
IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications

21-23 September, Rende, Cosenza, Italy

Open Controller for Distributed Instrumentation Systems

Vítor Viegas
1,2
, P. Silva Girão

2
, J.M. Dias Pereira

1,2

1
ESTSetúbal – LabIM, Instituto Politécnico de Setúbal, 2910-761, Setúbal, Portugal
2
Instituto de Telecomunicações, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal

vviegas@est.ips.pt , joseper@est.ips.pt , p.girao@lx.it.pt

Abstract – The paper presents a controller designed to be

highly interoperable in the context of distributed

instrumentation systems. Interoperability is achieved by

adopting strong standards – the IEEE 1451.1 Std to be

more precise – and by using cross-platform,

manufacturer-independent technologies such as Web

Services. The 1451.1 Std contributes with its information

model to represent data and organize functionalities

through a well-defined hierarchy of objects. Web Services

are used to implement both communication models, the

client/server model for one-to-one communications, and

the publish/subscribe model for one-to-many

communications. Being supported by all the major

software companies around the world, Web Services have

the chance to become the first wide-used middleware

solution and the answer for many interoperability

problems. The controller was developed using the .NET

Framework and tested in the Windows XP operating

system.

Keywords – IEEE 1451.1, Web Services, interoperability,

distributed instrumentation

I. INTRODUCTION

 This section introduces the key technologies used to

implement the proposed controller.

A. IEEE 1451.1 Standard

 The IEEE 1451 project [1] aims at simplifying

transducer connectivity to communication networks by

proposing a set of hardware and software interfaces

that act as plugs where heterogeneous components can

connect and work together. The 1451.1 Std [2-3], in

particular, proposes a generic object model to represent

the data and the functionalities of any networked

transducer. The model is composed by a hierarchy of

classes divided in three main categories (figure 1):

• Blocks: Block classes are processing entities that

manipulate data. Three types of Blocks are defined:

(i) the Network Capable Application Processor

Block (NCAP Block or PBlock for short), which

represents the application as a whole and provides

global resources to all underlying objects; (ii)

Transducer Blocks, which provide high-level

functions to interact with transducers (such as read

sensors, write actuators, read status registers,

read/write interrupt masks and read/write

Transducer Electronic Data Sheet (TEDS)

structures); and (iii) Function Blocks, which

implement signal processing algorithms (such as

mathematical formulas, digital filters, function

generators and discrete Proportional Integral

Derivative (PID) controllers).

• Components: Component classes are network-

visible data repositories owned by Blocks. Two

main types of Components are defined: (i)

Parameters, which are used to store volatile data

(such as field variables, set-points and

computations); and (ii) Files, which are used to

store persistent data (such as TEDS structures).

• Services: Service classes handle network

communications. Two communication models are

defined: (i) a tightly-coupled client/server model

for one-to-one communications; and (ii) a loosely-

coupled publish/subscribe model for one-to-many

communications. Using the client/server model, a

client can invoke a function on the server and

consume the results returned (if any). Using the

publish/subscribe model, the publisher can

Fig 1. IEEE 1451.1 object model (classes listed in italic are abstract

and shall not be instantiated).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Comum

https://core.ac.uk/display/62691211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

broadcast messages on the network whenever it has

some kind of public announcement to make. These

messages, known as publications, contain metadata

describing the syntax and the semantics of the

information they carry. Based on this metadata, any

subscriber can filter the publications of its interest

and consume the attached data.

These classes, once deployed as a reusable software

library, can be used to construct complex control

applications. The model is extensible by adding non-

1451.1 classes to satisfy particular requirements of a

given application.

B. Web Services

Web Services [4-5] are, in simple terms, object

methods exposed via eXtended Markup Language

(XML) messages. These messages use a format

protocol known as Simple Object Access Protocol

(SOAP) [6] and travel across the network using a

transport protocol like the Hyper Text Transport

Protocol (HTTP). Every Web Service is described by

its manifest, an XML document written according to

the Web Service Definition Language (WSDL) [7].

The manifest describes the interface of the service,

including the signatures of available methods, the data

types used for input/output arguments and a list of

supported communication paths. This information is all

the client needs to consume the service without

worrying about its underlying implementation.

Interoperability is achieved by imposing strong

standards (SOAP and WSDL) and by using ubiquitous

technologies (XML and HTTP). Being supported by

the World Wide Web Consortium (W3C) [8], which

includes all the major software companies around the

world, Web Services have the chance to become the

first wide-used middleware solution and the answer for

many interoperability problems.

C. .NET Framework

The .NET Framework [9-10] is a software

infrastructure released by Microsoft to develop and

execute Windows applications. The .NET Framework

includes three main components: (i) a virtual machine

that executes managed code in a secure and protected

environment (conceptually similar to the Java virtual

machine); (ii) an extensive class library that provides

ready to use components to develop applications; and

(iii) last-generation programming languages (Visual

Basic .NET and C#) designed to increase productivity.

By the end of 2006, version 3.0 of the .NET

Framework was released including a new software

package called Windows Communication Foundation

(WCF) [11]. The WCF contains pre-built classes

designed to develop secure, reliable, and interoperable

distributed applications. The WCF supports the last

enhancements in terms of Web Services providing

many useful facilities such as hosting, service instance

management, asynchronous calls, reliability and

security. The WCF provides developers with the

essential off-the-shelf plumbing required by any

service-based application, and as such, it greatly

increases productivity.

2. CONTROLLER

This section covers the software architecture of the

controller, including a detailed description about its

transducer and network interfaces.

A. Architecture

The controller is an object-oriented application that

creates and manipulates Blocks and Components in

order to implement a desired behaviour. The control

strategy is executed periodically by means of a high-

priority software timer. On every timer-tick, data is

acquired from sensors, control algorithms are executed

and decision values are written to actuators, by this

order as depicted in figure 2.

All 1451.1-objects used by the controller

application were assembled as a Dynamic Link Library

(DLL) under the name “IEEE1451Dot1.dll”. The

library was developed using Visual Basic .NET 2008

and can be reused by any Windows application. It

implements a fully-functional subset of the 1451.1

object model composed by 16 classes (figure 3). Each

class exposes a collection of methods according to the

recommendations of the 1451.1 Std.

 Blocks are processing entities that can create and

own one or more Components to assist them. During

the creation stage, the Component is informed about its

owning Block by receiving a reference to it. This cross-

reference mechanism was the way found to implement

Fig 2. Flowchart of the controller application.

owning relations. Ultimately, all Blocks and

Components are owned by the top-level PBlock. For

example, the HysteresisBlock, which implements a

schmitt-trigger algorithm, owns three Components: two

floating-point ScalarParameters, named

“highThreshold” and “lowThreshold”, that define the

high/low thresholds of the hysteresis window,

respectively; and a boolean ScalarParameter, named

“output”, that holds the decision of the comparator.

 Blocks also have an internal state machine. They

can switch from the INACTIVE state to the ACTIVE

state and vice-versa. In the INACTIVE state, the Block

does not process and becomes configurable by

accepting set operations; in the ACTIVE state, the

Block becomes fully-functional but only accepts get

operations. These restrictions also apply to all

Components owned by the Block. No Block can switch

to the ACTIVE state if the top-level PBlock is

INACTIVE.

 Parameters are specialized Components that behave

like network-visible data buffers with two levels of

access: simple read/write operations only affect the

internal buffer of the Parameter; but when the

Parameter executes an update operation, it scratches its

owning Block and accesses data inside it. For example,

when a sensor Parameter is updated, it forces the

DAQmxTBlock (its owning Block) to acquire a fresh

sample from the field and return it back.

Fig 3. Diagram of implemented classes.

B. Transducer Interface

The controller works with Data AcQuisition (DAQ)

boards compliant with the DAQmx driver from

National Instruments (NI). The interface is assured by

the DAQmxTBlock class that wraps the NI-supplied

library DAQmx.dll, which contains the low-level

functions that indeed communicate with the board.

The life-cycle of the DAQmxTBlock can be

described as follows:

• At design-time, using the Measurement and

Automation eXplorer (MAX), a software tool

provided by NI, the developer configures and saves

tasks involving one or more channels. A task is a

data structure that depicts the process of

acquiring/generating signals, including properties

that describe the digitizer (such as hardware

channels, sampling frequency, number of samples

and trigger settings) and properties that describe the

transducer itself (such as transducer type, range and

units). A channel is a hardware input/output that

participates on a task. Each channel can be

automatically configured by reading the embedded

TEDS of the attached transducer according to the

directives of the 1451.4 Std [12]. If the transducer

has no embedded TEDS, the developer can

associate it a virtual TEDS in the form of a .ted file.

Using MAX facilities, the developer can also add a

custom scale to the task, which acts as a correction

engine [13] by transforming raw field data into

engineering units, and vice-versa. Detailed

information about the configuration process can be

found in [14-15].

• At run-time, the DAQmxTBlock is created,

initialized and executed. During initialization, the

DAQmxTBlock loads all pre-configured tasks and

creates auxiliary objects to support them, more

precisely one Parameter for each task and one

DAQmxTChannel for each channel. The Parameter

provides methods to read/write transducers, as well

as a metadata structure that describes the meaning

of the data exchanged. The DAQmxTChannel

provides methods to get information about the

channel where the transducer is attached, including

methods to retrieve the underlying TEDS.

At the moment, the DAQmxTBlock only supports

scalar tasks involving one analog or digital channel.

C. Network Interface

The network interface of the controller is

completely based on Web Services. All non-abstract

classes presented in figure 3 are implemented as

singleton WCF Web Services following the best

practices described in the literature. Whenever a

service is created, it registers itself on a HTTP endpoint

and exposes its methods on the network. If a client

wants to invoke a method, it gets the dispatch address

of the service, creates a proxy at run-time, executes the

remote call and waits for results (if any). These are the

typical steps of the client/server communication model.

The publish/subscribe communication model is

mainly implement by the Subscriber class, which

registers itself on a Peer-to-Peer (P2P) endpoint and

listens to incoming publications on a multicast address.

The P2P binding guarantees a reliable connection for

one-to-many communications. If a publisher wants to

issue a publication, it gets the multicast address, creates

a proxy at run-time and executes the remote call with

no return values. The Subscriber filters the publications

of its interest and signals them to the controller

application.

All remote calls execute on a dedicated thread

without blocking the main loop of the controller.

3. APPLICATION SCENARIO

This section explains how the controller can be

customized for a given scenario and presents a client

application that performs configuration and monitoring

tasks.

A. Controller Application

To demonstrate the effectiveness of the proposed

solution, a simple ON/OFF controller with hysteresis

(also known as schmitt-trigger) was built. The

controller can be used to maintain the water level

inside an open tank between two threshold values

(figure 4). The water level is measured by a level

transmitter and passed to the controller that turns the

supply pump ON or OFF.

The controller application was developed using

Visual Basic .NET 2008 and tested in the Windows XP

operating system. The controller, shown in figure 5,

loops every 100 ms and makes use of 13 objects as

described in table 1. These objects and their owning

relations are presented in the form of a tree list. Two

Fig 4. Water-supply pump system.

columns are provided to show the state of all Blocks

and the value of all Parameters. An overview of the

selected object is given in the text box at the bottom.

B. Client Application

A client was built to interact with the controller.

Both applications – the controller and client – shall be

connected to an Ethernet Local Area Network (LAN).

The client serves two main purposes:

• Configuration: The user can scan the network to

find all registered services by issuing the

publication RequestNetworkVisibleServerObjectProperties

(using a Publisher object) and by intercepting all

the replies in the form of

PublishNetworkVisibleServerObjectProperties publications

(using a Subscriber object). This way, the user gets

a picture of all network-visible objects including

their names, object IDs and dispatch addresses.

With this information, the user can open a

configuration console and invoke any method on

any object using the client/server communication

model.

• Monitoring: Parameter monitoring is done by

listening to PublishParametricData publications

(using a Subscriber object). The attached data,

which includes the value and the identification of

the publisher Parameter, is extracted, presented to

the user and logged to a file. This way, the user gets

a real-time picture of all system variables by taking

full advantage of the publish/subscribe

communication model.

Fig 5. Controller application.

Table 1. Controller objects.

Object Name Class Name Description

pBlock PBlock Is the top-level Block that represents the application as a whole and provides

global resources to all underlying objects.

client Client Used to make remote calls to a remote server (which does not happen in the

present case). Only created for testing purposes.

subscriber Subscriber Listens to all incoming publications on the multicast address

net.p2p://myMesh/publications.

publisher Publisher Used to announce the presence of the controller on the network (by issuing

the publication PublishPBlockAnnouncement) and to broadcast data from

Parameters (by issuing the publication PublishParametricData).

tBlock DAQmxTBlock Acquires the signal from the level transmitter connected to an analog input

of the DAQ board. The signal is converted to relative units (% of tank

capacity) by the built-in correction engine. It also updates the digital output

where the pump actuator is connected.

level ScalarParameter Holds a floating-point network-visible variable representing the water level.

level_analogInput DAQmxTChannel Represents the DAQ channel where the level transmitter is connected.

pump ScalarParameter Holds a boolean network-visible variable representing the state of the pump.

pump_digitalOutput DAQmxTChannel Represents the DAQ channel where the pump actuator is connected.

levelController HysteresisBlock Implements the control algorithm that decides the next state of the pump.

highThreshold ScalarParameter Holds a floating-point network-visible variable representing the high

threshold of the control algorithm.

lowThreshold ScalarParameter Holds a floating-point network-visible variable representing the low

threshold of the control algorithm.

output ScalarParameter Holds a boolean network-visible variable representing the result of the

control algorithm.

The client application was developed using Visual

Basic .NET 2008 and tested in the Windows XP

operating system. The front panel of the client is

composed by the following main elements (represented

by numbered circles in figure 6):

1. The tree list provides most of the information to the

user. It displays the hierarchy of all network-visible

objects, the values of all monitored Parameters and

eventual error conditions.

2. Using this context menu, the user can scan the

network to find all registered services and load

them into the tree list.

3. When the user selects a given object on the tree list,

its main properties are presented in this group box.

All properties are read-only except the object tag.

4. The configuration console of the selected object is

dynamically loaded in this group box. Here, the

user can make remote calls to the object, not only to

get/set properties but also to invoke other methods

as well.

5. If a remote call fails, the error is marked on the tree

list. The icon at the bottom indicates the existence

of at least one pending error.

6. By clicking this button, the user receives detailed

information about the error that affects the selected

object. The error can be acknowledged and erased

if desired.

4. RESULTS

Tests were conducted using the apparatus illustrated

in figure 7, which is composed by the following main

elements (indicated by numbered arrows):

1. The installation contains two cascaded open tanks

but only the bottom-most is used to store water (the

other one is put out of service).

2. The water circulates in a closed circuit pumped by a

12 VDC submersible pump (model 881 from

Whale).

3. In the back, an enclosure contains the level

transmitter, the DAQ board (NI-USB 6008), the

power supply and some auxiliary signal

conditioning circuits. The level transmitter is

implemented by a pressure sensor (model

ASDX001D44R from Honeywell), with its output

range [0.62, 2.25] V mapped in the interval [0, 100]

% of tank capacity.

4. A single Personal Computer (PC) is used to host

the controller and its client (in a more realistic

scenario, the two applications would run on

separate machines).

The controller was started with high/low threshold

values of 70% and 40%, respectively. In the client, a

scan was made to the network and all controller objects

were successfully discovered. Using configuration

Fig 6. Client application.

consoles, remote calls were made to interact with the

controller, in particular to adjust the high threshold to

60% and the low threshold to 50%, by this order. The

most relevant system variables were monitored in real-

time, logged to a file and plotted in figure 8.

5. CONCLUSION

This paper demonstrates that is possible to combine

the 1451.1 Std with Web Services in order to build an

open, interoperable, cross-platform controller. The

client application revealed to be a useful tool to

configure and monitor the controller. Both applications

worked as expected and no failures were detected

during experimental tests.

On the network side, the controller implements the

client/server communication model by employing

native WCF facilities. It also implements the

publish/subscribe communication model by using a

dedicated WCF Web Service connected to a multicast

P2P endpoint. On the field side, the controller works

with DAQ boards and takes full advantage of the

DAQmx driver, in particular the built-in correction

engine and the capability of reading 1451.4-TEDS.

A last word should be given to the .NET

Framework, which provided a very productive

environment for developing code.

REFERENCES

[1] Eugene Y. Song, Kang Lee, “Understanding IEEE 1451 –

Networked Smart Transducer Interface Standard”, IEEE

Instrumentation & Measurement Magazine, Vol. 11, No. 2, pp.
11-17, April 2008.

[2] IEEE Std. 1451.1-1999, “IEEE Standard for a Smart Transducer

Interface for Sensors and Actuators – Network Capable
Application Processor (NCAP) Information Model”.

[3] Vítor Viegas, J. M. Dias Pereira, P. Silva Girão, “A Brief

Tutorial on the IEEE 1451.1 Standard”, IEEE Instrumentation
& Measurement Magazine, Vol. 11, No. 2, pp. 38-46, April

2008.

[4] Gustavo Alonso, Fabio Casati, Harumi Kuno, Vijay Machiraju,
“Web Services – Concepts, Architectures and Applications”,

Springer, Germany, 2004, ISBN 3540440089.
[5] Adam Freeman, Allen Jones, “Microsoft .NET, XML Web

Services Step by Step”, Microsoft Press, USA, 2003, ISBN

0735617201.
[6] http://www.w3schools.com/soap/

[7] http://www.w3schools.com/wsdl/

[8] www.w3.org
[9] David S. Platt, “Introducing Microsoft .NET”, 3rd Edition,

Microsoft Press, USA, 2003, ISBN 0735619182.

[10] David Chappell, “Understanding .NET”, 2nd Edition, Addison-
Wesley, USA, 2006, ISBN 0321194047.

[11] Juval Lowy, “Programming WCF Services”, O’Reilly, USA,

2007, ISBN 0596526997.
[12] IEEE Std. 1451.4-2004, “IEEE Standard for a Smart Transducer

Interface for Sensors and Actuators – Mixed-Mode

Communication Protocols and Transducer Electronic Datasheet
(TEDS) Formats”.

[13] IEEE Std. 1451.2-1998, “IEEE Standard for a Smart Transducer

Interface for Sensors and Actuators – Transducer to
Microprocessor Communication Protocols and Transducer

Electronic Datasheet (TEDS) Formats”.

[14] “Upgrading Your System for Smart TEDS”, NI Tutorial,
http://zone.ni.com/devzone/cda/tut/p/id/2925.

[15] “Upgrading Your System for Virtual TEDS”, NI Tutorial,

http://zone.ni.com/devzone/cda/tut/p/id/4470.

Fig 7. Experimental apparatus.

Fig 8. Experimental data.

3

1
4

2

