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Conversely, the more sustained drug release from pHEMA-T is not affected by load
and friction cycles. The conclusion is that, depending on the physicochemical and
microstructural characteristics of the hydrogels, blinking is a factor that may affect the
amount of drug delivered to the eye by SCLs and should thus be considered.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



 
 

About the effect of eye blinking on drug release from pHEMA based hydrogels:  

an in vitro study 

 

R. Galante
a
, P. Paradiso

a
, M.G. Moutinho

b
, A.I. Fernandes

b
,  

J.L.G. Mata
a
, A.P.A. Matos

b
, R. Colaço

a,c
, B. Saramago

a
, A.P. Serro

a,b
* 

 
a
 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco 

Pais, 1049-001 Lisboa, Portugal 

b
 CiiEM, Instituto Superior de Ciências da Saúde Egas Moniz, Campus Universitário, Quinta da 

Granja, Monte de Caparica, 2829-511 Caparica, Portugal 

c
 Bioengineering Department, Instituto Superior Técnico, TU Lisboa, Av. Rovisco Pais, 1049-

001 Lisboa, Portugal 

 

 

 

 

Acknowledgements  

To BASF for the kind offer of PVP Kollidon® 30. To Dr. Miguel Ângelo Rodrigues from CQE-IST 

for access to the HPLC equipment. To Fundação para a Ciência e a Tecnologia for P. Paradiso 

PhD Grant SFRH/BD/71990/2010 and for funding through the projects PEst-

OE/QUI/UI0100/2013 and M-ERA.NET/0005/2012. To CRUP for funding the bilateral action 

with Germany (NMI - Natural and Medical Sciences Institute at the University of Tübingen, 

A29/12). 

 

 

*Corresponding author 
 

Ana Paula Serro 

Centro de Química Estrutural - Instituto Superior Técnico 

Av. Rovisco Pais, 1049-001 Lisboa, Portugal 

anapaula.serro@tecnico.ulisboa.pt 

Tel: +351 21 8419240 

Fax: +351 21 8464455 

Abstract 

Manuscript
Click here to download Manuscript: Manuscript Serro et al _ resubmission.docx 

mailto:anapaula.serro@tecnico.ulisboa.pt
http://www.editorialmanager.com/jbs/download.aspx?id=61720&guid=5b3a44be-c497-42ce-9d0a-f7b0c60e35e3&scheme=1


 
 

The development of new ophthalmic drug delivery systems capable of increasing the residence 

time of drugs in the eye and improve its bioavailability relatively to eyedrops has been object of 

intense research in recent years. Several studies have shown that drug loaded therapeutic soft 

contact lenses (SCLs) constitute a promising approach, with several potential advantages as 

compared with collyria. The main objective of this work is to study the effect of repetitive load 

and friction cycles caused by the eye blinking, on the drug release from hydrogels used in SCLs 

which, as far as we know, was never investigated before.  

Two poly-2-hydroxyethylmethacrylate based hydrogels, pHEMA-T and pHEMA-UV, were used 

as model materials. Levofloxaxin was chosen as model drug. The hydrogels were fully 

characterized in what concerns structural and physicochemical properties. PHEMA-UV revealed 

some superficial porosity and a lower short range order than PHEMA-T. 

We observe that the load and friction cycles enhanced the drug release from pHEMA-UV 

hydrogels. The application of a simple mathematical model, which takes into account the drug 

dilution caused by the tear flow, showed that the enhancement of the drug release caused by 

blinking on this hydrogel may be relevant in in vivo conditions. Conversely, the more sustained 

drug release from pHEMA-T is not affected by load and friction cycles. The conclusion is that, 

depending on the physicochemical and microstructural characteristics of the hydrogels, blinking 

is a factor that may affect the amount of drug delivered to the eye by SCLs and should thus be 

considered.  
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Topical application of medicated eyedrops is still the most common treatment for a wide range of 

ocular diseases caused by pathogenic agents. After instillation, about 90-95% of the drug 

contained in the collyrium is either absorbed through the conjunctiva or lost due to tear drainage 

[1, 2]. A significant amount of the drug enters rapidly into the bloodstream and may reach 

important organs, causing serious side effects. Besides the low penetration rates in the cornea, 

the short drug residence time leads to high variability of the drug concentration in the intraocular 

tissues and to the need of frequent administration, resulting in poor patient compliance and limiting 

the therapeutic efficacy.  

The development of new drug delivery systems capable of enhancing the ocular bioavailability of 

drugs has been subject to special attention in the last few years and is regarded as a major 

advance in ophthalmological therapy. To achieve this goal, scientists of different areas have 

investigated several possibilities: for example, the use of colloidal systems, such as 

microemulsions, nanosuspensions or nanostructures (e.g. liposomes, nanoparticles or niosomes) 

and the in-situ application of gels or solid polymeric inserts [3-5]. Although, in general, these 

approaches increase drug bioavailability, they entail several problems [5]. Colloidal systems are 

subject to clearance mechanisms and tend to be washed away by reflex tearing [5]. Production of 

nanostructures at a large scale may be expensive and technically complex. Moreover, the 

potential of these structures as ophthalmic drug delivery systems is restricted by their lack of 

stability, limited drug-loading capacity and affinity of the matrix components (e.g. lipids or 

polymers) towards the drug. Aqueous gels and ointments exhibit relatively poor patient 

compliance due to some discomfort, blurring of vision and occasional irritation after application [6]. 

Moreover, the use of solid devices in the pre-corneal region, such as the inserts, also faces 

significant resistance from the patients [7]. Therefore, the development of new drug delivery 

systems, which are inexpensive and patient friendly, exhibit suitable drug release profiles and 

resist to the required final sterilization, still remains a challenge. 

Recent works [8, 9], have shown that the use of soft contact lenses (SCLs) as vehicles for storage 

and ocular delivery of drugs seems to be a promising approach, due to its high degree of comfort, 

biocompatibility and prolonged contact with the eye surface. The application of SCLs for 

therapeutic purposes is a well established technique in current clinical ophthalmology [10, 11]. 

However, they are typically used with the purpose of protecting the eye, relieving pain, maintaining 
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corneal epithelial hydration and, eventually, to correct refractive errors [8-13]. In the post-surgical 

period, when the cornea is more vulnerable, their role is particularly relevant, since they protect 

the eye during the processes of cell adhesion and growth, which lead to healing. They may also 

be very useful in the case of keratic ulcers or after refractive surgery. Sometimes, contact lenses 

are prescribed for use in combination with eye drops, in order to prolong the residence time of the 

drugs in the cornea. Drug pre-loaded SCLs, which to our knowledge are not commercially 

available yet, may lead to a more effective treatment, because they avoid repeated applications. In 

fact, once placed on the eye, the drug released from the lenses will diffuse into a thin fluid layer 

trapped between the lens and the cornea (the post-lens tear film) whose mixture with the outside 

tear fluid is limited [14]. A sustained release of adequate amounts of drug will allow a prolonged 

therapeutic action.  

The development of such type of devices has raised great interest among the clinical and 

academic community and also at the industrial level, as shown by the large number of studies on 

the subject published in recent years [2, 15, 16]. Different strategies to load the hydrogels with 

drugs were attempted, e.g. the direct incorporation of the drugs into the monomer mixture before 

the polymerization step [17, 18], the incorporation or surface immobilization of drug-loaded 

nanostructures (like nanoparticles and liposomes) in the hydrogels’ matrix [1, 19-22] or the use of 

supercritical fluids to enhance drug loading efficiency [23, 24]. However, soaking the lenses in 

drug solutions still remains the most simple and inexpensive method of loading, besides 

presenting fewer risks to the integrity of the drug molecules and lenses materials. Moreover, it 

offers the possibility to load commercial contact lenses, whose properties and production are 

already optimized. Nevertheless, many authors claim that drug release from hydrogels loaded by 

soaking only lasts for a few hours [21]. The release kinetics depends on numerous factors, such 

as the drug properties, the hydrogel composition and crosslinking degree, the temperature and, 

obviously, the volume of the dissolution media and hydrodynamic conditions used in the release 

experiments. Typically, these experiments are carried out in static conditions, with large volumes 

of solution, which are very different from those present in the eye. Therefore, a careful 

interpretation of the results is required and attempts to extrapolate for the behavior of the 

hydrogels in the eye have to be cautious. 
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The main objective of the present work was to study the effect of repetitive load and friction cycles 

associated to the eyelid movement, present in in vivo conditions, on the drug release from 

ophthalmic hydrogels, which, to our knowledge, has never been investigated before. The systems 

chosen were poly(2-hydroxyethyl methacrylate) (pHEMA) based hydrogels, containing 

levofloxacin, as model drug. The reason for this choice was the fact that pHEMA is commonly 

used as base material for the production of conventional soft contact lenses [25], while the 

antibiotic, levofloxacin, presents a broad activity spectrum, being widely used both in the 

prophylaxis and treatment of ocular infections [26]. 

Two types of pHEMA based hydrogels containing a small amount of poly(vinylpyrrolidone (PVP)  

were prepared. PVP increases the hydrophilicity of the material and has self-lubricant properties 

essential to the comfort and good performance of the contact lenses [27, 28]. One hydrogel was 

prepared using an anhydrous mixture. In the other case, acrylic acid and water were added to the 

mixture to enhance the water absorption capacity of the material, as well as the oxygen 

permeability [29]. The hydrogels were characterized with respect to the properties that are 

important in lens materials’ performance, namely, swelling kinetics, ion permeability, 

transmittance, friction coefficient, elasticity, wettability, morphology/topography and microstructure. 

After characterization, the samples were loaded with the antibiotic by immersion in the drug 

solution. The effect of dynamic cyclic compression (thereafter designated friction) on the drug 

release was studied using an apparatus especially conceived to simulate the movement of the 

eyelids. A mathematical model which mimics the hydrodynamic conditions in the eye was applied 

to the results to infer about the importance of blinking on the in vivo drug release.  

 

2. Materials and Methods 

2.1 Hydrogels preparation 

Two types of pHEMA based hydrogels were prepared. In the first case (pHEMA-T), appropriate 

amounts of the crosslinker ethylene glycol dimethacrylate (EGDMA, Sigma-Aldrich, 98%) and of 

the initiator 2,2′-azobis(2-methylpropionitrile) (AIBN, Sigma-Aldrich, 98%), were dissolved in 2-

hydroxyethyl methacrylate (HEMA, Sigma-Aldrich, HPLC grade 98%), to obtain concentrations of 

80 mM and 10 mM, respectively. Poly(vinylpyrrolidone) (PVP, Kollidon® 30, kindly provided by 

BASF) was added to the mixture to a final concentration of 0.02 g/mL. After complete dissolution, 
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the solution was degassed by ultra-sonification (5 minutes), bubbled with a gentle stream of 

nitrogen (15 min), and injected into a mould consisting of two glass plates separated by a spacer 

of polyurethane. In order to facilitate the hydrogel removal from the mould, the glass plates were 

previously silanized by immersion in 2% solution of dimethyldichlorosilane (Fluka, 99.5%) in 

carbon tetrachloride (Riedel-de Haën, 99.8%) for one hour, followed by rinsing with 

dichloromethane (Sigma-Aldrich, 99.5%) and drying with nitrogen [30]. The thermopolimerization 

of the mixture was achieved in an oven in two stages: 50°C for 12 h and 70°C for 24 h. The 

hydrogel sheet obtained was boiled in water for 15 min to remove unreacted monomers and to 

facilitate the cutting of the samples used in the study (5x1cm
2
). The hydrated samples (thickness 

0.35 mm) were dried overnight (16 h) inside an oven at 50°C. 

A second type of hydrogels, pHEMA-UV, was prepared using a similar procedure. In this case, 

acrylic acid (Sigma-Aldrich, 99%) was added to the previous mixture to get a concentration of 100 

mM, and the obtained mixture was diluted in water at a volume ratio of 1:1. Since 

thermopolymerization resulted in an opaque hydrogel, an alternative method of polymerization by 

UV radiation was used, which led to a faster polymerization and prevented the occurrence of 

phase separation. The polymerization was done using 4 UV lamps of 15 W at 350 nm (distance 

from light source 10 cm) during 90 min, at room temperature. In this case, the hydrogel sheet was 

boiled for a longer period (30 min), replacing the water after 15 min, since a larger amount of 

unreacted monomers was released. 

 

2.2 Materials characterization 

2.2.1 Swelling kinetics 

The dry hydrogel samples were weighted (W0) and immersed in water at 25°C. At defined time 

intervals, the samples were removed from the incubating medium and their surface was carefully 

dried with absorbent paper. They were weighted (Wt) and re-immersed in water. The procedure 

was repeated several times during 10 h in order to determine the kinetics of swelling of the 

material. All tests were performed in triplicate. 

The swelling capacity (SC) was calculated by: 

                          0

0

100tW W
SC

W


          (1) 



 
 

7 

In the equilibrium (when the weight achieves a constant value, W∞) the water absorption capacity 

(WAC) is defined by: 

                          0 100
W W

WAC
W






              (2). 

2.2.2 Ionic permeability 

The ionic permeability of the hydrogels was measured using an in-house built diffusion cell 

comprising two separated compartments: a donor and a receiving chamber. The hydrated 

hydrogel samples were placed in between the two compartments. The receiving chamber was 

filled with deionized water and the donor chamber with 130 mM sodium chloride solution (NaCl, 

Merck, 99.5%) to simulate the lachrymal fluid. The ionic permeability of the materials was 

determined by measuring the rate of ion transport across the hydrogel. The electric conductivity of 

the solution in the receiving chamber was recorded as a function of time for a minimum of 10 

hours, using a conductivity meter with temperature sensor (Cond 340i/SET, WTW). The 

conductivity data (in S/cm) were converted into NaCl concentration (in mg/mL) through a 

calibration curve previously obtained. The rate of ion transport (F) corresponds to the slope of the 

linear regression applied to the concentration data versus time. Solving the diffusion equation 

under the pseudo-steady state conditions allows the calculation of the ion permeability (also 

referred as the ionoflux diffusion coefficient, Dion)[31]: 

 

                           ion

F V dC
D

A dx


        (3) 

 

where V is the volume of the receiver solution, A is the area of the hydrogel sample and  dC/dx 

corresponds to the NaCl concentration gradient in the hydrogel. 

The results are the average of three independent measurements. 

   

2.2.3 Transmittance 

The visible light transmittance (T) of the hydrogel samples was determined in the wavelength 

range of 450-700 nm using a UV-Vis Beckmam DU-70 spectrophotometer. The lenses were 
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hydrated by soaking in 130 mM NaCl solution overnight, and then mounted on the outer surface of 

a quartz cuvette. Measurements were done in triplicate. 

 

2.2.4 Friction coefficients 

A CSM nanotribometer was used to determine the friction coefficient of the hydrogels against a 

smooth polymeric surface. The hydrated hydrogel samples were placed in a cell containing NaCl 

solution (130 mM). Polymethylmethacrylate (PMMA) semi-spheres, with a curvature radius of 2 

mm, were used as counterbody. The normal load applied was 20 mN and the sliding velocity 0.7 

cm/s. The results are the average of three measurements. 

 

2.2.5 Elasticity 

The Young’s modulus of each hydrogel was estimated from the slope of the stress-strain 

curves obtained during tensile tests conducted with hydrated samples of the materials (at least 

five independent measurements with each load). For that, samples were carefully suspended in a 

vertical support and submitted to increasing tension by placing hanged weights (0.1 - 1.2 N) on 

their lower extremity. The elongation produced was monitored with a cathetometer, assuring that 

the hydrogels were kept well hydrated at all times and, then, the Young’s modulus (E) was 

determined.  

 

2.2.6 Wettability 

The hydrophilicity of the hydrogels was determined by measuring the water contact angle on dry 

samples (dried 3 h in a vacuum oven), through the sessile drop method. Drops (2-3 μL) were 

deposited onto the dried hydrogels surfaces using a micrometer syringe, in a chamber previously 

saturated with water vapor. Drops images were acquired during 10 min using a video camera (JAI 

CV-A50) attached to a microscope (Wild M3Z) connected to a frame grabber (Data Translation 

DT3155). The acquisition and analysis of the images were performed using the ADSA-P software 

(Axisymmetric Drop Shape Analysis Profile). Eight to ten drops were done for each hydrogel. 

 

2.2.7 Topography/Morphology 

http://en.wikipedia.org/wiki/Slope
http://en.wikipedia.org/wiki/Stress-strain_curve
http://en.wikipedia.org/wiki/Stress-strain_curve
http://en.wikipedia.org/wiki/Tensile_test
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The hydrogels’ surface was observed using a scanning electron microscope (SEM) Hitachi S2400 

(15 KeV). The hydrated samples were cracked in liquid nitrogen, kept at -80°C for 4 hours and 

then freeze-dried overnight. Prior to the SEM analysis the hydrogels were covered by a thin gold 

coating (thickness 30 nm). 

An atomic force microscope (AFM) NanoSurf Easyscan 2 (tip-scanning type) was used to get 

topographic images at a lower scale. The scan of the hydrated hydrogels surface was done in 

water, at room temperature, in contact mode atomic force microscopy on areas of 20×20 μm
2
, at a 

scan rate of 1 Hz. Gold coated PPP-CONTSCAuD Nanosensor cantilevers (force constant 0.06 

N/m) were used. The average roughness (Ra) was determined from the images obtained using 

the WSxM 5.0 develop 6.4 software. 

 

2.2.8 Microstructure 

Transmission electron microscopy (TEM) of both hydrogels was carried out with a Jeol 1200EX 

TEM equipment operated at 80 kV. The dry hydrogel samples were embedded in an Epon-

Araldite mixture and thin sections were cut with a diamond knife in a Reichert Ultracut E 

ultramicrotome. Some sections were contrasted with 2% aqueous uranyl acetate for 30 minutes 

followed by lead citrate for 4 minutes, others were observed unstained. Besides bright field TEM 

observations, selected area electron diffraction (SAED) patterns were obtained from the samples. 

 

2.3 Drug release tests 

The hydrogel samples were loaded with levofloxacin (Sigma-Aldrich, 98%) by immersion in a drug 

solution (13 mL, concentration 5 mg/mL) for 16 h. After loading, the sample surface was dried with 

absorbent paper and weighted.  

In order to determine the total amount of drug loaded in the hydrogels, the loaded samples were 

immersed in a large volume of water (200 mL) during 4 days. After that period, the whole volume 

of water was renewed daily, till no more antibiotic was detected (the drug quantification method is 

described in the end of this section). The experiment was prolonged typically till the 7
th
 day. The 

total amount of drug released was assumed to be equal to the drug loaded.  

In the release tests without friction, the loaded samples were immediately immersed in 13mL of 

NaCl solution (130 mM) in closed containers. Tests were carried out both without stirring and 



 
 

10 

under stirring (150 rpm). The tests with friction were done using the same containers (liquid cells) 

and the same volume of liquid in the equipment Simublink (Fig. 1), designed and conceived in our 

laboratory to simulate the blinking movement over the contact lenses in the eye. Basically, the 

equipment transforms the rotation motion of a stepping motor into alternate linear motion of 

adjustable elongation. All the movement parameters are managed by an Arduino interface (Uno 

+EasyDriver), controlled by a computer. The counterbody used in the tests was a PMMA cylinder 

with 3.5 g, which slides over the hydrogels at a velocity of 14 cm/s, with 2 s of pause between 

“blinkings”, and exerts a pressure of 16 kPa, to mimic the eyelid effect [32]. All drug release 

experiments were done at least in triplicate, and at room temperature.  

At set time intervals, aliquots of 1 mL of the supernatants were collected and the same volume of 

fresh NaCl solution was replaced. The levofloxacin concentration in the release medium was 

determined by high performance liquid chromatography (HPLC). A chromatograph with a Jasco 

UV-VIS detector and a C-18 column Nova-Pak Watters was used. The wavelength of the detector 

was set at 290 nm. The mobile phase, consisting of water, acetonitrile (Fisher Scientific, HPLC 

grade, 99.9%) phosphoric acid (Sigma-Aldrich, 85%), and triethylamine (Sigma-Aldrich, 99%) 

(86/14/0.65/0.3 in volume), was run into the column at a flow rate of 1 mL/min and a pressure of 

14 MPa, according to the method described by Wong et al. [33].  

 

2.4 Determination of the antimicrobial drug activity 

The minimum inhibitory concentrations (MICs) of levofloxacin for two bacteria that typically 

colonize the eye surface (Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa 

ATCC 27853) were estimated by agar diffusion tests. Cultures of both microorganisms were 

inoculated and a solution with final optical bacterial density of 1 McFarland was prepared by 

dilution with distilled sterilized water. A volume of 350 μL of this suspension was added to 50 mL 

of Muller Hinton broth solution (Becton, Dickinson and Company). The inoculated medium was 

poured into square plates and let to solidify; paper discs impregnated with 15 μL of a levofloxacin 

solution of defined concentration (between 7.8 and 500 g/mL) were carefully placed on the 

plates. Sterile water-loaded discs were used as negative controls. Growth inhibition diameters 

were measured with an electronic caliper, after 18 h incubation at 37 °C. The assays were 
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repeated 3 times in duplicate. MICs correspond to the minimum concentration tested, which led to 

the observation of growth inhibition zones. 

To assess the activity of the drug after release, the resulting drug solutions, from tests with and 

without friction, were divided in two sets: one for the microbiological tests, the other for HPLC 

determinations. The concentrations of active drug determined from the microbiological calibration 

curve (growth inhibition diameters vs concentration) were compared to the concentrations 

measured by HPLC. 

 

3. Results and Discussion 

3.1 Characterization of the hydrogels 

Two types of pHEMA based hydrogels were prepared: pHEMA-T, by thermopolymerization of an 

anhydrous mixture, and pHEMA-UV, by photopolymerization of a mixture containing water. The 

addition of water was intended to promote the formation of a more opened structure with 

increased water absorption capacity. According to Yañez  et al., when the water fraction in the 

mixture exceeds the saturation water content of the gel being synthesized, the excess water will 

phase separate and be dispersed in micro/nano sized regions inside the gel, giving rise to pore 

formation [34]. However, these pores can act as light scattering centers and origin loss of 

transparency [34, 35]. For this reason, UV polymerization was chosen for the water-containing 

hydrogels, as explained in Materials and Methods section. Therefore, microstructural as well as 

physicochemical differences between the two types of hydrogels are expected. 

The good performance of contact lenses depends on a set of properties which were 

experimentally assessed and are described below in this section. 

The swelling kinetics of the hydrogels in water can be inferred from Fig. 2. In both cases the 

equilibrium was reached after approximately three hours. As predicted, the photopolymerized 

hydrogels absorbed a higher amount of water than the thermopolymerized: 63.5% against 56.1% 

(mass %). These swelling capacities correspond to water contents (WAC) of 39.7% and 35.9%, 

respectively, which are similar to the water content of pure pHEMA (around 38% [36]).  

In pHEMA based hydrogels which do not contain silicon, water is the main vehicle for the passage 

of oxygen [37]. Although undetermined in the present study, the oxygen permeability of these 

materials is known to be adequate for the normal oxygenation of the cornea [38]. 
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The values of the ionic permeability, Dion, determined for the hydrogels (Table 1) are clearly above 

the minimum ion permeability of 1.067 x 10
-9

 cm
2 

s
-1

, claimed to ensure sufficient contact lens 

movement [39]. PHEMA-UV samples present a higher permeability which can be explained by the 

higher water content and lower crosslinking density of this hydrogel.  

As shown in Table 1, the hydrogels, in the hydrated state, present a high transmittance to visible 

light. The transmittance values obtained fall within the range reported in literature for soft contact 

lenses materials [40, 41]. These values remain practically constant after loading the hydrogels 

with the antibiotic (96.570.03% for PHEMA-T and 95.970.04% for PHEMA-UV).  

In lubricated conditions (NaCl solution) both hydrogels led to friction coefficients of approximately 

0.3 (Table 1). Although the experimental conditions (e.g. counterbody geometry, normal load, 

sliding velocity) vary from study to study, the values obtained are of the same order of magnitude 

of those previously published for similar hydrogels: Yanez et al. [34] reported analogous values for 

pHEMA hydrogels containing PVP, and Roba et al. [28] also found comparable values for various 

commercial contact lenses. 

The values of the Young’s modulus (E) for the hydrogels produced in this work (see Table 1) are 

of the same order of magnitude of those reported in the literature for various pHEMA based 

hydrogels (between 0.4 and 0.9 MPa [42]) and silicon hydrogel lenses (between 0.3 and 1.9 MPa 

[43] ). 

Figure 3 presents the water contact angle variation during the first 10 minutes of measurement for 

pHEMA-T and pHEMA-UV samples. Although there is some overlapping of the error bars, 

pHEMA-T seems to be slightly more hydrophilic. The results are in agreement with data available 

in the literature relative to similar hydrogels in the dry state [23]. Lower values are expected for the 

hydrated hydrogels [44].  

SEM images of pHEMA-T and pHEMA-UV after drug release tests in static conditions (Fig. 4a and 

b) show a similar morphology for both hydrogels. Samples that were submitted to load cycles in 

Simublink (images not shown) did not present significant changes relatively to the former ones. 

Figure 5 shows the AFM images of the surface of both type of hydrogels. While pHEMA-T reveals 

a featureless surface (Fig. 5a), pHEMA-UV presents a small amount of surface nanopores with 

sizes is in the range of 100-300 nm (Fig. 5b). The average roughness of the surfaces, determined 
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from the AFM images (20X20 µm
2
), varies between 4.5 and 6.2 nm. These values lie in the range 

of the roughness values reported for commercial contact lenses [45].  

The TEM observation of the hydrogels reveals a homogeneous structure, without any noticeable 

bulk pores in either of the hydrogels. However, select area electron diffraction (SAED) patterns 

(Fig. 6) are much more interesting. As expected for any amorphous material, both hydrogels 

present a scattered diffraction halo with decreasing intensity from the centre to the periphery. 

However, in what concerns pHEMA-T (Fig. 6a) the halo is much broader than in pHEMA-UV (Fig. 

6b), as can be clearly seen from the corresponding intensity distribution histograms (Fig. 6c and 

6d). On the other hand, pHEMA-T SAED presents a ring (marked with an arrow in Fig. 6a and 6c) 

which does not occur in pHEMA-UV. This result shows that pHEMA-T shows a higher short range 

order than pHEMA-UV, which may result from the higher cross link density/low water content of 

pHEMA-T [46]. 

 

3.2 Drug release tests 

Levofloxacin release from pHEMA-UV and pHEMA-T was followed for 10 hours in static 

conditions, under stirring and with friction (in Simublink). The release profiles for the three 

situations are shown in Fig. 7, for both hydrogels. PHEMA-UV consistently releases a higher 

amount of antibiotic than pHEMA-T, which may be explained by the higher drug uptake that 

occurs in the former type of hydrogel, not only due to its higher water absorption capacity (see 

section 3.1), but also due to the presence of acrylic acid. In fact, extended drug release tests 

carried out in water showed that the amount of drug loaded in PHEMA-T was 8.8  0.5 µg/mg dry 

gel, while for PHEMA-UV it was 19.9  0.7 µg/mg dry gel. This is in agreement with the results of 

Alvarez-Lorenzo et al. [29], who found that addition of acrylic acid to pHEMA hydrogels 

remarkably increased their affinity to norfloxacin, a fluoroquinolone such as levofloxacin.  

In respect to release conditions, stirring did not lead to significant differences in the drug release 

profiles, in comparison to the static conditions, for both hydrogels. However, the effect of friction 

depends on the hydrogel: while for pHEMA-T, friction almost did not affect the drug release profile, 

for pHEMA-UV, the mechanical action gave rise to a higher release rate and the process of drug 

release was complete within 5 hours. This behavior may be explained by the simultaneous 

presence of nanosized superficial pores in the pHEMA-UV matrix (absent from the pHEMA-T) and 

http://en.wikipedia.org/wiki/Fluoroquinolone
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lower short range order and smaller cross linking degree of polymer chains, when compared with 

pHEMA-T. The fluid distribution within the polymeric network should be affected by the mechanical 

stimulation which implies that the effect of friction becomes more accentuated in less cross linked 

polymers and, eventually, is even potentiated if some superficial porosity exists, as in the case of 

pHEMA-UV. To our knowledge, this is the first report on the effect of friction on drug release from 

hydrogels for contact lenses, although other authors have addressed the effect of mechanical 

stimulation in model release systems. For example, Lee et al. [47] found that the release of a 

growth factor from alginate hydrogels increased under mechanical loading, in agreement with our 

findings. 

 

3.3 Microbiological tests 

The minimum inhibitory concentrations (MIC) for Staphylococcus aureus ATCC 6538 and 

Pseudomonas aeruginosa ATCC 27853 were estimated to be 16 µg/mL and 62 µg/mL, 

respectively.  

The concentrations of levofloxacin in the solutions resulting from drug release experiments, 

carried out with and without friction, were determined by microbiological tests and HPLC. The 

obtained values were identical, indicating that the antibiotic activity is maintained.  

 

3.4 Estimation of the in vivo efficacy of the studied systems  

In order to predict the importance of friction in in vivo conditions, a mathematical model, which 

takes into account the physiological parameters of the eye, described in detail elsewhere [48], was 

applied. For the sake of simplicity, the model considers only the drug release in the post-lens tear 

film and neglects any heterogeneity in the tear fluid composition. The application of more complex 

drug release models, that take into consideration the transport of the drug into the cornea [49, 50], 

is outside the scope of the present work. 

The model assumes that the amount of drug delivered by a drug-loaded, commercial sized lens to 

the lachrymal fluid ( tM ) during a given time interval ( t ) can be estimated by:  

                                                       t lM qm t                                                             (4) 
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where lm is the dry mass of the lens and q  is the drug release rate per unit mass of dry gel which 

may be obtained by fitting the drug release data to the Korsmeyer-Peppas equation:      

                                                             
1nq n K t                                                                  (5) 

where n is the diffusional exponent which can be related to the drug transport mechanism, K is a 

proportionality constant, and t is the time. This equation is known to adequately describe the 

cumulative drug release from hydrogels [51, 52]. 

The drug concentration in the lachrymal fluid at a given time t (in min), 
t

Levo , following the lens 

application, is given by: 

 

                 
1

(1 )t
rt t

t

M
Levo R Levo

V 
           (6) 

 

where tV is the total tear volume in the eye and rR is the fraction of renovation of the lachrymal 

fluid. According to the literature, the renewal rate of the lachrymal fluid is 1.2 µL/min [53]. 

Assuming that the total tear volume in the eye is in average tV  = 7 μL at each instant [53, 54], the 

volume renovated in each minute will correspond to 17% of tV .  

The model was applied to the levofloxacin release from pHEMA-UV, the friction-sensitive hydrogel 

as reported before. For lenses with a dry mass of 66 mg (approximate mass of a lens of the 

hydrogels under study with 14 mm in diameter), the curves obtained under friction (in Simublink) 

and in static conditions are shown in Fig. 8. The difference between the curves confirms that 

friction significantly affects the drug release from pHEMA-UV, even when the tear turnover is 

taken into account.   

For comparative purposes, Fig. 8 shows the estimated antibiotic concentration in the eye over 

time, as a result of the application of commercial levofloxacin eyedrops (e.g. QUIXIN®, 5 mg/mL). 

This estimation was based on the assumption that a volume of 7 μL of collyrium remained in the 

eye, after the application of the recommended dosage (1-2 drops every hour). A saw shape like 

curve was obtained. The MICs for Staphylococcus aureus and Pseudomonas aeruginosa are also 

shown in Fig. 8. 



 
 

16 

According to our model, pHEMA-UV hydrogels lead to an initial burst effect in the drug release, 

after application of the lens in the eye, which is more pronounced under friction conditions. The 

model also predicts that, in static conditions, the hydrogel keeps the levofloxacin concentration in 

the tear fluid above the MIC for both microorganisms for at least 10 h (the time of the experiment). 

Furthermore, after the initial three hours, a sustained release is achieved, in contrast with the saw-

type concentration profile resultant from the application of eyedrops. In the presence of friction, the 

drug level in the lachrymal fluid falls abruptly after 5 h, since no further drug release could be 

measured afterwards. Results show that blinking may be a relevant factor in the drug release from 

hydrogels for contact lenses when their cross-link degree is low and/or they present a nanoporous 

structure. 

 

Conclusion 

In this work, the effect of blinking on the drug release from hydrogels for contact lenses was 

investigated, for the first time, through in vitro studies. Two types of pHEMA based hydrogels with 

adequate properties for that application (swelling capacity, ionic permeability, transmittance, 

friction coefficient, elasticity, wettability) and different structural and physicochemical properties 

were used: pHEMA-T and pHEMA-UV. In all drug release tests, pHEMA-UV showed higher 

release rates than pHEMA-T. Friction was found to enhance the drug release kinetics only in the 

case of pHEMA-UV. The lower short range order of this hydrogel (which indicates a lower cross 

linking degree) and the small nanoporosity of its surface are probably responsible for this 

behavior. In order to predict the importance of friction in in vivo conditions, the data were further 

analyzed using a mathematical model based on known physiological parameters of the eye. The 

drug concentrations predicted for in vivo conditions show that the effect of blinking in the increase 

of drug release kinetics from pHEMA-UV is maintained, even when the drug dilution caused by 

tear flow is considered. These results highlight the importance of taking friction into consideration 

when testing the drug release from materials with some nanoporosity, since materials that seem 

adequate when tested in static conditions may lead to undesired faster release under friction.  
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Figure captions 

 

Figure 1. Simublink - equipment used to simulate the eyelid movement over the hydrogels. 1 - 

Liquid cell, 2 - Power supply, 3 - Motor controller, 4 - Step-by-step motor and mechanical 

structure. 

 

Figure 2. Swelling kinetics of the hydrogels in water (n=3). 

 

Figure 3. Water contact angle variation with time for pHEMA-T and pHEMA-UV (n=8-10). 

 

Figure 4. SEM images of pHEMA-T (a) and pHEMA-UV (b) after drug release tests in static 

conditions (Images magnification 3000x). 

 

Figure 5. AFM topographic images of (a) pHEMA-T and (b) pHEMA-UV unloaded samples. 

Dimensions of a pore found in pHEMA-UV are visible in the insert of (b). 

 

Figure 6. TEM SAED of (a) pHEMA-T and (b) pHEMA-UV, with the corresponding intensity 

histograms (c and d). 

 

Figure 7. Levofloxacin release profiles of pHEMA-T and pHEMA-UV in static conditions, under 

stirring and with friction. 

 

Figure 8. Levofloxacin concentration in the lachrymal fluid, as estimated from the model, following 

the application of drug loaded pHEMA-UV lenses, under friction and in static conditions. The 

antibiotic concentration resultant from the application of a commercial collyrium and the minimum 

inhibitory concentrations for S. aureus and P. aeruginosa are included for comparative purposes. 
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Table 1: Estimated ion permeability (Dion), transmittance (T), friction coefficient () and Young’s modulus 

(E) of the studied pHEMA based hydrogels in the hydrated state. Results are mean±standard deviation of 

n determinations. 

  
pHEMA-T 

 
pHEMA-UV 

 

Dion (cm
2
s

-1
) 

(n=3) 

 
 

1.42E-07 ± 2E-09 

 
 

4.7E-07± 4E-08 

 

T (%) 

(n=3) 

96.40.7 96.620.05 

 

 

(n=3) 

 
 

0.34±0.07 

 
 

0.26±0.02 

 

E (MPa) 

(n=5) 

 
 

1.2±0.1 

 
 

1.37±0.15 

 

Table 1


