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Abstract: In the context of Discrete Discriminant AnalysBOA) the idea of combining
models is present in a growing number of papersngirto obtain more robust and more
stable models. This seems to be a promising apprsiace it is known that different DDA
models perform differently on different subjectarthermore, the idea of combining models
is particularly relevant when the groups are notl weparated, which often occurs|in
practice.
Recently, we proposed a new DDA approach which setha@n a linear combination of the
First-order Independence Model (FOIM) and the Dépeae Trees Model (DTM). In the
present work we apply this new approach to classifiygsumers of a Portuguese cultural
institution. We specifically focus on the performanof alternative models’ combinatigns
assessing the error rate and the Huberty indexéstasample.

We use the R software for the algorithms’ implemgoteand evaluation.

Keywords: Combining models, Dependence Trees model, Discregeribinant Analysis),
First Order Independence model.

1. Introduction
Discrete Discriminant Analysis (DDA) is a multivaté data analysis technique
that aims to classify and discriminate multivariadservations of discrete
variables intoa priori defined groups (a known data structure or Clustgri
Analysis results). Considering K exclusive groupg G,, ..., Gc and a n
dimensional sample of multivariate observations = (x;, X, ..., X%,) described by
P discrete variables - DDA has two main goals:

1. To identify the variables that best differergittie K groups;
2. To assign objects whose group membership isamkrio one of the K group
by means of a classification rule.
In this work, we focus in the second goal and wesater objects characterized |by
qualitative variables (not necessarily binary) being to K> 2 a priori defined
groups. We propose to use the combination of twoADBodels: FOIM - Firstt
Order Independence Model and DTM - Dependence Tvestel (DTM), Celeu
(1994) - to address classification problem.
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In addition, we evaluate HIERM - Hierarchical CanglModel performance when
addressing the multiclass classification problefwuga Ferreirat al (2000))
In order to evaluate the performance of the prop@gproaches, we consider bpth
simulated data and real data referred to consuroéra Portuguese cultural
institution (Centro Cultural de Belém). Furthermoree compare the obtained
results with CART - Classification and RegressiaeeE (Breiman et al. (1984))
algorithm results.

2. Discrete Discriminant Analysis
The most commonly used classification rule is bazedhe Bayes’'s Theorem.| It
enables to determine tlaeposterioriprobability of a new object being assigned to
one of thea priori known groups. The Bayes's rule can be writterodews: if

P (x|Gy) = m P (x|Gy) for | =1, ..., K and #k, (1)

then assign Xo G.. m; represents tha priori probability of group | (@, and
P(XG) denotes the conditional probability function fbel-th group. Usually, the
conditional probability functions are unknown arsfimated based on the training
sample.

For discrete data, the most natural model is tarassthat P()G) are multinomial
probabilities estimated by the observed frequenici¢ése training sample, the well
known Full Multinomial Model (FMM) (Celeux (1994)}owever, since thi
model involves the estimation of many parametehgere are often related
identifiability issues, even for moderate P. Oneywa deal with this high-
dimensionality problem consists of reducing the bamof parameters to be
estimated recurring to alternative models proposalse of the most important
DDA models is the First-Order Independence Mod@I#) (Celeux (1994)). |
assumes that the P discrete variables are indepemdthin each group ( the
corresponding conditional probability being estiethby:

{XEGk:yp:xp}

P(x1Gy) = TTh-, )

nk
where R represents the G group sample dimension. This method is simpleisu
not realistic in some situations. Thus, some adtive models have been proposged.
The Dependence Trees Model (DTM), Celeux (1994) &wdrl (1988), for
example, takes the predictors’ relations into aotoun this model, one can
estimate the conditional probability function, upira dependence tree that
represents the most important predictors’ relatidnsthis research, we use the
Chow and Liu algorithm (Celeux (1994) and Pearl8&9 to implement the
dependence tree and approximate the conditionabpitity function.

In this algorithm, the mutual information I{XX;) between two variables

P(XyX;)
P(X;)P(X})

3)

1(X:, X;) = Xx, Zx, P (X0, X;) log




is used to measure the closeness between two plitbabstributions. For
example, take P = 4 variables and consider thelidéga in Table 2. For each p
of variables we obtain the mutual information (Jedble 1). Since I(x x3), (X1,
Xz) and 1(%, X;) correspond to the three largest values the bemncii the bes
dependence tree are,(Xs), (X1, X2) and (%, x4) and

13(£|Gk) = P(x3) P (x3] x2) P (2| x1)P(x4] x2) 4)

Table 2 illustrate the differences between therests of the 3 referred DDA
models corresponding to the data considered. Natetite DTM model estimates
are closer to the FMM estimates but there are fidneguencies.

(%5, %) | (X, %)

(X1, %) 0,079434
(X1, Xa) 0,000051
(X1, Xa) 0,005059
(X5, X3) 0,188994
(X2, Xq) 0,005059

(X3, X4) -0,024
Table 1. Mutual information values
num. P (x1,x2,x3,x4) for
(x1,x2,x3,x4)| observ./ group Gk
values Gk
FMM | FOIM | DTM

0000 10 0,10 0,05 0,10
0001 10 0,10 0,05 0,13
0010 5 0,05 0,06 0,03
0011 5 0,05 0,06 0,04
0100 0 0,00 0,06 0,02
0101 0 0,00 0,06 0,02
0110 10 0,10 0,07 0,08
0111 5 0,05 0,07 0,07
1000 5 0,05 0,06 0,04
1001 10 0,10 0,06 0,05
1010 0 0,00 0,07 0,01
1011 0 0,00 0,07 0,02
1100 5 0,05 0,07 0,04
1101 5 0,05 0,07 0,03
1110 15 0,15 0,08 0,18
1111 15 0,15 0,08 0,15

Table 2. Conditional probability estimates for gnda<|




3. Combining Modelsin Discrete Discriminant Analysis

The idea of combining models currently appearsimareasing number of
papers. The aim of this strategy is to obtain mmohaist and stable models. Sous
Ferreira (2000) proposes combining FMM and FOIMdadress classification
problems with binary predictors, using a singlefioient  (0< p < 1) to weight
these models. In spite of yielding good results,réferred approach shows that
resulting FMM weights tend to be frequently nedllgi even when the observed
frequencies are smoothed (Brébal (2006)).

In view of these conclusions, Marquetsal. (2008) propose a new model which
has an intermediate position between the FOIM ah Pnodels:

P(xIB) = BProm(x) + (1 = B)Ppru(x) %)

In the present work the combining models’ paraméaseaissigned different value
ranging from 0O to 1.

4. TheHierarchical Coupling Model

In the multiclass case fR) we can recur to the Hierarchical Coupling Model
(HIERM) (Sousa Ferreirat al (2000)) that decomposes the multiclass probler
into several biclass problems using a binary tteecture. It implements two
decisions at each level:

1. Binary branching criterion for selecting amohg possible 2*-1groups
combinations;

2. Choice of the model or combining model that gitlee best classification rule
for the chosen couple.

In the present work we implement branching usiregatfiinity coefficient,
Matusita (1955) and Bacelar-Nicolau (1985). Suppp$i={p} and ={q,},
I=1,...,L are two discrete distributions defined oa ame space, the
correspondent affinity coefficient is computed aléofvs:

p(F, Fy) = XicyJpi/a (6)

The process stops when a decomposition of groagss e single groups.
For each biclass problem we consider FOIM, DTMoirdermediate position
between them.

5. Numerical Experiments
We conduct numerical experiments for simulated dathreal data using moder
and large samples, respectively. We use test sartpkevaluate the alternative
models precision. Indicators of precision are theepntage of correctly classifiec
observations (§ and the Huberty index:
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where R represents the percentage of correctly classiiésgs using the majority
class rule.

5.1 Simulated data

The simulated data set considered has 250 obsamga# groups and 3 binary

predictors (see Table 3). To evaluate the proposmaktls’ performance we use
precision corresponding to a test (sub)sample: 6D8te original sample. The

modal class in the test sample has 32% of the eatsens which yields the same
32% for percentage of correctly classified obséovat according to the majority
rule.

Total data set Training sample Test sample
Ny % Ny % Ny %
G, 80 32% 40 32% 40 32%
G, 70 28% 35 28% 35 28%
Gs 30 12% 15 12% 15 12%
Gy 70 28% 35 28% 35 28%

Table 3. Characterization of simulated data set

The results obatined are presented in Table 4thi®data set the HIERM model
and FOIM-DTM combination yeld the best results.

Classification Method % of correctly Huberty

classified index
CART 45,6% 20,00%
B =0 (DTM) 52,8% 30,59%
BYEOIM+ Bp=0,25 47,2% 22,35%
(1-8)*DTM B=0,50 48,8% 24,71%
B=0,75 48,8% 24,71%
B =1 (FOIM) 48,8% 24,71%
MHIERM: B =0(DTM) 45,6% 20,00%
G#+G,vs G+G, p=025 59,2% 40,00%
B=0,50 60,8% 42,35%
(ﬁfg)(ft')'\% B=0,75 60,8% 42,35%

B =1 (FOIM) 59,2% 40,00%
Table 4. Simulated data set results




5.2 Real data
We consider a data set referred to 988 observatingsmated from questionnairgs
directed to consumers of Centro Cultural de Belé&mpPortuguese cultural
institution (Duarte (2009)). Data includes threesfions related to the quality |of
services provided by CCB that this study trieselate with consumers’ education:
we specifically use 4 education levels as the tavgeiable. Predictors are:;X
Considering your expectations how do you evaluat€BCproducts and
services?(1=much worse than expected ...5=muchrlibtia expected); X How
do you evaluate CCB global quality? (1=very badligya..5=very good quality);
X3 How do you evaluate the price/quality relatiopshin CCB?(1=very
bad...5=very good). The groups distribution is illagéd in Table 5.

Total data set Training sample Test sample

Ny % Ny % Ny %
G 177 18% 115 18% 62 18%
G, 136 14% 88 14% 48 14%
Gs 462 47% 300 47% 162 47%
Ga 213 22% 138 22% 75 22%

Table 5. Characterization of CCB data set
The results obtained are presented in Table 6ClB®B problem the best solution

S

achieved by HIERM model and combined FOIM-DTM model |
% of correctly Huberty
Classification M ethod classified index
CART 46,10% -1,70%
B*FOIM+ f=0(DTM) 45,00% -3,77%
(1B)*DTM =0,20 45,80% -2,26%
B=0,40 46,40% -1,13%
B =0,50 47,60% 1,13%
B =0,60 47,30% 0,57%
f=0,80 47,80% 1,51%
B=1(FOIM) 47,00% 0,00%
MHIERM: =0 (DTM) 47,80% 1,51%
G, vs G+Gs+G, =0,20 48,10% 2,08%

f=0,40 49,30% 4,34%



B*FOIM+ B=0,50 49,30% 4,34%

(1-B)*DTM B=0,60 49,30% 4,34%
B=0,80 48,40% 2,64%
B=1(FOIM)  49,90% 5,47%

Table 6. CCB data set results (test sample)

6. Conclusions and per spectives

In the present work we propose using the combinaifdwo DDA models (FOIM
and DTM) and use the HIERM algorithm to addresssifecation problems. We
compare results obtained with CART results into tata sets: simulated data (2
observations) and real data (988 observations)u¥gandicators of classificatior
precision obtained in the test set (we consider 80#35% of observations for t
smaller and larger data set, respectively).

According to the obtained results, the proposedaggh performs slightly better

than CART, on both simulated and real data. Howether classification precision

attained barely attains the precision corresponttirtge majority class rule in the

real data set. In fact, in this case we are dealitiy very sparse data (46% of the

multinomial cells have no observed data in anyhefdgroups considered) which
turns the classification task very difficult.

In future research, the number of numerical expenits should be increased, bo
using real and simulated data sets and consideewgral sample dimensions. T
number of variables considered (binary and non#gjrghould not originate an
excessive number of states (around a thousandpdhe number of parameters
that need to be estimated. Alternative strategiestimate th@ parameter, such
as least squares regression, likelihood ratio omaittee of methods, should alsg
be considered.
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