ANÁLISE DO COMPORTAMENTO DE VIGAS DE BETÃO ARMADO REFORÇADAS À FLEXÃO SIMPLES COM CFRP

P. NETO Assistente 2º Triénio ESTBarreiro/IPS Barreiro

J. ALFAIATE Prof. Auxiliar IST/UTL Lisboa

J. VINAGRE Prof. Auxiliar IST/UTL Lisboa

SUMÁRIO

O reforço de estruturas de betão armado com recurso a CFRP é actualmente uma prática corrente. Este artigo tem como objectivo ilustrar a aplicação de um modelo numérico ao caso de uma viga simplesmente apoiada com quatro pontos de carga. Pretende-se aferir da importância dos modos de rotura locais provenientes de tensões de corte ao nível da interface, no comportamento à rotura de um elemento à flexão simples.

1. INTRODUÇÃO

O reforço de estruturas de betão armado é actualmente uma prática corrente, nomeadamente com recurso a polímeros reforçados com fibras de carbono (CFRP). Este artigo tem como objectivo ilustrar a aplicação de um modelo numérico ao caso de uma viga simplesmente apoiada com quatro pontos de carga. O modelo recorre ao método dos elementos finitos, estando vocacionado para o estudo da aderência entre o betão e o reforço, admitindo-se que a rotura da ligação acontece ao longo de uma camada adjacente de betão. Assim, será este o modo de rotura analisado, salientando-se a sua importância relativa, não obstante a existência de outros mecanismos de ruína. A ligação betão-epoxy-FRP é modelada por elementos de interface, com espessura inicial nula, com base na mecânica da fractura não linear. Os parâmetros materiais que caracterizam a ligação, nomeadamente a coesão, a rigidez de corte e a energia de fractura em modo II, foram obtidos em trabalhos anteriores, com base numa análise paramétrica efectuada com o objectivo de aproximar os resultados de ensaios de aderência por corte simples.

2. MODELAÇÃO DA VIGA

De modo a permitir a comparação dos resultados obtidos, os modelos analisados são definidos com base em ensaios experimentais realizados por Travassos [1] e por Mata [2]. O modelo numérico utilizado neste estudo foi devidamente calibrado a partir de valores resultantes de ensaios de corte [1], cujas propriedades dos materiais envolvidos se podem considerar inalteradas relativamente às vigas em análise.

Os materiais considerados foram o betão, as folhas de fibras de carbono e a resina epoxy. Tendo em conta a natureza dos esforços instalados no betão, adoptou-se para este uma relação constitutiva elástica linear e isotrópica. O compósito com fibras de carbono exibe um comportamento à tracção elástico linear até à rotura, tendo-se uma relação tensão-extensão linear no modelo numérico. A ligação betão-resina-CFRP é modelada por interfaces de espessura inicial nula. O respectivo comportamento é descrito por uma lei constitutiva entre as tensões de corte τ e o escorregamento entre as faces da ligação *s* (Figura 1), com base no modelo de fenda fictícia originalmente concebido para o modo I da fractura por Hillerborg (1976) [3]. Esta relação apresenta um ramo ascendente linear e uma curva de amolecimento exponencial. Aos parâmetros materiais que caracterizam a ligação, atribuíram-se os seguintes valores: coesão c = 5MPa, rigidez de corte $k_{int} = 1000MPa/mm$ e energia de fractura em modo II $G_F^{II} = 1.5N/mm$.

Figura 1: Relação constitutiva da interface.

Em termos experimentais, embora fosse conhecida a forma como a rotura final do elemento se manifestou, não foi possível saber quais os principiais mecanismos de rotura envolvidos e sobretudo qual a importância relativa de cada um deles. Contudo, a aplicação do presente modelo numérico ao estudo das vigas ensaiadas por Travassos [1] e Mata [2], permitiu avaliar a influência da rotura por corte na interface betão-CFRP no comportamento final do elemento.

Adoptando a nomenclatura definida por Travassos [1], as Figuras 2 e 3 ilustram as características geométricas, bem como os esquemas de pormenorização, exterior e interior das vigas em análise. As vigas apresentavam um comprimento de 4.00*m*, distando os apoios de 3.70*m* entre si. O reforço exterior à flexão foi aplicado a toda a largura da viga, com 3.60*m* de comprimento, de modo a não interferir com os apoios. Adoptou-se uma camada de reforço nas vigas A11, A14, A21, A33 e A34 e três camadas nas restantes: A12, A31 e A32. Refira-se que

as vigas A14, A33 e A34 foram reforçadas transversalmente com uma armadura exterior constituída por folhas unidireccionais de fibras de carbono com as mesmas características do material usado no reforço exterior longitudinal, com 0.111*mm* de espessura. O valor teórico do módulo de elasticidade do CFRP é de 240*GPa*, com uma extensão última à tracção de 1.55%.

Figura 2: Geometria e esquema de armaduras exteriores [1].

Figura 3: Armadura ordinária das vigas A11, A12, A14, A31, A32, A33 e A34 e A21 [1].

Na Tabela 1 apresentam-se as principais características do betão utilizado na execução dos modelos.

Tabela 1- Propriedades mecânicas do betão

	.		
Vigas	$E_{cm}(GPa)$	$f_{cm}\left(MPa\right)$	$f_{ctm}\left(MPa\right)$
A12, A14, A32, A33	31.71	38.48	2.84
A11, A21, A31, A34	30.09	34.39	2.48

Quanto às armaduras, foi utilizado aço A400NR para a armadura ordinária colocada no interior do elemento de betão, à excepção da viga V21 cujo aço adoptado foi o A500NR, por razões alheias aos autores dos ensaios. O valores característicos da tensão de cedência do aço, de acordo com Travassos e Mata, foram $f_{syk}^{A400NR} \approx 409MPa$ e $f_{syk}^{A500NR} \approx 530MPa$. O esquema de aplicação das cargas é ilustrado na Figura 4.

Figura 4: Distribuição do carregamento na viga

3. MODELO DE ADERÊNCIA

Tendo em conta a distribuição dos esforços ao longo da viga é possível distinguir a zona central, entre as cargas aplicadas, e as restantes zonas até aos apoios. Na parte central da peça predominam os momentos flectores, apresentando a viga fendilhação vertical. O esforço transverso existente resulta apenas do peso próprio da viga, sendo desprezável face às restantes cargas. Nas zonas laterais do elemento, entre os apoios e os pontos de aplicação das cargas, para além da flexão, existe esforço transverso significativo, tendo-se observado fendas com inclinação (características deste tipo de esforço).

No caso do betão reforçado exteriormente com fibras, o comportamento de uma região entre fendas de flexão pode simplificadamente ser descrito através de modelos de corte, desprezando os efeitos de flexão [4], [5]. Por equilíbrio de uma parcela de reforço é possível escrever

$$\tau(x) = \frac{\Delta \sigma_f(x)}{\Delta x} t_f , \qquad (1)$$

em que σ_f e t_f são a tensão de tracção e a espessura do reforço, respectivamente. Uma vez que o diagrama de momentos flectores é constante na zona central da viga, compreendida entre pontos de aplicação da carga, a partir da Equação (1) obtêm-se tensões de aderência nulas entre estas duas secções, não sendo à partida mobilizado o mecanismo de aderência em estudo no presente trabalho. Porém, a hipótese assumida na Equação (1) de que as tensões de tracção no reforço são constantes entre duas fendas consecutivas, não corresponde à realidade, pelo menos em todas as fases do carregamento. Quando a fendilhação no betão tem início, as tensões de tracção nas armaduras assumem valores máximos nas secções fissuradas, decrescendo à medida que se consideram secções mais afastadas das fendas, resultado da transferência por aderência das tensões para o betão. Este comportamento foi caracterizado com recurso ao modelo numérico usado no presente estudo. Para isso considerou-se um troço central da viga compreendido entre duas fendas sucessivas, cuja distância se adoptou igual à distância média entre fendas, determinada segundo o Boletim 14 da FIB [6]. Uma vez que a distribuição dos momentos flectores é constante na zona de vão, admite-se aplicada uma força de tracção igual em ambas as extremidades do reforço e de valor N_f , como ilustra a Figura 5(a).

Quanto à zona lateral da viga, compreendida entre o apoio e o ponto de aplicação da carga, o diagrama de momentos flectores apresenta uma variação linear. É então necessário considerar tensões de tracção diferentes em cada extremidade do reforço. O acréscimo de força relativamente à extremidade menos solicitada, indicado na Figura 5(b), tem de ser determinado podendo recorrer-se ao método proposto pelo Boletim 14 da FIB [6]. Uma vez que as tracções apresentam valores tanto mais baixos quanto maior a proximidade dos apoios, pode dar-se o caso de nessas regiões não haver fendilhação, Figura 5(c), pelo que o modelo de aderência a adoptar pode ser assemelhado a um modelo de corte simples, que constitui a base do estudo efectuado.

Como já referido, a distância entre fendas num elemento reforçado à flexão simples é um aspecto a ter em conta na definição do modelo numérico de aderência. A distância média entre

fendas observado experimentalmente por Mata, na zona entre os pontos da aplicação da carga, foi de 100mm para as vigas A11 e A12, enquanto para a viga A21 foi de 150mm. Os valores obtidos pela metodologia proposta no Boletim 14 da FIB [6], na ordem dos 200mm, são mais elevados, referindo-se à distância média entre fendas mais desfavorável. Em relação aos restantes modelos de viga não foi possível obter informação sobre este aspecto.

Figura 5: Padrão tipo de fendilhação e esquema de modelos de aderência: (a) zona central, (b) zona lateral com fendilhação, (c) zona lateral sem fendilhação

De modo a efectuar uma breve análise ao comportamento da viga no que respeita à fendilhação na zona central, aplicou-se o modelo numérico de aderência em uso no presente trabalho. Para isso considerou-se um troço de viga entre duas fendas consecutivas, reforçado com uma camada de folhas unidirecionais de CFRP. Atendendo à simetria apresentada, o comprimento do elemento adoptado foi de 75mm relativamente a uma distância entre fendas de 150mm, tal como observado por Mata [2]. Com base em estudos anteriores [7] admitiu-se que apenas uma parte da secção de betão influencia a distribuição das tensões na interface, adoptando-se para efeitos numéricos uma altura de viga com 50mm. Os resultados obtidos são apresentados na Figura 6, onde se mostra a distribuição das extensões e das tensões, respectivamente, ao longo do comprimento de colagem, para diferentes níveis de carga.

Figura 6: Distribuição das extensões e tensões no reforço ao longo do comprimento de colagem

Da observação da Figura 6 resulta que a ligação começa por se comportar de acordo com o modelo de aderência ao corte simples. A partir de determinado nível de carga, começa a acentuar-se a interacção entre os esforços provenientes de cada um dos lados do reforço. O escorregamento ao nível da interface diminui, passando progressivamente a ser controlado pelas extensões no compósito. Neste caso, a ocorrer a rotura será pelo CFRP. Contudo, para uma distância entre fendas próxima do dobro do comprimento de amarração efectivo ou superior, é possível esgotar a resistência da ligação. A ruína local progride repentinamente e, consequentemente, a transferência de esforços referida, dar-se-á de forma brusca, podendo desencadear a ruína global do elemento. Este efeito dinâmico provoca um aumento pontual das extensões no compósito, podendo conduzir à rotura do mesmo, no caso de taxas de reforço mais baixas.

3.1 Determinação da carga última

Tendo em conta a localização do troço de viga, bem como a distância entre fendas observada por Mata [2] e a determinada pela metodologia exposta no Boletim 14 da FIB, considerou-se um comprimento de ancoragem de pelo menos 200*mm*, podendo admitir-se que toda a resistência da ligação foi mobilizada, de acordo com estudos anteriormente efectuados [8]. O valor da força última obtida no CFRP foi de 56.5*kN* e 97.9*kN* para uma e três camadas, respectivamente. Admitindo que a rotura se dá pela interface betão-CFRP, a resistência última da viga à flexão simples pode ser obtida simplificadamente por equilíbrio ao nível da secção, a partir de

$$M_u = z_m \times \left(F_u + F_{svk} \right), \tag{2}$$

onde F_{syk} é a força característica de tracção na armadura ordinária em cedência e z_m é o valor médio do braço do binário relativo à resultante das compressões e tracções, no betão e na armadura, respectivamente, podendo ser obtido através de Equação (3) [6].

$$z_{m} = 0.85 \frac{hE_{f}A_{f} + dE_{s}A_{s}}{E_{f}A_{f} + E_{s}A_{s}},$$
(3)

onde $E_{j}A_{f}$ e $E_{s}A_{s}$ são a rigidez axial do reforço exterior e da armadura ordinária de tracção, respectivamente. Tendo em conta o diâmetro dos varões adoptados para os estribos e para a armadura longitudinal ordinária, e o recobrimento adoptado nas vigas, o qual foi de 15 mm, obteve-se o valor da altura útil, d. O valor de z_{m} foi de 0. 317mm para as vigas A11, A14, A33 e A34; 0.314mm para a viga A21; 0.319 para as vigas A12, A31e A32. Tendo em conta a Equação (2) e o diagrama de momentos flectores na zona central da viga é possível obter a carga última a que a viga resiste através de $P_{u} = 2M_{u}/b$.

A Tabela 2 resume os valores obtidos para cada viga, concluindo-se da boa concordância entre valores teóricos e experimentais.

Vigas	P_u^{teor} (kN)	P_u^{\exp} (kN)	erro (%)	\mathcal{E}_{u}^{teor} (‰)	ε_u^{\exp} (‰)	erro (%)
A11	96.5	92.0	5	10.6	6.7	58
A14	96.5	85.1	13	10.6	6.2	70
A33	121.7	105.3	16	10.6	3.2	236
A34	164.7	160.0	3	10.6	8.4	26
A21	241.0	240.1	0	10.6	9.2	16
A12	115.5	132.2	-13	6.1	8.0	-23
A31	145.6	160.1	-9	6.1	10.6	-42
A32	197.0	217.6	-9	6.1	7.2	-15

Tabela 2 - Comparação entre valores teóricos e experimentais da carga e extensão última

De acordo com o que foi descrito por Travassos nos elementos reforçados com uma camada a rotura ocorreu por tracção da folha de CFRP e nas situações em que se utilizaram três camadas de CFRP (vigas A12, A31 e A32), observou-se destacamento do reforço.

4. OBSERVAÇÕES E CONCLUSÕES

Da análise da Tabela 2 é possível observar a grande proximidade entre os valores teóricos e experimentais no que respeita ao carregamento de rotura. Contudo, os valores das extensões medidas nos ensaios afastam-se significativamente dos valores teóricos esperados. A razão que se apresenta tem como base a existência de um eventual efeito dinâmico resultado da forma brusca como se dá a rotura, que induzirá um agravamento instantâneo dos esforços.

Nos casos em que houve rotura do reforço, as extensões medidas apresentam-se muito abaixo do valor limite, 15‰. Tal pode dever-se à forma repentina como surgem os processos de rotura prematura que, mesmo ocorrendo a nível local, conduzem ao colapso do elemento acompanhado de um efeito dinâmico. Assim, as extensões no reforço agravam-se muito rapidamente conduzindo, neste caso, à ruína do reforço sem que haja possibilidade de registar experimentalmente esses valores. Os resultados numéricos, não estando condicionados por esta limitação apresentam valores superiores aos experimentais e mais próximos do valor limite.

Quando são consideradas três camadas de reforço as extensões observadas experimentalmente são em geral superiores às dos modelos com uma camada. A existência do efeito dinâmico aquando da ruína do elemento, apesar de induzir um aumento pontual das extensões, não leva à rotura das folhas, dado apresentarem maior resistência, possibilitando o registo das extensões na rotura. Uma vez que o efeito dinâmico não é considerado no modelo numérico, as extensões obtidas por esta via são naturalmente inferiores às experimentais. No caso do reforço com uma camada, a rotura nas fibras pode ocorrer em qualquer secção situada entre pontos de aplicação das cargas ou próxima destes, uma vez que as tracções são maiores. Parece observar-se experimentalmente que a rotura do reforço é acompanhada pelo seu destacamento.

Da análise dos resultados apresentados é possível concluir da importância deste modo de rotura no comportamento do elemento à flexão. O erro registado, em algumas situações, entre valores teóricos e experimentais, é perfeitamente aceitável, indicando um bom desempenho do modelo numérico utilizado. Refira-se que os modelos numéricos que recorrem a uma abordagem de fenda distribuída não conseguem descrever o que sucede em termos de distribuição de tensões de aderência na zona central da viga, entre duas fendas.

5. AGRADECIMENTOS

Este trabalho foi desenvolvido no âmbito do projecto "Estudo da Ligação entre Betão e Materiais Compósitos de Reforço" – POCTI/ECM/36043/99, financiado pela Fundação para a Ciência e a Tecnologia.

6. REFERÊNCIAS

- [1] Travassos, N. *Caracterização do comportamento da ligação CFRP-betão*. Tese de Mestrado, documento provisório. Instituto Superior Técnico, Lisboa, Novembro, 2001.
- [2] Mata, S. Análise de vigas reforçadas à flexão com compósitos de tecido de fibra de carbono, Tese de Mestrado, Instituto Superior Técnico, Lisboa, Dezembro, 2002.
- [3] Hillerborg, A., *et al.* "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements". *Cement and Concrete Research*, 1976, Vol. 6, p. 773-782.
- [4] Teng, J. et al. FRP: strengthened rc structures, John Wiley & Sons, 2002, ISBN: 0-471-48706-6.
- [5] Niedermeier, R. Zugkraftdeckung bei klebearmierten bauteilen (Envelope line of tensile forces while using externally bonded reinforcement). Doctoral Dissertation, TU München (em Alemão). 2000.
- [6] FIB (CEB-FIP) FIB Technical Report on the Design and Use of Externally Bonded Fibre Reinforced Polymer Reinforcement (FRP EBR) for Reinforced Concrete Structures – Externally bonded FRP reinforcement for rc structures – Fedération International du Béton, Bulletin 14, July, 2001.
- [7] Brosens, K. Anchorage of externally bonded steel plates and CFRP laminates for the strengthening of concrete elements. Doctoral Thesis, K. U. Leuven, 2001.
- [8] Neto, P. *et al.* "A influência do modo II de fractura no reforço do betão com FRP", ed. J. I. Barbosa, 2003, Évora, p. 57-64.