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Abstract 

Soil analysis is an important part of forensic science as it can provide vital links 

between a suspect and a crime scene based on its characteristics. The use of soil in a 

forensic context can be characterised into two categories: intelligence purposes or court 

purposes. The core basis of the comparison of sites to determine the provenance is that 

soil composition, type etc. vary from one place to another. The aim of this project is to 

‘map’ soils and predict the location of a sample of unknown origin based on the 

chemometric profiles of Fourier transform infrared (FTIR) spectra, micro x-ray 

fluorescence profiles and visible spectra. Thirty one samples were collected in 

triplicate from Monsanto Park in Lisbon for each predetermined collection point on a 

defined grid. Full FTIR spectra (400-4000cm
-1

), Visible (1100-401cm
-1

) spectra, UV 

(400-200cm
-1

) spectra and µXRF profiles were collected for all samples. A subset of 43 

discriminant features was selected from a total of 1430 using the Boruta feature 

selection algorithm from the FTIR, µXRF and visible spectra. These discriminant 

features acted as input data that was used to create a neural network which allowed the 

prediction of Cartesian co-ordinates (or location) of the samples with a high degree of 

accuracy (86%) and has shown to be a very useful approach to predict soil location.  

 

Key Words: Artificial neural network; Fourier transform infrared spectroscopy; Micro 

x-ray fluorescence spectroscopy; Soil analysis; UV-Visible spectroscopy. 
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1 Introduction 

Soil is a complex mixture consisting of crystalline and amorphous minerals, oxides, 

decomposing organic matter, plants, pollen, microbial residues along with other 

compounds produced during the formation process (Sugita & Marumo. 1996; Horswell, 

et al. 2002). Forensic geoscience (analysis of soils and sediment) has been performed 

for many years for a wide variety of purposes; examples include differentiating between 

different land use types (Baron et al. 2011), sediment content (Guedes et al. 2009) and 

the analysis of soil pollutants (Mostert et al. 2010). Due to soils persistence, 

transferability and Locard’s exchange principle ‘every contact leaves a trace’ (Nickolls, 

1956), soil analysis can supply the essential link from the crime scene in question to the 

suspect and therefore it can be a vital tool. At present, by using a wide range of 

analytical techniques, crime scene soil samples can be matched to a soil sample taken 

from a suspect and link them to a particular scene. However, discriminating and 

characterising soils for intelligence purposes can be much more complex (Baron et al. 

2011) due to the enormous variety in composition which is dependent on the location, 

the type of soil, climate and human activities (Horswell, et al 2002; Pye et al. 2007; 

Reidy et al. 2013).  

The building of soil profile databases using both physical and chemical properties can 

be rather problematic due to the complex mixtures of material, organic matter and 

minerals, for example leaves, twigs, rocks and water and even man-made objects such 

as concrete, glass and ceramics (Pye & Croft, 2004) and thus can be very costly and 

time consuming (Gogé et al. 2014). It has recently been suggested that using national 

databases of soil properties combined with locally collected samples can aid in 

predicting the properties of samples (Guerrero et al. 2010; Gogé et al. 2014), however 

Ge et al. (2011) recognised that creating a soil spectral library with a robust calibration 

using only one instrumental technique demanded several thousand samples, which is 

not practicable to be replicated on each different instrument used. Questions arose from 

this, such as if the instrument is replaced by a new one, can the library still be used with 

soils scanned with the newer instrument? Also, if a global library was created using 

different instruments or the same instruments with different conditions, how useful 

would this be?   
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Soil composition, type etc. varies from one place to another which can create immense 

problems when using soil comparisons in legal cases, for the reason that the variation 

can occur equally within a particular site as much as between sites, and the degree of 

this is still unknown (Baron et al. 2011). Due to this, it has been documented that is it 

more straightforward to eliminate soils based on their profiles and compositions than it 

is to ‘match’ an unknown sample to a known, taking into account that it is not possible 

to provide probabilities that another locality may or may not possess the same or very 

similar characteristics (Morgan & Bull, 2007; Pirrie et al. 2014). One can simply 

conclude that two samples either do not share a common source or that they are similar 

in all analytical aspects and therefore cannot be excluded. Forensic soil analysis has 

already been used in criminal investigations and provided essential information in 

criminal cases (Dawson et al. 2008; Fitzpatrick & Raven, 2012).  

This project aims to develop a method that can be used for intelligence purposes and for 

that reason this aspect will be the main focus herein. In soil analysis for intelligence 

purposes, there are two main aspects to be considered in pursuance of excluding 

samples due to the dissimilarity or including them because they are very similar and 

these are the physical properties and the chemical properties of the soil samples.  

1.1 Physical Properties  

1.1.1 Colour Analysis 

It has been previously established that colour is an important aspect of soil analysis and 

by using Munsell® Soil Colour Charts this can be achieved in situ and produce a visual 

representation of the soil’s colour. Sample preparation must be standardised to enable 

comparison and it was identified that air drying, moistening, iron oxide removal and 

organic matter decomposition can affect the colour measurements (Sugita & Marumo, 

1996). It is sometimes obvious to the naked eye that samples possess different colours 

while others may be too similar to distinguish. Using Munsell Indices allows values to 

be given to the various aspects of colour; hue (primary or secondary colour), Value 

(lightness or darkness) and chroma (intensity or saturation) or L*a*b* indices that 

expresses colour in relation to the position on a 3D coloured sphere (Croft & Pye, 

2004). L* is related to lightness (black ranging to white), a* relates to a green-red 

continuum whilst b* relates to a blue-yellow continuum (Guedes et al. 2009). Cox et al. 
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(2000) used the Munsell Colour Chart to assign Munsell values to soil samples collected 

from Oregon (USA) before and after pyrolysis. It was found that all the samples had the 

same pre pyrolysis colour and so pyrolysis was carried out. Even after pyrolysis, some 

samples still had the same post pyrolysis colour and thus it was determined that another 

technique must be used in order to differentiate them. Guedes et al. (2009; 2011) 

demonstrated that measured L*a*b* values were better for discrimination when applied 

to dried, un-sieved bulk samples as opposed to pre-treated samples, whereas Croft & 

Pye (2004) suggested removal of organic matter or analysis of each size fractions before 

and after heat treatment would provide an in-depth analysis. 

1.1.2 Granulometry 

It has been demonstrated by many authors that granulometry is very useful in soil 

analysis. Chazottes et al. (2004) found that size distribution of the soil considerably 

affected results. Particle sizes of 2mm-63µm (unimodal distribution) was found to be 

very representative of the ‘original’ soil sample, whereas bimodal distribution (soils 

dominated by the extreme particles, those bigger than 4mm and smaller than 20µm, 

were not very representative. It was suggested than any significant differences in the 

range of 1mm to 63µm must be considered indicative of dissimilarity between samples. 

These results are probable due to the fact that bigger particles are more likely to detach 

from material than smaller particles, leading to a different distribution to control 

samples.  

Many authors have differing opinions of which size fractions provide the best 

discrimination. Pye et al. (2007) found bulk samples had the greatest variability and 63-

150µm has the least, and so less discrimination power when analysis soils using 

inductively coupled plasma – mass spectrometry (ICP-MS) and inductively coupled 

plasma – atomic emission spectrometry (ICP-AES). Guedes et al. (2009) also found 

bulk and fractions smaller than 150µm gave the best discrimination whilst carrying out 

colour analysis.  
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1.1.3 Palynology 

Palynology is pollen and spore science (Hyde & Williams, 1944). Simple palynology 

consists of pollen and/or spore identification along with pollen and/or spore counting 

(counting how many times each species occurs within a sample). This allows the 

creation of a pollen assemblage (profile) which can then help to identify similarities and 

dissimilarities between samples. It can be a very helpful tool due to the immense variety 

in the exines (outer shells) making each species unique and the resistive and persistent 

nature allowing them to survive in particular conditions for thousands of years. It can 

become complicated if one is not a trained palynologist or someone with little 

experience due to complexities of pollen identification for example several types of 

pollen grains can be produced by a single species or grains that look visually similar 

under a standard microscope come from unrelated plants (Erdtman, 1966).  

Mildenhall (1990) recognised there were issues with the use of palynology in forensic 

science and highlighted these. The problems that were pointed out were the nature of 

the scene and the uniqueness of assemblages. This evidence is always circumstantial, in 

the fact that it can connect a person to a particular place but it cannot tell if the person 

has committed a crime and with assemblages, it is always possible that another location 

may possess a similar profile. It was also recognised that due to the destructive nature of 

pollen preparation, other techniques must be carried out before this and so can open the 

exhibits up to contamination. Mildenhall (2006) demonstrated how important 

palynological evidence can be in the case of an assault on a young woman. Pollen found 

on her body and clothing was identical to that found at the scene (with fungal hyphae 

growth) and it is unlikely she would have had these pollens on her body beforehand. 

This provided very strong evidence of the scene of the attack and allowed the conviction 

of the offender. This paper showed the importance of pollen analysis as well the 

collection of samples from different areas of clothing and that even common pollen can 

provide vital information in forensic cases and can secure convictions.  
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1.2 Chemical Properties  

1.2.1 Infrared (IR) Spectroscopy 

Infrared spectroscopy is a well known and used technique in forensic soil analysis as it 

allows one to analyse the organic and inorganic composition of soils. The IR region of 

the electromagnetic spectrum ranges from 14000 to 10cm
-1

 and can be subdivided in to 

three regions: near, mid and far infrared. Near-infrared ranges from wave numbers from 

14000-4000 cm
-1

, mid-infrared ranges from 4000-400 cm
-1

 and far-infrared ranges from 

400-10 cm
-1 

(Figure 1) (Smith, 1999; Larkin, 2011).  

 

 

Fourier transform infrared spectroscopy (FTIR) is a non-destructive technique that 

requires little sample preparation however the sample must be dried to remove all water 

as this interferes with the spectrum and samples that are thick allow less infrared light to 

pass through the sample resulting in a poor signal to noise ratio. IR spectroscopic 

techniques are extremely sensitive to the organic and inorganic phases of soil (Viscarra 

Rossel et al. 2006). IR causes vibrations within molecule and these vibrations within 

particular bonds will only occur at specific wavelengths.  This makes it possible to 

identify functional groups in a molecule and thus the chemical structure and identity of 

the compound can be confirmed (Haberhauer et al. 1998; Larkin, 2011).  

Baron et al. (2011) collected 60 soil samples from 3 different areas in Lincoln, UK. 

Samples were taken from 4 flower beds, 4 river banks and from 4 woodland sites (each 

with 5 replicates). Attenuated total reflectance - Fourier transform infrared spectroscopy 

(ATR-FTIR) was used to collect full spectra from 4000-400 cm
-1

 using 128 scans with 

Figure 1. Infrared region of the spectrum consisting of 3 sub regions: near, min and far infrared 

(adapted from Viscarra Rossel et al. 2006). 
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4cm
-1

 resolution. The data analysis consisted of nonlinear iterative partial least squares 

with linear discriminant analysis (NIPALS-LDA) and partial least squares discriminant 

analysis (PLS-DA). It was found that samples could be completely separated by the 

land type although it was more difficult to separate the different sites (flower beds, 

riverbeds and woodland), even after removing regions of the spectra that had poor 

signal-to-noise ratio. It was concluded that NIPALS-LDA was successful in modelling 

the 60 spectra into the 3 land-use types although PLS-DA was poor. It was also found 

that the NIPALS-LDA tool offered a more straightforward and successful approach for 

modelling but the authors suggest further work is needed as well as more samples, sites 

and models at different levels to propose a more methodical approach to dataset 

increases. 

Cox et al. (2000) also used FTIR to create spectral profiles of the soil samples by 

collecting the spectra of the samples, then pyrolysis was carried out and the spectra 

collected again. The spectrum of the pyrolysed sample was then subtracted from the 

original so only the organic content spectra remained. There was not sufficient 

information to repeat this experiment but it was shown to be of use when other 

techniques cannot distinguish between samples.    

Gogé et al. (2014) used visible and NIR spectroscopy to produce different calibration 

models built from a local soil database, a national database and a combination of both 

data sets and to also tested 2 regression algorithms: PLS and fast Fourier transform local 

weighted (FFT-LW) (a non-linear method) to predict soil properties. The local samples 

were split into groups and PLS models were built from different numbers of local 

spectra. PLS models created from the national set were spiked with local spectra and the 

FFT-LW model was created using 300 neighbours selected from the national data 

spiked with the local spectra. It was concluded that depending on the property of the 

soil which is measured, different strategies will perform best and that spiking the 

national database with locally collected data provided additional value. Guerrero et al. 

(2010) concluded similar results using NIR and nitrogen content values to create PLS 

calibration models, and were able to accurately predict before and after the models were 

spiked with locally collected sample (target sites) and the spiking only increased the 

accuracy. They found that using spectral characteristics was more accurate than using 

nitrogen values and that using small-sized models integrated the local data more 
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accurately. Higher accuracies using local models with small sample sizes was observed 

whereas Gogé et al. (2014) suggested a decrease in performance with a decrease in 

sample size (Stafford, 2013). 

1.2.2 X-Ray Fluorescence (XRF) Spectroscopy  

X-ray fluorescence (XRF) spectroscopy is a multi-elemental technique that can work 

with different sample forms, is non-destructive, is able to detect elements with atomic 

numbers greater than 8 and can be used in situ. In an x-ray fluorescence spectrum, the 

wavelengths present are characteristic of the elements present within the sample. In 

wavelength dispersive x-ray fluorescence (WDXRF) the samples emitted radiation is 

diffracted in different directions and a sequential detector moves to detect the x-rays 

with different wavelengths or a simultaneous detector consisting of fixed single 

channels to detect specific elements. On the other hand, in energy dispersive XRF 

(EDXRF) there is only one detector (e.g. (Si(Li))) that is used in combination with a 

multi-channel analyser according to energies. Although EDXRF is cheaper, WDXRF 

usually offers greater resolution. Mathematical corrections must be applied to overcome 

matrix effects that can occur in XRF, which will ensure accurate results are obtained 

(Levinson, (2001); Krishna et al. (2007); Davidson, 2013).  

Yu et al. (2002) used EDXRF to quantify 19 elements in soil samples and determine the 

source profiles of these samples. Sixteen samples were collected in total, from 2 

different sites in 8 different locations. These 8 different locations possessed different 

geologies; sedimentary, volcanic or granitic. The authors chose EDXRF over ICP-AES 

or Atomic absorption spectroscopy (AAS) due to its non destructive nature and the ease 

of analysing solid samples without the need for digestion.  

Singh & Agrawal (2012) acknowledged that X-ray diffraction (XRD) was not a simple 

technique due to many complexities and so it was combined with EDXRF and AAS for 

mineral phase identification of soil. Twenty four samples were taken from a 1 hectare 

field. Five samples were chosen randomly for XRD analysis, with silica removal and 

grinding with alcohol to avoid matrix effects and peak overlapping problems. EDXRF 

was found to be very useful in predicting the presence of a chemical/crystalline phase 

containing specific elements.   
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Wavelength Dispersive X-ray Fluorescence Spectroscopy (WDXRF) is not a 

particularly common technique used in soil analysis. Krishna et al. (2007) used 

sequential WDXRF to determine the levels of 29 major and trace elements (Si, Al, Fe, 

Mg, Ca, Na, K, Mn, P, Ti, As, Ba, Cd, Co, Cr, Cu, Se, Sr, Mo, Ni, Pb, Rb, S, U, Th, V, 

Y, Zn, Zr) in agricultural soil samples. Twenty two international reference materials 

were used to calibrate the spectrophotometer. The samples were not dried prior to 

analysis as it was recognised this may cause some loss due to evaporation. Matrix 

effects caused some difficulties but could be corrected using empirical coefficients 

(alphas) based on count rate, but when there were high concentrations of some elements 

in certain samples, this was more difficult to correct. Matrix correction of these samples 

used carried out using empirical formulas based on concentration but if intensity was 

used, matrix correction was carried out by trial and error. The relative standard 

deviation (RSD) for most elements was low at less than 5% but for the elements that 

had higher RSD; this was most likely due to peak suppression and overlapping peaks. 

Although matrix correction models can produce accurate results this was not the case 

when there was a high concentration of heavier elements accompanying the lighter 

elements. This causes a decrease in accuracy unless the standard used was of similar 

composition to that of the ‘unknown’ sample.  

Despite the fact that this method had low limits of detection (1-2 mg/kg), good precision 

and accuracy sufficient for use in agricultural monitoring, it may perhaps have potential 

for use in a forensic context. However, a lower RSD may be required by reducing the 

peak suppression. Also, 2g of sample was needed to create the pellets used for this 

analysis and this is considered a bulk sample in a forensic context and this amount of 

sample will not always be available and so this method will not be of use in trace 

analysis.  

1.2.3 Inductively Coupled Plasma (ICP) Spectroscopy  

Inductively coupled plasma spectroscopy can be used with mass spectrometry (ICP-

MS), atomic emission spectrometry (ICP-AES) and optical emission spectrometry (ICP-

OES). ICP-MS is the fastest growing trace element technique with its most common 

applications being environmental, geological, biomedical, semiconductor and nuclear 

fields. ICP is a rapid multielemental technique that can determine concentrations at the 

ultra trace level. The analysis time is less, detection limits are lower and the fact that it 
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is multi elemental are just some clear advantages over other atomic spectroscopy 

techniques such as flame atomic absorption (FAA), electrothermal atomisation (ETA) 

or ICP-OES (Thomas, 2013).  

Pye & Blott (2009) attempted to create a soil database from 1896 soil samples collected 

in England and Wales from 1999 to 2007 in connection with casework investigations 

using ICP-MS and ICP-AES. Two laboratories were used to analyse the samples (one 

third by only ICP-AES and the rest by both techniques) and the data variation was not 

significant. Methods used to compare soils on the foundation of elemental composition 

were developed in the author’s own laboratory. PCA and Euclidean distances were used 

to determine the number of elemental concentrations that were indistinguishable for 

some samples. It was demonstrated that samples that have been taken only a few 

centimetres apart are likely to be distinguishable based on major and trace elemental 

concentrations (Stafford, 2013). 

After papers demonstrated ICP analysis was a useful technique, Arroyo et al. (2009) 

validated a laser ablation (LA) ICP-MS method for routine soil and sediment analysis. 

LA-ICP-MS was found comparable to solution ICP-MS and independent proficiency 

testing using 57 laboratories found the new method was comparable with conventional 

digestion ICP and AAS methods. With 3 high speed mills a single technician can 

prepare around 72 samples per day. This method may have been validated and the 

values for precision, accuracy are given, but nowhere it is stated which validation 

guidelines were used (Stafford, 2013). 

1.3 Statistical Tools   

Soil analysis with the use of statistical tools has been carried out for numerous different 

purposes including environmental, forensic and geological contexts. Guedes et al. 

(2009) investigated the prospect of differentiating between sediment samples collected 

from beaches and dunes in the north and south of Portugal and Carvalho et al. (2013) 

used a multi-technique approach to distinguish between two river beds over a one year 

period and investigated if seasonal changes affected the results; cluster analysis was 

used to determine this. Baron et al. (2011) used partial least squares – linear 

discriminant analysis (PLS-LDA) to determine the possibility of distinguishing different 

locations within different land use types using FT-IR spectra. Gogé et al. (2014) also 
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used PLS along with principle component analysis (PCA) in an attempt to use visible - 

near infrared (NIR) spectra to create local and national databases and a combination of 

both to aid in the prediction of soil locations. Guerrero et al. (2010) previously explored 

something similar to Gogé et al. (2014), where NIR spectral libraries and models were 

created using PLS regression and then models were spiked with a few samples from 

target sites (local samples). Croft & Pye (2004) used 4 different techniques to determine 

the effectiveness of them on different soil types and 5 footwear types and Cox et al. 

(2000) developed a novel method in which FTIR spectra were collected pre and post 

pyrolysis which can differentiate samples when other methods cannot.  

1.3.1 Artificial Neural Networks  

Armenta & de la Guardia (2014) recently reviewed the use of principle component 

regression (PCR) and PLS, two of the most commonly used techniques for spectral 

calibration and prediction, and while these are widely used and work well, more 

sophisticated techniques like artificial neural networks (ANN) have been developed. 

ANNs are attractive to users because they have incredible information processing 

characteristics related mainly to nonlinearity, fault and noise tolerance in addition to 

learning and generalising capabilities (Basheer & Hajmeer, 2000).   

Arsoy et al. (2013) used a multilayer feed-forward, with back propagation learning 

ANN to aid in the prediction of soil water content (SWC) using time domain 

reflectometry (an electromagnetic method) and found the performance of the ANN was 

better than that of previous calibration models (using unreliable dielectric permittivity 

of the soil). 50% of the data was used for training the network and 50% for validation, 

although no testing was carried out. The ANN had an average route mean squared error 

(RMSE) of 0.009cm
3
cm

-3
 (for 8 nodes) compared to a range of 0.019-0.033 cm

3
cm

-3 
for 

the calibration model.   

Most recently, El Haddad et al. (2014) applied ANN to process data from an on-site 

laser-induced breakdown spectroscopy (LIBS) method for soil samples, which were 

verified by ICP-AES to use as reference values. ANNs were used to determine the 

relative amounts of silicate, calcareous and ores matrices in the soil samples. Data input 

into the ANN was not only the raw data but also data with no likeness to the analyte of 

interest to ensure a good representation of the matrix that allowed correct quantification 
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of the analyte. Due to the small dataset, the ANN was evaluated by repeating the ANN 

calculation 5 times, by starting with random weight values to ensure no over fitting 

occurred. The RMSE was less than 10% when comparing the reference values (from 

ICP-AES) to the values obtained from the on-site LIBS measurements showing that 

LIBS is a reliable method.   

1.4 Present Work Overview 

In this present study, an attempt was made to develop a new method that could reliably 

and accurately predict the location of known soil samples as well as samples of 

unknown origin from their FTIR spectra, µXRF profiles and UV-Visible spectra using 

feature selection and artificial neural networks. In contrast to previous work, the 

relationship recognised herein is between the input data and the co-ordinates of the 

samples locations, as opposed to between the input data and soil classes based on the 

landscape properties.  

A systematic attempt was made based on a machine learning approach with feed-

forward feature selection and feed-forward neural networks using the values obtained 

from infrared spectra, µXRF profiles and UV-Visible spectra as input data. A recursive 

feature selection using a wrapper method was performed using the Boruta (random 

forest) classifier algorithm. This was performed in order to reduce the input 

dimensionality and obtain a much smaller subset of features with the highest possible 

discrimination whilst maintaining excellent neural network performance. This subset of 

features was used to train, test and validate a neural network. 

The Boruta feature selection method was able to reduce 1430 manually selected initial 

features to a subset of 43, including features from the FTIR spectra, µXRF profiles and 

visible spectra but not from the UV spectra. This new predictor achieved a linear 

correlation coefficient of 0.86 or 86% accuracy, a great increase from 0.77 when using 

just FTIR spectra.   
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2 Materials and Methods  

2.1 Sample Collection 

Soil samples were collected from Monsanto Park in Lisbon, Portugal, which has an 

approximate area of 10km
2
. In total, 31 samples were collected in triplicate (total of 93) 

in 2013 and a further 5 samples were collected in 2014 using a 500 x 500 metre grid of 

the whole park (Figures 2 and 3). Samples were collected using an in-house built steel 

core soil sampler with dimensions of 10x3cm, thus samples were collected at a depth of 

10cm with a diameter of 3cm and the Global positioning system (GPS) co-ordinates 

were recorded for each sample site (Table 1) using a Broadcom BCM4750IUB8 GPS 

receiver.  

 

 

Figure 2. Map of Monsanto Park, Lisbon, in relation to other cities, showing sample collection sites 

(created using batchgeo.com). Red = 2013 Samples, Yellow = 2014 Samples.  
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Figure 3. Satellite image of Monsanto Park, Lisbon, showing sample collection sites (created using 

batchgeo.com). Red = 2013 Samples, Yellow = 2014 Samples. 

Table 1. Sample number and location (GPS co-ordinates).  

Sample 

Number 
Latitude Longitude 

Sample 

Number 
Latitude Longitude 

S01 38º 42' 4" -9º 13' 27" S24 38º 43' 23" -9º 11' 9" 

S02 38º 42' 24" -9º 13' 16" S25 38º 43' 26" -9º 10' 50" 

S05 38º 42' 49" -9º 13' 1" S28 38º 43' 46" -9º 12' 13" 

S06 38º 42' 45" -9º 12' 52" S29 38º 43' 46" -9º 11' 51" 

S07 38º 42' 45" -9º 12' 8" S32 38º 43' 48" -9º 10' 51" 

S08 38º 42' 51" -9º 11' 55" S33 38º 43' 44" -9º 10' 32" 

S11 38º 42' 49" -9º 10' 50" S34 38º 44' 7" -9º 11' 50" 

S12 38º 43' 7" -9º 12' 52" S36 38º 44' 8" -9º 11' 10" 

S13 38º 43' 5" -9º 12' 30" S37 38º 44' 8" -9º 10' 49" 

S14 38º 43' 6" -9º 12' 5" S38 38º 44' 5" -9º 10' 32" 

S15 38º 43' 5" -9º 11' 51" S39 38º 44' 28" -9º 11' 50" 

S16 38º 43' 8" -9º 11' 30" S40 38º 44' 24" -9º 11' 30" 

S17 38º 43' 3" -9º 11' 6" S41 38º 44' 29" -9º 11' 9" 

S18 38º 43' 5" -9º 10' 50" S42 38º 43' 43" -9º 11' 47" 

S20 38º 43' 26" -9º 12' 28" S43 38º 43' 58" -9º 11' 03" 

S21 38º 43' 25" -9º 12' 3" S44 38º 43' 42" -9º 12' 16" 

S22 38º 43' 29" -9º 11' 48" S45 38º 43' 07" -9º 11' 55" 

S23 38º 43' 27" -9º 11' 29" S46 38º 43' 04" -9º 11' 04" 
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2.2 Transfer of GPS Co-ordinates to Cartesian Co-ordinates 

The input data for the neural network was FTIR spectral data, XRF spectral data and the 

palynological data with the output being the sample location. This was achieved by 

converting the GPS co-ordinates to Cartesian Co-ordinates (x and y co-ordinates). This 

process is necessary due to the curved nature of the earth’s surface, so if GPS co-

ordinates were used this would give non-linear positioning of the samples. Cartesian co-

ordinates are easier for the neural network and it also helps to make the interpretation 

easier on such a small area. Sample 1 is considered to be the starting point of both the x 

and y axes and the other samples will be relative to this. The GPS co-ordinates were 

converted from degrees, minutes and seconds in to decimal degrees using the following 

equation: 

     
 

  
 

 

    
 

Where C is the co-ordinates in decimals, d is the co-ordinates in degrees, m is minutes 

co-ordinate and s is the seconds co-ordinates. Once converted in to decimal degrees, 

distances were calculated between samples according to the haversine formula through 

an in-house built program (table 4).  

         
 

 
                  cos    cos                    

Where d is the distance between 2 points (along the great-circle of a sphere), r is the 

radius of the sphere, Ø1 and Ø2 are the latitude of sample 1 and 2 respectively and ʎ1 

and ʎ2 are the longitude or point 1 and point 2 respectively (Shumaker & Sinnott, 1984) 

with distances in kilometres. 
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2.3 FTIR Spectroscopy  

2.3.1 Sample Preparation 

After collection of all samples, the samples were transported to the laboratory in 50mL 

Falcon
®

 flasks. These were then transferred in to separate beakers and dried in an oven 

at 105ºC overnight. Once dried, the samples were sieved through 2mm and 125µm 

meshes and particles smaller than 125µm were used for the FTIR and UV-Visible 

analysis.  

2.3.2 FTIR Spectroscopy Parameters 

The smaller than 125µm portion of the samples were analysed using a PerkinElmer 

Spectrum 65 spectrophotometer coupled with an attenuated total reflectance (ATR) 

accessory. The parameters used were a scan range from 4000-400 cm
-1

, with a 

resolution of 4 cm
-1

, 128 scans and with H2O/CO2 correction and the spectra were 

collected using % transmission. Baseline corrections were carried out manually using 

the PerkinElmer Version: 10.03.09.0139 software.  In between sample application, the 

ATR crystal was cleaned with 96% ethanol (Purchased from Carlo Erba Reagents) 

solution and a background scan was performed after every 3 samples.  

2.4 µXRF Spectroscopy  

2.4.1 Sample Preparation 

Sample preparation was carried out using the following procedure before analysis; into 

a glass beaker, 3.5g of homogenised sample (using a pestle and mortar) was added and 

placed into an oven at 80-90ºC overnight to dry the samples and remove any water. A 

small portion of the dried samples was then transferred on to an acrylic plate, pressed 

flat and then placed under the laser beam for analysis.   

2.4.2 µXRF Spectroscopy Parameters 

A Bruker Artax µXRF was used for qualitative analysis of the samples. The parameters 

used were a molybdenum anode, with 25.1 keV of energy. The optic was a capillary 

0.060 with an atmosphere of helium. The measurement live time was 120 seconds with 

a pulse density of 9361cps. The x-ray generator had a high voltage of 50kV and a 

current of 600 µA. The X-ray tube used was a MCBM 50-0,6B Mo and the beam size 

was 17µm.  
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2.5 UV-Visible Spectroscopy  

2.5.1 Sample Preparation 

Samples were prepared by adding 0.1g of the 125µm portion of each sample to 1mL of 

deionised water in 2mL eppendorf tubes, vortexed for 20 seconds and centrifuged for 

5mins at 10,000rpm.  

Some samples were too concentrated and so a dilution was carried out with the 

following factors: 

Table 2. Dilution factors of the samples for the UV-Visible spectroscopy. 

Sample 

A 

Dilution Factor Sample 

B 

Dilution Factor Sample 

C 

Dilution Factor 

UV VIS UV VIS UV VIS 

S01 10 0 S01 10 0 S01 10 0 

S02 10 0 S02 10 0 S02 10 0 

S05 5 0 S05 10 0 S05 10 0 

S06 5 0 S06 10 0 S06 10 0 

S07 5 0 S07 10 0 S07 10 0 

S08 50 5 S08 20 0 S08 20 0 

S11 10 0 S11 10 0 S11 10 0 

S12 20 0 S12 20 0 S12 20 0 

S13 20 0 S13 20 0 S13 40 0 

S14 20 0 S14 20 0 S14 40 0 

S15 50 2 S15 20 0 S15 100 5 

S16 100 0 S16 10 0 S16 20 0 

S17 10 0 S17 20 0 S17 20 0 

S18 40 0 S18 40 0 S18 50 0 

S20 5 0 S20 10 0 S20 20 0 

S21 50 0 S21 50 0 S21 100 0 

S22 50 0 S22 10 0 S22 10 0 

S23 50 0 S23 20 0 S23 20 0 

S24 5 0 S24 10 0 S24 10 0 

S25 20 0 S25 20 0 S25 20 0 

S28 20 0 S28 20 0 S28 20 0 

S29 10 0 S29 10 0 S29 10 0 

S32 5 0 S32 20 0 S32 10 0 

S33 50 0 S33 20 0 S33 40 2 

S34 5 0 S34 20 0 S34 10 0 

S36 50 0 S36 50 0 S36 50 5 

S37 5 0 S37 10 0 S37 20 0 

S38 50 0 S38 100 0 S38 50 0 

S39 10 0 S39 20 0 S39 20 0 

S40 50 0 S40 50 2 S40 50 0 

S41 10 0 S41 20 0 S41 20 0 
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2.5.2 UV-Visible Spectroscopy Parameters 

A PerkinElmer Lambda 25 was used to collect ultraviolet (UV) spectra from 400-

200cm
-1

 and visible spectra (VIS) from 1100-401cm
-1

 using the coloured liquid.
 
After 

the spectra were collected, the absorbance values were corrected by multiplying the 

absorbance by the dilution factors used for each sample.  

2.6 Palynological Analysis 

Soils were prepared for pollen analysis using the following procedure: a few crystals of 

each soil were placed in separate glass tubes, 10% potassium hydroxide (KOH) was 

then added and the tubes placed in a dry bath at 100ºC for 20 minutes. The samples 

were then sieved using a 180-230µm sieve, to remove debris; the samples were washed 

with 10% KOH, and then centrifuged at 3000 rpm for 5 minutes and the liquid 

decanted. The samples were mixed with 10% KOH and the tubes were then placed in a 

dry bath at 100ºC for 20 minutes. The samples were then vortexed, centrifuged at 3000 

rpm for 5 minutes and the liquid decanted. The samples were then washed with distilled 

water, vortexed, then centrifuged at 3000 rpm and the liquid decanted (the samples were 

switched to polypropylene centrifuge tubes with lids). Added to the sample was 37% 

hydrochloric acid (HCl) (Purchased from Carlo Erba Reagents), the samples were 

vortexed, and centrifuged at 3000 rpm for 5 minutes and the liquid decanted. Samples 

were left for 24-48hours after 40% hydrofluoric acid (Purchased from Sigma-Aldrich) 

was added. The samples were then vortexed, centrifuged at 3000 rpm for 5 minutes and 

the liquid decanted. The samples were washed with distilled water, vortexed, 

centrifuged at 3000 rpm for 5 minutes, the liquid was decanted and the samples 

vortexed again. The samples were washed with glacial acetic acid (Purchased from 

Carlo Erba Reagents), vortexed, centrifuged at 3000 rpm for 5 minutes and the liquid 

decanted. The samples were then switched to glass tubes. Acetolysis (9:1 acetic 

anhydride: sulphuric acid) (Purchased from Panreac) was then carried out by adding the 

mixture to the samples which were then placed in a dry bath at 98ºC for 8 minutes. The 

samples were again centrifuged at 3000 rpm for 5 minutes and the liquid decanted. The 

samples were washed with distilled water, vortexed, centrifuged at 3000 rpm for 5 

minutes, the liquid was decanted and the sample vortexed again. The samples were then 

switched to eppendorf tubes. A few drops of glycerine (Purchased from CMD 

Chemicals) were added to the samples in the eppendorf tubes, the tubes were vortexed, 
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centrifuged at 3000 rpm for 5 minutes and the liquid decanted. A small quantity of the 

sample was placed on to a microscope slide, which was covered with a cover glass slip 

and sealed with a small amount of paraffin. Samples were then analysed using an 

Olympus CX21 biological microscope at 1000X magnification and the pollen grains 

were identified and counted to a maximum of 100 per slide.  

The deionised water was produced in-house with a resistance of 15MΩ using a Helix 10 

Millipore and potassium hydroxide was made using KOH pellets purchased from EKA 

Chemicals with deionised water. 

2.7 Input Vectors  

Pre-processing of feature vectors were carried out prior to the training of the neural 

network. All IR spectra were manually baseline corrected, so the baseline was a 

maximum of 100% transmittance. The UV-Visible spectra were normalised correcting 

for the dilution factors. Discriminatory peaks present in all the spectra for UV, visible, 

FTIR and XRF were then manually selected. 20 features were manually selected for 

visible, 6 for UV and 27 features for both FTIR and µXRF. The relationship between 

each of these features was then computed for each method separately. 

2.8 Feature Selection       

Feature selection was performed on 1430 manually selected features with the purpose of 

reducing the dimensionality of the input vectors, with the aim of ascertaining a subset of 

features, with the smallest size which provided the highest possible discrimination 

between samples. A recursive feature selection wrapper method (Boruta) based on 

random forest was used in R version 2.15.2 (R Development Core Team, 2008). Input 

vectors were computed by the feature selection method used and consequently used for 

the training and selection of one neural network.  

2.9 Artificial Neural Network     

MATLABs’ (The MathWorks, 2011a) Neural Networks Toolbox (The MathWorks, 

2011b) was used to develop feed forward fully connected neural networks. The neural 

networks weights and biases were initialised using the Nguyen-Widrow layer 

initialisation function, which initialises weights and biases randomly although evenly 

across all layer’s input space. The symmetric sigmoid function was the selected 
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activation function for the hidden layer and the linear function was chosen for the output 

layer.  The scaled conjugate gradient back propagation (backward propagation of errors) 

was used as the learning algorithm and the mean absolute error was the performance 

measure used to stop training. The number of neuron present in the hidden layer was 

computed based on the number of dimensions of the feature vectors and the number of 

neurons in the output layer was two, corresponding to x,y co-ordinates of the samples. 

A general topology of a neural network is shown in figure 4. 

 

Figure 4. General topology of the created neural network, where i relates to the number of the inputs 

present in the input vector, w relates to the weights, b relates to the bias, h is the number of neurons in the 

hidden layer and o is the output vector number. 

Neural network training was performed after the input vector processing, where the 

input sequence datasets were divided into three sub-datasets, the training, testing and a 

validation dataset consisting of 70%, 15% and 15% of the samples respectively which 

was selected randomly by the neural network. The best neural network was selected for 

the feature vectors computed through the orthogonal encoding scheme from a total of 

1000 trained neural networks. This selection was based on accuracy and standard 

deviation values of the training, test, validation and overall dataset. The selected neural 

networks were then externally validated using the external validation dataset.   
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3 Results and Discussion 

3.1 Sample Collection 

Some of the planned sites for sampling were not possible to reach due to the land being 

privately owned and thus no permission to collect and so samples were collected at the 

nearest achievable location.  

Table 3. GPS co-ordinates, decimal degrees and Cartesian co-ordinates of the samples. 

Sample 

Year 

Sample 

Number 

GPS Co-ordinates Decimal Degrees Cartesian Co-ordinates 

 Latitude Longitude Latitude Longitude X / Km Y / Km 

2013 

S01 38º 42' 4" -9º 13' 27" 38.7011 -9.2242 0.00 0.00 

S02 38º 42' 24" -9º 13' 16" 38.7067 -9.2211 0.27 0.62 

S05 38º 42' 49" -9º 13' 1" 38.7136 -9.2169 0.63 1.39 

S06 38º 42' 45" -9º 12' 52" 38.7125 -9.2144 0.84 1.27 

S07 38º 42' 45" -9º 12' 8" 38.7125 -9.2022 1.90 1.27 

S08 38º 42' 51" -9º 11' 55" 38.7142 -9.1986 2.22 1.45 

S11 38º 42' 49" -9º 10' 50" 38.7136 -9.1806 3.78 1.39 

S12 38º 43' 7" -9º 12' 52" 38.7186 -9.2144 0.84 1.95 

S13 38º 43' 5" -9º 12' 30" 38.7181 -9.2083 1.37 1.88 

S14 38º 43' 6" -9º 12' 5" 38.7183 -9.2014 1.98 1.92 

S15 38º 43' 5" -9º 11' 51" 38.7181 -9.1975 2.31 1.88 

S16 38º 43' 8" -9º 11' 30" 38.7189 -9.1917 2.82 1.98 

S17 38º 43' 3" -9º 11' 6" 38.7175 -9.1850 3.40 1.82 

S18 38º 43' 5" -9º 10' 50" 38.7181 -9.1806 3.78 1.88 

S20 38º 43' 26" -9º 12' 28" 38.7239 -9.2078 1.42 2.53 

S21 38º 43' 25" -9º 12' 3" 38.7236 -9.2008 2.02 2.50 

S22 38º 43' 29" -9º 11' 48" 38.7247 -9.1967 2.39 2.63 

S23 38º 43' 27" -9º 11' 29" 38.7242 -9.1914 2.84 2.56 

S24 38º 43' 23" -9º 11' 9" 38.7231 -9.1858 3.33 2.44 

S25 38º 43' 26" -9º 10' 50" 38.7239 -9.1806 3.78 2.53 

S28 38º 43' 46" -9º 12' 13" 38.7294 -9.2036 1.78 3.15 

S29 38º 43' 46" -9º 11' 51" 38.7294 -9.1975 2.31 3.15 

S32 38º 43' 48" -9º 10' 51" 38.7300 -9.1808 3.76 3.21 

S33 38º 43' 44" -9º 10' 32" 38.7289 -9.1756 4.22 3.09 

S34 38º 44' 7" -9º 11' 50" 38.7353 -9.1972 2.34 3.80 

S36 38º 44' 8" -9º 11' 10" 38.7356 -9.1861 3.30 3.83 

S37 38º 44' 8" -9º 10' 49" 38.7356 -9.1803 3.81 3.83 

S38 38º 44' 5" -9º 10' 32" 38.7347 -9.1756 4.22 3.74 

S39 38º 44' 28" -9º 11' 50" 38.7411 -9.1972 2.34 4.45 

S40 38º 44' 24" -9º 11' 30" 38.7400 -9.1917 2.82 4.32 

S41 38º 44' 29" -9º 11' 9" 38.7414 -9.1858 3.33 4.48 

2014 

S42 38º 43' 43" -9º 11' 47" 38.7286 -9.1964 2.41 3.06 

S43 38º 43' 58" -9º 11' 03" 38.7328 -9.1842 3.47 3.52 

S44 38º 43' 42" -9º 12' 16" 38.7283 -9.2044 1.71 3.03 

S45 38º 43' 07" -9º 11' 55" 38.7186 -9.1986 2.22 1.95 

S46 38º 43' 04" -9º 11' 04" 38.7178 -9.1844 3.45 1.85 

 



Mapping Portuguese Soils Results and Discussion 
 

21 

3.2 FTIR Spectra 

Figures 5 and 6 show the FTIR spectra of the triplicates collected for samples 1 and 2. 

The spectral profiles both samples are quite similar, including the transmittance of the 

peaks and this is the same across most of  the samples, so to the naked eye it is difficult 

to differentiate between some samples. Figure 7 shows sample 11 has a very different 

profile across most of the spectrum with a peak at 2500cm
-1

 that is not present in figures 

5 or 6. This was not surprising as the colour of sample 11 was light beige whereas 

samples 1 and 2 were dark brown and thus the organic composition differs greatly 

between the samples. The spectrum from 549-400cm
-1

 has been removed from all 

spectra due to the increased noise and low resolution present in this region. All other 

sample spectra are present on the appendix disk.   

 

 

Figure 5. FTIR spectra of the triplicate samples collected from location 1. 
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Figure 6. FTIR spectra of the triplicate samples collected from location 2. 

 

Figure 7. FTIR spectra of the triplicate samples collected from location 11. 
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3.3 µXRF Profiles 

Like with the FTIR spectra the XRF profiles sample 1 and 2 (figures 8 and 9) are very 

similar although the counts for the different elements differ between samples and the 

ratios between the different peaks differ also. Figure 10 (Sample 11) has a very different 

profile to samples 1 and 2 which was not unexpected as the FTIR spectra were very 

different. All other sample spectra are present on the appendix disk.   

 

 

Figure 8.  µXRF spectra of the triplicate samples collected from location 1.  

 

Figure 9. µXRF spectra of the triplicate samples collected from location 2. 
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Figure 10. µXRF spectra of the triplicate samples collected from location 11. 

 

3.4 UV-Visible Spectra 

3.4.1 UV-Spectra  

Figures 11 and 12 show the corrected UV spectra of samples 1 and 2 have very different 

profiles across the spectrum but there are some similarities. There are clear differences 

in the absorbances of each spectrum, within the triplicate samples as well as between 

the samples. The peak at 260nm and the trough at 220nm is present in almost all 

samples although the profile to the left and right of the peak and the absorbances differ 

between samples.  Figure 13 shows sample 11B and C have similar profiles to that of 

samples 1C and 2C. Sample 11A has a very different profile to that of 11B and C as 

well as samples 1 and 2.  All other sample spectra are present on the appendix disk. 
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Figure 11. UV spectra for the triplicate samples collected from location 1. 

 

Figure 12. UV spectra for the triplicate samples collected from location 2. 

 

Figure 13. UV spectra for the triplicate samples collected from location 11. 
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3.4.2 Visible Spectra 

Figures 14 and 15 show the normalised visible spectra of samples 1 and 2 have similar 

profiles across the spectrum but there are distinct differences in the absorbance values, 

where sample 2 has absorbances almost twice that of sample 2. This is the case when 

looking at the spectra of all the other samples, with very little specific peaks or discrete 

features present in the visible region. Figure 16 shows sample 11 which has a similar 

profile to samples 1 and 2 although the B samples have higher absorbance’s than the A 

and C samples. All other sample spectra are present on the appendix disk.   

 

Figure 14. Visible spectra for the triplicate samples collected from location 1.  

 

Figure 15. Visible spectra for the triplicate samples collected from location 2. 
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Figure 16. Visible spectra for the triplicate samples collected from location 11. 

 

The actual profile and values of the peaks present in the samples is not of crucial 

importance as the neural network uses the relationship between the peaks present in the 

spectra. 

 

3.5 Palynological Analysis 

Due to the samples over processing, no surface features were left on the pollen, making 

it impossible to identify them and thus unfortunately it was not possible to complete the 

palynological analysis due to the method failing to work as expected. 

3.6 Selected Features 

Peaks were manually selected from the different spectra. From the visible spectra 5 

features, from UV 3 features, from FTIR 27 features and XRF 27 features were 

identified. The relationship between each feature was computed by dividing each 

feature by the others. For example, if there are 3 features, A, B and C. The total number 

of features was calculated by A/B, A/C, B/A, B/C, C/A and C/B, so now there is a total 

of 6 features selected. This was carried out for each different technique separately. In 

total, 1430 features were selected for the 4 different methods which were then submitted 

to Boruta. 
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3.7 Feature Selection 

The Boruta algorithm was used, which selected a total of 43 features from the 1430 total 

(table 4 in appendix) and these features were then used in the training of the neural 

network. There were 25 features selected from the FTIR, 15 from µXRF, and 3 from the 

visible spectra, however, no features were selected from the UV spectra. 

3.8 Neural Network 

Initially, 1000 neural networks were created and the best one was chosen. Figure 17 

shows the training (figure 17a) had the greatest accuracy of 90%, the accuracy of the 

testing (figure 17b) had a much lower accuracy of 74% and validation (figure 17c) had 

an accuracy of 79%. Figure 18 shows that the overall linear correlation factor (accuracy) 

obtained was 86%. The error histogram that was obtained (figure 19) shows the errors 

are mainly occurring around zero for the input vectors. Figure 20 shows the MSE for 

training, testing and validation and the plot shows that the neural network is not to over 

fitted and the MSE’s are very low.  

 

Figure 17. Plot showing the accuracies for the (a) training, (b) testing and (c) validation of the neural 

network. 
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Figure 18. Regression plot of classifier output and expected outcomes for the neural network. 

 

Figure 19. Error histogram showing the number of instances per interval of error observed (blue bars for 

training, red bars for testing and green bars for validation). 

 

Figure 20. Plot of the MSE for the training (blue line), testing (red line) and validation (green line) of the 

neural network. 
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4 Conclusion  

The neural network was able to produce a correlation factor of 86% using the Boruta 

(random trees) algorithm, using FTIR, µXRF and visible spectroscopy data. No features 

were selected from the UV spectra showing that UV is not a useful technique to use in 

this method. Only 3 features were manually identified in this region, but these were not 

discriminatory enough to be used to differentiate the different samples, thus they were 

not selected during the feature selection process. It was also not possible to collect and 

therefore use any palynological data, due to the samples being over processed since 

method failed to work as expected.   

The accuracy achieved with this study (86%) is a marked improvement on 77% using 

just FTIR spectra, so it can be concluded that by adding µXRF and visible spectroscopy 

data the accuracy of the prediction is greatly increased. The improved accuracy of this 

method demonstrates how powerful multiple techniques can be in soil analysis and that 

this is a strong method that could be widely used. 

Taking into consideration that the FTIR crystal showed clear signs of contamination due 

to soil residues and other samples, it was not in perfect condition and so the obtained 

results could be somewhat explained by this. This was also the reason that the 2014 

samples were not analysed due to the condition of the crystal worsening overtime as a 

result of high sample throughput. Since the 2014 samples could not be analysed by 

FTIR, they were not analysed by the other techniques as the data for these samples 

could not be used in the neural network as the data would be incomplete. A WDXRF 

instrument was the machine intended to be used but this was not possible so a µXRF 

was used which is not as sensitive to trace elements and this could also explain, in part, 

the correlation coefficient.  
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5 Recommendations for Further Work 

Prospects for the future could be to increase the amount of data input into the neural 

network by using more techniques which should increase the accuracy of the prediction.  

Increase the number of samples by expanding the grid used and reducing the distance 

between collection sites which will increase the usefulness of this technique.  

The samples could be re-analysed on a FTIR with a cleaner or new crystal to reduce 

noise in the spectra.  

Analyse the 2014 samples using FTIR, µXRF and visible spectroscopy to determine if 

the method is reproducible across different years.  

Also, test different feature selection methods, to see if this increases the number of 

selected features and improves the overall accuracy of the neural network.  

Eventually, create a map the whole of Portugal using this method and possibly expand 

to other countries for use by police forces, armies and naval fleets.    
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Appendix 

 

Table 4. Features selected by the Boruta feature selection algorithm, showing the relationship 

between peaks. 

Feature Number V1 V2 Feature Number V1 V2 

6 VIS_980 VIS_905 590 FTIR_700 FTIR_755 

10 VIS_905 VIS_980 592 FTIR_700 FTIR_725 

15 VIS_800 VIS_905 619 FTIR_671 FTIR_710 

54 FTIR_1747 FTIR_1630 683 FTIR_569 FTIR_990 

80 FTIR_1630 FTIR_1747 709 FTIR_555 FTIR_990 

190 FTIR_990 FTIR_910 723 FTIR_555 FTIR_710 

192 FTIR_990 FTIR_870 866 XFR_3.292 XFR_4.4983 

216 FTIR_925 FTIR_910 867 XFR_3.292 XFR_4.9193 

242 FTIR_910 FTIR_925 942 XFR_4.4983 XFR_3.292 

293 FTIR_870 FTIR_990 948 XFR_4.4983 XFR_6.4837 

294 FTIR_870 FTIR_925 953 XFR_4.4983 XFR_7.9351 

319 FTIR_850 FTIR_990 955 XFR_4.4983 XFR_8.6514 

351 FTIR_810 FTIR_800 958 XFR_4.4983 XFR_14.0296 

352 FTIR_810 FTIR_785 968 XFR_4.9193 XFR_3.292 

377 FTIR_800 FTIR_810 1118 XFR_7.3508 XFR_18.3397 

403 FTIR_785 FTIR_810 1140 XFR_7.5832 XFR_14.0296 

409 FTIR_785 FTIR_725 1179 XFR_7.9351 XFR_4.4983 

435 FTIR_775 FTIR_725 1192 XFR_7.9351 XFR_14.0296 

486 FTIR_755 FTIR_737 1231 XFR_8.6514 XFR_4.4983 

538 FTIR_725 FTIR_755 1309 XFR_14.0296 XFR_4.4983 

541 FTIR_725 FTIR_700 1335 XFR_15.7197 XFR_4.4983 

568 FTIR_710 FTIR_671 
   

 

See Appendix Disk for: 

FTIR Spectra 

UV Spectra 

Visible Spectra 

XRF Spectra 

Neural Network Matlab file. 

 

 

  



 

 

 


