
Robot localization from minimalist inertial data using a Hidden
Markov Model

Abstract— Hidden Markov Models (HMM) are applied to
interoceptive data (in this case the sense of rotation by way of a
gyroscope) acquired by a moving wheeled robot when contour-
ing an indoor environment. We demonstrate the soundness of
HMM to solve the problem of robot localization in a topological
model of the environment, particularly the kidnapped robot
problem and position tracking. In this approach, the environ-
ment topology is described by the sequence of movements a
robot executes when contouring the environment. Movements
are described in a fuzzy domain using distance traveled and
curvature as features.

I. INTRODUCTION

Localization is one of the most important problems in
mobile robotics. A robot whose success depends on this
capability cannot be ascribed other goals if it is not capable
of localizing itself – localization is then fundamental.

In addition to odometry, visual or otherwise, localization
could be improved by associating places with interesting
features (a particular corridor, a green plant in a pot, etc.). In
order to recognize such interesting modal diverse features,
the robot needs an adequate set of sensors, just because
sensed information is a building block of the robot’s maps,
and, consequently, the robot’s actions.

Multiple sensors imply sensor fusion, which is not easy
to program. In fact, depending on the robot’s mission, or the
part of the mission the robot is in, not all sensations should
be reckoned. We approach navigation by a rather minimalist
sensor apparatus – the robot will rely only on gyroscope
data; hence favoring the richness of proprioception.

Any sensor is characterized by inherent uncertainty, i.e.,
when measuring physical quantities one does not know the
true value, but only an approximation. Depending on the
sensor, data can soon be outdated (if it takes too much
processing on a moving robot), inaccurate (e.g., due to bad
calibration), or erroneous (e.g., due to aliasing), upon which
the best one can do is to establish an upper bound on the
error (error = xtrue − xmeasured). Therefore it’s important
to supply the robot with the means to deal with uncertainty.

Probability theory and statistics are important frameworks
to deal with uncertainty, either about the sensed information,
the robot’s internal state and the outcome of its actions, of
which Markov Chains play a central role.

In particular, in Markov localization a probability distri-
bution over the space of all possible robot positions in a
Cartesian frame of reference is maintained. Typically, by
all possible positions it is meant every position/place in the
environment, even those that are uninteresting from the point
of view of the robot’s goals. The arrival of a measurement

triggers a belief update about the robot’s position, which is
a daunting computational task [1].

This is the dense model approach to robot localization
(maps are metric and grid oriented), to which we confront
a sparse approach (maps are topological or hybrid), where
modeling is oriented to “interesting” parts of the environ-
ment, while the rest is ignored [2],[3].

The preference for the low dimensionality of the data
representation over the high dimensionality of the sensor data
has been investigated by others (e.g., [4]), either because of
gains in computational efficiency, or because brains appear
to be very efficient at processing saliency [5].

II. HIDDEN MARKOV MODELS

The probability framework used is HMM [6],[7], which
supplies the means to make inferences about states (the local-
ization of the robot) which are not directly and unmistakably
observed by the robot.

The parameters of HMM λ are (Q,O,A,B, π):
• Q = {s1, s2, ..., sN} is the (ordered) set of possible

model states, with N representing the number of states.
• O = {ν1, ν2, ..., νM} is the (ordered) set of possible

observable symbols, with M representing the number
of symbols emitted by the system.

• A = {aij : aij = P (St+1 = sj |St = si)}, 1 ≤ i, j ≤
N , is the state transition probabilities, S ∈ Q refers to
the random variable (RV) taking values on Q. In St,
t represents time. Since Q is an ordered set, St = si
is the same as St = i. This convention also applies to
observations.

• B = {bij : bij = P (Vt = j|St = i)}, 1 ≤
j ≤ M, 1 ≤ i ≤ N , is the observation probability
distribution conditioned upon the state. V ∈ Q.

• π = {πi} : πi = P (S1 = i), 1 ≤ i ≤ N denotes the
initial state distribution.

Two notations are used for sequences: i) normal, as in
V1, V2, ..., Vn; and ii) compact, as in V1:n. RV’s are written
with capital letters, their respective values are written in
lower case, and arrays are written in boldface.

We make the usual assumptions:
• The Markov assumption – The next state is dependent

upon the current state: aij = P (St+1 = j|St = i), i.e.,
we consider first order Markov models.

• The stationary assumption – The state transition prob-
abilities are independent of the actual time at which the
transitions take place.

P (St1+1 = j|St1 = i) = P (St2+1 = j|St2 = i), t1 6= t2
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• The output independence assumption The current
observation is independent of the previous ones, given
the state. Formally, considering sequence v1:T of obser-
vations and sequence q1:T of states, then

P (v1:T |q1:T , λ) =

T∏
t=1

P (vt|qt, λ)

A. The three problems for HMM in robotic navigation

Following [6], the three problems in HMM whose solution
would allow interesting real-world applications are:

1) given an observation sequence, v1:n, and a model,
λ, how the probability of v1:n, given the model,
P (v1:n|λ), can be computed?

2) Given an observation sequence, v1:n, and a model, λ,
there must be a state sequence, q∗1:n, that best explains
the observations. How can q∗1:n be computed?

3) Given an observation sequence, v1:n, and a model, λ,
how model parameters (A,B,π) can be adjusted in
order to maximize P (v1:n|λ)?.

From a robotic navigation point of view, the interest of
these three problem is obvious:

1) problem 1 provides the means to localize the robot,
i.e., given a sequence of movements it evaluates the
most probable location;

2) problem 2 provides the means to evaluate the most
probable trajectory in state space, i.e., the one that
best explains a sequence of movements. It is advised
for state tracking as it provides a state history given a
sequence of movements.

3) problem 3 provides the means to keep the map in sync
with the environment (i.e., learning), a most desirable
feature for dynamic environments.

In this paper we approach the first three problems.

III. MOBILE ROBOT SETUP

We adopt a map of a structured, indoor environment of
a topological nature, where the environment is defined by a
sequence of linguistic (i.e., fuzzy) descriptions representing
movements like small straight movement, followed by a large
(with respect to distance) wide (with respect to curvature)
curve to the left. This requires that the robot maintains
sensory contact with the environment, which is achieved by
having the robot following the environment contours (see [8]
for details).

Movements are delimited by the places in the environment
where the spatial derivative of curvature changes sign or
is zero. For example, while the robot finds itself moving
straight, it collects odometry information that will be used
to classify the distance traveled (is it short, medium or big?).
This process is interrupted when there is a change of a certain
amount in the curvature of the robot’s trajectory. There, the
straight movement ends and is finally classified (more on
that in a while), and a new (curved) one starts. In this way, a
robot trajectory is segmented into curved and straight pieces
of different scales. See [8] for further details.

More concretely, distance is described by three linguistic
terms: small (label S), medium (M ) and large (L). Curvature
of movements is described by three linguistic terms: small
(s), medium (m), and large (l), and a label for zero curvature
(Z). These labels were chosen to represent small curves
(about 45◦), 90◦ turns and U turns (about 180◦), respectively.
Since the robot will have to perform curves to either side,
curvature is defined by seven fuzzy labels: large left (Ll),
medium left (Lm), small left (Ls), Straight (Z), small right
(Rs), medium right (Rm) and large right (Rl). In this
vocabulary, a movement like medium straight is described
as MZ, and one like large U curve to the right as LRl.

The amount of labels for classifying distance and curvature
can be enlarged, providing more discriminative power to
describe the environment, but at the expense of an higher
computational load. In fact, if distance and curvature are
described by U and V fuzzy terms, respectively, then a path
made of w movements is a point in a (UV )w dimensional
space. In the case of indoor environments we observe that
most of the curves are at right angles; small curves are made
to contour small obstacles; and sometimes the robot needs to
perform U turns when reaching corridor ends. So, our choice
of three classes (or fuzzy labels) to the left, three to the right
and one for straight movements reflects this reality.

We also assume a home-centric robot, starting and ending
all its missions in a unique place called home, which the
robot innately recognizes with a high degree of success (e.g.,
home can be characterized by a pattern of colors, sounds, a
tight corridor with known dimensions, a radio beacon, etc.).

Given this setup, the classification of the performed move-
ments is what the robot observes from the environment. The
states will be the environment singular locations where one
movement ends and a new one starts.

For the sake of presenting a practical context that will help
us explaining the methodology, we consider the particular
real environment depicted in fig. 1.

Near places P and S there is a double door, that when
opened discloses a small corridor, whose trajectory by the
robot is represented by a dashed line. The dotted line
represents a possible trajectory around the environment, with
the respective singular places annotated through the character
X and denoted by capital letters. Home is at the bottom-left.
The robot is depicted as having the pose prior to leave home.
It contours the environment by its left side, so, when leaving,
it proceeds up, hence the first curve from place A to B.

The parameterization of the HMM must be derived from
this environment. As explained, states will correspond
to the locations where one movement ends and a new
one starts, i.e., Q = {A,B, ..., U}. N , the cardinal
of Q, i.e., N = |Q|, will be 21, corresponding to
the total of capital letters in fig. 1. The observation
set corresponds to the Cartesian product between the
set of labels for distance and for curvature, which is,
O={SLl,SLm,SLs,SZ,SRs,SRm,SRl,MLl,MLm,MLs,MZ,MRs,
MRm,MRl,LLl,LLm,LLs,LZ,LRs,LRm,LRl}. Thus, M , the
cardinal of O, amounts to M = |Q| × |O| = 3× 7 = 21.

The mobile robot we have used is a Pionner 3 [9],



Fig. 1. Air-view of the test environment, with an ordinary trajectory
resulting from a mobile robot contouring it, properly annotated with places.

equipped with a ITG-3200 gyroscope [10] from which all
the data is sampled. Figure 2 presents the raw data collected
in a typical tour around the environment (denoted original).

This data is filtered through an Infinite Impulse Response
(IIR) filter defined by yi = αyi−1+(1−α)xi, where α = 0.8,
xi represents the i-th sample from the gyro and y represents
its filtered version (see fig. 2). This can be regarded as a con-
vex combination between the past and the present, through
α. It’s interesting because is computationally efficient (two
multiplications and one sum), in comparison with a moving
window average, for instance.

The resulting data passes through a threshold filter, that
separates straight movements from curved ones.

Finally, small straight movements and curved movements
with small traveled distance are deleted. These correspond
to the spikes in the graph denoted filt+thresh in fig. 2.

The last step corresponds to classify the crisp values
of distance and curvature to the membership functions of
fuzzy variables distance and curvature, respectively, thus
calculating the labels of the movements. Remember, distance
is defined by three fuzzy predicates and curvature by seven.
Membership functions are of trapezoidal shape (refer to

Fig. 2. Raw data sampled from a gyro, its filtered version and its
thresholded version.

fig. 3), whose definitions are:

small(distance) = (a = 0, b = 0, c = 16, d = 22)
medium(distance) = (16, 22, 40, 60)
large(distance) = (40, 60, 100, 100)
large-left(curvature) = (−800,−800,−600,−400)
medium-left(curvature) = (−600,−400,−200,−100)
small-left(curvature) = (−200,−100,−5, 0)
straight(curvature) = (−5, 0, 0, 5)
small-right(curvature) = (0, 5, 100, 200)
medium-right(curvature) = (100, 200, 400, 600)
large-right(curvature) = (400, 600, 800, 800)

Fig. 3. Definition of a trapezoidal membership function.

The classification of the crisp values of distance and
curvature is made by choosing the fuzzy set having the
higher degree of membership. Consequently, as an example,
the label sequence of the trajectory referred to in fig. 2 is
{MLm, LZ, MLm, MZ, MRl, MZ, MLm, MZ, MRl, MLs, SRs,
SZ, SRs, SZ, MLs, LZ, MRm}.

IV. SOLUTIONS TO THE THREE PROBLEMS

The initial state of the robot is home, so the initial state
probability is πi = [i = A], using the Iverson bracket
notation ([X] = 1 if proposition X is true, zero otherwise).

In this particular setup, there is no need to estimate πi,
since the robot always departs from home. Note that the
environment is assumed to be closed, consequently the robot
always finds home as long it contours the environment by
the same side.



A. Problem 3 – mapping
Problem 3 is about learning the parameters of the HMM:

λ = (N,M,Q,O,A,B, π). We make the following simpli-
fications:

• the environment was correctly analyzed, so there are no
places that escaped our analysis; hence there is nothing
to learn about N and Q.

• Our movement classification is complete, i.e., there are
no movements that our classification strategy is not able
to classify correctly, thus making M and O constant.

• The mobile robot starts and finishes every mission in
home, so there is nothing to learn about π.

Learn A means learn the map of the environment, i.e.,
know which places follow any other place. B is a gateway
to A, since the state is hidden but the observations are not,
so learning B is as important as is learning A. In this paper
we restrict learning to establish priors on A and B.

There are several ways to assign priors to A and B, which
we denote by Â and B̂: Maximum Likelihood, Maximum
Entropy (ME), Expectation/Maximization, among others. We
will limit ourselves to use ME, which we briefly explain
by recurring to the data collected from the environment in
fig. 1. Without explanation, the training data is gathered from
having the robot completing 10 laps around the environment;
five around the regular environment and five around the
extended environment.

The principle of maximum entropy is used to derive priors
based on the information available, and use no other informa-
tion besides that. Typically, the available prior information
is incomplete, so, by the principle of maximum entropy, the
prior density function should also be as uncertain as possible.
In the case of a RV with an infinite but countable domain,
i.e., in the [0,∞[ interval, as is the case of the count of
movements of the robot in the environment, the distribution
that maximizes the entropy is Uniform.

By observing the contouring trajectories we can extract
the sequence of places (states), and thus Â has the form of
a connectivity matrix (i.e., aij = 1 if place j follows place
i). Because Â is stochastic, i.e., their rows must sum to one,
if place i connects to ni other places, then we write 1/ni
in the intersection of the line corresponding to i with the
columns corresponding to each successor. This way to define
Â corresponds to an unbiased estimator for aij , as 1/ni is
an non-informative (Uniform) prior, thus conforming to the
principle of maximum entropy. The same principle is applied
to B̂.

A and B are manually learned from the data resulting
from the robot contouring the environment a few times,
consequently it is a supervised process. It is tedious for large
environments but results in correct values if the analysis is
complete.

In the case of our test environment, Â and B̂ are depicted
in figs. 4 and 5.

B. Problem 1 – localization
When the robot contours the environment by its left

side, a set of places are visited (the place occupied by the

Fig. 4. Â evaluated by ME viewed in graphic form. The radius of the
circles is proportional to the respective elements in Â. The radius of the
circles in a line sum to one.

Fig. 5. B̂ evaluated by ME viewed in graphic form. In every state there is
at least one observation; the converse is not true. The radius of the circles
in a line sum to one.

robot is the hidden variable) and the corresponding set of
observations made. Given a sequence of T observations,
v1:T , and a model, λ, we may want to find the state, q∗,
that maximizes the probability

αt(i) = P (v1:t, St = i|λ), 1 ≤ t ≤ T, 1 ≤ i ≤ N,

i.e., we may want to seek the most probable robot localiza-
tion at time t taking in mind the T observations,

q∗ = arg max
i
αt(i)

αt(i) is defined recursively by the Forward algorithm [6].

Initialization:

α1(j) = πjbjv1 , 1 ≤ j ≤ N.



Induction:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bjvt+1 , (1)

1 ≤ j ≤ N, 1 ≤ t ≤ n− 1. (2)

As an example of application, consider that the robot is
lost and observes MZ. From fig. 1 we see that there are
six places ({E,G,I,Q,S,U}) were the observed movement is
MZ. The values of α1(j) are depicted in the top graph of
fig. 6. The places where α1(j) : 1 ≤ j ≤ 21 attains its
maximum are ({E,G,I,Q,S}), so these are the most probable
places for the robot to be. The robot continues to be lost
because there are many places explaining the observation,
consequently it performs one more movement, which turns
out to be MRl. The observed sequence is now {MZ,MRl}.
In the second graph from the top of fig. 6, we see that α2(j)
attains its maximum for j ∈ {6, 10, 18}, which translates to
{F,J,R}. One more movement must be performed in order
for the robot to be localized unequivocally. This line of
reasoning continues until the robot completes the sequence
MZ,MRl,MZ,MLm,MZ, leading the robot to be local-
ized at place 9 (I). Performing one more movement leads the
robot to be localized with probability one, hence the graph
at the bottom of fig. 6.

In applying the Forward algorithm in this example, we
considered πj distributed uniformly over the 21 states. Fi-
nally, this methodology proves the adequacy of this proce-
dure to solve the wake-up robot and the kidnapped robot
problems [1], where the robot has no prior knowledge about
its position.

Fig. 6. α1(j) (top), through α6(j) (bottom), for each of the 21 places,
corresponding to the example that shows how a lost robot can re-localize
itself (see text for explanations).

C. Problem 2 – tracking
In problem 2 one is interested in computing the most

probable state sequence, q∗1:t, which is the one that best
explains the observed sequence, v1:n.

q∗1:t = arg max
q1q2...qt−1

P (q1q2...qt−1qt, v1v2...vt)

SLl SLm SLs SZ SRs SRm SRl
1 2 3 4 5 6 7

MLl MLm MLs MZ MRs MRm MRl
8 9 10 11 12 13 14

LLl LLm LLs LZ LRs LRm LRl
15 16 17 18 19 20 21

TABLE I
INDEXES FOR OBSERVATIONS

This problem is named the decoding problem, and is solved
by the Viterbi algorithm [6], [11].

We apply this algorithm to the environment in fig. 1.
We assume that the robot contours the environment starting
at home. As it does, observations are collected and the
corresponding most probable sequence of visited places is
computed by the Viterbi algorithm.

Given an observation sequence and a state sequence, the
corresponding joint probability is evaluated by eq. 3.

P (v1:n, q1:n|λ) = πq1P (v1|q1)

n∏
k=2

P (vk|qk)P (qk|qk−1)

= πq1bv1q1

n∏
k=2

bvkqkaqkqk−1
(3)

As a matter of limiting the space used in presenting
the results, we index the movements to numbers, following
table I. So, instead of mentioning SLm, for instance, numeral
2 is used.

V. APPLICATION OF HMM TO ROBOTIC NAVIGATION

1) Small environment: We start by having the robot
contouring the small environment (i.e., the double door near
places P and S is closed). Table II shows the results. The
column at left shows the sequence of sensed movements
as the robot progresses in the environment, the column in
the middle shows the inferred place sequence, and the third
column presents the probability of the state sequence.

The results of eq. 3 (and for the same purpose, the values
of αt+1(j)) can approach zero (i.e., can be of the order of
the smallest representable double number) for moderate real
problems. The third column shows the probability values for
this particular case; they are far from the minimum, hence
there is no need to use scaling procedures (e.g., as the one
presented in [6], pag. 272).

The complete movement sequence sensed by the robot is
presented next. From its translation (see indexes in tab. I,
and refer to fig. 1), we see that the robot’s position is tracked
correctly all the way.

{MLm,LZ,MLm,MZ,MRl,MZ,MLm,MZ,MRl,

MLs, SRs, SZ, SRs,MLs,LZ,MRm} (4)

2) Big environment: The results for the big environment
are presented in tab. III. Again, tracking success is 100%.



observation state probability
9 B 1.0
9,18 BC 0.9
9,18,9 BCD 0.9
9,18,9,11 BCDE 0.72
9,18,9,11,14 BCDEF 0.72
9,18,9,11,14,11 BCDEFG 0.576
9,18,9,11,14,11,9 BCDEFGH 0.576
9,18,9,11,14,11,9,11 BCDEFGHI 0.4608
9,18,9,11,14,11,9,11,14 BCDEFGHIJ 0.4608
9,18,9,11,14,11,9,11,14,10 BCDEFGHIJK 0.2304
9,18,9,11,14,11,9,11,14,10,5 BCDEFGHIJKL 0.1152
9,18,9,11,14,11,9,11,14,10,5,4 BCDEFGHIJKLM 0.1152
9,18,9,11,14,11,9,11,14,10,5,4,5 BCDEFGHIJKLMN 0.1152
9,18,9,11,14,11,9,11,14,10,5,4,5,3 BCDEFGHIJKLMNO 0.04608
9,18,9,11,14,11,9,11,14,10,5,4,5,3,18 BCDEFGHIJKLMNOU 0.004608
9,18,9,11,14,11,9,11,14,10,5,4,5,3,18,13 BCDEFGHIJKLMNOUA 0.004608

TABLE II
STATE TRACKING FOR THE SMALL ENVIRONMENT

observation state probability
9 B 1.0
9,18 BC 0.9
9,18,9 BCD 0.9
9,18,9,11 BCDE 0.72
9,18,9,11,14 BCDEF 0.72
9,18,9,11,14,11 BCDEFG 0.576
9,18,9,11,14,11,9 BCDEFGH 0.576
9,18,9,11,14,11,9,11 BCDEFGHI 0.4608
9,18,9,11,14,11,9,11,14 BCDEFGHIJ 0.4608
9,18,9,11,14,11,9,11,14,10 BCDEFGHIJK 0.2304
9,18,9,11,14,11,9,11,14,10,5 BCDEFGHIJKL 0.1152
9,18,9,11,14,11,9,11,14,10,5,4 BCDEFGHIJKLM 0.1152
9,18,9,11,14,11,9,11,14,10,5,4,5 BCDEFGHIJKLMN 0.1152
9,18,9,11,14,11,9,11,14,10,5,4,5,3 BCDEFGHIJKLMNO 0.04608
9,18,9,11,14,11,9,11,14,10,5,4,5,3,9 BCDEFGHIJKLMNOP 0.02304
9,18,9,11,14,11,9,11,14,10,5,4,5,3,9,11 BCDEFGHIJKLMNOPQ 0.02304
9,18,9,11,14,11,9,11,14,10,5,4,5,3,9,11,14 BCDEFGHIJKLMNOPQR 0.02304
9,18,9,11,14,11,9,11,14,10,5,4,5,3,9,11,14,11 BCDEFGHIJKLMNOPQRS 0.02304
9,18,9,11,14,11,9,11,14,10,5,4,5,3,9,11,14,11,9 BCDEFGHIJKLMNOPQRST 0.02304
9,18,9,11,14,11,9,11,14,10,5,4,5,3,9,11,14,11,9,11 BCDEFGHIJKLMNOPQRSTU 0.018432
9,18,9,11,14,11,9,11,14,10,5,4,5,3,9,11,14,11,9,11,13 BCDEFGHIJKLMNOPQRSTUA 0.018432

TABLE III
STATE TRACKING FOR THE BIG ENVIRONMENT

3) Modified small environment: Finally, we consider a
case were the environment was modified by occupying the
hollow near places L and M with cabinets, i.e., from place
K to place N the environment is now straight. The respective
results are presented in tab. IV, and again tracking success is
100%. This illustrates further the capabilities of this approach
to localization, in this case in a dynamical environment.

VI. CONCLUSION

The structure of indoor environments imposes specific
shapes in the trajectories a robot executes when performing
missions in it. The robot’s internal sense of rotation, provided

observation state probability
9 B 1.0
9,18 BC 0.9
9,18,9 CD 0.9
9,18,9,11 BCDE 0.72
9,18,9,11,14 BCDEF 0.72
9,18,9,11,14,11 BCDEFG 0.576
9,18,9,11,14,11,9 BCDEFGH 0.576
9,18,9,11,14,11,9,11 BCDEFGHI 0.4608
9,18,9,11,14,11,9,11,14 BCDEFGHIJ 0.4608
9,18,9,11,14,11,9,11,14,18 BCDEFGHIJO 0.04608
9,18,9,11,14,11,9,11,14,18,18 BCDEFGHIJOU 0.004608
9,18,9,11,14,11,9,11,14,18,18,13 BCDEFGHIJOUA 0.004608

TABLE IV
STATE TRACKING FOR MODIFIED SMALL ENVIRONMENT

by ordinal inertial sensors, supplies the data from where
the shape of the environment can be elicited. We have
demonstrated that Hidden Markov Models provides a sound
framework to localize the robot from this data.

We concentrated on the use of sparse models of the
environment, where only interesting places are stored in the
map. These are in contrast to dense ones, which require large
computational resources. Interesting locations are defined by
the places where the trajectory curvature changes. This rep-
resentation could be complemented with other environment
distinctive features, depending on the sensors available.

In our approach, movements are described by fuzzy
predicates, which is a representation easily interpretable by
humans and amenable to be exchanged among robots.

The learning problem (problem 3), which can be resumed
as finding the values of Â and B̂ that maximizes P (Ω|λ),
with Ω representing the set of all observation sequences
made by the robot, starting from zero knowledge about
the environment, was addressed by a supervised, manual,
procedure, conforming to the principle of maximum entropy.
The application of this procedure is not difficult for small to
moderate environments, but it is tedious for large ones. An
interesting follow-up is to make this procedure unsupervised.

Regarding problems 2 and 3, we proved (empirically)
that HMM’s are well suited to address the problems of
localization and tracking in environments described by sparse
models. The presented methodology can be extended to
outdoor environments, in spite of the higher scale these have.

Mobile robots should have an action model, rendering
actions dependent upon the interpretation of the environment,
otherwise robots cannot navigate. We have not presented one,
though. This topic is a natural continuation of our work.
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