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Abstract

This note is concerned with the oscillatory behavior of a linear retarded system. Several
are obtained for having the system oscillatory. Conditions regarding the existence of nonosc
solutions are also given.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

The oscillation theory of delay equations has received a large amount of attentio
ing the last two decades, as one can see through the textbooks [1–5] and references
However, excepting discrete difference systems and particular results which can
tained through some studies regarding differential systems of neutral type, some ga
be found in the literature with respect to functional retarded systems.

The aim of this note is to study the oscillatory behavior of the system

x(t) =
0∫

−1

x
(
t − r(θ)

)
d
[
ν(θ)

]
, (1)
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wherex(t) ∈ R
n, r(θ) is a real continuous function on[−1,0], positive on[−1,0[, and

ν(θ) is a realn-by-n matrix valued function of bounded variation on[−1,0], which in case
of havingr(0)= 0 will be assumed atomic at zero, that is, such that

lim
γ→0+

0∫
−γ

∥∥d[η(θ)]∥∥= 0,

where for a given norm,‖ · ‖, in the spaceMn(R), of all realn-by-n matrices, by

b∫
a

∥∥d[η(θ)]∥∥
we mean the total variation ofν on an interval[a, b] ⊂ [−1,0]. Notice that whenr(θ) is
positive on[−1,0], no atomicity assumption on the functionν is necessary.

The system (1) forr(θ) = −rθ (r > 0) andθ ∈ [−1,0], is the class of linear retarde
functional systems

x(t) =
0∫

−r

x(t + θ) d
[
η(θ)

]
, (2)

whereη(θ) = ν(θ/r) is assumed to be atomic at zero. This is the most common ge
linear retarded functional system appearing in the literature (see [6]). Our preferen
system (1) regards the possibility of understanding more clearly the role of the dela
the oscillatory behavior of functional retarded systems.

Considering the value‖r‖ = max{r(θ): −1 � θ � 0}, a continuous functionx : [−‖r‖,
+∞[→ R, is said a solution of (1) if satisfies this equation for everyt � 0. A solu-
tion of (1), x(t) = [x1(t), . . . , xn(t)]T , is calledoscillatory if every component,xj (t),
j = 1, . . . , n, has arbitrary large zeros; otherwisex(t) is said anonoscillatory solution.
Whenever all solutions of (1) are oscillatory we will say that (1) is anoscillatory system.

Both systems (1) and (2) include the important class of the delay difference syste

x(t) =
p∑

j=1

Aj x(t − rj ), (3)

where theAj aren-by-n real matrices and therj are positive real numbers. This ca
corresponds to have in (1),ν as a step function of the form

ν(θ) =
p∑

j=1

H(θ − θj )Aj , (4)

whereH denotes the Heaviside function,−1< θ1 < · · ·< θp < 0, andr(θ) is any contin-
uous and positive function on[−1,0] such thatr(θj ) = rj , for j = 1, . . . , p.

The oscillatory behavior of this class of systems is studied in [7]. A specific treat
for discrete difference systems is included in [3].

As is well known the systems (1), (2), and (3) can be looked, respectively, as par
cases of the differential systems of neutral type
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(
x(t)−

0∫
−1

x
(
t − r(θ)

)
d
[
ν(θ)

])=
0∫

−1

x
(
t − r(θ)

)
d
[
η(θ)

]
,

d

dt

(
x(t)−

0∫
−r

x(t + θ) d
[
ν(θ)

])=
0∫

−r

x(t + θ) d
[
η(θ)

]
, (5)

d

dt

(
x(t)−

p∑
j=1

Ajx(t − rj )

)
=

p∑
j=1

Bj x(t − rj ). (6)

Several criteria for having (6) oscillatory can be found in [2–4], but in all of them, the
tricesBj cannot be null, which excludes necessarily the system (3). In [8], the Theore
and the Corollaries 4.2 and 4.3, are oscillation criteria obtained in the regard of the sy
(5) and (6), which can as well include the systems (2) and (3), respectively. Howev
results which will be presented here are of different kind.

According to [9], the analysis of the oscillatory behavior of solutions of the system
can be based upon the existence or absence of real zeros of the characteristic equa

det

[
I −

0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

]]= 0, (7)

where byI we mean then-by-n identity matrix. In fact, in this framework, one can co
clude that (1) is oscillatory if and only if (7) has no real roots, that is, if and only if

1 /∈ σ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])
(8)

for everyλ ∈ R; nonoscillatory solutions will exist, whenever (7) has at least a real ro
We will denote byBVn the space of all functions of bounded variation,η : [−1,0] →

Mn(R). The spaceBV1, of all real functions of bounded variation on[−1,0], will be
denoted simply byBV . Forφ ∈ BV by

0∫
−1

∣∣dφ(θ)∣∣,
we will mean the total variation ofφ on [−1,0]. We notice that ifη ∈ BVn and with
j, k = 1, . . . , n, η(θ) = [ηjk(θ)], then each functionηjk ∈ BV . The matrix

|η| =
[ 0∫

−1

∣∣dηjk(θ)∣∣
]
.

will also be considered.
For anyη ∈ BVn we can formulate the right and left hand limit matrices at any p

θ ∈ [−1,0], η(θ+) andη(θ−), as well as the right and left hand oscillation matrices

Ω+
η (θ) = η(θ+)− η(θ) and Ω−

η (θ) = η(θ)− η(θ−).



J.M. Ferreira, S. Pinelas / J. Math. Anal. Appl. 285 (2003) 506–527 509

.

-

se

two
a

t

-

Nonnegative matrices enable us to consider monotonicn-by-n matrix valued functions
For this purpose we recall that an-by-n real matrixC = [cjk] (j, k = 1, . . . , n) is said
to be nonnegative (positive) whenevercjk � 0, (respectively,cjk > 0) for everyj, k =
1, . . . , n. These properties will be expressed as usual, through the notationsC � 0 and
C > 0, respectively. More generally given twon-by-n real matrices,C andD, we will say
thatC � D (C <D) if D − C � 0 (respectively,D − C > 0).

Therefore we will say that a functionη : [−1,0] → Mn(R) is nondecreasing (nonin
creasing) on a intervalJ ⊂ [−1,0], if for every θ1, θ2 ∈ J such thatθ1 < θ2 one has
η(θ1) � η(θ2) (respectively,η(θ2) � η(θ1)); η will be said increasing (decreasing) onJ ,
if η is nondecreasing (respectively, nonincreasing) onJ and there existθ1, θ2 ∈ J such
that θ1 < θ2 and η(θ1) < η(θ2) (respectively,η(θ2) < η(θ1)). If for every ε > 0, suffi-
ciently small,η is increasing (decreasing) in[θ − ε, θ + ε] ([−ε,0] if θ = 0, [−1,−1+ ε]
if θ = −1) we will say thatθ is a point of increase ofη (respectively, a point of decrea
of η).

As is well known, any functionφ ∈ BV can be decomposed as the difference of
nondecreasing functionsα andβ : φ = α − β . This decomposition is not unique and
particular decomposition ofφ is given by

φ = ϕ −ψ, (9)

where byϕ andψ we denote, respectively, the positive and negative variation ofφ, which
are defined as follows. For eachθ ∈ [−1,0], let Pθ be the set of all partitionsP = {−1 =
θ0, θ1, . . . , θk = θ} of the interval[−1, θ ] and to eachP ∈ Pθ associate the sets

A(P) = {
j : φ(θj )− φ(θj−1) > 0

}
and B(P) = {

j : φ(θj )− φ(θj−1) < 0
}
.

Thenϕ andψ are defined as

ϕ(θ) = sup

{ ∑
j∈A(P )

(
φ(θj )− φ(θj−1)

)
: P ∈ Pθ

}
,

ψ(θ) = sup

{ ∑
j∈B(P )

∣∣φ(θj )− φ(θj−1)
∣∣: P ∈ Pθ

}

(wheneverA(P) or B(P) are empty, we makeϕ(θ) = 0, ψ(θ) = 0). One easily sees tha
bothϕ andψ are nondecreasing functions such thatφ(θ) = ϕ(θ) − ψ(θ), for everyθ ∈
[−1,0].

These facts can be extended for functionsη ∈ BVn. In fact, since for eachθ ∈ [−1,0]
we haveη(θ) = [ηjk(θ)] (j, k = 1, . . . , n) whereηjk ∈ BV , for every j, k = 1, . . . , n,
then decomposing each functionηjk (j, k = 1, . . . , n) as the difference of two nonde
creasing functionsαjk and βjk, the n-by-n matrix valued functionsA(θ) = [αjk(θ)],
B(θ) = [βjk(θ)], are both nondecreasing functions inBVn, and for everyθ ∈ [−1,0], we
have

η(θ) = A(θ)− B(θ). (10)

If for every j, k = 1, . . . , n, we decompose each functionηjk according to (9) then we
obtain

η(θ) = Φ(θ)− Ψ (θ), (11)
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with Φ(θ) = [ϕjk(θ)] andΨ (θ) = [ψjk(θ)], whereϕjk andψjk are, respectively, the pos
itive and negative variation ofηjk (j, k = 1, . . . , n).

2. Nonoscillatory solutions

Nonnegative matrices can play some role on the study of the oscillatory behavior
system (1).

According to the Perron–Frobenius theorem, a nonnegative matrixC ∈ Mn(R) has sev-
eral important spectral properties (see [10,11]). As a matter of fact, denoting byσ(C) the
spectrum ofC and byρ(C) the spectral radius ofC, one has thatρ(C) ∈ σ(C). Moreover,
ρ(C) > 0 if C > 0 and 0� C � D ⇒ ρ(C) � ρ(D).

For a matrixC ∈ Mn(R), considering the upper bound

s(C) = max
{
Rez: z ∈ σ(C)

}
,

of the set Reσ(C) = {Rez: z ∈ σ(C)}, then s(C) = ρ(C) ∈ σ(C) wheneverC � 0.
Through that same theorem, one can conclude thats(C) ∈ σ(C), if C = [cjk] (j, k =
1, . . . , n), isessentially nonnegative—that is, if the off-diagonal entries ofC (cjk for j �= k)

are nonnegative real numbers.
Therefore, if the matrix

0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

]
(12)

is essentially nonnegative, for every realλ, the spectral set

σ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])

is dominated by the value

s(λ) = s

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])
,

that is,

s(λ) ∈ σ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

]) ∀λ ∈ R. (13)

On this purpose, we notice that for every realλ, the matrix (12) is nonnegative when t
function ν is nondecreasing on[−1,0], and is essentially nonnegative when forν(θ) =
[νjk(θ)] (j, k = 1, . . . , n), the off-diagonal functionsνjk(θ) (j �= k) are nondecreasing o
[−1,0]. Moreover the assumption (13) is also fulfilled when for eachθ ∈ [−1,0], ν(θ) is
a symmetric real matrix.
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Under (13), the continuous dependence of the spectrum with respect to parame
able us to handle condition (8) in a more suitable manner.

Theorem 1. Under assumption (13), the system (1) is oscillatory if and only if s(λ) < 1,
for every real λ.

Proof. Noticing that

∣∣s(λ)∣∣�
∥∥∥∥∥

0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

]∥∥∥∥∥,
we claim that limλ→+∞ s(λ) = 0.

In fact, if r(θ) is a positive function on[−1,0], then letting

m(r) = min
{
r(θ): −1� θ � 0

}
,

one has for every realλ � 0∥∥∥∥∥
0∫

−1

exp
(−λr(θ)

)
d
[
ν(θ)

]∥∥∥∥∥� exp
(−λm(r)

) 0∫
−1

∥∥d[ν(θ)]∥∥,
and sos(λ) → 0 asλ → +∞.

If r(θ) is a positive function on[−1,0[ andr(0)= 0, as thenν(θ) is atomic at zero, fo
everyε > 0 there exists a realγ > 0 such that

0∫
−γ

∥∥d[ν(θ)]∥∥<
ε

2
.

Thus takingm0 = min{r(θ): −1� θ � −γ } > 0, we have for every realλ � 0

∥∥∥∥∥
0∫

−1

exp
(−λr(θ)

)
d
[
ν(θ)

]∥∥∥∥∥
�
∥∥∥∥∥

−γ∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

]∥∥∥∥∥+
∥∥∥∥∥

0∫
−γ

exp
(−λr(θ)

)
d
[
ν(θ)

]∥∥∥∥∥
� exp(−λm0)

−γ∫
−1

∥∥d[ν(θ)]∥∥+
0∫

−γ

∥∥d[ν(θ)]∥∥,
and by consequence, forλ arbitrarily large, we conclude that∥∥∥∥∥

0∫
exp

(−λr(θ)
)
d
[
ν(θ)

]∥∥∥∥∥< ε.
−1
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Hence, also in this case,s(λ) → 0 asλ → +∞.
Therefore supposing that (1) is oscillatory and that for some realλ0 it is s(λ0) � 1,

by continuity, there exists a realλ1 � λ0 such thats(λ1) = 1, which, in view of (13),
contradicts (8). ✷
Remark 2. The proof of this theorem enable us to conclude that under the assumptio
the system (1) has at least a nonoscillatory solution whenevers(λ) → +∞, asλ → −∞.

Taking a decomposition ofν ∈ BVn according to (10),

ν = A− B,

whereA,B ∈ BVn are nondecreasing functions, the matrix (12) is decomposed int
difference

0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

]=
0∫

−1

exp
(−λr(θ)

)
d
[
A(θ)

]−
0∫

−1

exp
(−λr(θ)

)
d
[
B(θ)

]
.

The following theorem states the existence of, at least, a nonoscillatory solution.

Theorem 3. Let θ0 ∈ [−1,0] be such that r(θ0) = ‖r‖. If either

Ω+
A (θ0) > |B| or Ω−

A (θ0) > |B|
then (1) has at least a nonoscillatory solution.

Proof. Let us assume, for example, thatΩ+
A (θ0) > |B|.

Forε > 0 small enough, we have

0∫
−1

exp
(−λr(θ)

)
d
[
A(θ)

]
�

θ0+ε∫
θ0

exp
(−λr(θ)

)
d
[
A(θ)

]
.

By application of a mean value property of the functions of bounded variation, we
obtain for every realλ < 0,

θ0+ε∫
θ0

exp
(−λr(θ)

)
d
[
A(θ)

]
� exp

(−λr(θ0 + δε)
)(
A(θ0 + ε)− A(θ0)

)
,

for someδ ∈]0,1[, depending uponr, θ0, ε andA. Then, makingε → 0+, we have

0∫
−1

exp
(−λr(θ)

)
d
[
A(θ)

]
� exp

(−λ‖r‖)Ω+
A (θ0).

On the other hand, for every realλ < 0, the following matrix inequality holds

0 �
0∫

exp
(−λr(θ)

)
d
[
B(θ)

]
� exp

(−λ‖r‖)|B|,

−1
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and by consequence

−
0∫

−1

exp
(−λr(θ)

)
d
[
B(θ)

]
� −exp

(−λ‖r‖)|B|.

Therefore, for every realλ < 0, we have that

0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

]
� exp

(−λ‖r‖)(Ω+
A (θ0) − |B|). (14)

As the matrixΩ+
A (θ0)− |B| is positive, this means in particular that also

0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

]
> 0,

for everyλ < 0. Thus not only assumption (13) is fulfilled but also

s(λ) = ρ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])
.

But from (14) we can conclude that

ρ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])
� exp

(−λ‖r‖)ρ(Ω+
A (θ0)− |B|)

and by consequences(λ) → +∞, asλ → −∞. Hence by the Remark 2, (1) has at leas
nonoscillatory solution. ✷

The behavior of the functionν at the pointθ0 ∈ [−1,0] where is attained the absolu
maximum of the delay functionr(θ), has a specific relevance, as was already shown in
for the scalar case of (1).

Theorem 4. Let θ0 ∈ [−1,0] be such that r(θ0) = ‖r‖ and r(θ) < ‖r‖ for every θ �= θ0. If
θ0 is a point of increase of ν, then (1) has at least a nonoscillatory solution.

Proof. For a matter of simplicity, let us assume thatθ0 = −1.
Considering the decomposition ofν, given by (11), then for someε > 0, the matrix

Ψ (θ) is constant on[−1,−1+ ε] and by consequence, on this interval

Φ(θ) = ν(θ)− C,

for some realn-by-n real matrixC. Therefore

0∫
exp

(−λr(θ)
)
d
[
ν(θ)

]

−1
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=
0∫

−1

exp
(−λr(θ)

)
d
[
Φ(θ)

]−
0∫

−1+ε

exp
(−λr(θ)

)
d
[
Ψ (θ)

]

�
−1+ε∫
−1

exp
(−λr(θ)

)
d
[
Φ(θ)

]−
0∫

−1+ε

exp
(−λr(θ)

)
d
[
Ψ (θ)

]
.

Take 0< δ < ε such that

m = min
{
r(θ): θ ∈ [−1,−1+ δ]}>M = max

{
r(θ): θ ∈ [−1+ ε,0]}.

One easily can see that the following matrix relations hold, for every realλ < 0:

0 �
0∫

−1+ε

exp
(−λr(θ)

)
d
[
Ψ (θ)

]
� exp(−λM)|Ψ |,

−1+ε∫
−1

exp
(−λr(θ)

)
d
[
Φ(θ)

]
� exp(−λm)

(
Φ(−1+ ε)− Φ(−1)

)
.

Thus we obtain for every realλ < 0,

−1+ε∫
−1

exp
(−λr(θ)

)
d
[
Φ(θ)

]
� exp(−λm)

(
ν(−1+ ε)− ν(−1)

)
,

−
0∫

−1+ε

exp
(−λr(θ)

)
d
[
Ψ (θ)

]
� −exp(−λM)|Ψ |,

which imply that

0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

]

� exp(−λm)
[(
ν(−1+ ε)− ν(−1)

)− exp
(
λ(m − M)

)|Ψ |]. (15)

Since the nonnegative matrix exp(λ(m−M))|Ψ | tends to the null matrix, asλ → −∞,
we can conclude that there exists a real number1 > 0 sufficiently large, such that, for eve
λ < −1, (ν(−1 + ε) − ν(−1)) − exp(λ(m − M))|Ψ | is a positive matrix. Thus, for ever
λ < −1, we have, in particular,

0∫
exp

(−λr(θ)
)
d
[
ν(θ)

]
> 0,
−1
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and so assumption (13) is satisfied in a way that

s(λ) = ρ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])
.

Moreover (15) implies that, for everyλ < −1,

ρ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])

� exp(−λm)ρ
((
ν(−1+ ε)− ν(−1)

)− exp
(
λ(m −M))|Ψ |).

Since the right hand member of this inequality tends to+∞, asλ → −∞, we can state, a
in Theorem 1, that (1) has at least a nonoscillatory solution.✷

Theorem 4 can be applied to the system (3) and the following corollary can eas
obtained.

Corollary 5. If rk = max{rj : j = 1, . . . , p} and Ak > 0 then (3) has at least a nonoscilla-
tory solution.

Proof. As a matter of fact, ifAk > 0 thenθk is a point of increase ofν(θ) =∑p

j=1H(θ −
θj )Aj . Therefore choosingr(θ) continuous and positive on[−1,0] in manner thatr(θk) =
‖r‖ andr(θ) < ‖r‖ for everyθ �= θk, one can conclude by Theorem 4 that (3) has at l
a nonoscillatory solution. ✷

Similar arguments enable us to state the following theorem.

Theorem 6. If ν is increasing on [−1,0] and nonconstant on [−1,0[ then (1) has at least
a nonoscillatory solution.

Proof. Sinceν is increasing on[−1,0[, there existθ1, θ2 ∈ [−1,0[ such thatθ1 < θ2 and

2 = ν(θ2)− ν(θ1)

is a positive matrix. Then the following matrix relation holds for every realλ � 0:

0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

]
�

θ2∫
θ1

exp
(−λr(θ)

)
d
[
ν(θ)

]
� exp(−λm)2,

where

m = min
{
r(θ): θ ∈ [θ1, θ2]

}
> 0.

Thus as before, assumption (13) is fulfilled,s(λ) → +∞, asλ → −∞, and (1) has at leas
a nonoscillatory solution. ✷
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3. Explicit conditions for oscillations

As is well known matrix measures are a relevant tool on the oscillation theory of
systems. For a matter of completeness we recall briefly, its definition and the prop
which will be used in the sequel.

For each induced norm,‖ ·‖, in Mn(R), we associate a matrix measureµ :Mn(R) → R,
which is defined for anyC ∈ Mn(R) as

µ(C) = lim
γ→0+

‖I + γC‖ − 1

γ
,

where byI we mean the identity matrix.
Well known matrix measures of a matrixC = [

cjk
] ∈ Mn(R), are

µ1(C) = max

{
ckk +

∑
j �=k

|cjk|: k = 1, . . . , n

}
,

µ∞(C) = max

{
cjj +

∑
k �=j

|cjk|: j = 1, . . . , n

}
,

which correspond, respectively, to the induced norms inMn(R) given by:

‖C‖1 = max

{
n∑

j=1

|cjk|: k = 1, . . . , n

}
,

‖C‖∞ = max

{
n∑

k=1

|cjk|: j = 1, . . . , n

}
.

Independently of the considered induced norm inMn(R), a matrix measure has alwa
the following properties (see [13]):

(i) s(C) � µ(C) � ‖C‖.
(ii) µ(C1)− µ(−C2) � µ(C1 + C2) � µ(C1)+ µ(C2) (C1,C2 ∈ Mn(R)).
(iii) µ(γC) = γµ(C), for everyγ � 0.

If η ∈ BVn, the continuity ofµ on Mn(R) implies thatµ ◦ η ∈ BV ; in consequence, wit
[a, b] ⊂ [−1,0], the following inequalities hold (see [8]):

(iv) If φ ∈ C([a, b];R) is nonincreasing and positive, then

µ

( b∫
a

φ(θ) d
[
η(θ)

])
�

b∫
a

φ(θ)d
(
µ
(
η(θ)− η(a)

))
.

(v) If φ ∈ C([a, b];R) is nondecreasing and positive, then

µ

( b∫
a

φ(θ) d
[
η(θ)

])
� −

b∫
a

φ(θ) d
(
µ
(
η(b)− η(θ)

))
.
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ct to
By (i), if for some matrix measureµ,

µ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])
< 1 ∀λ ∈ R, (16)

we can conclude that system (1) is oscillatory.
For anyη ∈ BVn, the functionsη0 andη1 of BVn, given, respectively, by

η0(θ) = η(0)− η(θ), η1(θ) = η(θ)− η(−1) (θ ∈ [−1,0]),
will be considered in the sequel.

In the following theorem we obtain conditions for having (1) oscillatory with respe
the family of all monotonic delay functions.

Theorem 7. If on [−1,0], µ ◦ ν1 is nonincreasing and µ ◦ ν0 is nondecreasing then (1) is
oscillatory for all monotonic delay functions r(θ).

Proof. Assume thatr : [−1,0] → R is a monotonic function.
By (iv) and (v), if r(θ) is nonincreasing we have that

µ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])
�

0∫
−1

exp
(−λr(θ)

)
d(µ ◦ ν1)(θ), if λ � 0,

µ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])
� −

0∫
−1

exp
(−λr(θ)

)
d(µ ◦ ν0)(θ), if λ � 0, (17)

and if r(θ) is nondecreasing,

µ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])
�

0∫
−1

exp
(−λr(θ)

)
d(µ ◦ ν1)(θ), if λ � 0,

µ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])
� −

0∫
−1

exp
(−λr(θ)

)
d(µ ◦ ν0)(θ), if λ � 0. (18)

Then take, respectively, forλ ∈ R, the functions

g(λ) =



∫ 0
−1 exp(−λr(θ)) d(µ ◦ ν1)(θ), if λ < 0,

µ(2ν), if λ = 0,

− ∫ 0
−1 exp(−λr(θ)) d(µ ◦ ν0)(θ), if λ > 0,

h(λ) =




− ∫ 0
−1 exp(−λr(θ)) d(µ ◦ ν0)(θ), if λ < 0,

µ(2ν), if λ = 0,∫ 0 exp(−λr(θ)) d(µ ◦ ν )(θ), if λ > 0,
−1 1
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ed,
where2ν = ν(0)− ν(−1). Noticing that

g(0+) = h(0−) = −
0∫

−1

d(µ ◦ ν0)(θ) = µ
(
ν0(−1)

)= µ
(
ν(0)− ν(−1)

)

and

g(0−) = h(0+) =
0∫

−1

d(µ ◦ ν1)(θ) = µ
(
ν1(0)

)= µ
(
ν(0)− ν(−1)

)
,

one can conclude thatg andh are both continuous inR.

Since on[−1,0], µ ◦ ν1 is nonincreasing andµ ◦ ν0 is nondecreasing, one has

g(λ) � 0 ∀λ ∈ R,

if r(θ) is nonincreasing and

h(λ) � 0 ∀λ ∈ R,

if r(θ) is nondecreasing. Hence, forr(θ) monotonic, by (17) and (18) one has (16) satisfi
which achieves the proof.✷
Remark 8. The assumptions in the Theorem 7 ofµ ◦ ν1 be nonincreasing andµ ◦ ν0 be
nondecreasing are fulfilled, if one assumes as in [14], that forθ1, θ2 ∈ [−1,0],

θ1 < θ2 �⇒ µ
(
ν(θ2)− ν(θ1)

)
� 0. (19)

As a matter of fact, ifθ1 < θ2, one has by (ii),

(µ ◦ ν1)(θ2)− (µ ◦ ν1)(θ1)

= µ
(
ν(θ2)− ν(−1)

)− µ
(
ν(θ1)− ν(−1)

)
� µ

(
ν(θ2)− ν(−1)− ν(θ1)+ ν(−1)

)= µ
(
ν(θ2)− ν(θ1)

)
� 0,

and

(µ ◦ ν0)(θ1)− (µ ◦ ν0)(θ2)

= µ
(
ν(0)− ν(θ1)

)− µ
(
ν(0)− ν(θ2)

)
� µ

(
ν(0)− ν(θ1) − ν(0)+ ν(θ2)

)= µ
(
ν(θ2)− ν(θ1)

)
� 0.

Following [8] let us define

α(A1) = µ(A1), α(Aj ) = µ

(
j∑

k=1

Ak

)
− µ

(
j−1∑
k=1

Ak

)
for j = 2, . . . , p,

β(Ap) = µ(Ap), β(Aj) = µ

(
p∑

k=j

Ak

)
− µ

(
p∑

k=j+1

Ak

)

for j = 1, . . . , p − 1.
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owing
Therefore, with respect to the system (3), from the Theorem 7 we can state the foll
corollary.

Corollary 9. If for j = 1, . . . , p, α(Aj ) � 0 and β(Aj ) � 0, then system (3) is oscillatory
for every family of delays (r1, . . . , rp) ∈ R

p
+.

In particular, as by (ii)

α(Aj ) � µ(Aj), β(Aj ) � µ(Aj),

we obtain as in [7]:

Corollary 10. If µ(Ak) � 0, for every k = 1, . . . , p, then (3) is oscillatory for every family
of delays (r1, . . . , rp) ∈ R

p
+.

In the following we will analyze what happens whenr(θ) is not a monotonic function
on [−1,0].

For that purpose we notice that by property (ii) of the matrix measures,

µ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])

� µ

( θ0−δ∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])+ µ

( θ0+δ∫
θ0−δ

exp
(−λr(θ)

)
dν(θ)

)

+ µ

( 0∫
θ0+δ

exp
(−λr(θ)

)
dν(θ)

)
, (20)

for everyθ0 ∈ [−1,0] andδ � 0, small enough.

Theorem 11. Let r(θ) be differentiable and positive on [−1,0], increasing on [−1, θ0−δ],
constant on [θ0 − δ, θ0 + δ] and decreasing on [θ0 + δ,0]. If

µ(ν(θ0 + δ)− ν(θ0 − δ)) � 0, (21)

µ
(
ν(θ0 − δ)− ν(θ)

)
� 0, (µ ◦ ν1)(θ) � 0, for every θ ∈ [−1, θ0 − δ], (22)

µ
(
ν(θ)− ν(θ0 + δ)

)
� 0, (µ ◦ ν0)(θ) � 0, for every θ ∈ [θ0 + δ,0], (23)

and

θ0−δ∫
−1

(µ ◦ ν1)(θ) d
(
logr(θ)

)−
0∫

θ0+δ

(µ ◦ ν0)(θ) d
(
logr(θ)

)
< e, (24)

then (1) is oscillatory.
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btain
Proof. We will prove that (16) holds.
Forλ = 0, by (20), (21) and the first part of (22) and (23) we can conclude that

µ
(
ν(0)− ν(−1)

)
� µ

(
ν(0)− ν(θ0 + δ)

)+ µ
(
ν(θ0 + δ)− ν(θ0 − δ)

)
+ µ

(
ν(θ0 − δ)− ν(−1)

)
� 0.

Let nowλ < 0. By (20) and the properties (iv) and (v) of the matrix measures we o

µ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])

� −
θ0−δ∫
−1

exp
(−λr(θ)

)
dµ
(
ν(θ0 − δ)− ν(θ)

)

+ exp
(−λr(θ0)

)
µ
(
ν(θ0 + δ)− ν(θ0 − δ)

)

+
0∫

θ0+δ

exp
(−λr(θ)

)
dµ
(
ν(θ)− ν(θ0 + δ)

)
.

Therefore, integrating by parts, we have

µ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])

� exp
(−λr(−1)

)
µ
(
ν(θ0 − δ)− ν(−1)

)

−
θ0−δ∫
−1

λexp
(−λr(θ)

)
µ
(
ν(θ0 − δ)− ν(θ)

)
dr(θ)

+ exp
(−λr(θ0)

)
µ
(
ν(θ0 + δ)− ν(θ0 − δ)

)+ exp
(−λr(0)

)
µ
(
ν(0)− ν(θ0 + δ)

)

+
0∫

θ0+δ

λexp
(−λr(θ)

)
µ
(
ν(θ)− ν(θ0 + δ)

)
dr(θ).

Then by (21) and the first part of (22) and (23) we state that, for everyλ < 0,

µ

( 0∫
−1

e−λr(θ) d
[
ν(θ)

])
� 0.

Consider nowλ > 0. By the same arguments,
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)

µ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])

� exp
(−λr(θ0 − δ)

)
µ
(
ν(θ0 − δ)− ν(−1)

)

+
θ0−δ∫
−1

λexp
(−λr(θ)

)
(µ ◦ ν1)(θ) dr(θ)

+ exp
(−λr(θ0)

)
µ
(
ν(θ0 + δ)− ν(θ0 − δ)

)
+ exp

(−λr(θ0 + δ)
)
µ
(
ν(0)− ν(θ0 + δ)

)

−
0∫

θ0+δ

λexp
(−λr(θ)

)
(µ ◦ ν0)(θ) dr(θ)

�
θ0−δ∫
−1

λexp
(−λr(θ)

)
(µ ◦ ν1)(θ) dr(θ)−

0∫
θ0+δ

λexp
(−λr(θ)

)
(µ ◦ ν0)(θ) dr(θ).

Noticing that the functionuexp(−u) has an absolute maximum atu = 1, we obtain for
everyθ ∈ [−1,0]

λexp
(−λr(θ)

)
� e−1

r(θ)
.

As r(θ) is increasing in[−1, θ0−δ[ and decreasing in]θ0+δ,0], by the second part of (22
and (23) we obtain

µ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])

� 1

e

[ θ0−δ∫
−1

(µ ◦ ν1)(θ)

r(θ)
dr(θ)−

0∫
θ0+δ

(µ ◦ ν0)(θ)

r(θ)
dr(θ)

]
,

and (24) implies

µ

( 0∫
−1

exp
(−λr(θ)

)
d
[
ν(θ)

])
< 1,

for everyλ > 0.
This achieves the proof.✷

Example 12. Let us consider the system (1) for

r(θ) =




−θ2 − 6
5θ, if − 1 � θ < −3

5,

9
25, if − 3

5 � θ � −2
5,

−θ2 − 4θ + 5 , if − 2 < θ � 0,
5 25 5
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and

ν(θ) =
[
θ
(
θ + 2

5

)
3

4 −(θ + 3
5

)
(θ + 1)

]
.

With respect to the matrix measureµ∞, (21) is satisfied since

µ∞
(
ν

(
−2

5

)
− ν

(
−3

5

))
= µ∞

([− 3
25 0
0 − 3

25

])
< 0.

The same holds to assumptions (22) and (23), since for everyθ ∈ [−1,−3/5],

µ∞
(
ν

(
−3

5

)
− ν(θ)

)
= µ∞

([ 3
25 − θ

(
θ + 2

5

)
0

0
(
θ + 3

5

)
(θ + 1)

])

=
(
θ + 3

5

)
(θ + 1) � 0,

µ∞
(
ν(θ)− ν(−1)

)= µ∞
([

θ
(
θ + 2

5

)− 3
5 0

0 −(θ + 3
5

)
(θ + 1)

])

= θ

(
θ + 2

5

)
− 3

5
� 0,

and, for everyθ ∈ [−2/5,0],

µ∞
(
ν(θ)− ν

(
−2

5

))
= µ∞

([
θ
(
θ + 2

5

)
0

0 −(θ + 3
5

)
(θ + 1)+ 3

25

])

= θ

(
θ + 2

5

)
� 0,

µ∞
(
ν(0)− ν(θ)

)= µ∞
([−θ

(
θ + 2

5

)
0

0 −3
5 + (

θ + 3
5

)
(θ + 1)

])

= −3

5
+
(
θ + 3

5

)
(θ + 1) � 0.

Moreover, as

−3/5∫
−1

µ(ν(θ)− ν(−1))

r(θ)
dr(θ)−

0∫
−2/5

µ(ν(0)− ν(θ))

r(θ)
dr(θ)

= −
−3/5∫
−1

(
θ + 3

5

)
(θ + 1)

(
2θ + 6

5

)
θ
(
θ + 6

5

) dθ +
0∫

−2/5

θ
(
θ + 2

5

)(
2θ + 4

5

)
(θ + 1)

(
θ − 1

5

) dθ

= − 8

25
− 36

25
ln 3+ 6

5
ln5< e,

condition (24) is also verified and so the corresponding system (1) is oscillatory.
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Making in the Theorem 11,δ = 0, we obtain the following corollary.

Corollary 13. Let r : [−1,0] → R
+ be differentiable on [−1,0], increasing on [−1, θ0]

and decreasing on [θ0,0]. If for every θ ∈ [−1, θ0],
µ
(
ν(θ0)− ν(θ)

)
� 0, (µ ◦ ν1)(θ) � 0, (25)

for θ ∈ [θ0,0]
µ
(
ν(θ)− ν(θ0)

)
� 0, (µ ◦ ν0)(θ) � 0, (26)

and
θ0∫

−1

(µ ◦ ν1)(θ) d
(
logr(θ)

)−
0∫

θ0

(µ ◦ ν0)(θ) d
(
logr(θ)

)
< e, (27)

then (1) is oscillatory.

This corollary is illustrated in the following example.

Example 14. Consider (1) withr(θ) = −θ(θ + 1) and

ν(θ) =
[
θ(θ + 1)

(
θ + 1

2

)
5

0 −6θ − 7

]
.

For the matrix measureµ1, we have for everyθ ∈ [−1,−1/2]

µ1

(
ν

(
−1

2

)
− ν(θ)

)
= µ1

([−θ(θ + 1)
(
θ + 1

2

)
0

0 3+ 6θ

])

= −θ(θ + 1)

(
θ + 1

2

)
� 0,

µ1(ν(θ)− ν(−1))= µ1

([
θ(θ + 1)

(
θ + 1

2

)
0

0 −6θ − 6

])

= θ(θ + 1)

(
θ + 1

2

)
� 0,

and for everyθ ∈ [−1/2,0],

µ1

(
ν(θ)− ν

(
−1

2

))
= µ1

([
θ(θ + 1)

(
θ + 1

2

)
0

0 −3− 6θ

])

= θ(θ + 1)

(
θ + 1

2

)
� 0,

µ1
(
ν(0)− ν(θ)

)= µ1

([−θ(θ + 1)
(
θ + 1

2

)
0

0 6θ

])

= −θ(θ + 1)

(
θ + 1

)
� 0.
2
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ds to

,

Therefore conditions (25) and (26) of the Corollary 13 are fulfilled. The same hol
assumption (27), since

−1/2∫
−1

θ(θ + 1)
(
θ + 1

2

)
−θ(θ + 1)

d
(−θ(θ + 1)

)−
0∫

−1/2

−θ(θ + 1)
(
θ + 1

2

)
−θ(θ + 1)

d
(−θ(θ + 1)

)

=
−1/2∫
−1

(
θ + 1

2

)
(2θ + 1) dθ +

0∫
−1/2

(
θ + 1

2

)
(2θ + 1) dθ = 1

6
< e.

Hence the corresponding system (1) is oscillatory.

Now, assuming thatδ = 0, as before, and further thatθ0 = −1, the following corollary
can be stated.

Corollary 15. Let on [−1,0], be (µ ◦ ν0)(θ) � 0, (µ ◦ ν1)(θ) � 0 and r(θ) positive, differ-
entiable and decreasing. Then system (1) is oscillatory if

0∫
−1

(µ ◦ ν0)(θ) d
(
logr(θ)

)
> −e. (28)

Proof. Just notice that, in this case, (25) is fulfilled, sinceµ(0) = 0. On the other hand
assumption (26) becomes equivalent to(µ ◦ ν0)(θ) � 0 and(µ ◦ ν1)(θ) � 0, for every
θ ∈ [−1,0], while (27) gives rise to (28). ✷

Analogously, forδ = 0 andθ0 = 0, we obtain the following corollary.

Corollary 16. Let on [−1,0], be (µ ◦ ν0)(θ) � 0, (µ ◦ ν1)(θ) � 0 and r(θ) positive, differ-
entiable and increasing. Then system (1) is oscillatory if

0∫
−1

(µ ◦ ν1)(θ) d
(
logr(θ)

)
< e.

The following example illustrates the Corollary 15.

Example 17. Let us consider (1) for

ν(θ) =
[
θ2 −θ

θ −2θ

]
and r(θ) = 1− θ.

We have, for the matrix measureµ∞,

(µ∞ ◦ ν0)(θ) = µ∞
([−θ2 θ

−θ 2θ

])
= max{−θ2 − θ, θ} = −θ(θ + 1)� 0,
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nd
for everyθ ∈ [−1,0], and

(
µ∞ ◦ ν1(θ)

)= µ∞
([

θ2 − 1 −θ − 1
θ + 1 −2θ − 2

])
= max{θ2 + θ,−θ − 1} = θ(θ + 1) � 0,

for everyθ ∈ [−1,0]. As

0∫
−1

θ(θ + 1)

1− θ
dθ =

0∫
−1

(
−θ − 2+ 2

1− θ

)
dθ =

[
−θ2

2
− 2θ − ln(1− θ)2

]0

−1

= 1

2
− 2+ ln4 ≈ −0,2> −e,

the corresponding system (1) is then oscillatory.

Considering in (1),ν(θ) given by (4), for−1< θ1 < · · · < θp < 0, andr(θ) differen-
tiable, decreasing and positive on[−1,0], one obtains the system (3) withrj = r(θj ) for
j = 1, . . . , p, such thatr1 > · · · > rp . In this situation we can apply the Corollary 15 a
consequently obtain the following, corollary.

Corollary 18. Let

µ

(
p∑

k=j

Ak

)
� 0 and µ

(
j∑

k=1

Ak

)
� 0, (29)

for every j = 1, . . . , p. Then system (3) is oscillatory if
p∑

j=2

µ

(
p∑

k=j

Ak

)
log

rj

rj−1
> −e. (30)

Proof. The conditions corresponding to(µ ◦ ν0)(θ) � 0 and(µ ◦ ν1)(θ) � 0 in the Corol-
lary 15, are in this case, respectively,µ(

∑p
k=j Ak) � 0 andµ(

∑j
k=1Ak) � 0, for every

j = 1, . . . , p.
On the other hand, as thenµ(

∑p

k=1Ak) = 0, (28) becomes,

0∫
−1

(µ ◦ ν0)(θ) d
(
logr(θ)

)

=
θ2∫

θ1

µ

(
p∑

k=2

Ak

)
d
(
logr(θ)

)+ · · · +
θp∫

θp−1

µ(Ap) d
(
logr(θ)

)

+
0∫

θ

µ(0) d
(
logr(θ)

)

p
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ering
= µ

(
p∑

k=2

Ak

)
log

r2

r1
+ · · · + µ

(
p∑

k=p−1

Ak

)
log

rp−1

rp−2
+ µ(Ap) log

rp

rp−1

=
p∑

j=2

µ

(
p∑

k=j

Ak

)
log

rj

rj−1
> −e,

which proves the corollary. ✷
An analogous result can be obtained for (3) through the Corollary 16, by consid

the system (1) withν(θ) given by (4), for−1< θ1 < · · ·< θp < 0, andr(θ) differentiable
and increasing on[−1,0]. In fact, now one obtains the system (3) withrj = r(θj ) for
j = 1, . . . , p, such thatr1 < · · · < rp . Hence the following corollary can be stated.

Corollary 19. Let

µ

(
p∑

k=j

Ak

)
� 0 and µ

(
j∑

k=1

Ak

)
� 0,

for every j = 1, . . . , p. Then system (3) is oscillatory if

p−1∑
j=1

µ

(
j∑

k=1

Ak

)
log

rj+1

rj
< e.

The following example illustrates the Corollary 18.

Example 20. Let us consider the system

x(t) = A1x

(
t − 7

4

)
+A2x

(
t − 3

2

)
+A3x

(
t − 5

4

)
, (31)

where

A1 =
[−3 −5

1 −9

]
, A2 =

[
1 2

−2 5

]
, A3 =

[−1 1
4 −3

]
.

We have

µ1(A1) = max{−2,−4} = −2� 0,

µ1(A1 + A2) = µ1

([−2 −3
−1 −4

])
= max{−1,−1} = −1� 0,

µ1(A1 + A2 +A3) = µ1

([−3 −2
3 −7

])
= max{0,−5} = 0,

µ1(A2 + A3) = µ1

([
0 3
2 2

])
= max{2,5} = 5 � 0,

µ1(A3) = max{3,−2} = 3 � 0.

So, (29) is satisfied. The same holds to (30), since
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ating

91.

.
Equa-

364–

elay,

ms 2

138.

608–
µ

(
3∑

k=2

Ak

)
ln

r2

r1
+ µ

(
3∑

k=3

Ak

)
ln

r3

r2

= 5 ln
3/2

7/4
+ 3 ln

5/4

3/2
= 5 ln

6

7
+ 3 ln

5

6
≈ −1,32> −e.

Hence the system (31) is oscillatory.
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