

THE USE OF AN ONTOLOGY AS SUPPORT

OF A VIRTUAL LAB AND REMOTE LABS

NETWORK EURONET - LAB.
Raúl Cordeiro Correia

Escola Superior de Tecnonologia

de Setúbal

Instituto Politécnico de Setúbal

raul.correia@estsetubal.ips.pt

José Manuel Fonseca

Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa

Caparica, Portugal

jmf@uninova.pt

Andrew Donellan

 IT Tallaght, Dublin

Ireland

 andrew.donnellan@ittdublin.ie

Abstract — Our propose is to build a network of virtual
laboratories, based in a Virtual Closet that will contain all
the elements and parts that are needed to build the various
experiences available in a v-labs network (that we call
Euronet-Lab).

To build this complex network we need to find a system that
supports effectively this structure. This probably will be a
enormous database of v-labs and independent elements,
where will be possible sometimes to “recycle” some of the

elements. This means “re-use” the same element several
times in many experiences. To do this is necessary to have a
structure that allows us to have several instances of the same
element.

It’s important that in our structure and virtual environment
we can create several “images” of the same reality and this
images can be used simultaneously in different
circuits/experiments. This means that we can create several

instances of the same element, to be used in different
experiences and exercises.

Index Terms— V-labs, Virtual Labs, E-learning, CMS,

Ontology, Remote Laboratory.

I. INTRODUCTION

The main problem that we want to solve is to find a

structure that allow us to define a efficient and logical

database that is completely able to support our virtual

labs network.

This structure must permit to classify all the components

and parts used in our experiences, and allow us to go get

this elements/objects in a “Virtual Closet”, that we must

build and define, prior to anything else. We defend that

this structure is an Ontology.

This “Virtual Closet” will be the base of our system to

build the virtual experiments. And the structure that

supports this “closet” ,must allow to use and define

several instances of the same object that we go to use in

different experiments that can exist and run at the same

time.

One of the most important points to develop in this

project is the “user interface” that will be used by all

users of the system.

So in this point we will try to make and discuss a

definition of user interface integration.

To integrate this user interface in all the EURONET LAB

system, it is important to define logically and technically

how we will make this integration.

So, the way we choose, is first to see what is now the

“State of the Art” in this matter.

So, after consulting several documents in that area, we

think that the most important point to see and study is the

“Application Integration” with the developed ontology

and the other components of the system that we will

choose.

The application integration of the user interface is one of

the most used techniques to connect the user with

software applications.

There are several kinds of approach to solve this issue.

In this point we go discuss the definition of “user

interface integration”.

One of the most accepted models of integration interface

is the model of Fowler [7],[10], and this model define the

three main layers:

1 – The source layer

2 – The business logic layer (or domain layer)

3 – Presentation layer

Several authors derived from this classification. This

leads to the simplest model of system integration;

- An integration layer can be placed in the top of

each one of the layers, facilitating by this way

the application integration in the 3 layers:

- Data layer (source layer)

- Business layer

- Presentation layer

To better understand the figure 1 we go present a little

resume of the classification criteria for some authors:

- Amsden[8] introduces a variation of integration;

one application may “involve” another, i.e. start it via

access to the underlying operation system.

- Nisson [9] introduces a separation of integration

on the user interface layer: that distinguishes the

integration of “user interface parts” from the

integration on the “screen handling” layer, for

architectures as X Windows Scheifler and Gety [11]

,[10] defends that the implementation on User

Interface components (UI components) is separated

from the implementation of the display and the

interaction with those component parts, which is what

the author calls “screen handling”. So, these authors

Scheifler and Gaty [11],[10] propose two different

strategies of integration on the UI components and

also make changes on the screen handling layer.

The classification of levels can be shown in the following

diagram of levels that show us the classification of levels

made by several authors:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Comum

https://core.ac.uk/display/62691793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1 – Classification of levels [10]

As main concept, Linthicum [10] distinguishes two types

of integration on the business logic level:

- Application interface integration

- Method integration

Let’s see its differences with more detail:

- The application interface integration means that

the application call methods from another one.

- Method integration implies the exchange of

models and also more complex patterns of

interaction between applications, going beyond

simple method calls [10].

Other authors, Benatallah Nezad [13] provide an even

finer-grained distinction of integration business layer.

This comes besides the distinction of Linthicum’s

between application interface (called “function

integration” by the authors). In this case they introduce

the need for addictionally coordinating the message

exchange itself (called basic coordination) as well as

policies, such as privaty policies and quality of service

agreements between systems. Also the authors introduce

the communication layer as another layer of integration,

thereby stressing that when integration distributed

applications, the communication protocol heterogeneities

must be overcome [14].

We must also take in consideration the main advantages

and benefits of “Application Integration” on the “User

Interface Layer”.

There are two main benefits for performing application

integration o the user interface level:

- Increasing the usability of software systems

- Reducing development efforts for those software

systems.

We can see these benefits from two points of view:

- From the user, the end’s user

- From the software engineer

From the end user point of view, we can say that any

system that is integrated on a deeper level than the user

interface, will come with an individually developed user

interface [15] .

So the user will be confronted with a new unfamiliar user

interface that requires time to the user to learn how to use

this interface.

On the other hand, if we have a simple interface system

the user easily learn how to work with the interface and is

easier to use and doesn’t require learning and adaptation

time from the user.

 From the software engineers point of view, reusing an

existing interface, as opposed to developing a new

interface from the “zero point” means saving time and

having less programming work.

It’s important have in mind that the user interface is

normally the most expensive part of a software system.

The portion of development effort dedicated to the user

interface system in a project goes from 50% to 70% [17]

of the total development effort.

In resume we can say that without an approach for

integration of the user interface level the degree of reuse

will never be higher than 50%. If we use UI integration,

this action can therefore reduce development efforts of

integrated software systems drastically.

Another very important aspect of the project to consider

is; what are the requirements and challenges of

Application Integration on the User Interface layer.

This application integration on the UI layers take us to

some challenges. About these challenges [15] is possible

to enumerate five requirements for UI integration

approaches:

1. Definition of a common model and language for

specifying components.

2. Definition of a model and language for

specifying the integration.

3. Create a support system for interaction and

communication among the components.

4. Definition of a mechanism for visualizing the

individual UI components.

5. Development of a mechanism for component

discovery and binding.

A framework for the user interface integration has to have

access to components to integrate in the ontology. Also is

necessary to define a common model for those

components, because is this model that will define how to

access and control each component in the necessary

actions to develop.

Typically, if we use a API, these components are API

components. These API can be a high-level API, working

at the level of business objects or, in another approach,

can be a low-level API where the UI entities can be

considered as buttons [15],[10].

Normally API’s at both levels are very useful as way to

facilitate meaningful user interface integration. For

integrating the user interface components, the developer

has to specify coordination of the different components

and also, the kind of relations that exists among them.

This can be done in any general purpose programming

language (C++ or Java) or in specialized languages.

To implement interactions between components, some

mechanisms for communication between components has

to be provided. This can be a message exchange facility,

event-based communication, etc. Communication

between components can be performed either directly or

centrally mediated [15],[10]. As user interface

programming itself is most often event-oriented but is

normal too the use of event-based communication for UI

integration as well [16]. In an integrated UI, the

individual application user interface components have to

be displayed on the screen. The framework can either

split and delegate the display to individual components or

performed a unified display, e.g. based on markup as

HTML. The last issue is the discovery and binding of

components. The most common solution applies when

the set of applications to integrate is not fixed at the time

when the development code of the system is built. In this

case the components can be registered, for example in an

online repository, and then sought, found and bound

when necessary at run-time.

The work already done to build this system was the

project and drawing of the system, and also the definition

of the main branches and elements of the ontology to use.

We use Protégé Software as a tool to draw our ontology.

So the definition of superclasses, sub-classes, and all the

hierarchy is already build.

Also is already defined the concepts for each class build

and also the properties of this concepts, also called is

restrictions.

The contribution of this paper is explain and justify why ,

in our opinion, the better solution to implement this

structure is an Ontology, and also define, and build all the

objects and elements that we need in our system.

So we start to make an introduction, where we explain

how to build an ontology, and what are the rules and

steps that we must follow to correctly build the ontology

we want to implement.

We can define an Ontology as:

 “A Ontology defines a common vocabulary for

researches and someone who need to share information in

a domain”. [1]

Ontologies are widely used in integration of application

scenarios, most of the times in the data and business logic

level.

In a frequently cited article “Ontologies: Principles,

Methods and Applications”, [18], point the usefulness of

ontologies for promote inter-operability between IT

systems.

The ontologies are proposed as a mean for “inter-lingua”

for information exchange between applications.

The word “ontology” has its origin in the greek words:

οοοοννννττττοοοοξξξξ (“being”) and λλλλοοοογγγγοοοοξξξξ (“theory” or “science”). So,

ontology is “being theory” or “being science”, in fact it is

a sub-area of philosophy that deals directly with the

question of what existence actually is, and also it makes

several categorization and organization of the existing

things at a particular domain.

In computer science, “Ontology” is a formal model of a

knowledge domain.

In philosophy area, ontology is used as singular word and

refers a field of study, the computer science typically

deals with many and various “ontologies” that are

“formal models of a domain”, but for the same domain

can exist more than one model.

Definition of Ontology:

There is a variety of definitions for ontologies in

computer science:

Gruber [10],[19] says: “An ontology is an explicit

specification of a conceptualization”.

Guarino and Giaretta [10],[20] presents a more detailed

definition as: “An ontology is a logical theory which

gives an explicit, partial account of a conceptualization”.

But Guarino [10],[21] defines an ontology as: “A set of

logical axioms designed to account for the intended

meaning of a vocabulary”.

The authors outlined a new web semantic which was not

made up of texts that could only be understood by

humans, but of information that could be processed by

intelligent software’s agents.

The next figure shows the so called “semantic web

stack”, that is a reference architecture which illustrates

the language proposed by W3C for implementing the

semantic web.

Figure 2 – The semantic webstack (Berners-Lee,2009,p.14)

The technological foundations on which the semantic

web languages are built are the general-purpose

eXtensible Markup Language, XML [10].

Next figure shows the 200 large datasets which are

currently available as linked data.

Figure 3 – Aspect of the linked open datacloud .

Some rules can be used to express additional axioms that

most ontology languages do not foresee. In the semantic

web stack, various rule interchange formats to express

rules defined with different individual rule languages,

such as the Semantic Web Rule Language SWRL or the

Rule Markup Language Rule ML [10]. Those rule

languages allow for more flexible definitions than

property chains in OWL2.

The Rule Interchange Format RIF provides an abstraction

from those rule languages which is based in formal logic.

It can be seen as an instantiation of the unified logic layer

[10].

Query Systems:
To query the information contained in the semantic web

or defined in RDF, ontologies and rules, various

languages have been proposed, as we can see in the

surveys made by Hease and others authors [10].

The query languages that were widely accepted for the

ontologies are in RDF-based documents [10] are:

- SQL

- SPARQL

Apart from languages standardized or recommended by

the World Wide Web Consortium, there are others that

are used both in industry and universities.

The F-Logic is one of the most often used of these

languages [10]. F-Logic which integrates ontology

definitions and rules is one uniform language. Other than

semantic web languages proposed by W3C, which follow

the open world assumption, F-Logic uses closed world

semantics. The basic building blocks of F-Logic

ontologies are:

- Class and sub-class definitions.

- Relation definitions. Other than OWL, F-Logic

does not support sub-relation definitions.

- Rules. Most of the definitions in F-Logic are

rules. Like Prolog rules they consist of a head

(i.e., what is stated to be true) and a body (the

condition under which the head is true).

The next picture shows an example of an ontology in F-

Logic, which corresponds to the OWL example depicted

in the figure above.

Figure 4 – Example F-Logic Ontology definition

There are also other ontology languages as:

KIF – Knowledge Interchange Format

A Lisp - based notation for predicate logic

Types of Ontologies

There may be various types of ontologies, developed and

employed for different purposes. Various classification

approaches have been presented, discussed and employed

for different purposes. Various classification approaches

have been discussed for comparing and distinguish these

ontologies.

One of the first classifications of ontologies has been

proposed by Heijst [10] and other authors who make their

classification based in two properties:

- Their amount of structures or degrees of

formality

- Their subject

Regarding their degree of formality, they distinguish:

- Termonological ontologies (that specify a list of

terms and their meaning)

- Information ontologies (that specify the structure

of data)

- Knowledge modeling ontologies (that makes a

conceptualization of knowledge)

In 2001 lassila and McGuiness [10] provide a more

detailed description and distinction between several types

of ontologies shown and classified in the next picture:

Figure 5 – Ontology types based on the degree of formality

The types of presented ontologies are:

Catalogs – are collections of terms without any further

description.

Glossaries – are catalogs that are enriched with

descriptions for the terms.

Thesauri – contain additional relations between terms.

Typically, those are relations such as “synonym of”,

“broader term than” or “narrower term than”.

Informal taxonomies – arrange the terms in a hierarchy.

An example is the concept hierarchies used by web

shops.

Formal instances – are taxonomies that also explicitly

define instances.

Frames – are used to define relations between concepts,

e.g. that each food products is made from ingredients.

Value restrictions – impose additional domain and range

constraints on such frames, such as that only eatable

substances can be used as ingredients for food products.

Logic constraints – are constraints that go beyond domain

and range definitions, e.g. stating that categories of

objects are disjoint.

It exists another wide level of classification of ontologies:

referring the figure nº 6 , we can say that the first four

(from the left) are sometimes referred as “informal

ontologies”, and the last five (near the bottom) are

“formal ontologies”.

Another distinction that is several times used is

“lightweight” and “heavyweight”, where “heavyweight”

includes value restriction and logic constraints and

“lightweight” includes all the other categories, like show

in the figure at left. As depicted in the figure, Uschold

and Grünninger [10] further refine the classification given

by Lassila and McGuiness [10] by adding the following

classifications:

Ad hoc hierarchies – are even weaker than informal

taxonomies. The hierarchies do not even intend to create

correct is-a relations, but only group things that roughly

belong together.

Data dictionaries – define complex types of data based on

simple ones e.g., a date being composed by a day, a

month, a year.

Structured glossaries – contain further relations between

terms, e.g. synonym and antonym relations.

XTML DTD’s – are meta-descriptions of XML

documents. They define which elements in a XML file

can exist and how they can be nested, showing the

relations between all its elements. These nesting and

relations provide informal, unnamed relations between

nested elements.

Database schemas – describe tables in a database, their

elements and their relations.

XML schemas – have the same purpose as XML DTD’s

but are more expressive.

Data models – refer to models that go beyond database

schemas, e.g., UML-based models, possibly with

additional constraints.

There are some other criteria to classify the ontologies;

regarding its contents, Van Heijst [10] enumerates four

types of ontologies:

• Domain Ontologies - define concepts of one

specific domain.

• Generic Ontologies – define concepts that are

general enough to be used across various

domains.

• Application Ontologies – define concepts from a

domain that are required for one application.

• Representation Ontologies – define the concepts

that are used to define ontologies, i.e. they

define concepts such as term or relation. They

can also be considered as meta-ontologies

(Ontologies used to define ontologies).

Reusability

In “domain ontologies” and “generic ontologies” we

registered a high level of reusability of the concepts and

terms but not in “application ontologies”, because

normally they refer to a very particular domain of

knowledge.

A similar distinction is used by Uschold and Jasper [10]

The authors distinguish three meta-type (or meta-levels)

of ontologies:

L0 – Operational Data – defines knowledge about

instances such as “Lisbon is a city”.

L1 – Ontologies – define the concepts and terms of a

domain. Ontologies provide the vocabulary to define

operational data.

L2 – Ontology representation languages provide means

for defining L1 ontologies.

The classification proposed by Guarino [10] distinguish

ontologies by their level of abstraction and their usage as

shown in the next figure.

Some of the ontology types resemble those in the

classification by Heijst [10] and other authors as referred

above.

Top-level ontologies of upper-ontologies – are equivalent

to “generic ontologies”. They contain general concepts

that are useful across several domains, most often based

on human perception of the world [10], proposed by

Kiryakov and other authors.

Domain Ontologies – are equivalent to domain ontologies

as are defined by Heijst and other authors[10].

Task Ontologies – define the activities of a task but

without pointing a specific domain. For example

scientific experiments contain hypotheses, measurements

and evaluations, all of which can be defined agnostic to

the actual domain of the experiment.

Application Ontologies – are equivalent to domain

ontologies as defined by Heijst and other authors[10].

They identify the concepts defined in domain and task

ontologies to define specific activities. This is done by

stating which entities from the domain of that particular

ontology plays which role in an activity defined in the

task ontology.

The ontologies of the different levels are interconnected

with specialization relationships. Thus, ontologies reuse

definitions made by other ontologies on a higher level,

therefore making them modular and comparable.

Figure 6 - Classification of ontologies based on their level of

abstraction, following Guarino (1998, p. 7).

The main advantages of the use of a Ontology are:

• Share common understanding of the structure of

the information among people or software

agents

• To enable reuse of domain knowledge

• To make domain assumptions explicit

• To separate domain knowledge from the

operation knowledge

• To analyze domain knowledge

For the purposes for what we want use the ontology, we

can consider that an Ontology is a formal explicit

description of concepts in a domain of discourse.

The main elements of an Ontology are:

• Classes, sometimes called concepts

• Slots, are the properties of each concept

describing various features and attributes of the

concept. Sometimes slots are also called roles or

properties

• Facets , are restrictions on slots, or even

properties of slots, or restrictions of slots

An Ontology together with a set of individual instances of

classes constitutes a knowledge base.

In reality, there is a fine line where the ontology ends,

and the knowledge base begins.

In pratical terms, developing an Ontology includes:

• Defining the classes of the Ontology

• Arranging the classes in a taxonomic (sub-class

– superclass) hierarchy

• Defining slots and describing allowed values for

theses slots

• Filing in the values for slots for instances

We can then create a knowledge base by defining

individual instances of each classes filling in specific slot

value information and additional slot restrictions.

To design correctly an ontology we must respect the

following rules. These rules may seem rather dogmatic,

but they can help to make correct design decisions in

most of the cases where ontologies can be applied:

1. There is no one correct way to model a domain

of knowledge – there are always several

alternatives. The best way to implement our

ontology depends on the application that we

have in hands, and all the extensions of it that

was possible to us to anticipate.

2. Continuous ontology developement process is

necessary, and is an iterative process

3. Concepts in ontology should be very close to

objects (physical or logic) and also close from

the relationship that exist in the domain where

we define the ontology.

4. Probably the most common is to define nouns

(objects) or verbs (relationships) in sentences

that describe your domain.

In a most detailed way, we can say that there are some

steps that we must follow to define our ontology:

Step n. 1: Determine the domain and scope of our

ontology.

To do this we must essentially to respond to the following

questions:

• What is the domain that the ontology will cover

?

• For what we going to use the ontology ?

• For what types of questions the information on

the ontology should provide answers ?

• Who will use and maintain the ontology ?

Step n. 2: Consider reusing existing ontologies:

It most always worth considering what someone else has

done and checking if we can refine and extend existing

sources for our particular domain and task.

Reusing existing ontologies may be a requirement if our

system needs to interact with other applications that have

already committed to particular ontologies or controlled

vocabularies.

Step n. 3: Enumerate important terms in the Ontology:

It is useful it write down a list of all terms we would like

either to make statements about or to explain to a user.

Step n. 4: Define the classes and the class hierarchy:

These are several possible approaches in developing a

class hierarchy (Uschold and Gruminger 1996):

• Top-down development process:

o Starts with the definitions of the most

general concepts in the domain and

subsequent specialization of concepts.

• Bottom-up development process:

o Starts with the definition of the most

specific classes, the leaves of the

hierarcly, with subsequent grouwing of

these classes in more general concepts.

• Combination development process:

This is really a combination of top-down and

bottom-up approaches: we define the most

salient concepts first and then generalize and

specialize them appropriately.

None of these three methods is inherently better

then any of the others. The approach to take

depends strongly on the personal view of the

domain and the situation in particular.

If a developer has a personal top-down view of

the domain, then it may be easier to use the top-

down approach.

However the combination approach is often the

easiest way for many ontology developers, since

the concepts “in the middle” tend to be the more

descriptive concepts in the domain (Roch 1978).

Step n. 5: Define the properties of class-slots:

The classes done will not provide enough information to

answer the competency questions.

Once we have defines some of the classes, we must

describe the internal structure of concepts.

In general, there are several types of object properties that

can become slots in an ontology:

If we take as example a Ontology about wines, we must

considerer the following:

• “Intrinsic” properties (ex: flavor of a wine)

• “Extrinsic” properties (Name of the wine and area of

production)

• “Parts” if the object is structures, these can be both

physical and abstract “parts” (Indicated dishes to

drink with)

• “Relationships to other individuals," these are

relationships between individual members of the

class and other items(maker of the wine, type of

greap”

Note: All the subclasses of a class inherit the slot of a

class.

Step n. 6: Define the facets of the slots:

Slots can have different facets describing the value type,

allowed values, the number of values (cardinality), and

other features of the value the slot can take.

Some normal common facets are:

Slot Cardinality: Defines how many values a slot

can have some details:

• Some systems distinguish between single

cardinality (Allowing at least one value) and

multiple cardinality (allowing any number

os values)

• Some systems allow the specification of a

maximum and a minimum cardinality to

describe the number of slots more that a slot

must have at least N Values.

Slot value Type, they have some possible types that

corresponds to the common variable data types:

• String

• Number (Float or integer)

• Boolean (yes-no flag`s)

• Enumerated (list of specific allowed values)

o Instance (instance-type slots allows

the definition of relationship

between individual.

• Instance must also define a list of allowed

classes from which the instances can come.

The classes to which a slot is attached or the classes

which property a slot describes, are called the domain of

the slot.

We can define the range of a slot as the allowed classes

for slots of type instance.

Some systems allow restricting the range of a slot when

the slot is attached to a particular class.

Step n. 7: Create instances:

The last step to create an ontology is creating individual

instances of classes in the hierarchy. To accomplish this

step we must do the following “sub-steps”:

1. Choosing a class

2. Creating as individual instance of that class

3. Filling the slot values

One of the objectives of this work is to build and define

libraries of reusable knowledge components, (like RLO

reusable learning objects in SCORM specification) and

also Knowledge – based services than can be invoked

over networks; to achieve this objective the most

indicated structure to define and describe all the elements

of a virtual laboratory as parts and components is an

ontology, by the above reasons exposed.

Also we can say that an ontology permit to describe in a

very detailed way the components / elements of the

“virtual closet”, with all is details and features.

So formally we can say that an Ontology is the statement

of a logical theory.

In a pragmatic way we can say that an Ontology defines

the vocabulary with which queries and assertions are

exchanged between systems that communicate in the v-

labs network.

Ontological commitments constitutes agreements that

should be used as shared vocabulary in a coherent and

consistent way.

As conclusion of this introduction we can say: “an

ontology is a particular system of categories accounting

for a certain vision of the world. This system does not

depend of a particular language. A shared ontology need

only describe a vocabulary for talking about a domain,

where as a knowledge base may include the knowledge

needed to some a problem or answer arbitrary about a

domain”.

Our solution to the problem / our ontology:

To implement and build the ontology we go use the

software “Protégé” that is a tool specially developed to

build ontologies.

Protegé is a software that allows easily to build

ontologies respecting all the rules that we define in our

system.

In Protegé we define what will be the classes and also we

can define all the relations between them.

In our particular case the “root” or Master-class of our

ontology is “LABORATORY”:

Figure 7 – EuronetLab Ontology definition

From there we define three main classes:

• Experiment

• Real Component

• Virtual Component

Essentially the ontologies used in this field of knowledge

using semantic web technologies. We can define

,according to the W3C, "The Semantic Web provides a

common framework that allows data to be shared and

reused across application, enterprise, and community

boundaries." Tim Berners-Lee defines the Semantic Web

as "a web of data that can be processed directly and

indirectly by machines."

All the laboratories are composed by experiments, that

we can define as:

 “An experiment is the smallest enclosed unit of an online

laboratory. It provides also the execution of virtual or real

experiments to observe the behavior and output of a

system. An online laboratory consists of one or more

experiments in different fields of science and

engineering”. Ref. [1]. Also normally, associated to an

online laboratory, there must be other learning resources

like a laboratory tutorial and lecture notes to provide the

theoretical background necessary to carry out an

experiment. Therefore, it is necessary to provide a variety

of additional documents and references. Ref. [1]. So is

very important to have as support of all this system a

CMS or a e-learning platform that interconnect the build

ontology with the v-labs proposed in the “virtual closet”.

The CMS , LMS or a e-learning platform allows the

existence and organization of all this pedagogical and

technical pedagogical contents and supports.

The proposed network as the following block-diagram:

Figure 8 – EuronetLab main structure

In this network we have three main actors:

• Teachers

• Students and Researchers

• Administrative staff

A login, forms and database must be created using ASP

or PHP that allows students to:

• Schedule an experiment in a certain lab;

• Verify available labs and in which universities

or institutes are located;

• Verify the experiments they have done, their

grade and comments from their teachers;

• Read or review pedagogical contents that

support the different experiments.

The teachers should be able to:

• Send pedagogical contents;

• Review contents and materials;

• Evaluate the students’ Works;

• Communicate with the students using email,

chat, video-conference in order to give

orientations and clarify subjects.

The administrative staff should support all the non-

technical issues and administrative issues derived from

the communication between universities, institutions,

teachers, researchers and students.

This is the way that we think that this V-labs network ,

the “Euronet – Lab” should work. Ref. [5]. Ref [6].

FUTURE DEVELOPMENTS

The following action to take in this project is to build a

prototype system that interconnects the build ontology

with the v-labs network and the LMS databases that

support the administrative parts of the system as shown in

the next figure:

Figure 10 – EuronetLab database and VPN structure

ACKNOWLEDGMENT

This work was supported in part by IPS – Instituto
Politécnico de Setúbal – escola Superior de Tecnologia de
Setúbal

REFERENCES

[1] Abul K.M. Azad et al., Internet Accessible Remote Laboratories:

Scalable E-Learning Tools for Engineering and Science Disciplines,

Engineering Science Reference (an imprint of IGI Global) 701 E.

Chocolate Avenue Hershey PA 17033 Tel: 717-533-8845 Fax: 717-533-

8661 E-mail: cust@igi-global.com Web site: http://www.igi-

global.com.

[2] Gruber, T.R., 1993a. Toward Principles for the Design of Ontologies

Used for Knowledge Sharing N. Guarino & R. Poli, eds. International

Journal of Human-Computer Studies, 43(5-6), pp.907-928. Available at:

http://linkinghub.elsevier.com/retrieve/doi/10.1006/ijhc.1995.1081.

[3] Gruber, T.R., 1993b. Toward Principles for the Design of

Ontologies Used for Knowledge Sharing N. Guarino & R. Poli, eds.

International Journal of Human-Computer Studies, 43(5-6), pp.907-928.

Available at:

http://linkinghub.elsevier.com/retrieve/doi/10.1006/ijhc.1995.1081.

[4] Noy, N.F. & Mcguinness, D.L., 2000. Ontology Development 101:

A Guide to Creating Your First Ontology. Development, 32(1), pp.1-25.

Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.5085&a

mp;rep=rep1&type=pdf.

[5] Cordeiro, R., Fonseca, J. M., & Donellan, A. (n.d.). A Cloud Based

Laboratory Environment.

[6] Cordeiro R., Passos, H., ed. Virtual Labs in the E-Learning Context

as Tools of Collaboration Work. EDULEARN 09. 2009: Barcelona.

[7] FlecharM (2010) HypeCycle for Application

Development.http://www.gartner.com/DisplayDocument?id=1412014,a

ccessed April12th,2011.

[8] AmsdenJ(2001) Levels Of Integration-Fiveways you can integrate

with the EclipsePlatform. http://www.eclipse.org/articles/Article-

Levels-Of-Integration/levels-of-integration.html,accessed April

12th,2011.

[9] Nilsson EG, NordhagenEK,OftedalG(1990) Aspects of systems

integration.In:ISCI’90:Proceedingsof the first international conference

on systems integrationon Systems integration’90, IEEEPress,pp 434–

443

[10] Paulheim, Heiki, Ontology-based Application Integration, e-books:

www.e-books.com, accessed August 17 th , on 2012.

[11] Scheifler RW,GettysJ (1986) The X WindowSystem.ACM

Transactions on Graphics5(2):79–109

[12] LinthicumDS(1999) Enterprise Application Integration. Addison

Wesley

[13] BenatallahB,NezhadHRM(2007) Service Oriented Architecture:

Overviewand Directions. In: B¨orgerE,CisterninoA(eds) Advances in

Software Engineering, Springer,LNCS,vol5316,pp 116–130

[14] Rebstock M,Fengel J,Paulheim H(2008) Ontologies-based

Business Integration. Springer

[15] Daniel F,Matera M(2008) Mashing Up Context-Aware Web

Applications: AComponent-Based Development Approach.In:

WISE’08: Proceedings of the 9th international conferenceon Web

Information Systems Engineering,Springer,LNCS,vol5175,pp250–263

[16] WestermannU,Jain R(2007) Toward a Common Event Model for

Multimedia Applications.IEEE MultiMedia14(1): 19–29

[17] SergevichK A,ViktorovnaG V (2003)From an Ontology-Oriented

Approach Conception to User Interface Development. International

Journal”Information Theories and Applications”10(1):89-98

[18] Uschold M,Gruninger M (1996) Ontologies:Principles, Methods

and Applications.Knowledge Engineering Review11:93–136

[19] Gruber T R (1995) Toward Principles for the Design of Ontologies

Used for Knowledge Sharing. International Journal Human-Computer

Studies 43(5-6):907–928

[20] Guarino N,Giaretta P (1995) Ontologies and KnowledgeBases:

Towards a Terminological Clarification. In:MarsNJI(ed) Towards Very

Large Knowledge Bases:Knowledge Building and Knowledge

Sharing,IOSPress,Amsterdam, pp25–32

[21] Guarino N,Welty CA(2009)An Overview of Onto

Clean.In:(StaabandStuder,2009),chap10,pp 201–220

AUTHORS

Raúl Cordeiro Correia is with the Instituto

Politécnico de Setúbal – Escola Superior de Tecnologia de
Setubal, Largo Defensores da Republica nº 1, 2910-470
Setúbal, PORTUGAL

Email:

raul.correia@estsetubal.ips.pt , cinel.raul@gmail.com

José Manuel Fonseca is Professor in the Electrical

Engineering Department of the Universidade Nova de

Lisboa, Campus da FCT/UNL, 2829-516 Caparica,

Portugal

Email: jmrf@fct.unl.pt

Andrew Donnellan is a lecturer in the Department of
Electronic Engineering, Institute of Technology, Tallaght,
Dublin 24, Ireland.

Email: andrew.donnellan@ittdublin.ie

