
IMTC 2005 – Instrumentation and Measurement
Technology Conference
Ottawa, Ontario, CANADA, 17-19 May 2005

Using a Commercial Framework to Implement and Enhance the IEEE 1451.1 Standard

Vítor Viegas1,2, J.M. Dias Pereira1,2, P. Silva Girão2
1Escola Superior de Tecnologia do Instituto Politécnico de Setúbal, 2910-761, Setúbal, Portugal

2Instituto de Telecomunicações, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
Phone: +351-265790000, Fax: +351-265721869, Email: vviegas@est.ips.pt

Abstract – In 1999, the 1451.1 Std was published defining a
common object model and interface specification to develop open,
multi-vendor distributed measurement and control systems.
However, despite the well-known advantages of the model, few have
been the initiatives to implement it. In this paper we describe the
implementation of a NCAP – Network Capable Application
Processor, in a well-known and well-proven infrastructure: the
Microsoft .NET Framework. The choice of a commercial framework
was part of our strategy: to take advantage of several “of the shelf”
technologies and adapt them to produce a NCAP prototype, called
NCAP/XML. In addition, a solution to enhance the 1451.1 Std is
presented by proposing a new format for inter-NCAP
communication based on XML (eXtended Markup Language).

Keywords – IEEE 1451.1, NCAP, Smart Transducer, .NET
Framework, .NET Remoting, Web Service.

1. INTRODUCTION

We start by introducing the two foundations of our work:
the 1451.1 Std [1] that describes the NCAP, and the
Microsoft .NET Framework that we choose as an
implementation base for our prototype. A complete
description of the framework is beyond the scope of this
paper, but those interested on this subject can easily find
additional information in the literature [2].

1.1. IEEE 1451.1 Standard

The 1451.1 Std defines an object model suitable to
represent any networked smart transducer. The model,
illustrated in figure 1, must be implemented in a processor
with two communication ports, one that interfaces the
network and another that interfaces the transducer. The
network processor, denominated NCAP, acts like a bridge
between the smart transducer and the network. It exports the
transducer functionalities over a standardized model and
hides the details of implementation. The NCAP includes four
major parts:

• Operating System: The operating system manages

NCAP hardware resources offering an execution
environment for applications. This environment provides
basic services like memory management, interrupt
handling, and multi-task execution. The execution of
multiple concurrent tasks requires additional support that
includes: a real-time scheduler to launch tasks according
to their priority; mechanisms for inter-task

communication like shared memory and message pipes;
and primitives for inter-task synchronization such as
mutexes and semaphores.

• Network Library: The network library provides services
to handle network requests, including client/server and
publisher/subscriber ports. Through these ports a remote
client can call an object on the local NCAP and use its
properties, methods and events just as simply as if the
object was on the client itself.

• Transducer Library: The transducer library provides
services to implement the interface between the NCAP
and the smart transducer. The library includes functions to
auto-detect the transducer, to read sensors, to update
actuators, to configure trigger settings, to get status
registers, to handle interrupts, and so on. The 1451.1 Std
strongly recommends the implementation of generic
interfaces but other alternatives still remain open. By
generic interfaces we mean those described by the IEEE
standards: Transducer Independent Interface (IEEE
1451.2), Transducer Bus Controller (IEEE P1451.3),
Mixed Mode Interface (IEEE P1451.4), and Wireless
Transducer Independent Interface (IEEE P1451.5).

• IEEE 1451.1 Object Model: The IEEE 1451.1 object
model specifies the object classes used to design and
implement application systems. As shown in figure 2, the
object model is presented as a hierarchy of classes divided
in three main groups: blocks, components and services.
Three block classes are specified: the NCAP Block class
that provides software interfaces for supporting network
communications and system configuration; the
Transducer Block class that provides standard software
interfaces between transducers and application functions;
and the Function Block class that encapsulates

NCAP

Operating System

Network
Library

Transducer
Library

IEEE 1451.1
Object Model

Application

Third party
interfaces

IEEE P1451.3

IEEE P1451.4

IEEE P1451.5

IEEE 1451.2

Smart
transducers

Any
network

Fig. 1. IEEE 1451.1 model layout.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Comum

https://core.ac.uk/display/62691207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

application-specific functionality. Component classes
provide common application building elements such as:
structured information like measurements and files;
collections of related application-specific objects; and
actions with state where the action takes place over a
relatively long period of time. Finally, service classes
support communications between objects on distinct
NCAPs and system-wide synchronization.

1.2. Microsoft .NET Framework

The Microsoft .NET Framework, or .NET Framework for
short, is a pre-fabricated infrastructure to develop desktop
and Internet applications. The infrastructure is divided in four
main parts as represented in figure 3:

• Common Language Runtime (CLR): The CLR acts like

a virtual machine that runs managed code, offering
advanced features such as automatic memory
management (also known as garbage collection),

standardized versioning, code access security, and
seamless inter-operability with Common Object Model
(COM) components and Dynamic Link Libraries (DLLs).
Managed code is written in a high level CLR-compliant
language (such as Visual Basic .NET or C#) and then is
compiled into an Intermediate Language (IL). The IL
code itself can’t run directly on any computer: it has to be
interpreted by a Just-In-Time compiler, or JITter. This
intermediate step slows down performance but provides
.NET Framework with a certain amount of platform
independence, as each platform can have its own JITter.

• Class Library: The class library contains the foundation
classes used to build applications. The library has a tree
structure where each class inherits the functionalities of
its parent. The developer can extend the .NET Framework
by creating custom classes that inherit from those of the
pre-built tree.

• Windows Forms: Windows forms is a package that
provides ready to use user interface elements to build
powerful front ends for desktop applications. Such
elements, also called Windows controls, include
windows, buttons, dialog boxes, tree views, data grids,
and so on. The package also includes a new version of the
Graphics Device Interface (GDI) that enables applications
to use graphics and formatted text on both a video display
and a printer without worry about hardware details.

• ASP .NET: ASP .NET provides support to build and run
Web applications. It’s main functions include: pre-
fabricated controls that do for HTML pages what
Windows controls do for desktop applications; a Web
server run-time environment that dynamically generates
HTML pages in response to input received from the
client; and advanced services such as data caching to
speed up documents that are often downloaded, session
state to personalize clients, and security to block
malicious clients.

Root
Entity

Block
NCAP Block
Function Block
Base Transducer Block

Transducer Block
 DotX Transducer Block

Component
Parameter

Parameter With Update
Physical Parameter

Scalar Parameter
Scalar Series Parameter

Vector Parameter
Vector Series Parameter

Time Parameter
Action
File

Partitioned File
Component Group

Service
Base Port

Base Client Port
Client Port
Asynchronous Client Port

Base Publisher Port
Publisher Port
Self-Identifying Publisher Port

Event Generator Publisher Port
Subscriber Port
Mutex Service
Condition Variable Service

Fig. 2. IEEE 1451.1 Std class hierarchy.

 ASP .NET

Web Services Web Forms

ASP .NET Application
Services

Windows Forms

Win Controls GDI

Windows Application
Services

.NET Class Library

System, System.Data, System.Diagnostics, System.Drawing,
System.IO, System.Net, System.Reflection, System.Runtime,

System.Serialization, System.Security, System.Threading,
System.Web, System.XML, …

Common Language Runtime (CLR)
Garbage

Collection Security Versioning Interop

Fig. 3. .NET Framework components.

In the next section we stress the distributed technologies
offered by the .NET Framework in order to use them
afterwards for inter-NCAP communication.

2. MICROSOFT .NET DISTRIBUTED TECHNOLOGIES

The .NET Framework includes two distributed
technologies to deal with remote objects: .NET Remoting
[3-4] and Web Services [4]. In this section we present both
technologies to understand where each one fits into the
overall picture of a distributed application.

2.1. .NET Remoting

The .NET Remoting is the replacement of DCOM
(Distributed COM, an older distributed technology released
by Microsoft in the 90s for Windows environments). Like
DCOM, .NET Remoting allows client applications to
instantiate objects on remote computers and use them like
local objects. However, unlike DCOM, .NET Remoting is
simple to configure and easy to scale. It also uses a
“pluggable” architecture that makes it very flexible.

As shown in figure 4, the communication process in .NET
Remoting begins with a proxy object that “mimics” the
remote object. When a method is called on the proxy, it calls
the remote object, waits for the response, and then returns the
result. In the background, the proxy communicates with a
format layer that packages the client request or server
response in the appropriate format. The format layer then
communicates with the transport layer that transmits the
information using the appropriate protocol. This layered
structure is so flexible that developers can code their own
layers and still use the same model without re-compiling the
code. These custom layers can intercept the communication
and provide additional services such as encryption, logging or
compression.

The .NET Remoting supports three types of remote
objects:

• SingleCall: Objects that are automatically created with

every method invocation and live for only the duration of
that method. The client can keep and use the same
reference, but every call results in the creation of a new
object. These objects are completely stateless.

• Client-Activated: When invoked for the first time, a new
instance of the object is created and travels to the client
becoming local.

• Singleton: This type of object retains state but shares it
with clients. No matter how many clients are connected,
there is always only one remote object instance.

Although .NET uses a “pluggable” architecture that

allows custom layers, by default the .NET Framework
includes two pre-built channels:

• TcpChannel: This channel uses TCP/IP (Transport
Control Protocol/Internet Protocol) with proprietary
binary protocol as transport layer. It is compact and fast,
ideal for using inside a firewall with maximum
performance.

• HttpChannel: This channel uses TCP/IP with HTTP
(Hypertext Transfer Protocol) as transport layer. It is a
text based channel, not so compact, not so fast, but can
cross firewalls making possible the communication across
the Internet.

Both channels can choose between two pre-built

formatters:

• Binary: The binary formatter serializes data to a compact,
proprietary .NET format. This formatter offers the best
performance but can be used only by .NET applications.

• Extended SOAP (Simple Object Access Protocol):
Pure SOAP is a cross-platform XML-based plain-text
format supported by the W3C (World Wide Web
Consortium [5]), which includes all the major software
companies around the world (such as Microsoft, Sun
Microsystems and IBM, among others). However, .NET
Remoting uses an extended SOAP formatter with
proprietary logic that makes possible the reproduction of
any .NET object but compromises inter-operability with
non .NET frameworks. SOAP format (pure or extended)
requires large XML text messages and can therefore
reduce overall performance.

The main idea to retain is that .NET Remoting is more

suitable as a high-speed solution for binary communications
between proprietary .NET applications, usually over an
internal network or inside the same machine.

Client

Channel

Client
application

Proxy for
remote object

Format layer

Custom layer

Transport
layer

Server

Channel

Server
application

Format layer

Custom layer

Transport
layer

Remote
object

Call

Result

Fig. 4. .NET Remoting architecture.

2.2. Web Services

Web Services are, in simple terms, object methods
exposed via HTTP using pure SOAP messages. Web Services
are always stateless: the server instantiates an instance of the
Web Service on demand and then destroys that instance after
it finishes servicing a call. In fact, Web Services behave
much like the SingleCall objects supported by .NET
Remoting. The sequential communication steps, represented
in figure 5, can be summarized as:

• Step 0: at programming time, the developer generates the

proxy object code from meta-data that describes the Web
Service.

• Step 1: at run time, the client generates the proxy object.
• Step 2: the client calls a method on the proxy.
• Step 3: the proxy converts the call to a SOAP message

over HTTP and sends it to the server.
• Step 4: ASP .NET creates a new instance of the Web

Service.
• Step 5: ASP .NET calls the specified method on the Web

Service.
• Step 6: the Web Service returns results to ASP .NET and

then dies.
• Step 7: ASP .NET converts results to a SOAP message

and returns to client via HTTP.
• Step 8: the client receives the return value from proxy.

It’s useful to evaluate the major differences between Web
Services and .NET Remoting technologies:

• Web Services are more restricted than objects exposed

over .NET Remoting (it isn’t possible to create a
Singleton or a Client-Activated objects). However, Web
Services are generally easier to design and set up than
.NET Remoting objects.

• Web Services support only pure SOAP message
formatting, which targets cross-platform use. Any client
that can parse the XML meta-data describing the service
can connect over an HTTP channel and use that service,

even if the client software is written in Java and hosted on
a UNIX computer.

• Web Services are always hosted by ASP .NET, which
means that they gain access to some powerful platform
services, including data caching, session state
management and security. These features, if required, can
be very difficult to re-create by hand in .NET Remoting.

• Web Services work through a Web server and ASP .NET
using the default HTTP channel (usually port 80). This
means that clients can access Web Services just as easily
as they can download HTML pages from the Internet.
There’s no need for an administrator to open additional
ports on a firewall.

The main idea to retain is that Web Services are fine-

tuned for Internet and cross-platform scenarios, offering a
simpler model for distributed applications than the one
provided by .NET Remoting.

3. NCAP PROTOTYPE

After studying the .NET Framework and its distributed
technologies, we thought that it would be possible to use
them in order to implement a NCAP prototype. This section
describes that prototype, which we called NCAP/XML.
We start by describing the general architecture of the
prototype, presenting the software components that compose
it and the way they establish connection. Then, we focus on
the transducer interface, which we implemented using an
innovative solution that enhances the 1451.1 Std. Finally, we
present results and draw conclusions.

3.1. Architecture

As shown in figure 6, our prototype NCAP/XML is
composed by three software components:

• NCAP Engine: The NCAP engine implements the IEEE

1451.1 object model, including blocks, components and
synchronization services. Communication services are
implemented using .NET Remoting and Web Services.
The engine starts by creating the top-level NCAP Block
and its child objects. The NCAP Block has its own thread
that executes a script containing the user application
(which implements control routines and provides
“intelligence” to the system). All NCAP objects are
published as Singleton objects that are shared between all
connected clients.

• NCAP Web Services: This component is the Web
interface of the NCAP application: it exposes NCAP
objects as Web Services. Web Services are inherently
stateless, but, in this case, they always return consistent
results because, behind the scenes, they connect to
Singleton objects. This extra layer introduces additional
cross-process communication reducing performance.

Client

Server

Proxy

1 2 8

0
ASP .NET

Web Service
Method 1
…
Method N

4 5 6
3

7

Client
application

Internet

Fig. 5. Communication steps and Web Services architecture.

However, this approach presents definitive advantages:
it is open because it uses XML-based communication; it is
Internet-oriented; and it is scalable by separating the
NCAP application from the ASP .NET infrastructure.

• Web Server: The Web server acts like a “doorman”,
listening for HTTP requests on port 80 and routing them
to the application that will serve them. It also handles
security by preventing that unauthorized clients access
HTML pages and Web Services. Our prototype uses the
Web server provided by Microsoft, known as Internet
Information Services (IIS).

3.2. Transducer Interface

Our prototype NCAP/XML doesn’t implement any
generic transducer interface proposed by 1451.X Stds.
Instead, it implements a commercial interface focused on test
and measurement systems, known as Interchangeable Virtual
Instruments (IVI). We choose this interface for two main
reasons: it extends our prototype into areas not covered by
1451 Stds; and it can simulate field signals making easier the
development and debugging of our prototype.

The IVI interface is supported by the IVI Foundation [6],
which includes all the major companies in the field of test
and measurement systems (such as National Instruments,
Keithley Instruments and Agilent Technologies, among
others). The IVI interface is itself an example of inter-
operability by proposing a software model that isolates user
applications from measurement instruments. Two layers
compose the software model: class drivers and instruments
drivers. Class drivers encapsulate functions that are common
to a specific class of instruments. So far, the IVI Foundation
has defined eight instrument classes: power supplies, function
generators, RF signal generators, Digital MultiMeters
(DMMs), power meters, oscilloscopes, spectrum analysers
and switches. Silently, the class driver calls the instrument
driver, which in fact “talks” with the instrument. The
instrument driver automatically handles low-level
communication details. The IVI Foundation provides
configuration tools that allow the developer to load and
unload instrument drivers without changing class drivers.
This way, the user application is always ready to run since it
sees the same class driver, no matter the instruments
connected.

As shown in figure 7, the NCAP/XML Transducer Block
links to a DLL provided by National Instruments (NI) that
implements the IVI interface for DMMs. This way, our
prototype can call functions on the class driver and
communicate with any DMM. At the same time, we can use
the configuration tools provided by National Instruments [7]
to configure instrument drivers and even simulate
measurements.

 …
Dedicated

Transducer Block

NCAP/XML

IVI DMM
Class Driver

Instrument Driver
(e.g. HP34401A)

Instrument Driver
(e.g. Fluke 45) or

HP 34401A Fluke 45

ividmm.dll
(from NI)

Configuration
tools

(from NI)

or

Fig. 7. Transducer interface.

Local network or Internet

Another
NCAP/XML

Any device with a
compatible XML parser

...

Web
server

NCAP
Web Services

ASP .NET

NCAP
Engine

User application

NCAP Block

IEEE 1451.1
objects

Transducer
Block

.NET Remoting

Transducers

XML/SOAP

NCAP/XML

Fig. 6. NCAP/XML architecture.

3. RESULTS

The NCAP/XML prototype runs in Windows XP with IIS
and .NET Framework v1.1 installed. To use the IVI interface
we must install some libraries from National Instruments
(namely, NI-VISA v2.6, IVI Engine v1.83 and MAX v2.2.0).
The software was developed using Visual Basic .NET and
Microsoft Development Environment 2003 v7.1.

As shown in figure 8a, we implemented the NCAP
application as a console because it operates faster and
requires very little user interface. Using a Web browser, we
can access NCAP/XML (figure 8b), call a Web method
(figure 8c), and get the result in the form of an XML-based
document (figure 8d).

4. CONCLUSION

Our work demonstrates that is possible to implement a
NCAP using the .NET Framework. This approach has many
advantages because commercial frameworks have good
development tools, are robust and are wide accepted.

Our prototype NCAP/XML is completely open because it
uses pure SOAP messages to support communications. Any
device with a compatible XML parser can communicate with
our prototype.

Finally, NCAP/XML can communicate with virtual
instruments because its Transducer Block is linked to an IVI
interface. This is another example of inter-operability by
mixing the 1451.1 Std with a foundation-based technology.

In the future we are planning to transfer the prototype to
an industrial PC and test it in an industrial environment. It is
our intention to implement and characterize wireless
interfaces at the network and transducer levels.

REFERENCES

[1] “IEEE 1451.1 Standard for a Smart Transducer Interface for Sensors
and Actuators – Network Capable Application Processor (NCAP)
Information Model”, IEEE, New York – USA, April 2000

[2] David S. Platt, “Introducing Microsoft .NET”, 2nd Edition, Microsoft
Press, Washington – USA, 2002

[3] David Curran, Andy Olsen, Jon Pinnock, “Visual Basic .NET, Remoting
Handbook”, Wrox Press, Birmingham – UK, 2002

[4] Mathew MacDonald, “Microsoft .NET, Distributed Applications:
Integrating XML Web Services and .NET Remoting”, Microsoft Press,
Washington, 2003

[5] http://www.w3.org
[6] http://ivifoundation.org
[7] “Getting Started with National Instruments IVI”, National Instruments

Corp., July 2001

(a)

(b)

(c)

(d)

Fig. 8. NCAP/XML operation: (a) NCAP application; (b) NCAP
Web Services; (c) calling a Web method; (d) getting the result.

