

Biodegradable polyesters from agro&industrial by-products

Bie

36.5

ecom

World Congress on Industrial Biotechnology Philadelphia, PA Philadelphia, PA

Catarina Dias de Almeida^{1,2}, João Cavalheiro¹, Rodrigo Raposo¹, Teresa Cesário¹, Frederico Ferreira¹, Bruno Ferreira³, Frederik van Keulen³, Eric Pollet⁴, M. Manuela R. da Fonseca¹

1 - Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Portugal

2 - Centro de Investigação Interdisciplinar Egas Moniz, Monte de Caparica, Portugal

3 - Biotrend S.A., Cantanhede, Portugal

4 - Ecole Europeènne de Chimie, Polymères et Matériaux, Université de Strasbourg, France

catarina.almeida@tecnico.ulisboa.pt

Waste glycerol

- Cupriavidus necator DSM 545 produced the homopolymer P(3HB) from GRP at a productivity of 1.1 gL¹.h⁻¹ [8].
- Using + butyrolactone (GBL) as the precursor for 4HB monomers. C. necator DSM 545 cells were able to accumulate P(3HB-co-4HB) with different 4HB to 3HB ratios [9].
- Propionic acid (PA) was used as stimulator for 4HB incorporation, as suggested by Lee et al. 2000 [10]. PA considerably increased the 4HB ratio, but also acted as 3-hydroxyvalerate (3HV) precursor, resulting in the production of P(3HB-4HB-3HV).
- By manipulating the dissolved oxygen concentration (DOC) and cultivation time. 4HB molar percentages in the range 11.4 21.5 were attained. Terpolymers were obtained with 24.8% to 43.6% 4HB and 5.6% to 9.8% 3HV (see Table 1, Figure 1 and 2). Results indicate that a higher DOC favors PHA accumulation. Average MW varied between 5.5 x 10° Da and 1.37 x 10° Da with a PI from 2.6 to 4.0.

Mesenchyma Glycerol stem cells (from biodiese Potential cultivation applications production Medicine ő -Flat collec Crude Glycero h = 0.51 mr-Butyrolacton Propionic acid Figure 6 From P(2HP-4HP-2HV) to craffolds for hMSC

Conclusions

- Waste glycerol was successfully used as an alternative C-source to produce PHAs.
- Integrating biopolyesters and biodiesel production can contribute to (i) reduce costs associated with the C-source for PHAs production (ii) the upgrade of the surplus glycerol generated in the biodiesel plants.
- P(3HB) and P(3HB-4HB) were successfully bioproduced from different batches of wheat straw hydrolysates.

The attained P(3HB) and P(3HB-4HB) volumetric productivities are by far the highest ever achieved on agricultural waste hydrolysates and further optimization is under way (see poster Cesário et al. for more details!).

Wheat straw lignocellulosic hydrolysates

Figure 7. Main steps involved in hydrolysate p

Table 2. Preliminary strain selection

Strain	Criteria				Comments
	glucose	xylose	PHA	Risk	
Alcaligenes latus DSM 1122	+		+	1	Aggregates during the first stages of growth
Bacillus sp MA3.3	+	+	+	1	Not available
Burkholderia cepacia ATCC 17759	+	+	+	2	
Burkholderia sacchari DSM 17165	+	+	+	1	High growth rates
Cupriavidus necator DSM 545	+		+	1	High growth rates
Haloferax mediterranei	+		+	1	Costly growth medium and corrosion problems.
Methylobacterium extorquens	+		+	1	Low concentration of the optimal C sources in the hydrolysates
					Preferential uptake of

A standardized fermentation protocol was successfully developed allowing for the testing of the supplied hydrolysates, as well as for further scale up of the process.

- Feedback from bench scale assays allowed for hydrolysates improvement by biorefinery.de GmbH.
- Feeding strategy for multiple carbon source consumption successfully implemented [13]. Gell density and P(3HB) productivity were similar to those reached in control cultivations with
- mixtures of commercial sugars [13]. Cell density and P(3HB-4HB) productivity using hydrolysates were lower than those reached in P(3HB) production cultivations due to inhibition caused by the precursor (GBL) [14].

References [11 Lee, S. Y. Biotechnol, Bioena, 49, 25-30, 1996.

[2] Steinbüchel, A. In Rehm, H.J., Reed, G., Pühler, A., Stadler, P. (eds), Biotechnol. 6, 403-464, 1996. [3] http://www.ebb-eu.org/biodiesel.php (10-04-2014) [4] Solaiman et al. Appl. Microbiol. Biotechnol. 71, 783 - 789, 200 151 Koller et al. Biomacromol. 6. 561-565. 2005. [6] Mothes et al., Eng. Life Sci. 7, 5, 475-479, 2007. [7] Almeida et al., J. Chem. Tech. Biotechnol., 82, 4, 340-349, 2007. [8] Cavalheiro et al., Process Biochem, 44, 509-515, 2009. [9] Cavalheiro et al., Biores. Technol., 111, 391-397, 2012. [10] Lee et al., J. of Biosci. Bioeng, 89 (4), 380-383, 2000. [11] Cavalheiro et al. Biores. Technol., 147, 434-441, 2013. [12] Canadas et al., Int. J. Biol. Macromol., accepted, 2014. [13] Cesário et al., New Biotechnol., 31, 1, 104-113, 2014. [14] Cesário et al. Int. J. Biol. Macromol., accepted, 2014.

Table 3. P(3H8) production from a sugar mixture simulating the hydrolysate (as control) and from a real hydrolysate (hydrolysate composition: 563 gL⁻¹ glucose, 284 gL⁻¹ xylose, 46 gL⁻¹

0.18 1.7 51 138

0.20 1.7 55 150

CDW PHA (gL⁻¹) (gL⁻¹)

P (3HB-co- 6% 4HB) m. 88 24 27 0.5

P(3HB) gp 125 71 57 1.5

465 gL⁻¹ glucose, 146 gL⁻¹ xylose, 42 gL⁻¹ arabinose).

Table 4. PHA production from wheat straw hydrolysates (hydrolysate compositio

Acknowledgements

Studies on GRP were financed by the EU Integrated Project BIOPRODUCTION (contract nº 026515-2) and those on cellulosic hydrolysates are funded by the EU Collaborative Project BUGWORKERS (contract nº 246449)

Figure 5. The effect of (4HB + 3HV) molar % on the terpolymer mechanical properties elemention at break plotted on two different scales, (c) Young's modulus and (d) tensili