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Portugal, 10 Hospital Pulido Valente, Centro Hospitalar de Lisboa Norte, Lisboa, Portugal, 11 Laboratório de Microbiologia Clı́nica e Biologia Molecular, Serviço de
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Abstract

To characterize the HIV-2 integrase gene polymorphisms and the pathways to resistance of HIV-2 patients failing a
raltegravir-containing regimen, we studied 63 integrase strand transfer inhibitors (INSTI)-naı̈ve patients, and 10 heavily
pretreated patients exhibiting virological failure while receiving a salvage raltegravir-containing regimen. All patients were
infected by HIV-2 group A. 61.4% of the integrase residues were conserved, including the catalytic motif residues. No INSTI-
major resistance mutations were detected in the virus population from naı̈ve patients, but two amino acids that are
secondary resistance mutations to INSTIs in HIV-1 were observed. The 10 raltegravir-experienced patients exhibited
resistance mutations via three main genetic pathways: N155H, Q148R, and eventually E92Q - T97A. The 155 pathway was
preferentially used (7/10 patients). Other mutations associated to raltegravir resistance in HIV-1 were also observed in our
HIV-2 population (V151I and D232N), along with several novel mutations previously unreported. Data retrieved from this
study should help build a more robust HIV-2-specific algorithm for the genotypic interpretation of raltegravir resistance, and
contribute to improve the clinical monitoring of HIV-2-infected patients.
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Introduction

The Human Immunodeficiency Virus Type 2 (HIV-2) infects

1–2 million people worldwide, most of which in West Africa,

where it is endemic [1]. In Europe, Portugal is the country with

the highest frequency of HIV-2 infection, accounting for 543

(3.1%) of all AIDS cases [2]. Despite a slow progression of disease

in most infected people, 20–25% of HIV-2 patients progress to

AIDS if untreated [3,4].

The therapeutic options for HIV-2 patients are still limited. The

virus is naturally resistant to non-nucleoside reverse transcriptase

inhibitors (NNRTIs) [5,6] and to the fusion inhibitor enfuvirtide

(T-20) [6–8]. Compared to HIV-1, HIV-2 has reduced sensitivity

to some protease inhibitors (PIs) [9,10], a lower genetic barrier

towards resistance for most drugs [11–13], along with a faster

acquisition of resistance for some of them [12].

The recent pharmacological class of Integrase Strand Transfer

Inhibitors (INSTIs) represents a promising therapeutic option for

the treatment of HIV-2 infection. Integrase (IN) is a multi-domain

protein consisting of the N-terminal domain (NTD, HIV residues

1–49), catalytic core domain (CCD, residues 50–212), and C-
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terminal domain (CTD, residues 213–288). The NTD contains a

conserved HHCC Zn-coordination motif, and Zn-binding con-

tributes to IN multimerization and catalytic function [14,15]. The

CCD contains an invariant triad of acidic residues (Asp-64, Asp-

116, Glu-152 on HIV-1) that forms the enzyme active site [16–

18]. The CCD also contributes to IN multimerization [19] and

engages viral [20–22] and chromosomal [23,24] DNAs during

integration. The CTD, which is the least conserved of the domains

among retroviruses [25], also contributes to specific [26] and non-

specific [27–29] DNA interactions, as well as multimerization [30].

Despite a 40% difference in amino acid sequence between HIV-

1 and HIV-2 integrases, phenotypic assays carried out with

reference strains or clinical isolates have shown that all approved

inhibitors [i.e. raltegravir (RAL), elvitegravir (EVG) and dolute-

gravir (DTG)] are effective against HIV-2. In vitro studies have

shown that the HIV-1 and HIV-2 wild-type integrases have a

similar phenotypic susceptibility to INSTIs [31–34], probably due

to the 100% conservation of the catalytic triad DDE and the

HHCC and RKK motifs between the two viruses [33,35,36,36],

and that INSTIs exert a potent inhibitory effect on HIV-2

replication [33,37]. In vivo data has also revealed promising results:

raltegravir, the first INSTI to be licensed for clinical use, has been

used on some HIV-2 infected patients as part of their salvage

regimens with, at least, a good short term response concerning

suppression of plasma viral load and CD4 cell recovery [34,38–

40]. However, as for other antiviral drugs, resistance to RAL

emerges rapidly both in vitro and in vivo, greatly reducing the

susceptibility of the virus to the inhibitor. The specific amino acid

changes that are known to confer RAL resistance in HIV-1 have

also been shown to develop in RAL-treated HIV-2 patients:

N155H, Q148K/R and, to a lesser extent, Y143C [39,41–46].

Overall, three major resistance pathways have been identified and

shown to elicit high-level raltegravir and elvitegravir resistance in

HIV-2: i) N155H/E92Q, ii) Q148R/G140S, and iii) Y143C/

E92Q or Y143C/T97A [42,47,48]. On the other hand, the

N155H-Y143C and N155H-Q148R replacements seem to define

mutually exclusive pathways to RAL resistance in HIV-2 [32,42].

RAL and EVG show extensive cross-resistance in HIV-2, as in

HIV-1 [43,46,49,50], but DTG retains activity against some RAL

and EVG-resistant HIV-1 strains, both in vitro and in vivo [51–53].

Information on its efficiency against HIV-2 strains bearing

integrase inhibitor resistance mutations is still limited, but

phenotypic assays carried out with HIV-2 clinical isolates from

patients treated with RAL showed that mutations T97A/Y143C,

G140S/Q148R or G140T/Q148R/N155H conferred moderate

resistance to DTG (7–18-fold increase of the EC50) [37]. As in

HIV-1 the association T97A/Y143C does not confer resistance to

DTG, extreme caution must be taken when extrapolating HIV-1

knowledge to HIV-2. Corroborating this is the fact that, at this

time, it is still unknown whether the combination H51Y/R263K,

that confers some level of resistance to DTG in HIV-1 [54,55],

could be relevant as a mutational pathway leading to HIV-2

resistance.

Overall, HIV-2 resistance pathways to INSTIs are still poorly

characterized. So the aims of this study were i) to investigate the

natural polymorphism of the HIV-2 integrase gene, and ii) to

further characterize the genotypic resistance profiles of HIV-2

patients failing RAL-containing regimens.

Materials and Methods

Study design and sequences
This study assessed 73 HIV-2 group A infected patients followed

at different hospitals mainly in the central and southern areas of

Portugal. The HIV-2 group was determined using the Rega

Subtyping Tool v2.0. 63 patients were RAL-naı̈ve, and constituted

the control group. 23/63 had been previously exposed to

antiretroviral (ARV) therapy: 21 had received nucleoside/nucle-

otide reverse transcriptase inhibitors (NRTIs) and protease

inhibitors (PIs), one had received NRTIs and non-nucleoside

reverse transcriptase inhibitors (NNRTIs), and one had received

NRTIs, NNRTIs and PIs. The remaining 40/63 patients had

never been exposed to antiretroviral drugs at the time the sample

was obtained. Ten patients were heavily pretreated and were on a

salvage RAL-containing regimen. All the longitudinal genotypic

resistance data available for these patients, pre- and during RAL

exposure, was considered for analysis, in a total of 20 sequences.

For statistical purposes, only one genotype, corresponding to the

most recent isolate of each patient, was considered.

Mutations were defined as differences at the amino acid level

from the wild-type reference sequence (HIV2_ROD_M15390),

including those that were present as part of a nucleotide mixture.

Despite not being a primary isolate, HIV-2_ROD can be

considered a reference control isolate for this study because its

susceptibility to INSTIs has been previously demonstrated [33].

The sequences obtained from RAL-naı̈ve patients were used to

uncover natural polymorphisms, and to determine whether the

critical amino acid substitutions associated with resistance to

INSTIs in HIV-1 are naturally present in HIV-2. An amino acid

position was considered polymorphic when at least two different

amino acids were found [56]. Amino acids not mutated were

defined as conserved. Amino acid variability at a given position

was established by calculating the percentage of sequences

harboring an amino acid different from the HIV2_ROD_M15390

reference sequence. The most polymorphic positions were

considered to be those where more than 30% of sequences in

the control group were variable, according to the criterion

previously defined by others [56].

Mutations were considered as being selected by therapy if

absent from RAL-naı̈ve sequences and present in $1 sequences

from RAL-treated individuals. All the amino acid variants

occurring at non-polymorphic HIV-2 integrase positions, i.e.,

occurring only in RAL-treated individuals, were analyzed. We also

investigated the occurrence at such positions of major and

compensatory drug resistance mutations already associated with

in vivo or in vitro resistance to INSTIs in HIV-1 [according to

Lataillade M et al. 2007 [35] and to the 2013 Update of the Drug

Resistance Mutations in HIV-1 [57]] or in HIV-2 [according to

the Algorithm for the Interpretation of Genotypic HIV-2

Resistance Data (http://regaweb.med.kuleuven.be/sites/default/

files/algorithms/Rega_HIV2_Rules_v8.0.2.pdf) [58]].

HIV-2 integrase sequencing
The integrase coding region of the pol gene was amplified and

sequenced from plasma samples of the HIV-2 infected patients, in

a total of 293 amino acids analyzed. Viral RNA was extracted

from 1 ml of plasma according to Biomérieux’s easyMAG automatic

extraction procedure, and used to amplify and sequence the last

domain of the pol gene, comprising the integrase. To do so, the

protocol described at Bercoff DP et al. [36] was used, but some

adjustments were made. 10–15 ml of RNA were initially subjected

to 5 min at 70uC followed by 5 min on ice to avoid the generation

of possible intramolecular base-pairings in single-stranded RNAs.

RNA was then retrotranscribed using Super SuperScript III One-Step

RT-PCR System with Platinum Taq DNA Polymerase (Invitrogen Life

Technologies) in a 50 ml mix containing 10 mM of each forward

primer JR25 and reverse primer JR47 (Table 1). Cycling

conditions consisted of reverse transcription at 45uC for 1 h,
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denaturation at 94uC for 2 min followed by 40 amplification cycles

of 94uC for 30 sec, 53uC for 45 sec and 72uC for 1 min 45 sec,

and a final elongation step at 72uC for 3 min. A nested PCR was

then performed with 2 ml of the previously amplified cDNA, using

AmpliTaq Gold DNA Polymerase (Applied Biosystems) with 10 mM

of each forward primer H2Mp9 and reverse primer JR46

(Table 1). Nested PCR conditions consisted of denaturation at

95uC for 10 min, 40 amplification cycles of 94uC for 30 sec, 50uC
for 45 sec and 72uC for 1 min 30 sec, and a final elongation step

at 72uC for 10 min. Amplification products were checked on a 2%

agarose gel with ethidium bromide and 8 mL of GeneRuler DNA

Ladder Mix (Fermentas) for reference, and were subsequently

purified through the YM-100 Microconcentrators Method ac-

cording to the ViroSeq HIV-1 Genotyping System v2.0 Protocol (Abbott).

Dilution adjustments of the PCR products were made when

necessary. The sequencing reaction was then performed using the

Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) and

primers H2Mp9, JR44, JR45, AV33 (forward), JR46 and JR48

(reverse) (Table 1). Cycling conditions consisted of 30 amplifica-

tion cycles of 10 sec at 96uC, 5 sec at 50uC and 4 min at 60uC.

Products were purified and run on an ABI PRISM 3100 Genetic

Analyzer (Applied Biosystems). Nucleotide sequences were aligned

against the HIV-2 ROD reference strain (GenBank accession #
M15390), and edited with SeqScape Software Version 2.5 (Applied

Biosystems).

GenBank accession numbers
All the newly determined nucleotide data were deposited in

GenBank under the following accession numbers: KF859774 -

KF859846, and KF951329-KF951338.

Statistical analysis
For the determination of which mutations are selected in HIV-2

as a response to RAL pressure, sequences of 63 RAL-naı̈ve and 10

RAL-experienced patients were used, and the prevalence of

different amino acids at every codon position was estimated. To do

so, the different amino acids occurring at each integrase position

were weighted according to the following criterion: when the

amino acid was different from that of the reference sequence, it

was counted; when the amino acid was the same as the reference

sequence, it was not. In case of double and triple populations, only

the mutant amino acids were taken into account when counting:

each was given the same weight so that the sum of all mutant

amino acids at each position would be 1. This was computed by

alignment of nucleotide sequences and HIV2_ROD strain with

Muscle [59], manual edition with JalView version 2 [60], and

writing of the scripts with Python Programming Language (http://

www.python.org/) [61]. All integrase positions were compared to

the HIV2_ROD_M15390 sequence.

INSTI-naı̈ve patients were further subdivided into a group of

ARV-naı̈ve patients and a group of previously ARV (NRTI/PI) -

experienced patients, for the purpose of comparing the prevalence

of mutated amino acids between both groups. To do so, a x2 test

(based on a 262 contingency table containing the numbers of

isolates from untreated and treated persons, and the number of

isolates with and without mutations) was computed in R v.2.15.2,

and a p-value,0.05 was considered statistically significant.

Shannon’s entropy at each position of INSTI-naı̈ve sequences, a

measure of the amount of information contained at that position,

was calculated using the Los Alamos Database sequence Entropy

website http://www.hiv.lanl.gov/content/sequence/ENTROPY/

entropy_one.html for group A strains.

Ethics Statement
Due to the fact that this is a retrospective study, and that all the

procedures were standard of care – e.g., no extra blood collections

were performed for study procedures, all the samples being surplus

from collections taken for clinical monitoring – the Ethical

Committee of Centro Hospitalar de Lisboa Ocidental did not

consider to be necessary to obtain written informed consent from

patients.

This study received ethical approval by the Ethical Committee

of Centro Hospitalar de Lisboa Ocidental (Reference no. 96/

CES-2013).

Results

In the present study, we assessed a total of 83 HIV-2 integrase

sequences, which, to our knowledge, represents the most extensive

analysis performed to date of the integrase coding region of HIV-

2. All the sequences belong to HIV-2 group A. 63 sequences

belong to 63 RAL-naı̈ve patients, and 20 sequences belong to 10

heavily pretreated HIV-2 infected patients with virological failure

while receiving a salvage raltegravir-containing regimen (Table 2).

Analysis of HIV-2 integrase gene polymorphisms
We analyzed 63 integrase sequences retrieved from RAL-naı̈ve

patients. At the time of integrase genotyping, 40 patients were

antiretroviral (ART)-naı̈ve, 22 patients were receiving NRTI+PI-

based regimens, and one patient was receiving an NRTI+NNRTI-

based regimen, despite the widely recognized inefficacy of

NNRTIs on HIV-2. We report IN polymorphisms for this group

of patients with respect to the reference sequence ROD (Table 2).

Table 1. HIV-2 integrase primers given with their positions in HIV-2 ROD indicated in parenthesis. (+, sense; 2, antisense).

Primer Nucleotide sequence Nucleotides Reference

JR25 [+2528] 59-GCA CCT CCA ACT AAT CCT-39 18 Bercoff DP et al. 2010 [36]

JR44 [+3689] 59-GAG ACC TTC TAC ACA GAT GG-39 20 Bercoff DP et al. 2010 [36]

JR45 [+3971] 59-TAT GTT GCA TGG GTC CCA GC-39 20 Bercoff DP et al. 2010 [36]

JR46 [25019] 59-ATG CCC ATC CCA CCT TAT GGT G-39 22 Bercoff DP et al. 2010 [36]

JR47 [25041] 59-ATT ACC CTG CTG CAA CTG CAC C-39 22 Bercoff DP et al. 2010 [36]

JR48 [24466] 59-GTT CTA TAC CTA TCC ACC-39 18 Bercoff DP et al. 2010 [36]

AV33 [+4433] 59-GTG AAG ATG GTA GCA TGG TGG-39 21 Bercoff DP et al. 2010 [36]

H2Mp9 [+2932] 59-GGA TGA TAT CTT AAT AGC TAG-39 21 Colson P et al. 2004 [56]

doi:10.1371/journal.pone.0092747.t001
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Table 2. HIV-2 group A IN polymorphisms.

Position ROD Shannon entropy RAL-naı̈ve patients (63 sequences)

30–50% N-terminal Domain HHCC Zinc coordination finger L2 0.824 I (19%)

51–70% K4 0.803 N (1%), S (1%), R (24%)

71–90% Y15 0.571 F (10%)

V19 1.058 I (29%), M (8%)

K20 0.665 Q (10%), R (3%)

S23 1.037 A (8%), C (10%), T (3%)

I28 0.991 M (1%), L (50%)

N30 1.279 K (60%), M (2%), L (2%), Q (13%), T (6%)

L31 0.554 I (5%)

V32 0.373 I (2%)

R34 0.780 K (14%)

S39 0.533 T (92%)

A41 1.075 G (2%), N (2%), P (14%), T (17%)

A49 0.266 P (2%)

Catalytic Core Domain (with DDE Catalytic Triad) I50 0.682 M (5%), T (8%), V (5%)

(*) H51 0.079 Q (2%)

N55 0.308 D (10%)

E57 0.493 A (2%), D (8%)

L58 0.923 F (2%), I (8%), V (8%)

T60 0.651 A (1%), I (9%), M (2%), V (3%)

E69 0.373 D (2%)

(*) I72 0.980 V (40%)

(*) I84 0.266 V (6%)

E87 0.137 K (2%)

S93 0.937 T (57%)

R95 0.576 K (2%)

Q96 0.349 H (6%), Y (2%)

L101 0.308 I (2%)

S106 0.349 G (2%)

I110 0.079 V (2%)

T111 0.137 R (2%)

L113 0.531 V (2%)

H114 0.231 Q (2%)

A119 0.536 D (2%), G (2%), P (8%), R (1%)

T122 0.231 I (2%), M (1%), V (1%)

Q124 0.450 H (2%)

(*) E125 0.386 D (2%)

V129 0.216 A (2%)

I133 1.104 A (2%), T (3%), V (74%)

(*) S138 0.582 T (19%)

V141 0.386 I (2%)

(*) A153 0.274 S (3%)

(*) H156 0.388 L (2%), P (2%), R (2%)

(*) H157 0.310 P (2%)

(*) S163 0.913 D (21%), G (1%), N (7%)

R164 0.406 K (10%)

E167 0.921 D (41%)

N170 0.464 E (2%), I (2%)

I172 1.056 M (10%), V (65%)

HIV-2 Integrase Drug Resistance
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Table 2. Cont.

Position ROD Shannon entropy RAL-naı̈ve patients (63 sequences)

E173 0.310 K (2%)

(*) I175 0.531 L (2%), V (17%)

L177 0.450 V (2%)

M178 0.159 I (2%), R (2%)

I180 0.773 A (6%), T (5%), V (78%)

H181 0.079 Y (2%)

C182 0.079 Y (2%)

R188 0.079 W (2%)

G189 0.079 E (2%)

G190 0.079 E (2%)

S197 0.781 A (65%)

L200 0.464 F (2%), V (2%)

(*) I201 0.386 T (2%), V (2%)

(*)T206 0.895 A (41%), S (2%)

E207 0.137 D (3%)

I210 0.266 V (6%)

F212 0.271 L (2%)

C-terminal Domain F213 0.187 F (5%)

Q214 0.454 H (10%)

A215 0.788 N (2%), S (10%), T (11%)

K216 0.079 R (2%)

D217 0.216 D (2%), K (2%)

S218 0.476 L (13%)

K219 0.374 E (2%), N (2%), R (5%)

L220 0.629 F (33%)

K221 0.608 Q (19%), R (2%)

N222 0.419 K (11%)

R224 0.231 Q (6%)

F227 0.079 Y (2%)

R228 0.079 K (2%)

E229 0.137 K (2%)

Q233 0.079 H (2%)

L234 0.080 Q (2%)

W235 0.079 S (2%)

E240 0.688 D (2%), K (3%), Q (2%)

L241 0.159 H (2%)

E246 0.713 D (33%)

(*) V249 0.295 I (5%)

L250 0.556 I (87%), V (1%)

V251 0.349 A (8%)

T255 0.744 A (27%)

D256 0.680 E (11%)

I259 0.870 V (59%)

I260 0.949 M (1%), V (52%)

I267 0.310 V (2%)

I268 0.216 V (3%)

R269 0.940 K (33%)

R274 0.388 K (2%)

Q275 0.159 K (2%)

HIV-2 Integrase Drug Resistance
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From a total of 293 integrase codons analyzed, 61.4% (180/

293) were non-polymorphic and 38.6% (113/293) were naturally

polymorphic. Of the 113 variable positions, 39 (34%) were

mutated at least twice (Table 2). The catalytic triad DDE, the

zinc coordination motif HHCC, and the RKK motif, at positions

64, 116 and 152 (DDE), 12, 16, 40 and 43 (HHCC), and 231, 258

and 264 (RKK), respectively, were completely conserved in our

dataset, and the CTD was the least conserved of the three

domains, as foreseeable. The most polymorphic positions were

located at 23 HIV-2 group A IN positions: 19, 28, 30, 39, 41, 72,

93, 133, 167, 172, 180, 197, 206, 220, 246, 250, 259, 260, 269,

277, 281, 286 and 292 (Table 2).

Integrase sequences from RAL-naı̈ve patients were further

examined to determine whether the critical amino acid substitu-

tions associated with in vivo and in vitro INSTIs resistance in HIV-1

[35,57] occur as baseline polymorphisms in HIV-2. None of the

primary mutations at positions 66, 92, 143, 147, 148 and 155

responsible for RAL or EVG resistance in HIV-1 were detected in

sequences from HIV-2 RAL-naı̈ve patients. However, two

secondary mutations corresponding to resistance-associated sub-

stitutions in HIV-1 were observed: 206S and 249I. The most

common resistance associated residue was 249I, present in 5% of

sequences from the control group, while 206S was present in 2%

of these sequences. In this group of patients we also detected

polymorphisms at 8 additional positions associated with INSTIs

resistance in HIV-1: 125D, 138T, 153S, 156L/P/R, 157P, 163D/

G/N, 201T/V and 280S. In these patients, we further observed

two amino acid changes that were previously described as

secondary mutations in the HIV-2 IN, I84V and S163G/D

[44,45], and two polymorphisms at positions previously associated

with HIV-2 INSTIs resistance: H51Q, I175L/V [36,44,46].

To evaluate whether specific drug pressure induced by antiviral

drugs different from INSTIs, in particular NRTIs, may also select

or induce mutations in the HIV-2 IN gene, the different

prevalence of IN mutations between the two populations of

INSTI-naı̈ve patients (drug naı̈ve and NRTI/PI treated) was

investigated. Overall variability within IN was higher in treatment-

naı̈ve (34.5%) than in NRTI/PI-experienced patients (23.9%), and

this difference reached statistical significance (x2 = 7.43;

p = 0.00641). When analyzing each polymorphism individually,

we observed that two polymorphisms showed a significant increase

in prevalence in HIV-2 NRTI/PI-treated patients compared with

ARV naı̈ve patients: V19M (n = 4/23 vs. n = 1/40; p = 0.0353)

and L58V (n = 4/23 vs. n = 1/40; p = 0.0353). Interestingly, and

unlike the above-mentioned mutations, other two IN polymor-

phisms showed a significant decrease in prevalence in isolates from

NRTI/PI-treated patients, as compared with drug-naı̈ve patients,

thus suggesting a negative association with NRTI/PI treatment:

E246D (n = 11/23 vs. n = 31/40; p = 0.0162) and M277L (n = 6/

23 vs. n = 21/40; p = 0.0412).

Analysis of HIV-2 integrase gene mutations potentially
associated with RAL resistance

Ten heavily pretreated HIV-2 infected patients exhibiting

incomplete viral suppression or virological rebound while receiv-

ing a salvage raltegravir-containing regimen were investigated. Six

patients had only one isolate for analysis, and the other four

patients had longitudinal genotypic data. In these four patients,

RAL was kept despite a detectable viral load, because there were

no alternatives to the current regimen. The median time of

exposure to RAL was 17 months (range: 8–35 months). When the

drug resistance testing was performed, nine patients were receiving

different combinations of NRTI+PI, and one patient was receiving

only NRTI-based therapy, in addition to RAL. All had previously

received several combinations of NRTIs and PIs (Table 3).

RAL resistance associated mutations were identified in the ten

patients: one displayed the 148 pathway, seven displayed the 155

pathway, and two displayed none of the major RAL resistance

mutations, but instead the E92Q - T97A motif (patients 9 and 10,

Table 3). No switch of resistance pathway from the 155 to the 148

or 143 pathways was observed.

Our analysis identified 19 amino acid substitutions selected in

RAL-treated patients at some time point during longitudinal

follow-up, and potentially emerging as secondary response to RAL

Table 2. Cont.

Position ROD Shannon entropy RAL-naı̈ve patients (63 sequences)

E276 0.344 G (2%)

M277 1.090 L (43%), V (6%)

D278 0.159 G (2%)

S279 0.431 C (2%), N (5%)

(*) G280 0.680 S (19%)

S281 0.906 P (41%)

H282 0.597 N (12%), R (2%)

L283 0.630 V (8%)

G285 0.431 D (2%), S (5%)

A286 0.879 T (30%)

D289 0.466 N (8%), T (2%)

E291 0.349 G (2%)

M292 0.791 V (73%)

Polymorphisms of the HIV-2 group A IN sequences from 63 treatment-naı̈ve patients are reported with respect to the ROD reference sequence. The three different
domains of IN are indicated: the N-terminal domain (AA 1–49); the catalytic core domain (AA 50–212) containing the conserved catalytic triad (DDE motif); and the C-
terminal domain (AA 213–288). Positions known to confer resistance to INSTIs in HIV-1 or HIV-2 are marked with a star (*). The frequency (percentage) of each of each of
the polymorphisms is indicated in brackets. Only positions where variations were detected are reported. Shannon’s entropy at each variable position is indicated; an
entropy value of 0 corresponds to an amino acid strictly conserved, and higher entropy values indicate more variability.
doi:10.1371/journal.pone.0092747.t002
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pressure (Table 3, Figure 1). Fifteen amino acid substitutions

occurred at non-polymorphic positions of HIV-2 wild-type: Q44H

(n = 2 patients), Q45H (n = 1), K46R (n = 3), K71R (n = 1), E85K

(n = 1), Q91R (n = 1), E92A/G/Q (n = 8), T97A (n = 4), K127R

(n = 1), Q148R (n = 1), V151I (n = 1), N155H (n = 7), N160K

(n = 2), D232N (n = 1) and K236T (n = 1). Four amino acid

substitutions occurred at naturally polymorphic HIV-2 positions,

but were considered in our analysis because they were previously

reported as resistance associated mutations in integrase sequences

from RAL-treated HIV-2 patients: I84V (n = 4), A153G (n = 3),

H157N/S/R (n = 1) and S163D (n = 1). Substitutions E92A/G/

Q, T97A, Q148R, A153G and N155H have been previously

associated with some level of resistance to RAL on HIV-2.

Substitutions E92Q, T97A, Q148R, V151I, N155H and D232N

have been previously associated with INSTIs resistance in HIV-1.

The ‘148 pathway’ was observed in the virus from one patient

through the presence of Q148R (patient 1, Table 3). No accessory

mutations were detected. Mutation Q148H, the most frequently

observed in HIV-1 at this position, was not present in our dataset.

The HIV-1 signature mutation N155H was observed in viruses

from seven patients. Four of these patients had only one genotype

available for analysis, and three patients had longitudinal

genotypic data while still under RAL. Of the four patients with

only one post-RAL genotype, two shared the same pattern of

accessory mutations, I84V - E92A - A153G (patients 2 and 5,

Table 3); one displayed only two of these mutations, I84V -

A153G (patient 3, Table 3), probably due to the short exposure

time to RAL; and the other displayed E92Q - T97A - S163D

(patient 4, Table 3). Besides these accessory mutations previously

described in HIV-2, viruses from these four patients also displayed

amino acid substitutions in six HIV-2 non-polymorphic sites:

Q44H (n = 2), Q45H (n = 1), K71R (n = 1), K127R (n = 1),

D232N (n = 1) and K236T (n = 1), all previously unreported in

HIV-2. The three patients with longitudinal genotypic data

(patients 6, 7 and 8, Table 3) allowed us to investigate the

evolution of HIV-2 integrase genotypic resistance profiles under

continued RAL selective pressure. They all harbored the N155H

mutation in association with E92Q in two cases (patients 6 and 7,

Table 3), and with E92G in one other case (patient 8, Table 3).

Viruses from these patients also selected the I84V substitution in

one case (patient 6, Table 3), N160K in two cases (patients 7 and

8, Table 3), H157N/S/R in one case (patient 6, Table 3), and

T97A in viruses from one of the patients who selected E92Q

(patient 7, Table 3). In this last patient, we could see the initial

selection of Q91R, its replacement by E92Q three months later,

followed by the selection of T97A - N160K along with E92Q and

the concurrent selection against mutation at position N155. Four

substitutions at non-polymorphic HIV-2 positions were also

observed in these patients’ genotypes at some point during RAL

selective pressure: K46R (n = 3), V151I (n = 1), L242P (n = 1) and

D232N (n = 1). From all the substitutions here reported for the first

time, and whose impact on RAL resistance is still unknown, K46R

was clearly selected and maintained over time in these patients’

viruses. The remaining substitutions were observed as single

episodes in patients without longitudinal genotypic data, or were

deselected over time in patients with longitudinal data (Table 3).

Collectively, our data revealed three distinct patterns of

mutations eliciting resistance to raltegravir in HIV-2: Q148R in

one patient, E92Q - T97A in two patients, and N155H - E92A/

G/Q in six patients. The last patient (whose viruses selected

N155H - I84V - A153G) was genotyped early in RAL failure, and

we cannot exclude that that pattern of mutations will evolve to one

of the previously referred patterns as the exposure time to RAL

increases.
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Discussion

Studies assessing the development of resistance to raltegravir in

HIV-2 infection are relatively scarce and limited in sample size.

This is the first study to investigate the integrase genomic region of

HIV-2 using a comprehensive number of HIV-2 clinical samples:

83 integrase sequences from 73 HIV-2 infected patients.

HIV-2 integrase gene polymorphism
The overall rate of amino acid variation was 38.6% relatively to

the HIV-2 ROD reference strain, which is a value slightly higher

than the one reported by other, smaller scale, studies, where values

around 27% [31], 33.1% [36], and 38% [33] have been described.

This is probably related to the largest size of our sample. This

variability is similar to the one reported for the HIV-1 integrase,

where 37.5% [62] and 38.2% [63] of sequence variability has been

observed for IN residues. The catalytic motif residues were

completely conserved in our dataset, in line with what was

expected in face of their essential nature for IN function [64–66].

The low variability tolerated at such positions agrees with what

other authors have previously described [31,33,36] and confirms

the crucial role of these amino acids in IN efficacy and viral

replication.

In our RAL-naı̈ve data we found no evidence of the primary

mutations responsible for raltegravir or elvitegravir resistance in

HIV-1 or HIV-2. However, two amino acid substitutions at

positions implicated in HIV-1 secondary resistance to raltegravir

or elvitegravir were naturally present in the sequences from these

patients. Amino acid 249I had already been observed in the HIV-

2 integrase by previous authors [33,36,67], but 206S is here

reported for the first time. Furthermore, at 8 HIV-1 resistance

associated positions we observed atypical amino acid substitutions

(125D, 138T, 153S, 156L/P/R, 157P, 163D/G/N, 201T/V and

280S), some of which had been previously referred by others [31].

However, their full impact on HIV-2 resistance remains to be

elucidated.

In our sequences from INSTI-naı̈ve patients, we observed that

some polymorphisms changed their prevalence according to prior

ARV (NRTI/PI) exposure: V19M and L58V significantly

increased their frequency in NRTI/PI-treated patients, while

E246D and M277L significantly decreased their frequency in this

group. Indeed, IN and RT are thought to interact [66]. In HIV-1,

recent studies have shown that some IN polymorphisms change

their prevalence according to prior NRTI exposure [63], and that

there are some associations between IN mutations and RT

resistance mutations in ARV-failing patients [68,69]. This

supports the hypothesis of a tight physical interaction between

the viral IN and RT, and/or a potential co-evolution of some of

their mutations [70].

The mechanisms of this observed difference in the prevalence of

some IN polymorphisms between drug-naı̈ve and ARV-treated

patient populations, as well as the associations between specific IN

and RT mutations, needs further investigation. Since the coding

regions for PR, RT and IN are located in the same gene, and the

three enzymes before maturation are folded together in a unique

polyprotein precursor, it is conceivable that several structural

interactions (also among the three different proteins) may occur at

this level [63]. Furthermore, the end-product of the RT-catalysed

reaction is the substrate for IN. It is also conceivable that IN

mutations can appear under specific drug pressure induced by

antiviral agents such as NRTIs, in order to rescue the correct

binding between the RT and IN enzymes, impaired by emergence

of drug resistance mutations. In addition, it is possible that IN

polymorphisms are co-selected with RT resistance mutations for

viral fitness compensatory rescue, or vice versa.

HIV-2 integrase gene mutations potentially associated
with RAL resistance

In the present study, of the HIV-1 RAL signature mutations

already described in HIV-2, only N155H and Q148R were

observed. Treatment failure of HIV-2 RAL regimens seems to be

associated with the emergence of resistance mutations via two

main resistance pathways, stemming from N155H and Q148R. In

the two patients who did not select any of these, we only observed

E92Q - T97A mutations. Since in one case we observed a de-

selection of the N155H mutation under therapy in a compliant

patient, we can speculate that this might be a late stage evolution

of the N155H pathway. In our dataset, this pathway seems to be

the preferential towards the development of RAL resistance in

HIV-2 group A viruses, since N155H was the predominant

mutation selected in these patients, clearly outnumbering Q148R

which was observed only in one patient. This disagrees with what

others have reported about the N155H pathway being observed

only in patients infected with HIV-2 group B viruses [41].

In addition to these two major (Q148R and N155H) and two

minor (E92Q and T97A) RAL resistance mutations, other minor

mutations also associated with RAL resistance in HIV-1 were

observed in HIV-2 patients failing RAL-containing regimens

(V151I and D232N), along with several novel mutations previously

unreported in HIV-1 or HIV-2.

In line with previous reports, the A153G substitution was always

detected in the same genotype as N155H, indicating a preferential

association with the 155 mutational pathway, and suggesting that

this double mutation may confer higher levels of resistance to RAL

than the N155H single mutant [44–46]. The Q91R substitution

was detected in a N155H carrying genotype. To our knowledge,

this is the first time that Q91R is associated with the 155 pathway

in HIV-2. To date, this mutation has rarely been reported, and,

when so, it was either associated with the 143 pathway, together

with T97A [46], or associated with the recently described

mutation I175M and conferring high levels of resistance to RAL

in vitro [36]. Further studies are necessary to elucidate the

individual impact of Q91R on HIV-2 resistance to RAL, and on

the replicative capacity of the virus.

Several atypical amino acid substitutions were selected in the

patients failing RAL. The majority was observed as single episodes

in patients without longitudinal genotypic data, or deselected over

time in patients with longitudinal follow-up. Mutation K46R,

however, was selected in patients with longitudinal data and

persisted, being apparently fixated in the virus genome. K46R was

always selected in N155H-carrying genotypes, and may constitute

a secondary mutation specific to the 155 resistance pathway in

HIV-2.

For HIV-2 patients remaining on a failing RAL regimen, and

for whom genotypic resistance follow-up was available, we could

distinguish one of two patterns: either an accumulation of

secondary RAL resistance mutations, or the replacement of pre-

selected mutations by novel variants. The former was more

common, being observed in two of the three patients with

longitudinal follow-up (patients 6 and 8, Table 3). Such

accumulation of mutations probably intends to overcome the

fitness costs due to the acquisition of primary mutations. Patient 7,

however, evidenced a different genotypic pattern of evolution,

through the replacement of pre-selected variants by novel ones. In

this patient, we could see the initial selection of N155H - Q91R,

followed by the replacement of Q91R by E92Q and K46R, and

later by the addition of T97A and N160K, with the simultaneous
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selection against mutation at position N155. This patient

constitutes an interesting case for several reasons: it was the only

patient where we could observe the replacement of pre-existing

mutations by new ones; it was the first time that Q91R, a mutation

never reported in HIV-1, was associated with the 155 pathway;

and it was the only case where we could see the selection against

major mutation N155H, albeit still under RAL pressure, and its

replacement with T97A - N160K. Viruses from the remaining

patients that selected the N155H mutation maintained it over

time, as previously described by others [44]. The patient in

question is reported as adherent to the therapy (adherence

evaluated by self-reporting and pill count), making unlikely the

hypothesis that this de-selection could be the result of incomplete

adherence. Furthermore, the de-selection of N155H occurs after

the longest exposure to raltegravir (35 months) in our dataset,

suggesting that despite the high level of RAL resistance conferred

by this mutation [44], the impairment it causes in viral replication

may lead to its replacement by other substitutions that allow a

more efficient trade-off between acquisition of resistance and

fitness costs. Therefore, we can speculate that the accumulation of

mutations E92Q, T97A and, eventually, K46R and N160K in this

patient may be sufficient to ensure resistance to RAL without the

fitness costs incurred by mutation N155H [71].

In the patients with longitudinal follow-up, no switch of

resistance profile from 155 to 148 or to 143 occurred. But

disparate observations have been made on this matter by different

HIV-2 study groups: one group agreed with our results and

reported no switch of genotypic resistance profiles in the HIV-2 IN

[41], but another group reported the switch from the N155H to

the Y143C resistance pathway by both population and clonal

sequencing [46]. This shift of resistance pathways is well

documented in HIV-1 [72,73], but further studies are required

to elucidate its occurrence in HIV-2. On the other hand, our data

corroborate what has been described both in HIV-1 [35,73] and

HIV-2 [32,42] reporting that the main pathways of RAL

resistance are mutually exclusive, since two primary resistance

changes were never observed in the same genotype.

Mutation Q148H, the most frequently observed in HIV-1 at

this residue was not detected in our dataset. Instead, we found

Q148R, which is sufficient to induce phenotypic HIV-2 RAL

resistance by itself [32,42]. Mutation G140S, usually selected with

Q148R to mitigate the fitness costs incurred by this primary

mutation [37,41,42,74], was not observed in our study, probably

due to the short exposure time of the patient to RAL (only 5

months).

E92Q was observed in our dataset either in association with

N155H, or with T97A. It is known that this secondary mutation

increases the level of resistance to RAL of HIV-2 mutants in a

Y143C- or N155H-resistant background, playing a more impor-

tant role in the HIV-2 than in the HIV-1 context [41,42,46]. In

two other patients, viruses selected and maintained the E92Q -

T97A pattern without any major mutation. One of these patients

is reported to have good adherence to therapy, and no adherence

data is available for the other patient. This seems to suggest that

E92Q, coupled with T97A, may be sufficient to elicit resistance to

RAL in HIV-2, albeit to a lesser extent than N155H or Q148R, as

previously demonstrated in vitro in the HIV-1 IN [75]. But it may

also be a late stage evolution of the N155H pathway. Also the

possibility of an incomplete adherence to therapy cannot be

formally excluded, since we cannot detect this bias with the self-

reporting method used with these two patients.

Besides E92Q, we also found two other substitutions at residue

E92: E92A, a mutation less frequently described at this residue

[41,42], was observed at two of the N155H-mutated viruses but,

similarly to what happens with T97A, apparently provides no

additional resistance to the virus [42]; and the atypical substitution

E92G was observed once in association with the N155H pathway,

as previously documented [42,46]. Both E92A (GCA) and E92G

(GGA) are not transitional amino acids from the wild-type E92

(GAA) to E92Q [CA(A/G)], as we confirmed through the analysis

of their nucleotide sequences, so we can speculate that these can be

true resistance mutations. However, phenotypic studies are

required to confirm this hypothesis.

Figure 1. Positions selected in vivo under RAL pressure in an HIV-2 integrase 3D model. 3D structure of HIV-2 integrase, modelled from
the Prototype Foamy Virus (PDB ID 3L2V), shown in complex with raltegravir (colored red) and DNA (colored purple). The 19 residues identified in this
study as potentially associated with RAL resistance are highlighted: residues involved in major RAL resistance pathways are colored blue (92, 97, 148
and 155), and residues corresponding to minor RAL resistance mutations are colored green (44, 45, 46, 71, 84, 85, 91, 127, 151, 153, 157, 160, 163, 232
and 236). For comparison, HIV-1 active site codon positions are colored red (64, 116 and 152). The 3D structure was adapted from the pdf entry 3L2V
using the JMol software (Available: http://www.jmol.org/).
doi:10.1371/journal.pone.0092747.g001
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T97A was always selected in E92Q-carrying viruses, once also

with N155H. The T97A - N155H association has been previously

reported in HIV-2 [41]. A recent study suggested that T97A

provides no additional resistance to viruses carrying the N155H

mutation, but may improve the fitness of enzymes that would

otherwise be catalytically impaired [42]. Our results suggest that

T97A may have the same role in viruses carrying the E92Q

mutation, although further studies are necessary to confirm this

hypothesis.

Conclusions

In conclusion, raltegravir is highly effective, but so far there is

no data to allow a recommendation on when to use this compound

in the context of HIV-2 infection, for a first-line or later regimen.

Taken together, data retrieved from this study should help build a

more robust HIV-2-specific algorithm for the genotypic interpre-

tation of raltegravir resistance. Nevertheless, further studies are

needed to elucidate the true impact of some of the mutational

patterns we found in the efficacy of raltegravir.
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