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Abstract 

 

Synthetic cannabinoids from marijuana herbal blends like ‘Spice’ and ‘K2’ are drawing 

the attention of drug of abuse organizations, including the UNODC
1
, the EMCCDA

2
 

and emergency hospital all over the world. This concern rises from clinical episodes of 

psychotropic effects that go beyond the regular range of marijuana and THC – namely, 

panic attacks, psychosis, catatonia, addiction and withdrawal symptoms. Our study 

addressed two emergent synthetic cannabinoids (napthtoylindoles) denominated JWH-

073 and JWH-250 that are currently detected on ‘Spice’-like products, in order to 

observe their cell toxicity profile on neuronal cells in vitro model (SH-SY5Y). Using 

0.2% DMSO as negative control, MTT and LDH results revealed that within 

concentrations of 1, 5, 10, 25, 37.5 and 50 µM, JWH-250 is identified as ‘toxic’ in a 

statistically significant manner at higher concentrations. This work did not detect any 

statistically significant toxicity from JWH-073. This data suggests to extend these 

studies on new synthetic cannabinoids to neuronal cells with increased concentrations, 

as well as the application of assays assessing apoptosis (conditions and signalling), 

neuronal function and activity (as cell membrane potential assay) within differentiated 

cells as neurons and glia. At the same time, the evaluation of herbal mixtures of more 

than one cannabinoids and plant types is advisable in order to understand synergic 

effects. 

 

Keywords: Synthetic cannabinoids. Forensic toxicology. Illicit drugs. Napthtoylindoles. 

Phenylacetylindoles. Marijuana. 
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 United Nations Office on Drugs and Crime. 
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1. Introduction 

 

1.1. Background 

 

In 2013, a 31 year old female was brought to the Emergency Department, following a 

three stories fall from her apartment’s fire escape. She was unresponsive and, at the scene, 

was diagnosed as a 3 on the Glasgow Coma Scale
3
: she could still open her eyes in response, 

but she uttered words and had abnormal reactions to pain stimulus. The woman was intubated 

with no need to use general anaesthesia. Her radiographic data showed a large subdural 

hematoma, facial fractures, pelvic fractures, liver laceration and elbow fracture. On day 10 of 

hospitalisation, the patient died from her traumatic injuries. 

According to her husband, on that evening, while rehearsing for a play, she ingested a 

“pot brownie”. Shortly after, she began to feel “weird” and called her husband at work for 

help; when he got home she expressed her intention to jump off the balcony. He gave her 

water and induced vomiting and physically restrained her to the bed twice afterwards. She 

however broke free and jumped. 

The medical doctors reasoned that marijuana does not normally cause such symptoms 

and while the patient’s urine routine toxicology was negative for cannabinoids, further testing 

was performed with gas chromatography – mass spectrometry (GC-MS), searching for delta-

9-tetrahydrocannabinol (Δ9THC) and other products of THC or marijuana metabolism. Those 

were all negative, however, the patient’s ante mortem serum was tested with liquid 

chromatography – mass spectrometry/time of flight (LC-MS/TOF). A new compound never 

detected in patients before was found in her serum; it was JWH-175, one of the many 

emerging members of the synthetic cannabinoid (SC) family. This case was reported by Dr. 

Armenian, a medical doctor from the Emergency Department of the Hospital-University of 

California, at San Francisco (Armenian, 2014). 

Marijuana derives from the Cannabis sativa plant, which expresses around 420 

chemical compounds, of which eighty terpeno-compounds are specifically found in C. sativa 

and are named phytocannabinoids (Mechoulam and Hanus, 2000). Utmost consideration has 

been dedicated to Δ9THC, the most psychotropic constituent of marijuana, but Izzo et al. 

(2009) presented a picture (Figure 1) of pharmacological activities of other 

                                                 
3
 The Glasgow Coma Scale provides efficient recording of the state of conscience of a patient in which assesses 

motor, verbal and eye responses. It is used a textbook practice on Emergency Medicine. (CDC, 2003) 
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phytocannabinoids: as cannabinol, cannabidiol, delta-9-tetrahydrocannabivarin, 

cannabichromene, cannabigerol, delta-9-tetrahydrocannabinolic acid and cannabidiolic acid.  

 

Figure 1. Pharmacological activities of non-psychotropic cannabinoids (and its suggested mechanisms of 

action). (Izzo et al., 2009) 

 

These compounds are associated with binding G protein-coupled receptors (GPCR), 

denominated CB1 and CB2 (cannabinoid receptors). This discovery implied the existance of 

endogenous compounds as ligands, usually referred to as endocannabinoids (DiMarzo, 2008). 

Figure 2 shows how the literature categorises these elements among the ligands and 

cannabinoid compounds. 
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Figure 2. Types of cannabinoids. (Greydanus et al., 2013) 

 

The cannabinoid system consists of Central Nervous System (CNS) cannabinoid 

receptors and their endogenous ligands or triggering molecules that bind to a target protein 

site. Tetrahydrocannabinol (THC) is the main active principle in marijuana. In the 1980s, 

researchers began to synthesise THC analogues and look for marijuana metabolites 

(Greydanus et al., 2013). These studies led to the development of new classes of bicyclic 

cannabinoids (as CP55,940), the aminoalkylindoles (as WIN55,212-2), among others; the 

present study is focusing on members of the naphthoylindoles class. 

The JWH
4
 type of synthetic cannabinoids belongs to naphthoylindole class. The 

physical and psychological effects of JWH cannabinoids are similar – but stronger – to those 

of Δ9THC. In fact, it has been stated that JWH binds 4x more than THC to the CB1 and 10x 

more to the CB2 receptor (Wintermeyer et al. 2010). 

Dr. Huffman intended to explore the analgesic potential properties of CB1 agonists, 

but by describing and publishing JWH synthesis he de facto primed the production of this 

synthetic drug family. 

In 2008, forensic investigators in Germany and Austria were able to detect JWH-018, 

a synthetic cannabinoid as a primary compound of the recreational drug in “Spice” (in fact, 

according to the German press, these products were being sold since 2002 - Frankfurter 

Rundschau, 2008). These so-called “Spice”-like products are herbal blends sprayed with 

synthetic cannabinoids drugs – sometimes even more than one SC. This addition is not 

described on any label or part of the product, which is commercialized with several different 

                                                 
4
 After John W. Huffman, whi first synthesized these compounds at Clemson University. 
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brand names: K2, Spice Gold or Silver, Yucatan Fire, and several others. After 2008, various 

cannabinoids were detected in marijuana blends.  

The use by humans of novel psychoactive substances (NPS), such as synthetic 

cannabinoids, instead of traditional illegal substances – (e.g. cannabis) is a fairly recent 

practice (UNODC, 2013). However, the majority of European countries list 

prohibited/controlled synthetic cannabinoids and their commercialisation is being scrutinised 

by the authorities. These drugs are hard to deal with from the point of view of their legality. 

They are labeled as `legal highs`, an umbrella term impliying that they have not yet been 

“reviewed” by legislators, therefore being indirectly legal. This is then an area characterised 

by limited data with unknown risks. (EMCDDA, 2009) 

Legislators are delayed on evaluating the danger of NPS, but emergency rooms see an 

increased number of cases. Izzo et al. (2009) showed a summary of the first agonists of 

cannabinoid system and the way they could modify our physiology, when in fact, these have 

the characteristic of being non-psychoactive drugs. This has suggestive implications on the 

effect of psychotropic, psychostimulant agonists of CB1 and 2 such as synthetic cannabinoid 

compounds. 

About 20 case studies with full medical and toxicological assessment are published in 

the literature and two of them are summarized here. In 2012, a 16-yr old was submitted at the 

emergency room with altered mental status and was hospitalised overnight in catatonic state 

after smoking “K2”; a 18-yr old was described as agitated, aggressive and had profuse 

sweating (Cohen et al., 2012) after using “Spice”. In 2013, a fatal case was described in 

which postmortem blood showed the presence of JWH-018 (0.1 ng/mL) and JWH-122 (0.3 

ng/mL) together with amphetamine. The conclusion of this report alerted that synthetic 

cannabinoids are more potent and effective than THC, potentially leading to life-threatening 

situations  (Schaefer et al., 2013). 

From the emergency room to the basic sciences laboratory, there are studies evaluating 

the toxicity of SC in cell culture. The tests to determine the direct cell toxicity of synthetic 

cannabinoids is an emerging field and reports have demonstrated that naphthoylindoles 

synthetic cannabinoids (JWH-018, 073, 122, 210 and of one benzoylindole, AM-694) 

damaged the cell membranes of buccal (TR146) and breast (MCF-7) derived cells. In 

addition, no cytotoxic responses were seen in assays which assess the mitochondrial damage, 

protein synthesis or lysosomal damage (Koller et al., 2013). On human NG 108-15 

(neuroblastoma-glioma) cell lines, it was found that all three of cyclohexylphenol (CP) 
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bicyclic classes of synthetic cannabinoids tested, were cytotoxic in a concentration-dependent 

manner. They further found that cell death was mediated by the CB1 receptors and not the CB 

2 receptors (Tomiyama & Funada, 2011). Another study demonstrated that all 3 types of 

cannabinoids (endo, phyto and synthetic) can induce apoptosis in cells, even in the absence of 

CB receptors (Athanasiou et al., 2007). 

There is an emerging body of evidence that these compounds are being pursued with 

the original intention of developing new therapeutics. This establish another field of research 

on synthetic cannabinoids. There are numerous pieces of evidence of non-toxic potential use 

of SC on the recovery of myelination in multiple sclerosis neuronal models (Arévalo-Martín, 

2003; Downer, 2011) and still onto the analgesic effects for cancer patients (Reynolds, 2013). 

The paradox is what some SC do possess therapeutical use but the abuse of other SC in spiked 

marijuana can cause human intoxication. Therefore, toxicological assays are paramount to 

know how harmful these new psychoactive substances can be. 

With the spreading use of marijuana nowadays (plant consumption; pharmaceuticals 

for cancer-related symptoms – Bar-Sela et al., 2013; epilepsy – Devinsky et al., 2014; obesity 

– Le Foll et al., 2013; schizophrenia – Robson et al., 2014; improved appetite and sense of 

taste – Brisbois et al., 2011) and the near future possibility of marijuana legalization 

worldwide, there is a chance of illegal markets investing in synthetic cannabinoids for their 

potency and addictive potential. Toxicological assays are vital to assess the harm potential of 

these novel psychoactive substances. 

 

1.2. Cannabinoid system, receptors and types of chemicals 

 

 CB1 is the first receptor cloned from the cannabinoid system by Matsuda et al. (1990), 

using a library of rat complementary DNA. CB1 has been acknowledged for behavioural 

alterations caused by tetrahydrocannabinol (Monory et al., 2007), possibly also on humans 

(Huestis et al., 2001). Munro et al. (1993) discovered CB2, a second receptor, which 

according to Chiou et al. (2013) share 44% global identity (68% for the transmembrane 

domains) with CB1. Altogether, both CB1 and CB2 are GPCR that engage onto the Gi/o class 

(guanine nucleotide-binding protein, alpha inhibiting activity) of G proteins and are 

considered agonist leading to the blockage of adenylyl cyclase and following reduction of 

Cyclic adenosine monophosphate (cAMP) (Howlett et al., 2002). 
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Cell biologists found that CB1 can stimulate the initiation of mitogen activated protein 

kinases signalling, (Daigle et al., 2008) influencing cell movement, growth and diversification 

(Derkinderen et al., 2003). With continued stimulation, the CB1 receptor is regulated by 

desensitisation and internalisation of receptors (Hsieh et al., 1999). In fact, desensitisation is 

thought to be regulated by kinases of GPCR (so called GRK2 and GRK3) and β-arrestin 

(Premont & Gainetdinov, 2007). While other molecular pathways like protein kinase B (PKB 

or Akt) and mammalian target of rapamicin (Manning and Cantley, 2007) are induced by CB1 

receptor, CB1 agonists, like WIN55212-2 (one of the first synthetic cannabinoids) was shown 

to be involved in the rodent and human brain of cocaine addiction (Alvaro-Bartolome et al., 

2011). The CB1 receptor was also found intracellularly in mitochondrial membranes (Benard 

et al., 2012), while on transfected HEK-293 cells CB1 is inside intracellular vesicles and 

plasma membrane (Leterrier, et al., 2004). 

 The CB1 receptor has also been characterised on neuronal cells, including its 

involvement on the inhibition of voltage gated Ca
+
 channels and activation of K

+
 channels 

(Mackie et al., 1995). It has been found to reduce cellular excitability and the chances of 

neurotransmitter release (Shen et al., 1996), as well as detaining inhibitory and excitatory 

synapses, as found with glutamatergic and GABA terminals (Chevaleyre et al., 2006).  

Overall, CB1 activity affects neurotransmission, but mostly for its predominance in 

crucial locations in the human body. Mackie (2005) described the expression of CB1 in the 

central nervous system, particularly in axon terminal and primarily at the cortex (anterior 

cingulate, limbic area), cerebellum, hippocampus, amygdala, basal ganglia, hypothalamus and 

not often in the brain stem – helping cannabinoids to have low toxicity if accidental  

(Herkenham et al., 1990). Since the CB2 receptor is predominantly located on immune cells 

(Galiegue et al., 1995), but also in the CNS as in microglia, spinal cord and brainstem (Van 

Sickle, et al., 2005), it was suggested as a novel target for pain and inflammation management 

(Onaivi et al., 2012).  

Cannabinoid activity (mainly endocannabinoids) is not restricted to the CB1/CB2 

receptors: other receptors like the transient receptor potential cation channel (TRP) and the 

peroxisome proliferator-activated receptor (PPAR) have been investigated as potential 

cannabinoid binding sites (Pertwee et al., 2010). Studies on synthetic cannabinoids, knockout 

mice and genetic tools have uncovered new sites of activity that can lead to the discovery and 

classification of new cannabinoid receptors to be defined (Hajos et al., 2001; Breivogel et al., 

2001) 
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1.3. Synthetic cannabinoids precedent 

 

Endocannabinoids are part of marijuana-related research, whilst AEA (arachidonic 

acid moiety, N-arachidonylethanolamide), was entitled “anandamide” - according to Sanscrit 

for “bliss” -, a range of pharmacological tools and new synthetic cannabinoids have been 

established. The classification of cannabinoid compounds is settled with five categories, 

including the classical (for instance, Δ9THC and HU210 – developed by Dr. Mechoulam at 

Hebrew University), non-classical (as CP-55,940), indoles (WIN 55,212), eicosanoids (mostly 

endogenous as AEA and 2-arachidonylglycerol) and pharmacological antagonists (AM251 

and AM630, developed by Pfizer) (Devane et al., 1992). And its structures are presented 

below: 

 

Figure 3. Structure classes of cannabinoids (Console-Bram et al., 2012) 

 

However, synthetic cannabinoids can have its own classification according to the 

chemical structure and Bretteville-Jensen et al. (2013) provides grouping as presented in 

Figure 4 that contemplates the important difference and resemblances of each category. 
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Figure 4. Structures of representative synthetic cannabinoids categories, and representative compound, 

commonly found in “Spice/K2” products (taken from Fattore and Fratta, 2011). 

 

Gaoni and Mechoulam (1964) first exposed Δ9THC as the utmost psychoeffective 

constituent in marijuana and from that point, numerous additional typical and non-typical 

cannabinoids have been examined for medicine usage. However, structure-activity 

relationship study of Δ9THC shows cannabinoid pharmacological properties for any chemical 

with affinity for the cannabinoid receptor. This presents a challenge in producing a single 

effect selectivity of a cannabinoid drug. (Compton et al., 1993) 

Marijuana alternatives, mistakenly advertised as “incenses”, are recent on the market 

of drugs of abuse (Seely et al., 2011) and are frequently known as “K2” or “Spice” are mixed 

with synthetic cannabinoids that own cannabis-like effects (Auwarter et al., 2009). The 

International Narcotic Control Board (INCB) mentions that there is an increase of 

manufacture, together with market of the novel ‘designer drugs’ and their availability, it is 

becoming uncontralable (INCB, 2011).  
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Currently, we are not aware of the entire chemical content of these new drugs, their 

acute or chronic toxicity, what can be translated into a worrisome obstacle to public health. 

For instance, in the United Kingdom, some first ‘legal highs’ (to be noted: piperazines, 

“spice” and mephedrone) were already deliberated by the Misuse of Drugs Act of 1971, 

nonetheless, the introduction of legal boundaries over these drugs presented little changes on 

the drug scenario and, at least online, the banned drugs continue to be sold as new brands. 

These new brands are commercialized as greater products, and, as licit options to the banned 

drugs (Ramsey et al., 2010). We are not aware of the new brands’ content, if it comprises of 

new synthetic and legal compounds or if it possesses the amount of illegal compounds that do 

explain the link of a number of related deaths (Baron et al., 2011; EMCCDA, 2011). In 

Europe, the EU Early Warning System has received 81 new psychoactive substance in 2013, 

which 29 were synthetic cannabinoids, as presented on Figure 5, that shows constancy of NPS 

apprehensions all over Europe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. NPS notification from member countries of the EU Early Warning system (EMCDDA, 2014) 

 

 



 23 

There is then a confusing perception of safety to some of the users (Sheridan and 

Butler, 2010), when actually there is no information on the psychology or behaviour 

consequences from the use in humans, especially for drugs like the synthetic cannabinoids 

(EMCCDA, 2009). In fact, products, when labelled, not always show its real content (or more 

worrisome, the manufactures could not even tell the content), even for products with the same 

name and brand (Davies et al., 2010). In the end, users are having their health comprimised 

when exposed to unknown drugs of unidentified concentrations and even frequent users of the 

same product could be purchasing a different drug or a more potent one. This possibility can 

be extended to the concern of drugs interaction and the effects of metabolites in human 

physiology. Although, some research is being done to unravel toxicity cases (Salmner et al., 

2010), the current challenge puts the non-identification or association of adverse effects of 

these drugs by clinicians at emergency rooms (Smith et al., 2011), together with the difficulty 

in identifying the drugs, the new ones and unique compounds (Houston, 2011).  

Meanwhile, a minor quantity is necessary in order to provoke a result and the 

minimum amount that can be bought is of one gram. Consumers will still go to hospital 

departments across the world, and medical doctors will need prompt information on these new 

drugs, their consequences and risks. Daily, the professionals, who are in contact with NPS 

cases, suffers with the scarcity of scientific and medical data. Investigation in this field is not 

all consolidated, medical clinical cases do not contemplate the reality and amount of episodes 

at the various hospitals and the health system of countries have not yet develop a central 

database that combines toxicology and forensics (Boyce, 2011).  

Contributing to the risk scenario, the absence of safety guidance (how to use, 

overdosage, adverse effects) on the online market of NPS drugs is justified by putting labels 

as “not for human consumption”. This act does not stop the consumers use and it represents 

an attempt from the manufactures to avoid health vigilance and regulations, bringing the 

chance of adding anything to the herbal blend. When there is the application of legal 

prohibition, the effect is not only the supply and demand of the products, but instead it leads 

an invitation to chemists from the illegal market to change the molecular structure of drugs. 

This action is creating alternatives that do not fit into the control of one chemical compound, 

but it is evolving the discovery of stronger chemicals than the ones before. The concept of 

harm is discussed as the legality of new compounds is confusing to scientifically “calculate” 

the harm to fill in the legislation and it is constantly being argued (Rolles and Measham, 

2011). 
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 Even though synthetic cannabinoids were designed to provide insights into the 

cannabinoid organization (Huffman et al., 1994), numerous synthetic cannabinoids turned out 

as drugs of abuse, apparently as these could present advantages resembling marijuana; to 

mention, the non-appreciation and awareness of drug legislation or detectability on 

conventional drug-urine exams (Seely et al., 2012). From that, studies endorse comparable 

physiological reactions from ‘Spice’ and cannabis use (Zimmermann et al., 2009, this paper 

describes a patient case that was undertaking cannabis-like withdrawal and tolerance 

symptoms subsequently the stop of ‘Spice’ use). Disturbingly, the usage of K2 (one of the 

synthetic cannabinoids commercial product) has a significant occurrence of serious adverse 

effects, that are not usually described with marijuana (tachycardia with hypertension, anxiety 

attacks, seizures, psychosis and hallucinations (Harris & Brown, 2013).  

With the occurrence of synthetic cannabinoids in commercial herbal blends from 

2008, various research cores have use liquid or gas chromatography with mass spectrometry 

(LCMS; GC-MS) in order to point out its presence on the content of ‘K2/Spice’ (Lindigkeit et 

al., 2009). Remarkably, Δ9THC was not found in the analyses of ‘Spice’ samples, proposing 

that the physiological impact of these substances were happening because of the synthetic 

cannabinoid ‘cutting agents’ (Auwarter et al., 2009). The investigating group that used 

LC/GCMS and identified synthetic cannabinoids did find ones as JWH-018, JWH073 and 

CP-47,497 in a concurrent presence as components of the marijuana products. The prediction 

nowadays is that more new compounds will be encountered to be sprayed on ‘Spice’ and it is 

already true to findings of JWH398 and JWH250 in Germany and the UK (Vardakou et al., 

2010). 

 

1.4. JWH-073 (1-butyl-1H-indole-3-yl)-1-naphthalenyl-methanone) 

 

 

Dresen et al. (2010) mention the initial cannabimimetics had succumbed to new, yet 

similar, synthesised ones that represents an escape of the European legislation assessing and 

prohibiting JWH and CP’s; while Lindigkeit et al. (2009) places JWH-073 (JWH-018 

homolog, using instead a butyl radical) as a substitute to the prevalent JWH-018 (structural 

comparison below). 

 

 



 25 

 

 

 

 

 

 

 

 

Figure 6. Structural comparison for JWH073 (1-Butyl-1H-indol-3-yl)(1-naphthyl)methanone, C23H21NO) and 

JWH018 (1-Naphthyl(1-pentyl-1H-indol-3-yl)methanone, C24H23NO) (Adapted from JWH-018 and JWH-073, 

ChemSpider, 2014) 

 

November 24
th

 of 2010 was the date of ban of JWH-073 and other four synthetic 

cannabinoids, by including these compounds as Schedule I (meaning, high potential for 

abuse, no accepted medical use, lack of accepted safety) of the Substance Act from the DEA 

(Drug Enforcement Administration) in the United States (Young et al, 2012). This action is 

already a consequence from intoxication cases, although it pushes the DEA to figure out 

toxicology in order to describe and explain why the ban has happened. JWH-073 in high 

concentration on synthetic marijuana is considered unlikely, or more as an additive or 

impurity of producing JWH-018, but also, there is a chance for JWH-073 detection as 

consequence of metabolism of AM-2201, a newer synthetic cannabinoid, or from the 

decarboxylation of JWH-018 (Hutter, 2013). 

JWH-073 is described to possess increased efficacy, nearly, 5-fold greater than 

Δ9THC (Brents et al., 2012) and, although, JWH-018 and JWH-073 are scheduled as 

narcotics in Germany, this does not mean these compounds have been banned from the 

commercial products. In fact, a study using new method of LC-MS (Kneisel and Auwater, 

2012) identified JWH-073 in serum of patients from emergency rooms and cases of criminal 

investigation on levels of 7.1 ng/mL, in an average of 0.85 ng/mL. As far as cases of 

intoxication are concerned, JWH-073 has been described to be involved on Cannabinoid 

hyperemesis syndrome (Hopkins and Gilchrist, 2013) or cardiotoxicity (Young et al., 2012). 

Based on a study assessing the potential of CB1 agonists (Atwood et al., 2011), JWH-

073 inhibits neurotransmission (IC50 of 49.4 nM) by reducing excitatory postsynaptic currents 

in hippocampal neurons; however it is less potent resembling JWH-018 (IC50 of 14.9 nM). 

Together with neural inhibition, the issue of tolerance has been put onto the synthetic 
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cannabinoids and the main assessment is through receptor sensitisation and internalisation; in 

which, JWH-073 is considering for Atwood et al. (2011) to produce slower internalisation 

(about 105 minutes) than JWH-018 (37 minutes). However, Wu et al. (2008) describes faster 

desensitisation for JWH-073, instead of JWH-018. In the end, the studies provide inferences 

that needed to be assessed in vivo, but it can be strong evidence on clinical reports of 

withdrawal and tolerance cases (as described on Zimmermann et al., 2009).  

In a structure-affinity study of indoles synthetic cannabinoids (Aung et al., 2000), 

there was the observation of influence of changes in the N-1 alkyl length of the chain on 

CB1/CB2 binding. For JWH-018, the kinetic values are CB1: 9.00 ± 5.00 and CB2: 2.94 ± 

2.65 nM, while for JWH-073, the values for CB1: 8.90 ± 1.80 and CB2: 38.0 ± 24.0 nM 

(while Δ9THC had values of CB1: 40.7 ± 1.7 and CB2: 36.4 ± 10 nM). These values and the 

increase of the alkyl chain shows a decrease of binding the bulkier the compound is, but 

interestingly presents JWH-073 low binding, gathering important data for the reflect on 

human physiology. That can be evidence to explain results as JWH-073 having the same 

discriminatory effects as Δ9THC in rhesus monkeys (Ginsburg et al., 2012), hypo motion, 

stillness, anti-nociception, and hypothermia in mice (Hruba et al., 2012).  

Concerning cytotoxicity, JWH-073 has been evaluated in a range of 75-100 µM, to be 

toxic to cell lines from hepatoma, buccal epithelium and mammary tissue, using lactate 

desidrogenase assay (only at 100 µM), but this same drug was not considered toxic with XTT 

assay that assess mitochondrial function. There was evaluation of genotoxic effects with 

positive toxic results of JWH-073 (also at 100 µM) in buccal cells (remembering that JWH 

are smoked and buccal cells are one of the first ones affected) and hepatoma cells. (Koller et 

al., 2013) 

 

1.5. JWH-250 (2-(2-Methoxyphenyl)-1-(1-pentyl-1H-indol-3-yl)ethanone) 

 

 Korean market for synthetic cannabinoids still has focus on JWH-018 or JWH-073, 

however, in the last years, new compounds have appeared in seized synthetic marijuana, as 

JWH-250 and the AM chemicals (Jang et al., 2014) and this same situation has been reported 

in other countries (JWH-250 detected: Turkey [Gurdal et al., 2013]; Italy [Gattardo and 

Tagliaro, 2011]; United States [NORCHEM, 2012]; Norway [Tuv et al., 2014]). 
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 In fact, JWH-250 is mentioned to be first detected in Germany, on 2009, and it is 

classified as a phenylacetylindole (see Fig. 7) with receptor CB1 affinity of Ki = 11nM; KI= 

33nM for CB2 (Huffman et al., 2005; Dargan et al., 2011), and, according to the UNODC 

(2011), it is considered controlled substance in Austria (Oct 2010), Denmark (Mar 2010), 

Germany (2011), Japan (Sep 2010), Lithuania (May 2009), Romania (Feb 2010), Switzerland 

(Dec 2010) and the USA (Jul 2012, DEA 2013).  

Figure 7. Structural molecule for JWH250 2-(2-Methoxyphenyl)-1-(1-pentyl-1H-indol-3-yl)ethanone, 

C22H25NO2 (Adapted from JWH-250, ChemSpider, 2014) 

 

 For this person, several methodologies of JWH-250 detection have been developed, 

even with the difficulties in detecting new synthetic cannabinoids, new ways of screening 

have been researched, including hair detection by ultra high performance liquid 

chromatography-tandem mass spectrometry (UHPLC-MS/MS) that showed real cases 

enclosing 4.8-83.4 pg/mg (Salomone et al., 2014). While at the emergency departments, cases 

of intoxication in which JWH-250 is present (in a mix of other cannabinoids) shows 

symptoms as: 

- In 38% of the cases, symptoms as nervousness, impatience, acute psychosis, and 

hallucinations, and, also, light and external stimulus hypersensitivity and panic 

reactions (Hermanns-Clausen et al., 2013) 

- In 18% of the cases, nervousness, confusion, hallucinations. (Lonati et al., 2012) 

- Lethargy, catalepsy, damage of vision and speech. (Westerbergh and Hulten, 2011) 
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However these symptoms are from episodes in which JWH-250 was not the only 

synthetic cannabinoid involved and the detected levels of this drug on human serum was of 

0,1-0.4 ng/mL, providing intoxication signs in 6 to 24h (WHO, 2014). In JWH-250 smoking 

self-studies (product ‘8-Ball’, a mix of JWH-250, JWH-019, JWH-081 and RCS-4 in 

approximately 10 mg/g), levels of this drug reached the blood as 10 ng/ml (after 20 minutes) 

and 10 ng/ml in oral fluid, while reached a peak of 140 ng/ml of its 4-hydroxylated metabolite 

in urine 1 hour after smoking (Adams and Logan, 2011). A review from the Expert 

Committee on Drug Dependence (WHO, 2014) points out that there is no study on 

dependence data or abuse potential and “No pre-clinical safety data are available about the 

toxicity, reproductive impact and mutagenic/carcinogenic potential of JWH-250”. 

 

1.6. Study rationale 

 

This study intends to assess the cellular toxicity of JWH-073 and JWH-250, synthetic 

cannabinoids identified as drugs of abuse. The cell lineage model is SH-SY5Y, a human-

derived neuroblastoma-glioma line. This cell line shows adherent behaviour and possesses the 

ability to differentiate along the neuronal type of cells (La Quaglia and Manchester, 1996).  

Cell toxicity is initially evaluated with the metabolic reduction of 3-[4,5-dimethyl-

thiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). Via endocytosis or protein facilitation, 

MTT enter cells and is reduced, by mitochondrial enzymes, to produce a purple compound 

(formazan). This compound is generally not permeable to membranes, therefore accumulating 

inside live cells. Dissolution of formazan crystals in the cells releases a purple product that is 

identified using a spectrophotometer. The cells’ capability of reducing MTT signals 

mitochondrial physiology and therefore an indication of cell viability. (Maioli et al, 2009) 

Cell death is then assessed focusing on the impairment of plasma membrane. The 

LDH assay measures lactate dehydrogenase as a steady cytoplasmic enzyme which is present 

in all cells. If the membrane is impaired, LDH diffuses to the culture medium. The LDH 

reaction is evaluated by a colorimetric assay, in two steps: first, NAD
+
 is reduced to 

NADHH
+
, then, via LDH and with the reaction mixture of the assay kit (containing 

diaphorase enzyme), an H
+
 is transferred to a tetrazolium salt molecule reduced to formazan 

product. Formazan here is then a marker for cell death. (Chan et al., 2013)  
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1.7. Research questions, Aim and Objectives 

 

1.7.1. Key research questions/hypotheses 

 

- Are JWH-073 and JWH-250 cytotoxic to neuronal cells? To what extent of dose 

dependency? 

- If cytotoxic, do these chemicals act on cell metabolism and cytoplasmatic leakage? 

- Can CB1 and CB2 receptors facilitate synthetic cannabinoids binding and possibly 

affect their toxicity? 

 

1.7.2. Aim 

To test neuronal toxicity of JWH-073 and JWH-250 on SH-SY5Y cell lineage. 

 

1.7.3. Objectives 

 

- Test neuronal toxicity focusing on mitochondrial damage with the MTT assay 

- Test neuronal toxicity focusing on the release of cytoplasmatic content with the LDH 

assay 

- Explore the use of SH-SY5Y human neuroblastoma cells, as cell models of toxicology 

for synthetic cannabinoids. 
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2. Experimental 

 

2.1. Reagents and Equipment 

 

All JWH were acquired from Lipomed, Switzerland. Stock solutions of JWH 018 

(molecular mass = 341.5 g/mol), JWH 073 (molecular mass = 327.4 g/mol) and JWH 250 

(molecular mass = 335.2 g/mol) were prepared to the final volume of 1ml and concentration 

of 25000 µM in pure sterile DMSO. The groups of samples applied were one blank (no cells, 

all other MTT components), one negative control (cells, 0.2% DMSO, no JWH)
5
, one positive 

control (cells, 1% Triton X-100, no JWH), 6 concentrations of each JWH (1, 5, 10, 25, 37.5, 

50 µM) 

MTT (Thiazolyl Blue Tetrazolium Bromide; Sigma-Aldrich, Portugal; 0.5 mg/ml) 

solution was prepared extemporanely in each time to read a new plate. For that, knowing the 

amount of wells to be used on the assay, we weighted in a semi analytical scale (Sartorius, 

Germany) of pure MTT to be dissolved on sterile conditions inside the vertical laminar flow. 

 LDH (Lactate desidrogenase Kit, Clontech, USA) was prepared according to 

manufacturer’s instructions for 100 tests. 

 For cell culture and assays, we used a laminal flow hood (Scanlaf, Mars Safety Class 

2), T25 culture plastic flasks (25 cm², volume of 60ml, VWR, Belgium), Dulbecco's Modified 

Eagle's Medium (DMEM, Gibco, Portugal) supplemented with 10% fetal bovine serum and 

1% pen strep + glutamine (both from Gibco, Portugal), a cell culture incubator (Water jacket 

incubator, ShelLab, USA), an inverted light microscope (Zeiss, Germany), Phosphate 

Buffered Saline (Gibco, Portugal), TrypLE™ Express (1X; Life Technologies, Portugal), a 

Neubauer hemocytometer chamber (Hirschmann EM Techcolor, 0.0025 mm
2
, depth 0.1 mm) 

centrifuge machine (Sigma 3-16PK, Portugal), Trypan Blue dye (Sigma, Portugal), 96-well 

microplates (Corning Inc., USA). 

 

2.2. Cell Culture 

 

Using nitrile non-powdered gloves and disposable lab coats, the laminal flow hood 

was sterilized with 70% ethanol, UV was applied for 15 minutes then the blower was turned 

on, each time before and after every use. Before handling all culture materials, analyst hands 

                                                 
5
 In order to investigate more on DMSO toxicity effects, we added a second negative control of 0.4% DMSO 

(5.2 µl of pure DMSO + 1294.8 µl supplemented DMEM  
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were sprayed with 70% ethanol, then the same procedure for every materials that need to be 

inside the hood and other safety protocols were followed. 

SH-SY5Y cell line (human neuroblastoma-glioma) was obtained as a gift from Dr 

Tiago Outeiro, from the Cell and Molecular Neuroscience Unit of the Institute of Molecular 

from Lisbon, Portugal. The cell lines were stored in vials at -80°C and after cultivation were 

used for the experiments. This cell line was cultivated in T25 culture plastic flasks (25 cm², 

volume of 60ml, VWR, Belgium) in Dulbecco's Modified Eagle's Medium, supplemented 

with 10% fetal bovine serum and 1% pen strep + glutamine, incubated under standard 

conditions (37 °C, humidified atmosphere, 5% CO2). 

Passages with changing of media occurred every 3–4 days; whilst proliferation was 

observed every 24h using an inverted light microscope. When the cultures reached confluence 

of 70-80%, cells were washed with Phosphate Buffered Saline, detached with TrypLE™ 

Express – acting for one minute under standard incubation conditions -, centrifuged, the 

supernatant was discard, the cells were re-suspended in 5 mL of DMEM and subcultured or 

proceed for counting. This counting was determined by exclusion of Trypan Blue dye before 

drug exposure growth and cell viability was of 90 % in the untreated cells. 

For drug exposure, cells were seeded into 96-well microplates. Drug exposures were 

started after 24 h of each subculture. JWH 073 and 250 (2.6 µL from stock solutions) were 

dissolved in 100 % DMSO, as vehicle, then diluted with supplemented DMEM (final 

concentration of 0.2% of DMSO) and added to cells to a final concentration of 1, 2, 5, 10, 25, 

37.5 and 50 µM (as presented on Table 1 – Appendices).  

 

2.3. Trypan blue (TB) counting 

 

TB counting measurement was described before (Reeb, 1992). Forty microliters of TB 

solution and 10 μL of cell suspension were used. The suspension was loaded into a Neubauer 

hemocytometer chamber with cover slip and scored with a light microscope at 40×, using 

quadrants 1, 5 and 4 (vide Figure 15). Cells that stained blue were scored as nonviable. 

Measurements were considered as follow: 

No. of viable cells = [(Viable cells from Q1 + Viable cells from Q4 + Viable cells from 

Q5)/3] x 5 (Dilution factor) x 10
4
 (one well’s size on the Neubauer chamber) 

No. of NON-viable cells = [(Non-Viable cells from Q1+ Non-Viable cells from Q4+ Non-

Viable cells from Q5)/3] x 5 x 10
4
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Viability (%) = (No. of viable cells/ No. of viable cells + No. of NON-viable cells) x 100 

 

2.4. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay: 

optimization and cytotoxicity assay 

 

According to ATCC (2011), in order to define the ideal number of cells per well of the 

96 well plate, trials must be done to measure the number of cells to be used. Cell suspension 

was obtained from T25 flasks and re-suspended at 6.2x10
5
 cells per ml. From this starting 

concentration, serial dilutions of cells in culture medium were seeded in a 96-well microplate 

(vide Figure x – Appendix), within a range of 1,5x10
4 

to 5x10
5 

cells per ml (1,5x10
4
, 2x10

4
, 

2.5x10
4
, 3x10

4
, 3.5x10

4
, 4x10

4
, 4.5x10

4
, 5x10

4
, 1x10

5
, 1.5x10

5
, 2x10

5
, 2.5x10

5
, 3x10

5
, 

3.5x10
5
, 4x10

5
, 4.5x10

5
, 5x10

5
 cells per ml). The selection of the cell density range for MTT 

was based on the reports about its IC50 in the literature (3x10
4
 - Cernaiani, 2008; 4x10

4 
- Kim, 

2010; 1x10
4
 - Wang, 2011; 1x10

5
 - Tai, 2011) and our preliminary experiments.  

The dilutions were done using the last concentration (5x10
5
) calculated to obtain 700 

µl (triplicates; each well fits 200 µl) of each concentration (vide Table 2 and 3 for microplate 

scheme and summary of cell density obtention). On triplicates, 200 μL of the dilution samples 

were added into wells of a 96-well plate, including control wells of medium alone to provide 

the blanks for absorbance readings, then proceed to incubation under appropriate conditions 

for the cell line for 24 hours. From this step, proceed to MTT assay normally (to be described 

below), then after the formation of crystals, read absorbance in an UV spectrophotometer 

(Biorad, USA). Blanks will show values of zero (± 0.1). Defining the mean values from 

triplicate readings, we could subtract the mean value for the blank and use the MTT reduction 

formula (to be presented below). 

MTT assay (described by Maioli, 2009) itself starts after cell trypsinization, when cells 

were again counted with Trypan Blue method to achieve a concentration of 3×10
4 

cells/well 

(1x10
5
 cells per ml defined from the cell optimization assay; area of each well was 0.32 cm

2
), 

into to a sterile 96-well microplate. As each well contains 200 µl, it was calculated the amount 

of volume to apply 1x10
5
 cells/ml, plus the difference was complete with supplemented 

DMEM medium. After 24 hours of microplate culture, the medium was removed and 

substituted with 200 μl of drug medium, which contains JWH 073 and 250 on concentrations 

of 1, 5, 10, 25, 50 and 100 µM; or blank-vehicle control (0.2% DMSO) or 1% TritonX-100 as 

positive control. After 24h of incubation, the resulted media from each well was collected to 
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perform LDH assay. New 100 µl of DMEM was applied to wash drug-exposed cells on the 

microplate, then removed before MTT adding. Previously MTT solution (200μl; 0.5mg/ml) 

was added to each well, and the plates were incubated in the dark for 2,5 h at 37°C/5% CO2 

(this incubation will allow formazan crystals formation). Dissolve crystals with 200µl of pure 

DMSO and carefully homogenising the liquid and perform absorbance readings at 595nm, 

calculate mean, standard deviation and error (%) of the samples and plot as dose range. This 

experiment was repeated in independent sample at least three times. For calculations, use the 

equation: 

% reduced MTT = 100 x (mean of the sample / mean of the negative control) 

 

2.5. Lactate Desidrogenase (LDH) assay 

 

With the same microplate cell culture from MTT assay (already exposed to JWH and 

controls), we collect 150 µL of media samples of each well carefully, without disturbing the 

microplate bottom, into an eppendorf. We performed centrifugation of the tubes at 

1000g/3min, and, without disturbing the cell pellet, transferred 100 µl of supernatant into a 

new 96-well plate. After, add 100 μl of the Reaction Mixture (freshly prepared; LDH kit from 

Clontech, USA) to each well, we incubated the plate at room temperature for 30 min, 

protecting from light, to allow the enzymatic reaction to take place. Then, absorbance was 

read at 490 nm and cytotoxicity was measured with the formula below. The experiment used 

six replicates and it was performed three times independently.   

Cytotoxicity (%) = 100 x [(Triplicate Absorbance – Negative control) / (Positive Triton-X 

Control - Negative control)] 

 

2.7. Statistical Analysis 

 

Data is presented as the mean of the % MTT or % LDH ± S.D. for, at least, 3 

independent experiments for MTT and one experiment for LDH assay. MTT results compiled 

from all independent experiments and evaluated for outlier detection (Grubbs, Sigma rule, 

Inner and Outer Fence Rule). As data was considered non-parametric, we used Kruskal-

Wallis 1-way ANOVA test. LDH results were evaluated by F-test to find out variances 

behaviour, then Student’s T-test. The statistical methods were achieved using Tanagra 

software, version 12.0.1 or Microsoft Excel 2010 – Analysis ToolPak, using a confidence 

interval of 95%. 
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3. Results 

3.1. MTT Optimization 

  

Since Mossmann (1983) introduced the MTT assay, adjustments were done to suit 

different laboratories, different analysts and other variable as time of incubation. It is indeed 

important to adapt the assay to the laboratory, cell lineage as well as to the analyst 

methodologies. This will provide the best results in the given set-up but will necessarily need 

to be reflected in the results interpretation. In addition, these factors do influence on results’ 

interpretation. Before proceeding with the assay, preliminary laboratory work was performed 

in order to identify the cell concentration most suitable to study proliferation and death as a 

function of drug exposure. Appendices tables reports the detail of this preparatory phase. The 

exponential growth phase was defined from a search on the literature that provide a range of 

3x10
3
 to 1x10

5
 cells per well. Assays here were done in three replicates of each cell density.  

Previous calibration used bovine serum to establish detection limits for the 

spectrophotometer used in this work's MTT assays. These limits were found to be between 0.7 

and 1.2 in optical density (OD). Optimally, an optical density of approximately 1 should 

therefore be picked, leaving enough leeway to observe both the stimulus and the inhibition of 

cell. This OD allows us to have measurements on both the stimulus and inhibition of cell 

proliferation. Figure 8 reports the study to correlate the cell culture absorbance at 595 nm with 

the optimized cell concentration was of 3x10
4
 cells per well. As each well of the microplate 

contains 200 µL, the equivalent concentration will be 1x10
5
 cells/ml. This is defined as 

optimized cell number to be used on all following MTT assays. 

 

Figure 8. Optimization for MTT assay. Without drug exposure and yielding an optical density at 595nm of 1.2, 

the concentration of 3x10
4
 cells per well (1,5x10

5
 cells per ml) was selected for cytotoxicity assays. 
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3.2. JWH 073 MTT Assay 

  

The MTT method was applied to SH-SY5Y neuroblastoma cell line to JWH-073 

(range of 1-50 µM), in parallel to a positive control of 1% Triton X-100 and a negative 

control of 0.2% DMSO. Drug exposure was performed after 24h of culture growth on a 96-

wells microplate and then again incubated for more 24h. The fractional reduction in the SH-

SY5Y cell culture was determined through optical density measurements, as detailed in the 

experimental section 2.4. 

 Fig. 9 shows the results for control samples as well as the exposure of the culture to a 

range of JWH-073 concentrations. Triton X-100 effectively worked as a positive control on 

cell non-viability (97 % ± 0.8 of MTT toxicity resembling negative control, p < 0.05, 

Kruskal-Wallis), mainly due to its characteristics as detergent and protein extractor (Stowe et 

al, 1995). Applying the same statistical treatment (see Appendices), none of the concentration 

applied of JWH-073 affected the colture significantly with respect to the negative control.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. MTT results of SH-SY5Y exposure to JWH-073 (95% confidence interval, Kruskal-Wallis, n=3 

independent assays of 6 replicates each). 
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3.4. JWH 250 MTT Assay 

 

MTT was also performed exposing SH-SY5Y neuroblastoma cell line to JWH-250 in 

the same manner as mentioned before for JWH-073. 

 Fig. 10 show results for a range of JWH-250 concentrations and control samples. 

Tritox X-100 effectively worked as a positive control on cell non-viability (84% ± 14.8 of 

MTT toxicity resembling negative control, p < 0.05, Kruskal-Wallis). Applying statistical 

treatment (see Appendices), there was statistical significance for the concentration of 50 µM 

applied of JWH-250 showing a MTT reduction of 40.1% ± 15.8  and the concentration of 37.5 

showing MTT reduction of  20.4 % ± 13 µM with respect to the negative control (0.2% 

DMSO). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. MTT results of SH-SY5Y exposure to JWH-250 (p < 0.05, Kruskal-Wallis, n=3 independent assays 

of 6 replicates each). 

 

3.5. JWH 073 LDH Assay 

  

In the range of in vitro assays that use enzymes as cellular markers of death, the choice 

in literature is usually between glucose-6-phosphate dehydrogenase, adenylate kinase and 

lactate dehydrogenase (LDH). Commercial kits to detect these enzymes are developed and 

available; however the stability of enzymes in between and within the assays is an issue. LDH 

is the one assay preferred on the detection of leakage of cytoplasmatic content that leads to 

cell death. 

* 

* 

* 
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Samples for the LDH assay were collected from the MTT assay tray before applying 

the MTT test. JWH-073 (range of 1-50 µM), positive control of 1% Triton x100 and negative 

control of 0.2% DMSO were used. Drug exposure was performed after 24h of culture growth 

on a 96-wells microplate. On the determination of chemicals’ effect in SH-SY5Y culture, the 

optical density was obtained in which a calculation (see Experimental section 2.5) was done 

to obtain the percentage of LDH leakage detection. 

 Fig. 11 show results to JWH-073 range and controls. DMSO (0.2%) effectively 

worked as a negative control on the LDH assay (6% ± 4.3). Applying statistical treatment (see 

Appendices for data with mean and standard deviation – Table 6, F-test – Table 7 - and T-test 

for equal variances – Table 8), the concentrations of 37.5 and 50 µM were significantly 

different than the negative control and were considered ‘inducers of cell death’ with LDH 

leakage of 29 ± 12 % and 45 ± 11 %, respectively (while positive control, 1% Tritox X-100, 

showed 93.6 ± 1.9 %, compared to negative control). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. LDH results of SH-SY5Y exposure to JWH-073 (p < 0.02, Student’s T test, n=1). 

 

 

3.6. JWH 250 LDH Assay 

 

LDH was also performed exposing SH-SY5Y neuroblastoma cell line to JWH-250 in 

the same manner as mentioned before for JWH-073. Fig. 12 show results to JWH-250 range 

and controls. DMSO (0.2%) effectively worked as a negative control on the LDH assay (-2 ± 

2.8 %). Applying statistical treatment (see Appendices for data with mean and standard 

* 
* 
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deviation – Table 9, F-test – Table 10 - and T-test for equal variances), the concentrations of 

25 and 50 µM were significantly different than the negative control and were considered 

‘inducers of cell death’ with  LDH leakage of  9 ± 3.1 % and 9 ± 3.4 %, respectively (while 

positive control, 1% Triton X-100, showed 93.1 ± 11.6 %, compared to negative control). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. LDH results of SH-SY5Y exposure to JWH-250 (p < 0.0006, Student’s T test, n=1). 

 

 

3.8. JWH comparison 

In order to observe tendencies for both JWH synthetic cannabinoids, both MTT and 

LDH were assayed and JWH-073 and JWH-250 were studied as a function of drug 

concentration. Figure 15 reports the four line plots, comparing the reduction/release fractions 

as a function of concentration. It shows a correlation of MTT and LDH results in order to 

support each other. Both JWH have similar MTT ‘behavior’, although LDH demonstrates the 

statistical significance of JWH-073 toxicity on concentration of 37.5 and 50 µM. Nonetheless, 

futher characterization could be interesting, together with standard cannabinoids as THC, 

JWH-018 or WIN 55,212-2. 

Figure 13. Assay comparison and observation of tendencies for JWH-250 and JWH-073. 

* * 
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4. Discussion 

 

Synthetic cannabinoids present as potent drugs, as far as 0.5 to 5 mg is considered a 

dose that can lead to psychoactive effects (Tuv et al., 2014), what presents as a challenges to 

forensic scientists throughout the world to provide insight into new methods of detection in 

biological matrices, while THC has been described as a strong impairment agent on cognition 

and motor skills, as driving (Ramaekers et al, 2000). In fact, an Australian report described 

driving accidents to have a prevalence of 10.8% of Cannabis use and 13,5% on fatal cases 

(Longo et al., 2000; Drummer et al., 2003). Concerning synthetic cannabinoids, these are 

considered stronger drugs then THC (Griffiths et al., 2010) and clinicians are step by step 

describing the symptoms of a synthetic cannabinoids’ intoxication that includes euphoria, 

panic attacks, restlessness and anxiety (Bebarta et al., 2012).  

 The epidemiology of synthetic cannabinoids’ use is yet to be clarified and 

organizations as the EMCDDA and the UNODC have provided efforts on it, however, local 

scenarios of epidemiologic research are needed. Together with clinical reports, that can 

provide material for biological analysis, there have been large surveys on drug users’ 

behaviour, preferences and reactions. One example is the group of Winstock et al. (2011) 

assessing the British dance scene population, with a survey resulting on a prevalence of 13% 

of ‘Spice’ users. A second example is a survey describing use of ‘Spice’ among US American 

college students with a rate of 9% (Hu et al., 2011), while athletes are another segment 

investigated, Heltsley et al. (2012) performed 5956 urine screening and found synthetic 

cannabinoids in 4.5%. 

 The amount of side effects from the use of synthetics it is translated on the chemical 

analysed of the herbal blends of ‘Spice’-products. Zuba et al. (2011) mentions that most 

frequently the blends do contain more than on synthetic cannabinoid and analysis from blood-

work cases reveal intoxication mediated by more several synthetic cannabinoids; what is 

confirmed as 50% of the episodes from a series of toxicological cases performed by Yeakel 

and Logan (2013). Besides, the blends not only contain synthetic cannabinoids, but some do 

enclose known drugs and it can be detected as methamphetamine, benzodiazepines and THC 

itself – with other cases including GHB and codeine (Tuv et al., 2014). This entire scenario 

contributes to intoxication of multiple symptoms. 

 Studies here and elsewhere reviewed show correlation of synthetic cannabinoids to 

psychotic episodes, however, the elements of direct evidence need to be scrutinized by 
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Toxicology. Remembering that ‘Spice’-products do vary intra and inter batches and it 

generates fractions of more than one JWH or other synthetic cannabinoid. The comprehension 

of polysubstances can lead to misunderstanding on inferences of toxicological effects. It is 

interesting to investigate these new drugs on its own specificity of influence on human 

physiology, but also to consider that the heterogeneity of compounds in one package of 

‘Spice’ and its overall contribution to adverse neurological effects. 

 That is one of the reasons why this study here chose SH-SY5Y cell lineages to be 

applied. In addition, clinical reports are finally arising, as the one from Bernson-Leung et al. 

(2014), in which it identifies two cases of stroke symptoms on healthy individuals after 

experiencing synthetic cannabis for the first time.  

 SH-SY5Y as an option of in vitro model of toxicity focused on Δ9-THC been 

demonstrated as an inhibitor of the production of nucleic acids and proteins on neuronal cell 

lines, from human and mouse, but, also to influence on the cell membrane and cell growth 

(Lew, 1996). In fact, Δ9THC has an emphasis on nerve cells, which type can be originated 

from neuroblastoma cultures (La Quaglia and Manchester, 1996). The SH-SY5Y has the most 

utilized cell line human-derived on toxicity studies, with more than 4900 hits on PubMed and 

it has been used for in vitro toxicology focusing on neurodegenerative disease, as Alzheimer’s 

(Harvey et al., 2012), as Parkinson’s (Choong and Say, 2011) and, for oxidative stress 

mediated by drugs (Halliwell, 2006), including on the test of cannabinoids toxicity or 

potential for therapy. These cells are considered easy to cultivate (Cheung et al., 2009) and 

are applied on the study or neuronal development (Radio et al., 2008). In addition, SH-SY5Y 

has been profiled to express enzymes as tyrosine- (Chen et al., 2013) and dopamine hydrolase 

(Ou et al., 1998). To complete information, the study of Sanfeliu et al. (1999) compared SH-

SY5Y with primary culture of neuronal cells and found similar behaviour when exposed to 

toxicants, what brings advantage on the use of readily available immortal culture of SH-

SY5Y, instead of having access primary human tissue sources. Altogether, it presents a good 

tool for in vitro investigation and that is why it was a chosen cell line to be used in the 

European Union project for acute systemic toxicity “Acutox” that is reliably correlated to in 

vivo assays (Gustafsson et al., 2010). 

 We proposed to characterise the properties of synthetic cannabinoids, JWH-073 and 

JWH-250 as acute neurotoxicant chemicals on SH-SY5Y neuroblastoma cell line. This 

neurotoxicity was assessed via assays involving the activity of cell mitochondria, the leakage 

of cytoplasmatic content and on the cell diameter distribution for apoptotic stages.  
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4.1. JWH-073 results 

 

MTT do rely on reducing a colouring reagent via a dehydrogenase enzyme to be 

functional in a live cell; this can be a measurement of cell viability. This test is also 

considered easy-going, safe and to possess good reproducibility, what makes it useful for 

either test of viability and cytotoxicity. These properties make it a common initial step in the 

toxicological assessment. MTT is frequently used as one of the method measuring the activity 

of mitochondria in live cells, while mitochondrial NADH converts MTT to formazan and this 

later as water-insoluble, it forms crystal needles of purple that can be readily dissolved by an 

organic solvent (in our case, DMSO). Altogether, MTT depends highly on mitochondrial state 

and not entirely on the cell itself. 

LDH, as a marker of cell membrane damage, provided results that increased our 

suspicious to re-investigate concentrations of 50 µM and higher. Our MTT results do not 

show statistically significant evidence of toxicity for JWH-073 at the concentrations 

considered, however some caveats need to be taken into account. First, a total number of 18 

replicates (6 on 3 independent assays) increased the uncertainty of the measurement and lead 

to interpretation difficulty, mainly on the last concentration (50 µM) of this drug. Cells 

acquiring genetic changes at each subculture – that can lead to differential growth or 

adaptation to the culture -, the need to use cell clones from different batches of culture flasks 

and the analyst handling of pippeting procedures are matters to be considered when reflecting 

on uncertainty. 

Secondly, JWH-073 differs only by one methyl group from JWH-018 (the SC with 

greater binding energy to CB1, what can reflect its toxicity) and this similarity can be useful 

in comparing degrees of toxicity. However, the issue here lies on the expectative of obtaining 

comparable results to the chemical match of these two synthetic cannabinoids. 

 In fact, JWH-018 and JWH073 were assessed by Koller et al. (2013) and concluded to 

be cytotoxic (concentrations higher the 75-100 µM), but in cell lines of buccal (TR146) and 

mammary tissue (MCF-7) cells, as opposed to the neuroblastoma cells used in this study. 

However, we must remember neither of the cell lines used by Koller et al. possess CB1 

receptor and could not allow binding of JWH drugs , although there could be other effective 

receptors that are currently being investigated, as TRP and PPAR). To overcome the receptor 

issue, Tomiyama and Funada (2014) used mice forebrain culture to test JWH-018 and it 
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showed toxicity of 10-30 µM of drug. Again, here it can be discussed that forebrain culture 

are way more sensitive than immortalized cell lines as SH-SY5Y, yielding higher toxicities.. 

In fact, this same study puts in test other synthetic cannabinoids (HU-210, AM-2201, and 

MAM-2201), belonging to the differenct chemical classes rather than the JWH category. The 

Tomiyama and Funada study found all these cannabinoids to be cytotoxic, suggesting that 

chemical differences of cannabinoids do not matter as all these are considered toxic on these 

specific cells.  

 Following this lead,, Atwood et al. (2011) tested JWH-073 on primary culture of 

hippocampal cells and analyse the influence on neurotransmitter release. They do not find this 

drug to be as effective as JWH-018. This shows the sensitivity of primary culture to synthetic 

cannabinoids, is functional rather than toxicity-driven: besides cellular death, functional 

impairment needs to be assessed as another dimension.  

 When investigating complex systems rather than cells, Ginsburg et al. (2012) find that, 

JWH073 effectively mimics THC psychotropic effects in rhesus monkey in a concentration of 

0.058 mg/kg in only 1 hour of exposure with intravenous administration, while JWH-018 was 

found to be more effective (0.013 mg/kg) in 2 hours. Although this study is important, we 

must consider realistic routes of administration when discussing drug dose effect. JWH is is 

usually self-administered through smoking. Marshell et al. (2014) compared both the smoking 

and intravenous routes, in which at 100 mg / 30L air of JWH-073 mimicked 50% of THC 

psychotropic effect, while JWH-018 induced 80% of effect at the same concentration. Also 

Poklis et al. (2012) exposed mice to ‘Magic Gold’ marijuana smoke (containing a mix of 

JWH-018, JWH-073 and JWH-398) and found JWH-073 levels in blood, after 20 minutes, 

were of 67-244 ng/ mL. However, in brain tissue the detected levels of JWH-073 were 412-

873 ng/g. This data puts the brain as an important distribution site or point of accumulation of 

JWH-073: the brain is in fact fat-rich and is capable of biotransforming xenobiotics. 

 Our results do not show significant toxicity for neuronal cell line. This is not 

inconsistent with literature: toxic effects of JWH-073 alone haven’t been observed on 

humans, who are usually exposed to admixtures of different JWH compounds. Hermanns-

Clausen et al. (2013) mention a case of intoxication from the "lava red" synthetic marijuana. 

Their study revealed concentrations of several cannabinoids in the subject urine: JWH-210 

(2.5 ng/ml), JWH-073 (0.11 ng/ml) and JWH-015 (< 0.1 ng/ml). There are not described 

cases of intoxication of JWH-073 itself and most commercial products do contain more than 
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one synthetic cannabinoid (Lindigkeit et al., 2009). This shows the necessity of assessing 

synergy of effects (toxic or not) of synthetic marijuana combinations. 

  

4.2. JWH-250 results 

  

The Critical Review Report on JWH-250 from the World Health Organization (2014) 

mentions “No pre-clinical safety data are available about the toxicity, reproductive impact 

and mutagenic/carcinogenic potential of JWH-250”. In this workhere we do provide initial 

toxicological assessment of this drug. The use of a neuronal cell line is instrumental to clarify 

the role of JWH-250 in psychopathological symptoms and in episodes of intoxication 

including confusion, hallucinations and convulsions (Papanti et al., 2013; Lonati et al., 2012). 

JWH-250 show in this study at concentrations of 37.5 and 50 µM for MTT and of 25 

and 50 µM for LDH. There are so far few reported cases of contamination of marijuana 

products with JWH-250, involving serum levels of 0.1-1.1 ng/mL, with effects in 6-24 hours 

(Kneisel et al., 2012). Our study shows a toxic effect of 50 µM of JWH-073 on SH-SY5Y 

neuronal cell line of 40.1% ± 15 (MTT) and 9 ± 3.4 % (LDH), in an exposure of 24 hours. 

This relatively small effect is however statistically significant and must be considered in 

perspective of potentially higher concentrations and longer exposures. Further studies are 

needed to understand its effect on neuronal function. 

The study of Hermann-Clausen et al. (2013) presents JWH-250 as part of marijuana 

combination that provided acute intoxications, mainly together with JWH-081, JWH-018, 

JWH-122, THC and benzodiazepines. This variety of co-participants in the marijuana herbal 

blend suggests the need further investigations on the basal toxicity of JWH-250. Like in the 

JWH-073 case, synergy may play an important qualitative and quantitative role in adverse 

effects. 

From the chemical point of view, JWH-250 is considered as a 2-substituted 1-pentyl-

3-phenylacetylindoles which suggests less binding affinity to CB1 receptor compared to 

naphtoylindoles (as JWH-018), however greater affinity to CB1 and CB2, when compared to 

3-substituted compounds (Huffman et al., 2005). In addition, Compton et al. (1992) describes 

3-phenylacetylindoles as having activity on the cessation of movement, analgesia and 

hypothermia in mice, which are common effects of synthetic cannabinoids. 
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Mitochondrial effects of these drugs - as evaluated through MTT  may be an important 

focal point: Athasaniou et al. (2007) conjecture a direct action of synthetic cannabinoid on 

mitochondria, which have a role in: 

- the metabolism of brain aging (Chakrabarti et al., 2011) 

- the release of synaptic vesicles (Ivannikov et al., 2013) 

- working memory of monkeys (which Hara et al., 2013, correlate with mitochondria 

morphology) 

- the dynamics of DNA mutations and their interplay with energetic fluctutations 

(Picard and McEwen, 2014) 

Results coming from experiments with SH-SY5Y allow to expand the approach to 

differentiated cells (recalling that SH-SY5Y neuroblastoma cells can be differentiated using 

all-trans-retinoid acid into neurons), including glial (astrocytes, microglia, oligodendrocytes), 

neuronal (neurons from different regions of the brain and that release different types of 

neurotransmitters) and nerve cells. These studies can be complemented by the use of primary 

cultures from brain segments (motor cortex, hippocampus, limbic system involved with 

addiction, etc.) and nerves from the peripheral system. 

In fact, the use of MTT and LDH techniques would allow inferences on viability and 

death (or any type of cell), and could be expanded to assess energetic metabolism, uptake of 

glucose, oxidative stress, homeostasis of calcium. Emphasis can be put on measurements of 

neuronal type of cells as electrical activity, release of neurotransmitters, migration of axons, 

activation of specific receptors and channels, the chance of excitoxicity, the influence on the 

interaction between neurons and glial cells. Moreover, it can be expanded to the development 

of the nervous system in activities that include cell proliferation, movement, apoptosis 

signalling, commitment with neural cell type, and also, on the influence on progenitor cells, 

the growth of neurites, activation of glia (for instance, brain microglial cells on inflammatory 

states), the impact on myelin production and electrophysiology. (Suñol et al., 2008) 

 

5. Conclusions 

  

This work focused on the evaluation of neuronal cytotoxicity (SH-SY5Y 

neuroblastoma-glioma cell line) of two synthetic cannabinoids, JWH-250 and JWH073. 

Results show evidences of toxicity for only one of the cannabinoids, JWH-250 in a 

concentration of 50 µM, via alterations on mitochondrial activity – measured through MTT – 
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and the release of cytoplasmatic content on the results of LDH assay. Altogether, this 

confirms that phenylacetylindoles can have toxic effect , reflecting its binding strength to the 

CB1 receptor. SH-SY5Y cells possess CB1 receptors, but do not show clear evidence of 

heightened syntetic cannabinoid uptake in our preliminary study. Our results based on the SH-

SY5Y cell line are definitely encouraging. These cells have proven to be a good model for 

cell toxicity in the nervous system. Their use in further characterizing the cannabinoids 

considered in this study - as well as other psychotropic susbtances - is definitely a promising 

line of research on the impact of a continuously evolving synthetic drug market. 

 

6. Recommendations for further work 

 

This dissertation is one of the first results in our laboratory on the use of neuronal 

culture model and the first characterization of JWH-250 on cell toxicity. The results presented 

here are an initial assessment of toxicological properties of these synthetic cannabinoids. 

These results clearly indicate the need to expand these drugs’ in vitro evaluation dalso 

independently from the cell model used. Our findings stress the importance of furthering the 

understanding of the influence of synthetic cannabinoids on apoptosis and its signalling 

mechanisms as caspases, Bcl/Bax, Akt or mTOR pathway. The drugs’ biotransformation 

needs to be addressed too, with special focus on mono-hydroxylated metabolites of other 

cannabinoids with stronger activity. 

Our study will benefit from a study in a broader range of damages such as the effect 

on the genetic and hormonal levels (potentially linking the action of cannabinoids to the 

activation of  CB1 and CB2 receptors). From the point of view of cannabinoid receptors, it is 

misleading to consider them the only mediators for psychotropic effects of cannabinoids: new 

receptors are in need to be discovered and classified, and other already known receptors and 

channels could  be potentially involved with cannabinoid drugs. In addition, the concerning 

aspect of the abuse and dependence degrees of synthetic cannabinoids calls for further 

investigation of receptors desensitization and regulation. 

Cannabinoids admixtures (such as the ones from ‘Spice’, ‘K2’ and other synthetic 

marijuana), as well as admixtures of psychotropic phytoderivatives must also be better 

represented on toxicological tests in order to understand their synergies. A clear approach to 

the analysis of these admixtures and metabolites is primordial to understand the reflection and 

effects on human physiology. 
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The resulting condition of SC intake requires more attention on the data availability. 

Information from poison centres and emergency department need to be systematically shared 

and approached through analytical biochemistry and laboratory techniques for identification, 

quantification, comprehension and publication of new intoxication cases. Altogether, the 

present work contributes to the broad evolving of SC neurotoxicology. y. New assays, as well 

as studies focusing on the electrical activity, should be targeted on neuronal cell types to 

better model and understand their effect on cellular and organic physiology. At the same time, 

progress is needed in assessing in vivo effects through models such as rats and monkeys, 

complementing the case studies based on drug users behaviour. 
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8. Appendices 

 

  1 2 3 4 5 6 7 8 9 10 11 12 

A                         

B BLANK NEG CTRL 
NEG 

CTRL 
 

0.4% 

DMSO 

POS CTRL 1uM 5uM 10uM 25uM 37.5uM 50uM 

  
 

 0.2% 

DMSO 

 0.2% 

DMSO 

0.4% 

DMSO 
1% TritonX-100             

C BLANK NEG CTRL 
NEG 

CTRL 
 

0.4% 

DMSO 

POS CTRL 1uM 5uM 10uM 25uM 37.5uM 50uM 

  
 

 0.2% 

DMSO 

 0.2% 

DMSO  

0.4% 

DMSO 
1% TritonX-100             

D BLANK NEG CTRL 
NEG 

CTRL 
 

0.4% 

DMSO 

POS CTRL 1uM 5uM 10uM 25uM 37.5uM 50uM 

  
 

  0.2% 

DMSO 

  0.2% 

DMSO 

0.4% 

DMSO 
1% TritonX-100             

E BLANK NEG CTRL 
NEG 

CTRL 
 

0.4% 

DMSO 

POS CTRL 1uM 5uM 10uM 25uM 37.5uM 50uM 

  
 

 0.2% 

DMSO  

 0.2% 

DMSO  

0.4% 

DMSO 
1% TritonX-100             

F BLANK NEG CTRL 
NEG 

CTRL 
 

0.4% 

DMSO 

POS CTRL 1uM 5uM 10uM 25uM 37.5uM 50uM 

  
 

 0.2% 

DMSO  
  

0.4% 

DMSO 
1% TritonX-100             

G BLANK NEG CTRL 
NEG 

CTRL 
 

0.4% 

DMSO 

POS CTRL 1uM 5uM 10uM 25uM 37.5uM 50uM 

  
 

 0.2% 

DMSO 

 0.2% 

DMSO  

0.4% 

DMSO 
1% TritonX-100             

H       
 

                

 
Table 1. Scheme for cell MTT/LDH assay on a 96-wells microplate. 
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Figure 14. Graphic view of the Neubauer chamber. Counting was performed at quadrants 1, 5 and 4, then 

average from it divided by 3, multiplied by 5 (as the dilution factor) and 104 (possible amount on cells in 1cm² 

of the quadrants). 

 

 

  1 2 3 4 5 6 7 8 9 10 11 12 

A 0 0 3x103 4x103 5x103 6x103 7x103 8x103 9x103 1x104 2x104 3x104 

B 0 0 3x103 4x103 5x103 6x103 7x103 8x103 9x103 1x104 2x104 3x104 

C 0 0 3x103 4x103 5x103 6x103 7x103 8x103 9x103 1x104 2x104 3x104 

D                         

E 4x104 5x104 6x104 7x104 8x104 9x104 1x105           

F 4x104 5x104 6x104 7x104 8x104 9x104 1x105           

G 4x104 5x104 6x104 7x104 8x104 9x104 1x105           

H                         

 
Table 2. Scheme for cell optimization on a 96-wells microplate. 
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Sample 
Number of cells per 

well 

Concentration 

(cells per ml) 

Volume of intermediate 

solution (concentration x 

final volume of 700/ int. 

sol conc of 500000) 

Volume of 

DMEM 

1 0 0 0 700 

2 0 0 0 700 

3 3000 15000 21,0 679,0 

4 4000 20000 28,0 672,0 

5 5000 25000 35,0 665,0 

6 6000 30000 42,0 658,0 

7 7000 35000 49,0 651,0 

8 8000 40000 56,0 644,0 

9 9000 45000 63,0 637,0 

10 10000 50000 70,0 630,0 

11 20000 100000 140,0 560,0 

12 30000 150000 210,0 490,0 

13 40000 200000 280,0 420,0 

14 50000 250000 350,0 350,0 

15 60000 300000 420,0 280,0 

16 70000 350000 490,0 210,0 

17 80000 400000 560,0 140,0 

18 90000 450000 630,0 70,0 

19 100000 500000 700,0 0,0 

 
Table 3. Scheme for obtaining required cell density for cell optimization on a 96-wells microplate. 
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Independent 

assay 

0.2% 

DMSO 

1% 

TRITON 

X100 

1 µM 5 µM 10 µM 25 µM 
37,5 

µM 
50 µM 

1 

0,19 0,034 0,163 0,198 0,223 0,241 0,216 0,032 

0,191 0,015 0,277 0,176 0,148 0,142 0,095 -0,019 

0,264 0,038 0,181 0,208 0,172 0,184 0,159 -0,005 

0,298 0,04 0,293 0,238 0,224 0,268 0,116 0,097 

0,245 0,036 0,14 0,199 0,228 0,162 0,173 0,04 

0,372 0,072 0,35 0,273 0,255 0,213 0,252 0,283 

2 

0,404 0,001 0,501 0,54 0,656 0,745 0,701 0,593 

0,472 0,019 0,469 0,565 0,677 0,644 0,542 0,447 

0,536 0,045 0,608 0,704 0,611 0,735 0,572 0,388 

0,425 0,011 0,552 0,677 0,561 0,752 0,553 0,436 

0,469 -0,003 0,561 0,547 0,524 0,673 0,651 0,53 

0,451 0,02 0,524 0,599 0,848 0,774 0,588 0,584 

3 

0,198 -0,003 0,228 0,339 0,445 0,253 0,415 0,636 

0,286 -0,023 0,282 0,252 0,233 0,228 0,304 0,296 

0,346 -0,021 0,168 0,229 0,266 0,24 0,401 0,44 

0,244 -0,031 0,237 0,365 0,155 0,252 0,236 0,395 

0,398 -0,032 0,421 0,349 0,254 0,423 0,292 0,428 

0,251 -0,02 0,33 0,209 0,132 0,19 0,309 0,385 

 

Table 4. Absorbance data minus blank from MTT results of JWH-073. 

 

 

 

  
0.2% 

DMSO 

1% 

TRITON 

X100 

1 µM 5 µM 10 µM 25 µM 37,5 µM 50 µM 

Assay 1 99,98839 -8,84401 96,68059 101,149 72,4234 84,69708 113,5678 143,454 

Assay 2 100 3,373232 116,6123 131,7374 140,6239 156,8009 130,8306 108,016 

Assay 3 100 14,23077 90 82,82051 80,12821 77,5641 64,80769 33,30769 

MTT % 99,99613 2,919997 101,0976 105,2356 97,72516 106,354 103,0687 94,9259 

SD 6,270899 0,848126 7,396174 5,746983 7,158542 3,676826 6,331426 7,608587 

 
Table 5. Means of each independent assay, final mean equals the calculation of % MTT and standard 

deviation (SD) to JWH-073. 
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JWH 073 – FIRST MTT ASSAY 

 
0.2% 

DMSO 

1% 

TRITON 

X100 

1 µM 5 µM 10 µM 25 µM 37,5 µM 50 µM 

0,19 0,034 0,163 0,198 0,223 0,241 0,216 0,032 

0,191 0,015 0,277 0,176 0,148 0,142 0,095 -0,019 

0,264 0,038 0,181 0,208 0,172 0,184 0,159 -0,005 

0,298 0,04 0,293 0,238 0,224 0,268 0,116 0,097 

0,245 0,036 0,14 0,199 0,228 0,162 0,173 0,04 

0,372 0,072 0,35 0,273 0,255 0,213 0,252 0,283 

 

Univariate Outlier Detection 1 

Parameters 

Parameters 

Grubbs' p-value 0,0500 

Multiple of sigma 3,0 

Use Fences 1 

Show outliers 0 

Filtering Parameters 

Remove outliers 1 

Use sigma 0 

Use inner fence 0 

Use outer fence 1 

 

Results 

Univariate Outliers Detection 

Detailed results for each variable 

Variable 
Grubbs 

Stat. 
Sigma rule Inner Fence rule Outer Fence Rule 

- Cut : 1,8871 L.B U.B Detected L.B U.B Detected L.B U.B Detected 

0.2% DMSO 1,6203 0,0526 0,4674 0 0,0305 0,4585 0 
-

0,1300 
0,6190 0 

1% TRITON 

X100 
1,7802 

-

0,0162 
0,0945 0 0,0250 0,0490 2 0,0160 0,0580 2 

1 M 1,3772 
-

0,0187 
0,4867 0 

-

0,0320 
0,4880 0 

-

0,2270 
0,6830 0 

5 M 1,6637 0,1113 0,3193 0 0,1380 0,2980 0 0,0780 0,3580 0 

10 M 1,5097 0,0884 0,3282 0 0,0880 0,3120 0 0,0040 0,3960 0 

25 M 1,3819 0,0577 0,3457 0 0,0435 0,3595 0 
-

0,0750 
0,4780 0 

37,5 M 1,4115 
-

0,0090 
0,3460 0 

-

0,0340 
0,3660 0 

-

0,1840 
0,5160 0 

50 M 1,9012 
-

0,2627 
0,4053 0 

-

0,1580 
0,2500 1 

-

0,3110 
0,4030 0 
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Removed outliers (if option activated) : 2 

 
Computation time : 47 ms. 

Created at 15/07/2014 18:12:23 

 

0.2% 

DMSO 

1% 

TRITON 

X100 

1 µM 5 µM 10 µM 25 µM 37,5 µM 50 µM 

0,19 0,034 0,163 0,198 0,223 0,241 0,216 0,032 

0,191   0,277 0,176 0,148 0,142 0,095 -0,019 

0,264 0,038 0,181 0,208 0,172 0,184 0,159   

0,298 0,04 0,293 0,238 0,224 0,268 0,116 0,097 

0,245 0,036 0,14 0,199 0,228 0,162 0,173 0,04 

0,372   0,35 0,273 0,255 0,213 0,252 0,283 
 

Results 

Univariate Outliers Detection 

Detailed results for each variable 

Variable 
Grubbs 

Stat. 
Sigma rule Inner Fence rule Outer Fence Rule 

- Cut : 1,4812 L.B U.B Detected L.B U.B Detected L.B U.B Detected 

0.2% DMSO 1,3115 0,1137 0,3848 0 0,1222 0,3763 0 0,0270 0,4715 0 

1% TRITON 

X100 
1,1619 0,0293 0,0447 0 0,0290 0,0450 0 0,0230 0,0510 0 

1 M 1,4535 
-

0,0096 
0,3981 0 0,0232 0,3653 0 

-

0,1050 
0,4935 0 

5 M 1,4561 0,1546 0,2669 0 0,1617 0,2598 0 0,1250 0,2965 0 

10 M 1,4950 0,1320 0,2915 0 0,1548 0,2688 0 0,1120 0,3115 0 

25 M 1,1036 0,0663 0,3612 0 0,0507 0,3768 0 
-

0,0715 
0,4990 0 

37,5 M 1,2129 0,0423 0,2897 0 0,0520 0,2800 0 
-

0,0335 
0,3655 0 

50 M 1,3557 
-

0,0789 
0,1634 0 

-

0,0627 
0,1473 0 

-

0,1415 
0,2260 0 

Removed outliers (if option activated) : 0 
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JWH 073 – SECOND MTT ASSAY 

 
0.2% 

DMSO 

1% 

TRITON 

X100 

1 µM 5 µM 10 µM 25 µM 37,5 µM 50 µM 

0,404 0,001 0,501 0,54 0,656 0,745 0,701 0,593 

0,472 0,019 0,469 0,565 0,677 0,644 0,542 0,447 

0,536 0,045 0,608 0,704 0,611 0,735 0,572 0,388 

0,425 0,011 0,552 0,677 0,561 0,752 0,553 0,436 

0,469 -0,003 0,561 0,547 0,524 0,673 0,651 0,53 

0,451 0,02 0,524 0,599 0,848 0,774 0,588 0,584 

 

Univariate Outlier Detection 1 

Parameters 

Parameters 

Grubbs' p-value 0,0500 

Multiple of sigma 3,0 

Use Fences 1 

Show outliers 0 

Filtering Parameters 

Remove outliers 1 

Use sigma 0 

Use inner fence 0 

Use outer fence 1 

 

Results 

Univariate Outliers Detection 

Detailed results for each variable 

Variable 
Grubbs 

Stat. 
Sigma rule Inner Fence rule Outer Fence Rule 

- Cut : 1,8871 L.B U.B Detected L.B U.B Detected L.B U.B Detected 

0.2% DMSO 1,6740 0,3224 0,5966 0 0,3545 0,5425 0 0,2840 0,6130 0 

1% TRITON 

X100 
1,7173 

-

0,0360 
0,0670 0 

-

0,0275 
0,0485 0 

-

0,0560 
0,0770 0 

1 M 1,4779 0,3893 0,6823 0 0,4110 0,6510 0 0,3210 0,7410 0 

5 M 1,4180 0,3966 0,8141 0 0,3520 0,8720 0 0,1570 1,0670 0 

10 M 1,7675 0,3036 0,9887 0 0,3870 0,8510 0 0,2130 1,0250 0 

25 M 1,5135 0,5689 0,8721 0 0,5545 0,8705 0 0,4360 0,9890 0 

37,5 M 1,6071 0,4148 0,7875 0 0,4060 0,7980 0 0,2590 0,9450 0 

50 M 1,2772 0,2419 0,7508 0 0,2140 0,8060 0 
-

0,0080 
1,0280 0 

Removed outliers (if option activated) : 0 
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JWH 073 – THIRD MTT ASSAY 

 
0.2% 

DMSO 

1% 

TRITON 

X100 

1 µM 5 µM 10 µM 25 µM 37,5 µM 50 µM 

0,198 -0,003 0,228 0,339 0,445 0,253 0,415 0,636 

0,286 -0,023 0,282 0,252 0,233 0,228 0,304 0,296 

0,346 -0,021 0,168 0,229 0,266 0,24 0,401 0,44 

0,244 -0,031 0,237 0,365 0,155 0,252 0,236 0,395 

0,398 -0,032 0,421 0,349 0,254 0,423 0,292 0,428 

0,251 -0,02 0,33 0,209 0,132 0,19 0,309 0,385 

 

Univariate Outlier Detection 1 

Parameters 

Parameters 

Grubbs' p-value 0,0500 

Multiple of sigma 3,0 

Use Fences 1 

Show outliers 0 

Filtering Parameters 

Remove outliers 1 

Use sigma 0 

Use inner fence 0 

Use outer fence 1 

 

Results 

Univariate Outliers Detection 

Detailed results for each variable 

Variable 
Grubbs 

Stat. 
Sigma rule Inner Fence rule Outer Fence Rule 

- Cut : 1,8871 L.B U.B Detected L.B U.B Detected L.B U.B Detected 

0.2% DMSO 1,5119 0,0672 0,5071 0 0,0910 0,4990 0 
-

0,0620 
0,6520 0 

1% TRITON 

X100 
1,7841 

-

0,0531 
0,0097 0 

-

0,0475 

-

0,0035 
1 

-

0,0640 
0,0130 0 

1 M 1,6137 0,0112 0,5441 0 0,0750 0,4830 0 
-

0,0780 
0,6360 0 

5 M 1,1956 0,0860 0,4950 0 0,0490 0,5290 0 
-

0,1310 
0,7090 0 

10 M 1,7808 
-

0,0852 
0,5802 0 

-

0,0115 
0,4325 1 

-

0,1780 
0,5990 0 

25 M 1,9562 0,0210 0,5077 0 0,1905 0,2905 2 0,1530 0,3280 1 

37,5 M 1,3131 0,1202 0,5322 0 0,1285 0,5645 0 
-

0,0350 
0,7280 0 

50 M 1,8244 0,0913 0,7687 0 0,3025 0,5225 2 0,2200 0,6050 1 
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Removed outliers (if option activated) : 2 

 

0.2% 

DMSO 

1% 

TRITON 

X100 

1 µM 5 µM 10 µM 25 µM 37,5 µM 50 µM 

0,198 -0,023 0,228 0,339 0,233 0,253 0,415 0,44 

0,286 -0,021 0,282 0,252 0,266 0,228 0,304 0,395 

0,346 -0,031 0,168 0,229 0,155 0,24 0,401 0,428 

0,244 -0,032 0,237 0,365 0,254 0,252 0,236 0,385 

0,398 -0,02 0,421 0,349 0,132   0,292 

 0,251 

 

0,33 0,209 

 

  0,309 

 

Univariate Outliers Detection 

Detailed results for each variable 

Variable 
Grubbs 

Stat. 
Sigma rule Inner Fence rule Outer Fence Rule 

- Cut : 1,4812 L.B U.B Detected L.B U.B Detected L.B U.B Detected 

0.2% DMSO 1,2314 0,0797 0,4573 0 0,0785 0,4585 0 
-

0,0640 
0,6010 0 

1% TRITON 

X100 
1,0341 

-

0,0434 

-

0,0101 
0 

-

0,0458 

-

0,0077 
0 

-

0,0600 
0,0065 0 

1 M 1,2957 0,0881 0,3694 0 0,1057 0,3518 0 0,0135 0,4440 0 

5 M 1,0430 0,0985 0,4940 0 0,0733 0,5192 0 
-

0,0940 
0,6865 0 

10 M 1,4429 0,0773 0,3767 0 0,0950 0,3590 0 
-

0,0040 
0,4580 0 

25 M 1,2970 0,2080 0,2785 0 0,2062 0,2802 0 0,1785 0,3080 0 

37,5 M 1,2180 0,0853 0,5927 0 0,0630 0,6150 0 
-

0,1440 
0,8220 0 

50 M 1,0690 0,3334 0,4906 0 0,3240 0,5000 0 0,2580 0,5660 0 

Removed outliers (if option activated) : 0 

 

 

Figure 15 (compilation). Outlier detection tests for JWH-073 MTT data. 
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Kruskal-Wallis 1-way ANOVA 1 

Parameters 

Parameters 

Sort results no 

 

Results 

Attribute_Y Attribute_X Description Statistical test 

rating group 

Value Examples Average 
Rank 

sum 

Rank 

mean 

0.2% 

DMSO 
3 99,9961 15,0 5,0000 

1% 

TRITON 

X100 

3 2,9200 6,0 2,0000 

All 6 51,4581 21,0 3,5000 
 

Statistics Value Proba 

Kruskal-

Wallis 
3,857143 0,049535 

KW 

(corr.ties) 
3,970588 0,046302 

 

 

 

Kruskal-Wallis 1-way ANOVA 1 

Parameters 

Parameters 

Sort results no 

 

Results 

Attribute_Y Attribute_X Description Statistical test 

rating group 

Value Examples Average 
Rank 

sum 

Rank 

mean 

0.2% 

DMSO 
3 99,9961 12,0 4,0000 

1 3 101,0976 9,0 3,0000 

All 6 100,5469 21,0 3,5000 
 

Statistics Value Proba 

Kruskal-

Wallis 
0,428571 0,512691 

KW 

(corr.ties) 
0,441176 0,506555 

 

 

 

Kruskal-Wallis 1-way ANOVA 1 

Parameters 

Parameters 

Sort results no 

 

Results 

Attribute_Y Attribute_X Description Statistical test 

rating group 

Value Examples Average 
Rank 

sum 

Rank 

mean 

0.2% 

DMSO 
3 99,9961 9,0 3,0000 

5 3 105,2356 12,0 4,0000 

All 6 102,6159 21,0 3,5000 
 

Statistics Value Proba 

Kruskal-

Wallis 
0,428571 0,512691 

KW 

(corr.ties) 
0,441176 0,506555 
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Kruskal-Wallis 1-way ANOVA 1 

Parameters 

Parameters 

Sort results no 

 

Results 

Attribute_Y Attribute_X Description Statistical test 

rating group 

Value Examples Average 
Rank 

sum 

Rank 

mean 

0.2% 

DMSO 
3 99,9961 12,0 4,0000 

10 3 97,7252 9,0 3,0000 

All 6 98,8606 21,0 3,5000 
 

Statistics Value Proba 

Kruskal-

Wallis 
0,428571 0,512691 

KW 

(corr.ties) 
0,441176 0,506555 

 

 

 

Kruskal-Wallis 1-way ANOVA 1 

Parameters 

Parameters 

Sort results no 

 

Results 

Attribute_Y Attribute_X Description Statistical test 

rating group 

Value Examples Average 
Rank 

sum 

Rank 

mean 

0.2% 

DMSO 
3 99,9961 12,0 4,0000 

25 3 106,3540 9,0 3,0000 

All 6 103,1751 21,0 3,5000 
 

Statistics Value Proba 

Kruskal-

Wallis 
0,428571 0,512691 

KW 

(corr.ties) 
0,441176 0,506555 

 

 

 

Kruskal-Wallis 1-way ANOVA 1 

Parameters 

Parameters 

Sort results no 

 

Results 

Attribute_Y Attribute_X Description Statistical test 

rating group 

Value Examples Average 
Rank 

sum 

Rank 

mean 

0.2% 

DMSO 
3 99,9961 9,0 3,0000 

37,5 3 103,0687 12,0 4,0000 

All 6 101,5324 21,0 3,5000 
 

Statistics Value Proba 

Kruskal-

Wallis 
0,428571 0,512691 

KW 

(corr.ties) 
0,441176 0,506555 
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Kruskal-Wallis 1-way ANOVA 1 

Parameters 

Parameters 

Sort results no 

 

Results 

Attribute_Y Attribute_X Description Statistical test 

rating group 

Value Examples Average 
Rank 

sum 

Rank 

mean 

0.2% 

DMSO 
3 99,9961 9,0 3,0000 

50 3 94,9259 12,0 4,0000 

All 6 97,4610 21,0 3,5000 
 

Statistics Value Proba 

Kruskal-

Wallis 
0,428571 0,512691 

KW 

(corr.ties) 
0,441176 0,506555 

 

 
Computation time : 15 ms. 

Created at 15/07/2014 18:50:21 

 

 

Figure 16 (compilation). Kruskal-Wallis tests for JWH-073 MTT data. 
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Independent 

assay 

0.2% 

DMSO 

1% 

TRITON 

X100 

1 µM 5 µM 10 µM 25 µM 
37,5 

µM 
50 µM 

1 

0,668 0,11 0,727 0,488 0,779 0,74 0,455 0,293 

0,667 0,122 0,746 0,601 0,514 0,721 0,391 0,246 

0,593 0,108 0,804 0,49 0,488 0,838 0,547 0,338 

0,477 0,108 0,782 0,716 0,578 0,75 0,71 0,373 

0,658 0,094 0,545 0,606 0,735 0,851 0,349 0,521 

0,702 0,143 0,496 0,69 0,858 0,356 0,368 0,335 

2 

0,456 0,125 0,454 0,464 0,52 0,396 0,489 0,347 

0,383 0,132 0,456 0,409 0,442 0,487 0,355 0,277 

0,322 0,116 0,403 0,388 0,45 0,445 0,366 0,276 

0,353 0,089 0,554 0,384 0,486 0,489 0,291 0,277 

0,336 0,092 0,415 0,48 0,476 0,442 0,303 0,31 

0,404 0,12 0,421 0,549 0,491 0,559 0,323 0,257 

3 

0,563 0,005 0,622 0,383 0,674 0,635 0,35 0,188 

0,544 -0,001 0,623 0,478 0,391 0,598 0,268 0,123 

0,475 -0,01 0,686 0,372 0,37 0,72 0,429 0,22 

0,365 -0,004 0,67 0,604 0,466 0,638 0,598 0,261 

0,566 0,002 0,453 0,514 0,643 0,759 0,257 0,429 

0,578 0,019 0,372 0,566 0,734 0,232 0,244 0,211 

 

Table 6. Absorbance data minus blank from MTT results of JWH-250. 

 

 

 

  
0.2% 

DMSO 

1% 

TRITON 

X100 

1 µM 5 µM 10 µM 25 µM 37,5 µM 50 µM 

Assay 1 100,00 18,19 108,90 95,38 104,97 113,04 74,90 55,94 

Assay 2 100,00 29,90 121,49 118,63 127,11 120,27 94,37 77,37 

Assay 3 99,99 0,36 110,83 94,36 106,04 115,88 69,42 46,33 

MTT % 100,00 16,15 113,74 102,79 112,71 116,39 79,56 59,88 

SD 0,00 14,88 6,78 13,73 12,48 3,64 13,11 15,90 

 
Table 7. Means of each independent assay, final mean equals the calculation of % MTT and standard 

deviation (SD) to JWH-250. 
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JWH 250 – FIRST MTT ASSAY 

 

0.2% 

DMSO 

1% 

TRITON 

X100 

1 5 10 25 37,5 50 

0,563 0,005 0,622 0,383 0,674 0,635 0,35 0,188 

0,544 -0,001 0,623 0,478 0,391 0,598 0,268 0,123 

0,475 -0,01 0,686 0,372 0,37 0,72 0,429 0,22 

0,365 -0,004 0,67 0,604 0,466 0,638 0,598 0,261 

0,566 0,002 0,453 0,514 0,643 0,759 0,257 0,429 

0,578 0,019 0,372 0,566 0,734 0,232 0,244 0,211 
 

Univariate Outlier Detection 1 

Parameters 

Parameters 

Grubbs' p-value 0,0500 

Multiple of sigma 3,0 

Use Fences 1 

Show outliers 0 

Filtering Parameters 

Remove outliers 1 

Use sigma 0 

Use inner fence 0 

Use outer fence 1 

 

Results 

Univariate Outliers Detection 

Detailed results for each variable 

Variable 
Grubbs 
Stat. 

Sigma rule Inner Fence rule Outer Fence Rule 

- 
Cut : 

1,8871 
L.B U.B Detected L.B U.B Detected L.B U.B Detected 

0.2% DMSO 1,4757 0,0248 0,4192 0 
-

0,0110 
0,4290 0 

-
0,1760 

0,5940 0 

1% TRITON 
X100 

1,6856 
-

0,0361 
0,0588 0 

-
0,0330 

0,0470 0 
-

0,0630 
0,0770 0 

1 1,8686 0,1689 0,5301 0 0,2270 0,4510 1 0,1430 0,5350 0 

5 1,4783 0,1532 0,5361 0 0,1570 0,5170 0 0,0220 0,6520 0 

10 1,5208 0,2650 0,4880 0 0,2740 0,4660 0 0,2020 0,5380 0 

25 1,6262 0,2205 0,5169 0 0,2570 0,4810 0 0,1730 0,5650 0 

37,5 1,9409 0,0240 0,4830 0 0,1195 0,3475 1 0,0340 0,4330 0 

50 1,7195 0,0670 0,3124 0 0,0870 0,2870 0 0,0120 0,3620 0 

Removed outliers (if option activated) : 0 
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JWH 250 – SECOND MTT ASSAY 

 

0.2% 

DMSO 

1% 

TRITON 

X100 

1 5 10 25 37,5 50 

0,456 0,125 0,454 0,464 0,52 0,396 0,489 0,347 

0,383 0,132 0,456 0,409 0,442 0,487 0,355 0,277 

0,322 0,116 0,403 0,388 0,45 0,445 0,366 0,276 

0,353 0,089 0,554 0,384 0,486 0,489 0,291 0,277 

0,336 0,092 0,415 0,48 0,476 0,442 0,303 0,31 

0,404 0,12 0,421 0,549 0,491 0,559 0,323 0,257 

Univariate Outliers Detection 

Detailed results for each variable 

Variable 
Grubbs 
Stat. 

Sigma rule Inner Fence rule Outer Fence Rule 

- 
Cut : 

1,8871 
L.B U.B Detected L.B U.B Detected L.B U.B Detected 

0.2% DMSO 1,8260 0,2685 0,7619 0 0,3385 0,7025 0 0,2020 0,8390 0 

1% TRITON 
X100 

1,7397 
-

0,0278 
0,0314 0 

-
0,0175 

0,0185 1 
-

0,0310 
0,0320 0 

1 1,5553 0,1872 0,9548 0 0,1275 0,9955 0 
-

0,1980 
1,3210 0 

5 1,2452 0,2023 0,7701 0 0,1085 0,8405 0 
-

0,1660 
1,1150 0 

10 1,1988 0,0767 1,0160 0 
-

0,0335 
1,0985 0 

-
0,4580 

1,5230 0 

25 1,9360 0,0314 1,1626 0 0,4150 0,9030 1 0,2320 1,0860 0 

37,5 1,7528 
-

0,0537 
0,7690 0 

-
0,0010 

0,6870 0 
-

0,2590 
0,9450 0 

50 1,8351 
-

0,0725 
0,5498 0 0,0785 0,3705 1 

-
0,0310 

0,4800 0 

Removed outliers (if option activated) : 0 
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JWH 250 – THIRD MTT ASSAY 

 

0.2% 

DMSO 

1% 

TRITON 

X100 

1 5 10 25 37,5 50 

0,668 0,11 0,727 0,488 0,779 0,74 0,455 0,293 

0,667 0,122 0,746 0,601 0,514 0,721 0,391 0,246 

0,593 0,108 0,804 0,49 0,488 0,838 0,547 0,338 

0,477 0,108 0,782 0,716 0,578 0,75 0,71 0,373 

0,658 0,094 0,545 0,606 0,735 0,851 0,349 0,521 

0,702 0,143 0,496 0,69 0,858 0,356 0,368 0,335 

Univariate Outliers Detection 

Detailed results for each variable 

Variable 
Grubbs 
Stat. 

Sigma rule Inner Fence rule Outer Fence Rule 

- 
Cut : 

1,8871 
L.B U.B Detected L.B U.B Detected L.B U.B Detected 

0.2% DMSO 1,6548 0,1473 0,5027 0 0,2035 0,4635 0 0,1060 0,5610 0 

1% TRITON 
X100 

1,8056 0,0241 0,1775 0 0,0585 0,1345 1 0,0300 0,1630 0 

1 1,5783 0,0863 0,4804 0 0,0600 0,4920 0 
-

0,1020 
0,6540 0 

5 1,3158 0,2516 0,4051 0 0,2440 0,4200 0 0,1780 0,4860 0 

10 1,5953 0,2295 0,4351 0 0,2240 0,4240 0 0,1490 0,4990 0 

25 1,4208 0,2145 0,4432 0 0,2125 0,4245 0 0,1330 0,5040 0 

37,5 1,1434 0,1528 0,5122 0 0,1330 0,5330 0 
-

0,0170 
0,6830 0 

50 1,4702 0,2186 0,4607 0 0,2245 0,4685 0 0,1330 0,5600 0 

Removed outliers (if option activated) : 0 

 
 
 

Figure 17 (compilation). Outlier detection tests for JWH-250 MTT data. 
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Kruskal-Wallis 1-way ANOVA 1 

Parameters 

Parameters 

Sort results no 

 

Results 

Attribute_Y Attribute_X Description Statistical test 

rating group 

Value Examples Average 
Rank 
sum 

Rank 
mean 

0.2% 
DMSO 

3 99,9978 15,0 5,0000 

1% 
TRITON 
X100 

3 16,1507 6,0 2,0000 

All 6 58,0743 21,0 3,5000 
 

Statistics Value Proba 

Kruskal-
Wallis 

3,857143 0,049535 

KW 
(corr.ties) 

3,857143 0,049535 

 

 
 
 

Kruskal-Wallis 1-way ANOVA 1 

Parameters 

Parameters 

Sort results no 

 

Results 

Attribute_Y Attribute_X Description Statistical test 

rating group 

Value Examples Average 
Rank 
sum 

Rank 
mean 

0.2% 
DMSO 

3 99,9978 6,0 2,0000 

1 3 113,7397 15,0 5,0000 

All 6 106,8688 21,0 3,5000 
 

Statistics Value Proba 

Kruskal-
Wallis 

3,857143 0,049535 

KW 
(corr.ties) 

3,857143 0,049535 

 

 
 

Kruskal-Wallis 1-way ANOVA 1 

Parameters 

Parameters 

Sort results no 

 

Results 

Attribute_Y Attribute_X Description Statistical test 

rating group 

Value Examples Average 
Rank 
sum 

Rank 
mean 

0.2% 
DMSO 

3 99,9978 12,0 4,0000 

5 3 102,7922 9,0 3,0000 

All 6 101,3950 21,0 3,5000 
 

Statistics Value Proba 

Kruskal-
Wallis 

0,428571 0,512691 

KW 
(corr.ties) 

0,428571 0,512691 

 

 
 



 75 

Kruskal-Wallis 1-way ANOVA 1 

Parameters 

Parameters 

Sort results no 

 

Results 

Attribute_Y Attribute_X Description Statistical test 

rating group 

Value Examples Average 
Rank 
sum 

Rank 
mean 

0.2% 
DMSO 

3 99,9978 6,0 2,0000 

10 3 112,7057 15,0 5,0000 

All 6 106,3517 21,0 3,5000 
 

Statistics Value Proba 

Kruskal-
Wallis 

3,857143 0,049535 

KW 
(corr.ties) 

3,857143 0,049535 

 

 
 

Kruskal-Wallis 1-way ANOVA 1 

Parameters 

Parameters 

Sort results no 

 

Results 

Attribute_Y Attribute_X Description Statistical test 

rating group 

Value Examples Average 
Rank 
sum 

Rank 
mean 

0.2% 
DMSO 

3 99,9978 6,0 2,0000 

25 3 116,3949 15,0 5,0000 

All 6 108,1963 21,0 3,5000 
 

Statistics Value Proba 

Kruskal-
Wallis 

3,857143 0,049535 

KW 
(corr.ties) 

3,857143 0,049535 

 

 
 

Kruskal-Wallis 1-way ANOVA 1 

Parameters 

Parameters 

Sort results no 

 

Results 

Attribute_Y Attribute_X Description Statistical test 

rating group 

Value Examples Average 
Rank 
sum 

Rank 
mean 

0.2% 
DMSO 

3 99,9978 15,0 5,0000 

37,5 3 79,5629 6,0 2,0000 

All 6 89,7804 21,0 3,5000 
 

Statistics Value Proba 

Kruskal-
Wallis 

3,857143 0,049535 

KW 
(corr.ties) 

3,857143 0,049535 
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Kruskal-Wallis 1-way ANOVA 1 

Parameters 

Parameters 

Sort results no 

 

Results 

Attribute_Y Attribute_X Description Statistical test 

rating group 

Value Examples Average 
Rank 
sum 

Rank 
mean 

0.2% 
DMSO 

3 99,9978 15,0 5,0000 

50 3 59,8783 6,0 2,0000 

All 6 79,9380 21,0 3,5000 
 

Statistics Value Proba 

Kruskal-
Wallis 

3,857143 0,049535 

KW 
(corr.ties) 

3,857143 0,049535 

 

 
 

Figure 18 (compilation). Kruskal-Wallis tests for JWH-250 MTT data. 
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Replicates 0.2% DMSO 

1% TRITON 

X100 
1 µM 5 µM 10 µM 25 µM 37,5 µM 50 µM 

1 0,033 1,292 0,126 0,101 0,106 0,136 0,452 0,721 

2 0,118 1,275 0,133 0,16 0,18 0,18 0,225 0,401 

3 0,091 1,239 0,148 0,122 0,13 0,088 0,409 0,59 

Mean 0,081 1,269 0,136 0,128 0,139 0,135 0,362 0,571 

SD 0,043 0,020 0,008 0,022 0,028 0,031 0,121 0,113 

LDH % -0,028 99,972 4,602 3,928 4,854 4,517 23,653 41,218 

SD for LDH 4,343 1,978 0,822 2,156 2,756 3,111 12,058 11,311 

 

 

Table 8. Raw data from LDH results of JWH-073 
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Teste F: duas amostras para variâncias 

 

Teste F: duas amostras para variâncias 

 

Teste F: duas amostras para variâncias Teste F: duas amostras para variâncias 

                

  0.2% DMSO 

1% TRITON 

X100 

 

  

0.2% 

DMSO 1 µM 

  

  

0.2% 

DMSO 5 µM 

 

  

0.2% 

DMSO 10 µM 

Média 0,080666667 1,268666667 

 

Média 0,080667 0,135667 

  

Média 0,080667 0,127667 

 

Média 0,080667 0,138667 

Variância 0,001886333 0,000732333 

 

Variância 0,001886 0,000126 

  

Variância 0,001886 0,000894 

 

Variância 0,001886 0,001425 

Observações 3 3 

 

Observações 3 3 

  

Observações 3 3 

 

Observações 3 3 

gl 2 2 

 

gl 2 2 

  

gl 2 2 

 

gl 2 2 

F 2,575785162 

  

F 14,9314 

   

F 2,109206 

  

F 1,323433 

 P(F<=f) uni-

caudal 0,279658859 

  

P(F<=f) uni-

caudal 0,062769 

   

P(F<=f) uni-

caudal 0,321626 

  

P(F<=f) uni-

caudal 0,430398 

 F crítico uni-

caudal 19   

 

F crítico uni-

caudal 19   

  

F crítico uni-

caudal 19   

 

F crítico uni-

caudal 19   

                Teste F: duas amostras para variâncias 

 

Teste F: duas amostras para variâncias 

 

Teste F: duas amostras para variâncias 

   

                

  25 µM 0.2% DMSO 

 

  37,5 µM 

0.2% 

DMSO 

  

  50 µM 

0.2% 

DMSO 

    Média 0,134666667 0,080666667 

 

Média 0,362 0,080667 

  

Média 0,570667 0,080667 

    Variância 0,002117333 0,001886333 

 

Variância 0,014539 0,001886 

  

Variância 0,02588 0,001886 

    Observações 3 3 

 

Observações 3 3 

  

Observações 3 3 

    gl 2 2 

 

gl 2 2 

  

gl 2 2 

    F 1,122459799 

  

F 7,707546 

   

F 13,71992 

     P(F<=f) uni-

caudal 0,471151445 

  

P(F<=f) uni-

caudal 0,114843 

   

P(F<=f) uni-

caudal 0,067935 

     F crítico uni-

caudal 19   

 

F crítico uni-

caudal 19   

  

F crítico uni-

caudal 19   

    F < F crit, equal variances 

F > F crit, unequal variances 

All equal variances, perform T-test for equal variances. 
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 Table 9 (Compilation). F-tests for  LDH results of JWH-073 

 

Teste T: duas amostras com variâncias 

iguais 

Teste T: duas amostras com variâncias 

iguais Teste T: duas amostras com variâncias iguais Teste T: duas amostras com variâncias iguais 

                

  

0.2% 

DMSO 1 µM 

 

  

0.2% 

DMSO 5 µM 

 

  

0.2% 

DMSO 10 µM 

  

  

0.2% 

DMSO 

1% 

TRITON 

X100 

Média 0,080667 0,135667 

 

Média 0,080667 0,127667 

 

Média 0,080667 0,138667 

  

Média 0,080667 1,268667 

Variância 0,001886 0,000126 

 

Variância 0,001886 0,000894 

 

Variância 0,001886 0,001425 

  

Variância 0,001886 0,000732 

Observações 3 3 

 

Observações 3 3 

 

Observações 3 3 

  

Observações 3 3 

Variância 

agrupada 0,001006 

  

Variância 

agrupada 0,00139 

  

Variância 

agrupada 0,001656 

   

Variância 

agrupada 0,001309 

 Hipótese de 

diferença de 

média 0 

  

Hipótese de 

diferença de 

média 0 

  

Hipótese de 

diferença de 

média 0 

   

Hipótese de 

diferença de 

média 0 

 gl 4 

  

gl 4 

  

gl 4 

   

gl 4 

 Stat t -2,12343 

  

Stat t -1,54378 

  

Stat t -1,74568 

   

Stat t -40,2103 

 P(T<=t) uni-

caudal 0,050476 

  

P(T<=t) uni-

caudal 0,09876 

  

P(T<=t) uni-

caudal 0,0779 

   

P(T<=t) uni-

caudal 1,14E-06 

 t crítico uni-

caudal 2,131847 

  

t crítico uni-

caudal 2,131847 

  

t crítico uni-

caudal 2,131847 

   

t crítico uni-

caudal 2,131847 

 P(T<=t) bi-

caudal 0,100952 

  

P(T<=t) bi-

caudal 0,19752 

  

P(T<=t) bi-

caudal 0,1558 

   

P(T<=t) bi-

caudal 2,29E-06 

 t crítico bi-

caudal 2,776445   

 

t crítico bi-

caudal 2,776445   

 

t crítico bi-

caudal 2,776445   

  

t crítico bi-caudal 2,776445   
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Teste T: duas amostras com variâncias 

iguais 

 

Teste T: duas amostras com variâncias 

iguais Teste T: duas amostras com variâncias iguais 

   

                

  25 µM 

0.2% 

DMSO 

 

  37,5 µM 

0.2% 

DMSO 

 

  50 µM 

0.2% 

DMSO 

     Média 0,134667 0,080667 

 

Média 0,362 0,080667 

 

Média 0,570667 0,080667 

     Variância 0,002117 0,001886 

 

Variância 0,014539 0,001886 

 

Variância 0,02588 0,001886 

     Observações 3 3 

 

Observações 3 3 

 

Observações 3 3 

     Variância 

agrupada 0,002002 

  

Variância 

agrupada 0,008213 

  

Variância 

agrupada 0,013883 

      Hipótese de 

diferença de 

média 0 

  

Hipótese de 

diferença de 

média 0 

  

Hipótese de 

diferença de 

média 0 

      gl 4 

  

gl 4 

  

gl 4 

      Stat t 1,478174 

  

Stat t 3,80211 

  

Stat t 5,093248 

      P(T<=t) uni-

caudal 0,106717 

  

P(T<=t) uni-

caudal 0,009535 

  

P(T<=t) uni-

caudal 0,003508 

      t crítico uni-

caudal 2,131847 

  

t crítico uni-

caudal 2,131847 

  

t crítico uni-

caudal 2,131847 

      P(T<=t) bi-

caudal 0,213435 

  

P(T<=t) bi-

caudal 0,019069 

  

P(T<=t) bi-

caudal 0,007016 

      t crítico bi-

caudal 2,776445   

 

t crítico bi-

caudal 2,776445   

 

t crítico bi-

caudal 2,776445   

      

P bi caudal > 0,05 accept H0, means are equal 

P bi caudal < 0,05 reject H0, means are unequal and statistically different 

 

 

 Table 10 (Compilation). Student’s T-tests for  LDH results of JWH-073 
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Replicates 

0.2% 

DMSO 
1% TRITON 

X100 
1 µM 5 µM 10 µM 25 µM 37,5 µM 50 µM 

1 -0,061 1,009 0,078 0,035 0,017 0,121 0,02 0,131 

2 -0,025 0,813 0,123 0,084 0,033 0,095 0,075 0,105 

3 0,022 1,142 0,002 0,003 -0,004 0,037 -0,012 0,041 

Mean -0,021 0,988 0,068 0,041 0,015 0,084 0,028 0,092 

SD 0,029 0,117 0,044 0,029 0,013 0,032 0,032 0,034 

LDH % -0,052 100,881 8,848 6,148 3,615 5,237 5,237 11,315 

SD for LDH 2,889 11,667 4,378 2,889 1,289 3,156 3,156 3,422 
 

Table 11. Raw data from LDH results of JWH-250 
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Teste F: duas amostras para variâncias Teste F: duas amostras para variâncias Teste F: duas amostras para variâncias Teste F: duas amostras para variâncias 

               

  

1% 

TRITON 

X100 

0.2% 

DMSO 

 

  1 µM 

0.2% 

DMSO 

 

  0.2% DMSO 5 µM 

 

  

0.2% 

DMSO 10 µM 

Média 0,988 -0,021333 

 

Média 0,067667 -0,02133 

 

Média -0,02133 0,040667 

 

Média -0,02133 0,015333 

Variância 0,027391 0,0017323 

 

Variância 0,00374 0,001732 

 

Variância 0,001732 0,001664 

 

Variância 0,001732 0,000344 

Observações 3 3 

 

Observações 3 3 

 

Observações 3 3 

 

Observações 3 3 

gl 2 2 

 

gl 2 2 

 

gl 2 2 

 

gl 2 2 

F 15,81162 

  

F 2,15913 

  

F 1,040857 

  

F 5,030978 

 P(F<=f) uni-

caudal 0,059483 

  

P(F<=f) uni-

caudal 0,316543 

  

P(F<=f) uni-

caudal 0,48999 

  

P(F<=f) uni-

caudal 0,165811 

 F crítico uni-

caudal 19   

 

F crítico uni-

caudal 19   

 

F crítico uni-

caudal 19   

 

F crítico uni-

caudal 19   

               Teste F: duas amostras para variâncias Teste F: duas amostras para variâncias 

 

Teste F: duas amostras para variâncias 

  

               

  25 µM 

0.2% 

DMSO 

 

  37,5 µM 

0.2% 

DMSO 

  

  50 µM 

0.2% 

DMSO 

   Média 0,084333 -0,021333 

 

Média 0,027667 -0,02133 

  

Média 0,092333 -0,02133 

   Variância 0,001849 0,0017323 

 

Variância 0,001936 0,001732 

  

Variância 0,002145 0,001732 

   Observações 3 3 

 

Observações 3 3 

  

Observações 3 3 

   gl 2 2 

 

gl 2 2 

  

gl 2 2 

   F 1,067539 

  

F 1,11776 

   

F 1,238407 

    P(F<=f) uni-

caudal 0,483667 

  

P(F<=f) uni-

caudal 0,472197 

   

P(F<=f) uni-

caudal 0,446746 

    F crítico uni-

caudal 19   

 

F crítico uni-

caudal 19   

  

F crítico uni-

caudal 19   

    F < F crit, equal variances; F > F crit, unequal variances 

 Table 12 (Compilation). F-tests for LDH results of JWH-250. 
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Teste T: duas amostras com variâncias iguais Teste T: duas amostras com variâncias iguais Teste T: duas amostras com variâncias iguais 

Teste T: duas amostras com variâncias 

iguais 

                  

  

1% TRITON 

X100 

0.2% 

DMSO 

  

  1 µM 

0.2% 

DMSO 

  

  5 µM 

0.2% 

DMSO 

  

  

0.2% 

DMSO 10 µM 

Média 0,988 -0,02133 

  

Média 0,067667 -0,02133 

  

Média 0,040667 -0,02133 

  

Média -0,02133 0,015333 

Variância 0,027391 0,001732 

  

Variância 0,00374 0,001732 

  

Variância 0,001664 0,001732 

  

Variância 0,001732 0,000344 

Observações 3 3 

  

Observações 3 3 

  

Observações 3 3 

  

Observações 3 3 

Variância 

agrupada 0,014562 

   

Variância 

agrupada 0,002736 

   

Variância 

agrupada 0,001698 

   

Variância 

agrupada 0,001038 

 Hipótese de 

diferença de 

média 0 

   

Hipótese de 

diferença de 

média 0 

   

Hipótese de 

diferença de 

média 0 

   

Hipótese de 

diferença de 

média 0 

 gl 4 

   

gl 4 

   

gl 4 

   

gl 4 

 Stat t 10,24412 

   

Stat t 2,083776 

   

Stat t 1,842578 

   

Stat t -1,39363 

 P(T<=t) uni-

caudal 0,000256 

   

P(T<=t) uni-

caudal 0,052785 

   

P(T<=t) uni-

caudal 0,069591 

   

P(T<=t) uni-

caudal 0,117935 

 t crítico uni-

caudal 2,131847 

   

t crítico uni-

caudal 2,131847 

   

t crítico uni-

caudal 2,131847 

   

t crítico uni-

caudal 2,131847 

 P(T<=t) bi-

caudal 0,000512 

   

P(T<=t) bi-

caudal 0,105571 

   

P(T<=t) bi-

caudal 0,139182 

   

P(T<=t) bi-

caudal 0,235869 

 t crítico bi-

caudal 2,776445   

  

t crítico bi-

caudal 2,776445   

  

t crítico bi-

caudal 2,776445   

  

t crítico bi-

caudal 2,776445   
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Teste T: duas amostras com variâncias iguais Teste T: duas amostras com variâncias iguais Teste T: duas amostras com variâncias iguais 

   

                  

  25 µM 

0.2% 

DMSO 

  

  37,5 µM 

0.2% 

DMSO 

  

  50 µM 

0.2% 

DMSO 

     Média 0,084333 -0,02133 

  

Média 0,027667 -0,02133 

  

Média 0,092333 -0,02133 

     Variância 0,001849 0,001732 

  

Variância 0,001936 0,001732 

  

Variância 0,002145 0,001732 

     Observações 3 3 

  

Observações 3 3 

  

Observações 3 3 

     Variância 

agrupada 0,001791 

   

Variância 

agrupada 0,001834 

   

Variância 

agrupada 0,001939 

      Hipótese de 

diferença de 

média 0 

   

Hipótese de 

diferença de 

média 0 

   

Hipótese de 

diferença de 

média 0 

      gl 4 

   

gl 4 

   

gl 4 

      Stat t 3,058131 

   

Stat t 1,401208 

   

Stat t 3,161612 

      P(T<=t) uni-

caudal 0,018864 

   

P(T<=t) uni-

caudal 0,116883 

   

P(T<=t) uni-

caudal 0,017066 

      t crítico uni-

caudal 2,131847 

   

t crítico uni-

caudal 2,131847 

   

t crítico uni-

caudal 2,131847 

      P(T<=t) bi-

caudal 0,037727 

   

P(T<=t) bi-

caudal 0,233767 

   

P(T<=t) bi-

caudal 0,034131 

      t crítico bi-

caudal 2,776445   

  

t crítico bi-

caudal 2,776445   

  

t crítico bi-

caudal 2,776445   

     

                  

                  P bi caudal > 0,05 accept H0, means are equal 

P bi caudal < 0,05 reject H0, means are unequal and statistically different 

 
 

 

 

 Table 13 (Compilation). Student’s T-tests for  LDH results of JWH-250. 

 

 


