

FACULDADE DE

Searching for the G_{516} T Polymorphism on the CYP2B6 gene in HIV-1Patients

Fernandes A.^{1,3}, Aniceto N.^{1,2}, Cruz JP.^{1,2}, Paixão P.², Valadas E.¹, Morais JG.², Ribeiro AC.³

1. Laboratório de Diagnóstico Molecular de Doenças Infecciosas, Faculdade de Medicina da Universidade de Lisboa.2. iMed.UL, Faculdade de Farmácia da Universidade de Lisboa 3. Centro de Investigação Interdisciplinar Egas Moniz (CiiEM),

Gene CYP2B6

Materials and Methods

Results

The CYP2B6 G₅₁₆T polymorphism has a major impact on the level of hepatic metabolism.

Extraction of Genomic DNA		
	Cell lysis ↓ Binding ↓ Wash ↓ Elution	
\bigcirc	100µl DNA	

Sequencing Analyses

DE INVESTIGAÇÃO

INTERDISCIPLINAR

EGAS MO

Objectives

Identify the G₅₁₆Tpolymorphism located at exon 4 of the CYP2B6 gene in HIV-1 or HVC/HBV co-infected patients.

1ml blood of 27 patients infected with HIV1 or co-infected with HBV/C

PerfectPure DNA Blood Kit (5Prime)

- Primer Forward 5'TGTTGTAGTGAGAGTT CTG3⁷
- Primer Reverse 3'GATAGGGACAGAGATG GCAG5'
- BLAST (Basic Local Alignment Search Tool)
- BioEdit

Review

The CYP2B6 gene has been mapped in the context of chromosome 19, and encodes a member of the enzyme cytochrome P450 superfamily, monooxygenase (CYP450), which is located in the endoplasmic reticulum.

This protein catalyses several reactions involved in drug metabolism.

Many genetic disorders have been having influence reporte as on management, metabolism, distribution and elimination of drugs used in HIV/AIDS therapy (1).

The G₅₁₆T polymorphism in the CYP2B6 gene, present in exon 4, shows a major impact with clinical relevance on the level of hepatic metabolism, with consequently into changes translates in the respective plasmatic concentrations of drugs (2).

This genetic variant results in the substitution of a guanine for a thymine at nucleotide 516 of the coding sequence wich leads to the amino acid substitution at position 172, glutamine for histidine (Q172H) and whose role in enzyme activity is still not clear.

This has been described as a "nonsense" polymorphism, affecting the metabolic activity by alteration of substrate binding or aberrant splicing, leading to a decreased amount of normal mRNA and thus reducing the levels of functional protein (3).

References

Fig. 1 - Gene CYP2B6 represented by exons and introns, the red triangle indicates the location of the SNP $G_{516}T$, the substitution leads to Glu₁₇₂His. The results of sequence alignment reveal the site of nucleotide substitution.

Patients	CYP2B6 Polymorphism G516T		25 patients polymorphism
2	G – G		
8	G – T	Л	
17	Τ – Τ		

present the $G_{516}T$ on the CYP2B6 gene.

Fig. 2 - 3D structure of native CYP2B6 protein, the

SNP G516T is illustrated in green. Image acquired by

Conclusion

VMD.

The G516T genetic variant can occur in heterozygosity (GT) or homozygosity (TT). Subjects with homozygous T allele (TT) exhibit enzymatic activity at lower levels when compared to individuals homozygous for the G allele (GG). Individuals heterozygous (GT) have intermediate levels (4).

Our results allow us to identify the presence of polymorphic mutation CYP2B6 G₅₁₆T in 25 patients, 8 of them carry the heterozygous genotype GT and 17 carry homozygous genotype TT.

In the future, therapeutics for HIV can be set in compliance with the patient's genetic information, leading to reduced toxicity levels and improved patient compliance to treatment.

^{2.} Aberrante Splicing Caused by Single Nucleotide Polymorphism c.516G_T [Q172H], a Marker of CYP2B6*6, Is Responsible for Decreased Expression and Activity of CYP2B6 in Liver. Hofmann et al, 2008. The Journal of

Presence of the CYP2B6 516 G>T polymorphism, increased plasma Efavirenz concentrations and eraly neuropsychiatric side effects in South African HIV – infected patients. Gounden et al, 2010. Aids Research and Therapy