
Please use this form for your paper (Maximum length 8 pages)   
Classification and Combining Models  

 
Anabela Marques, Ana Sousa Ferreira and Margarida Cardoso 

 
ESTBarreiro, Setúbal Polytechnic, Portugal, CEAUL 
Email: anabela.marques@estbarreiro.ips.pt 
LEAD, Faculty of Psychology, University of Lisbon, Portugal, CEAUL 
Email: asferreira@fp.ul.pt 
UNIDE, Dep. of Quantitative Methods of ISCTE - Lisbon University Institute, Portugal 
Email: margarida.cardoso@iscte.pt   

 
 
Abstract: In the context of Discrete Discriminant Analysis (DDA) the idea of combining 
models is present in a growing number of papers aiming to obtain more robust and more 
stable models. This seems to be a promising approach since it is known that different DDA 
models perform differently on different subjects. Furthermore, the idea of combining models 
is particularly relevant when the groups are not well separated, which often occurs in 
practice.  
Recently, we proposed a new DDA approach which is based on a linear combination of the 
First-order Independence Model (FOIM) and the Dependence Trees Model (DTM). In the 
present work we apply this new approach to classify consumers of a Portuguese cultural 
institution. We specifically focus on the performance of alternative models’ combinations 
assessing the error rate and the Huberty index in a test sample. 
We use the R software for the algorithms’ implementation and evaluation.  
 
Keywords: Combining models, Dependence Trees model, Discrete Discriminant Analysis, 
First Order Independence model. 

 
 
1.  Introduction 
Discrete Discriminant Analysis (DDA) is a multivariate data analysis technique 
that aims to classify and discriminate multivariate observations of discrete 
variables into a priori defined groups (a known data structure or Clustering 
Analysis results). Considering  K exclusive groups G1, G2, …, GK and a n-
dimensional sample of multivariate observations  - X = (x1, x2, …, xn) described by 
P discrete variables - DDA has two main goals: 
1. To identify the variables that best differentiate the K groups; 
2. To assign objects whose group membership is unknown to one of the K groups, 
by means of a classification rule. 
In this work, we focus in the second goal and we consider objects characterized by 
qualitative variables (not necessarily binary) belonging to K ≥ 2 a priori defined 
groups. We propose to use the combination of two DDA models: FOIM - First-
Order Independence Model and DTM - Dependence Trees Model (DTM), Celeux 
(1994) - to address classification problem. 
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In addition, we evaluate HIERM - Hierarchical Coupling Model performance when 
addressing the multiclass classification problems (Sousa Ferreira et al. (2000)) 
In order to evaluate the performance of the proposed approaches, we consider both 
simulated data and real data referred to consumers of a Portuguese cultural 
institution (Centro Cultural de Belém). Furthermore, we compare the obtained 
results with CART - Classification and Regression Trees (Breiman et al. (1984)) 
algorithm results. 
 
2.  Discrete Discriminant Analysis 
The most commonly used classification rule is based on the Bayes’s Theorem. It 
enables to determine the a posteriori probability of a new object being assigned to 
one of the a priori known groups. The Bayes’s rule can be written as follows: if 
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then assign x to Gk. �� represents the a priori probability of group l (Gl), and 
P(x|Gl) denotes the conditional probability function for the l-th group. Usually, the 
conditional probability functions are unknown and estimated based on the training 
sample. 
For discrete data, the most natural model is to assume that P(x|Gl) are multinomial 
probabilities estimated by the observed frequencies in the training sample, the well 
known Full Multinomial Model (FMM) (Celeux (1994)). However, since this 
model involves the estimation of many parameters, there are often related 
identifiability issues, even for moderate P. One way to deal with this high-
dimensionality problem consists of reducing the number of parameters to be 
estimated recurring to alternative models proposals. One of the most important 
DDA models is the First-Order Independence Model (FOIM) (Celeux (1994)). It 
assumes that the P discrete variables are independent within each group Gk, the 
corresponding conditional probability being estimated by: 
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where nk represents the Gk’s group sample dimension. This method is simple but is 
not realistic in some situations. Thus, some alternative models have been proposed. 
The Dependence Trees Model (DTM), Celeux (1994) and Pearl (1988), for 
example, takes the predictors’ relations into account. In this model, one can 
estimate the conditional probability function, using a dependence tree that 
represents the most important predictors’ relations. In this research, we use the 
Chow and Liu algorithm (Celeux (1994) and Pearl (1988)) to implement the 
dependence tree and approximate the conditional probability function.  
In this algorithm, the mutual information I(Xi, Xj) between two variables  
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is used to measure the closeness between two probability distributions. For 
example, take P = 4 variables and consider the data listed in Table 2. For each pair 
of variables we obtain the mutual information (see Table 1). Since I(x2, x3), I(x1, 
x2) and I(x2, x4) correspond to the three largest values the branches of the best 
dependence tree are (x2, x3), (x1, x2) and (x2, x4) and  
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Table 2 illustrate the differences between the estimates of  the 3 referred DDA 
models corresponding to the data considered. Note that the DTM model estimates 
are closer to the FMM estimates but there are no null frequencies. 

(xi, xj) I (xi, xj) 
(x1, x2) 0,079434 
(x1, x3) 0,000051 

(x1, x4) 0,005059 

(x2, x3) 0,188994 
(x2, x4) 0,005059 
(x3, x4) -0,024 

Table 1. Mutual information values 

(x1,x2,x3,x4) 
values 

num. 
observ./ 

Gk 
 

P3 (x1,x2,x3,x4)  for 
group Gk 

FMM FOIM DTM 
0000 10 0,10 0,05 0,10 
0001 10 0,10 0,05 0,13 
0010 5 0,05 0,06 0,03 
0011 5 0,05 0,06 0,04 
0100 0 0,00 0,06 0,02 
0101 0 0,00 0,06 0,02 
0110 10 0,10 0,07 0,08 
0111 5 0,05 0,07 0,07 
1000 5 0,05 0,06 0,04 
1001 10 0,10 0,06 0,05 
1010 0 0,00 0,07 0,01 
1011 0 0,00 0,07 0,02 
1100 5 0,05 0,07 0,04 
1101 5 0,05 0,07 0,03 
1110 15 0,15 0,08 0,18 
1111 15 0,15 0,08 0,15 

Table 2. Conditional probability estimates for group Gk 

 



 
3. Combining Models in Discrete Discriminant Analysis 
The idea of combining models currently appears in an increasing number of 
papers. The aim of this strategy is to obtain more robust and stable models. Sousa 
Ferreira (2000) proposes combining FMM and FOIM to address classification 
problems with binary predictors, using a single coefficient β (0 ≤ β ≤ 1) to weight 
these models. In spite of yielding good results, the referred approach shows that the 
resulting FMM weights tend to be frequently negligible, even when the observed 
frequencies are smoothed (Brito et al. (2006)).  
In view of these conclusions, Marques et al. (2008) propose a new model which 
has an intermediate position between the FOIM and DTM models: 
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In the present work the combining models’ parameter  is assigned different values 
ranging from 0 to 1. 
 
4.  The Hierarchical Coupling Model 
In the multiclass case (K≥2) we can recur to the Hierarchical Coupling Model 
(HIERM) (Sousa Ferreira et al. (2000)) that decomposes the multiclass problem 
into several biclass problems using a binary tree structure. It implements two 
decisions at each level: 
1. Binary branching criterion for selecting among the possible 2K-1-1groups 
combinations; 
2. Choice of the model or combining model that gives the best classification rule 
for the chosen couple. 
In the present work we implement branching using the affinity coefficient, 
Matusita (1955) and Bacelar-Nicolau (1985). Supposing F1={p l} and F2={q l}, 
l=1,…,L are two discrete distributions defined on the same space, the 
correspondent affinity coefficient is computed as follows: 
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The process stops when a decomposition of groups leads to single groups. 
For each biclass problem we consider FOIM, DTM or an intermediate position 
between them.  
 
5.  Numerical Experiments 
We conduct numerical experiments for simulated data and real data using moderate 
and large samples, respectively. We use test samples to evaluate the alternative 
models precision. Indicators of precision are the percentage of correctly classified 
observations (Pc) and  the Huberty index: 
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where Pd represents the percentage of correctly classified cases using the majority 
class rule. 
 
5.1 Simulated data 
The simulated data set considered has 250 observations, 4 groups and 3 binary 
predictors (see Table 3). To evaluate the proposed models’ performance we use 
precision corresponding to a test (sub)sample: 50% of the original sample. The 
modal class in the test sample has 32% of the observations which yields the same 
32% for percentage of correctly classified observations, according to the majority 
rule.  

  Total data set Training sample Test sample 
  nk % nk % nk % 

G1 80 32% 40 32% 40 32% 
G2 70 28% 35 28% 35 28% 
G3 30 12% 15 12% 15 12% 
G4 70 28% 35 28% 35 28% 

Table 3. Characterization of simulated data set 

The results obatined are presented in Table 4. For this data set the HIERM model 
and FOIM-DTM combination yeld the best results. 

 

Classification Method % of correctly 
classified 

Huberty  
index 

 

CART 45,6% 20,00%  

β*FOIM+ 
(1-β)*DTM 

β = 0 (DTM) 52,8% 30,59%  

β = 0,25 47,2% 22,35%  

β = 0,50 48,8% 24,71%  

β = 0,75 48,8% 24,71%  

β = 1 (FOIM) 48,8% 24,71%  

MHIERM: 
G2+G1 vs G3+G4 

 
β*FOIM+ 

(1-β)*DTM 

β = 0 (DTM) 45,6% 20,00%  

β = 0,25 59,2% 40,00%  

β = 0,50 60,8% 42,35%  

β = 0,75 60,8% 42,35%  

β = 1 (FOIM) 59,2% 40,00%  

Table 4.  Simulated data set results 



 
5.2 Real data 
We consider a data set referred to 988 observations originated from questionnaires 
directed to consumers of Centro Cultural de Belém, a Portuguese cultural 
institution (Duarte (2009)). Data includes three questions related to the quality of 
services provided by CCB that this study tries to relate with consumers’ education: 
we specifically use 4 education levels as the target variable. Predictors are: X1-
Considering your expectations how do you evaluate CCB products and 
services?(1=much worse than expected  …5=much better than expected); X2- How 
do you evaluate CCB global quality? (1=very bad quality  …5=very good quality); 
X3: How do you evaluate the price/quality relationship in CCB?(1=very 
bad…5=very good). The groups distribution is illustrated in Table 5. 

  
      

  
  

  

  Total data set Training sample Test sample 
  nk % nk % nk % 

G1 177 18% 115 18% 62 18% 
G2 136 14% 88 14% 48 14% 
G3 462 47% 300 47% 162 47% 
G4 213 22% 138 22% 75 22% 

Table 5. Characterization of CCB data set 

The results obtained are presented in Table 6. For CCB problem the best solution is 
achieved by HIERM model and combined FOIM-DTM model. 

 

Classification Method 

% of correctly Huberty 

classified index 

CART 46,10% -1,70% 

β*FOIM+ β = 0 (DTM) 45,00% -3,77% 

(1-β)*DTM β = 0,20 45,80% -2,26% 

 

β = 0,40 46,40% -1,13% 

 

β = 0,50 47,60% 1,13% 

 

β = 0,60 47,30% 0,57% 

 

β = 0,80 47,80% 1,51% 

 

β = 1 (FOIM) 47,00% 0,00% 

MHIERM: β = 0 (DTM) 47,80% 1,51% 

G2 vs G1+G3+G4 β = 0,20 48,10% 2,08% 

β = 0,40 49,30% 4,34% 



β*FOIM+ β = 0,50 49,30% 4,34% 

(1-β)*DTM β = 0,60 49,30% 4,34% 

 

β = 0,80 48,40% 2,64% 

 

β = 1 (FOIM) 49,90% 5,47% 
Table 6. CCB data set results (test sample) 

 
6. Conclusions and perspectives  
In the present work we propose using the combination of two DDA models (FOIM 
and DTM) and use the HIERM algorithm to address classification problems. We 
compare results obtained with CART results into two data sets: simulated data (250 
observations) and real data (988 observations). We use indicators of classification 
precision obtained in the test set (we consider 50% and 35% of observations for the 
smaller and larger data set, respectively). 
According to the obtained results, the proposed approach performs slightly better 
than CART, on both simulated and real data. However, the classification precision 
attained barely attains the precision corresponding to the majority class rule in the 
real data set. In fact, in this case we are dealing with very sparse data (46% of the 
multinomial cells have no observed data in any of the groups considered) which 
turns the classification task very difficult. 
In future research, the number of numerical experiments should be increased, both 
using real and simulated data sets and considering several sample dimensions. The 
number of variables considered (binary and non-binary) should not originate an 
excessive number of states (around a thousand) due to the number of parameters 
that need to be estimated. Alternative strategies to estimate the β parameter, such 
as least squares regression, likelihood ratio or committee of methods, should also 
be considered. 
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