
k=2 n =3 r2

3/2 5/4 6 5
=5In=—+3IN=—==5In=+3In=-~-1,32> —e.
n7/4+ n3/2 n7+ n6 > —e

Hence the system (31) is oscillatory.
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