
IMTC 2006 – Instrumentation and Measurement
Technology Conference
Sorrento, ITALIA, 24-27 April 2006

 1

IEEE 1451.1 Standard and XML Web Services: a Powerful Combination to Build
Distributed Measurement and Control Systems

Vítor Viegas1,2, J.M. Dias Pereira1,2, P. Silva Girão2
1ESTSetúbal-LabIM, Instituto Politécnico de Setúbal, 2910-761, Setúbal, Portugal
2Instituto de Telecomunicações, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal

Phone: +351-265790000, Fax: +351-265721869, Email: vviegas@est.ips.pt

Abstract – In 2005, we presented the NCAP/XML, a prototype of
NCAP (Network Capable Application Processor) that runs under
the .NET Framework and makes available its functionality through
a set of Web Services using XML (eXtended Markup Language).
Giving continuity to this project, it is time to explain how to use the
NCAP/XML to build a Distributed Measurement and Control System
(DMCS) compliant with the 1451.1 Std. This paper is divided in two
main parts: in the first part, we present the new software
architecture of NCAP/XML (which suffered some changes since the
first version), and secondly, we describe the network configuration
of a Web-enabled DMCS, which includes several NCAP/XML
stations, a database and a Web Server.

Keywords – Smart Transducer, IEEE 1451.1, NCAP, .NET
Framework, XML, Web Service.

1. INTRODUCTION

 The 1451.1 Std [1] defines an object model suitable to
represent any networked smart transducer. The object model
must be implemented in a processor with two communication
ports, one that interfaces the network and another that
interfaces the transducer. The network processor,
denominated NCAP, acts like a bridge between the smart
transducer and the network by exporting transducer
functionalities over a standardized object model and hiding
implementation details. As shown in figure 1, the object
model is presented as a hierarchy of classes divided in three
main groups:

• Blocks: Block classes are the working elements of the

NCAP. Three block classes are specified: 1) the NCAP
Block class that provides software interfaces for
supporting network communications and system
configuration; 2) the Transducer Block class that provides
standard software interfaces between transducers and
application functions; and 3) the Function Block class that
encapsulates application-specific functionality.

• Components: Component classes provide common
application building elements such as structured
information (like measurements and files), collections of
related application-specific objects, and actions with state
where the action takes place over a relatively long period
of time.

• Services: Service classes support communications
between objects on distinct NCAPs and system-wide
synchronization.

In [2] we described the software implementation of an

innovative NCAP prototype that runs under the .NET
Framework [3]. We called this prototype NCAP/XML
because it uses XML Web Services for inter-NCAP
communication. Web Services [4-5] are, in simple terms,
object methods made available via XML messages. These
messages use a format known as SOAP (Simple Object
Access Protocol) that is supported by the W3C [6] (World
Wide Web Consortium), which includes all the major
software companies around the world (such as Microsoft,

Root
Entity

Block
NCAP Block
Function Block
Base Transducer Block

Transducer Block
 DotX Transducer Block

Component
Parameter

Parameter With Update
Physical Parameter

Scalar Parameter
Scalar Series Parameter

Vector Parameter
Vector Series Parameter

Time Parameter
Action
File

Partitioned File
Component Group

Service
Base Port

Base Client Port
Client Port
Asynchronous Client Port

Base Publisher Port
Publisher Port
Self-Identifying Publisher Port

Event Generator Publisher Port
Subscriber Port
Mutex Service
Condition Variable Service

Fig. 1. IEEE 1451.1 Std class hierarchy.

 2

Sun Microsystems and IBM). This first version of
NCAP/XML was composed by three software components,
as depicted in figure 2:

• NCAP Engine: The NCAP Engine implements the IEEE

1451.1 object model, including Blocks and Components.
Communication and synchronization services are
implemented using .NET Framework and Web Services.
The engine starts by creating the top-level NCAP Block
and its child objects. The NCAP Block has its own thread
that executes a script containing the user application
(which implements control routines and provides
“intelligence” to the system). All NCAP objects are
published as singleton objects [7] in order to retain their
execution state and share it with all connected clients.

• NCAP Web Services: This component is the Web
interface of the NCAP application because it exposes
NCAP objects as Web Services. Web Services are
inherently stateless, but, in this case, they always return
consistent results because, behind the scenes, they connect
to the NCAP Engine that provides full-state objects. The
communication between both components is supported by

.NET Remoting [7], a distributed technology targeted for
binary communications between applications over a
private network or inside the same machine.

• Web Server: The Web Server acts like a “doorman”,
listening for HTTP requests on port 80 and routing them
to the application that will serve them. It also handles
security by preventing that unauthorized clients access
Web pages and Web Services.

NCAP/XML is completely open because any device with

a compatible XML parser can communicate with it.

2. SOFTWARE UPDATE

As described in the previous section, the first version of
NCAP/XML used two types of communication channels: an
in-bound channel that uses .NET Remoting for fast
communication between NCAP Web Services and the NCAP
Engine; and an out-bound channel that uses Web Services for
inter-NCAP communication. Although this works fine, we
decided to simplify it.

Side by side with the binary formatter, the .NET
Remoting technology offers a pre-built SOAP formatter,
which has proprietary extensions that allow the serialization
and deserialization of complex and platform-specific data
types. Fortunately, this SOAP formatter is also compatible
with W3C SOAP for basic data types and arrays of basic data
types (by basic data types we mean strings, chars, booleans,
integers, floats and time-stamps, among others). By this way,
we can use this formatter for inter-NCAP communication,
without any loss of interoperability, as long as we limit our
application to use only basic data types, which is precisely
the case of the 1451.1 Std restricted to block and component
classes.

 As shown in figure 3, the new software architecture of
the NCAP/XML is a scale-down from the previous version:
no NCAP Web Services are implemented and the Web
Server is excluded, since all inter-NCAP communication is
done through .NET Remoting using its SOAP formatter
restricted to basic data types. This new arrangement has
definitive advantages:

• The computational load is reduced, making easier its

implementation in embedded devices with limited
resources. Any device that runs the .NET Framework can
host a NCAP/XML without the need of a Web Server.
Such a host can be, for example, the industrial PC
CX1001-0120 from the manufacturer Beckhoff [8].

• It doesn’t compromise interoperability because inter-
NCAP communication continues to be done with W3C
SOAP compliance.

• It doesn’t compromise security because access control can
be built inside the NCAP Engine. If the prototype is to be
used in a private network (which is the most probable

Fig. 2. First version of the NCAP/XML prototype.

 3

scenario), security can be enforced by using a firewall in
the upstream.

3. NETWORK CONFIGURATION

It is possible to create a DMCS by networking several
NCAPs/XML and let them “talk” each other using SOAP
messages, without the need to buy and install any proprietary
network drivers. This arrangement has three main
advantages: 1) the communication is simplified; 2) the system
is open to any device with a compatible XML parser; and 3)
it makes easier the vertical integration of systems, from the
field to the business, because many ERPs (Enterprise
Resource Planning systems) are increasingly using Web
Services.

Three main parts compose our DMCS proposal, as
represented in figure 4.

• NCAP/XML Stations: Each station is responsible for the

acquisition of field signals, their processing and the
generation of actuation signals. Signals can come from
local transducers or from remote stations. Examples of
processing are: data logging, alarm management and
control loops.

• Information Server: The Information Server (IS) stores
all the information about the system. Static information is
stored in read-only files, each file containing the settings
for the corresponding NCAP/XML Station. Dynamic
information is stored in an SQL database, each record

representing a published object, including dynamic fields
like measurement values, set-points and alarms.

• HMI Application: The Human Machine Interface (HMI)
is a Web application that allows the operator to interact
with the system. The HMI has three main purposes: 1) it
allows an online configuration of the system; 2) it
provides a graphic interface to visualize the state of the
system using synoptic diagrams, trend graphics and alarm
indicators; and 3) it allows the operator to actuate over the
system gaining manual control over field variables.

Given its complexity, the IS should be installed in a

powerful workstation running a server operating system.

3.1. Configuration Files

When a NCAP/XML Station boots, it needs to receive
initial information about itself and about the system where it

Fig. 4. DMCS proposal.

Fig. 3. NCAP/XML revised.

 4

is integrated. This start-up information can be stored in a
configuration file, resident on the IS, and downloaded by the
NCAP/XML Station.

The configuration file is written in XML and includes a
section dedicated to the IEEE 1451.1 object model. Inside
that section, there is a text-based description about all the
objects to be created and published by the NCAP/XML
Station. The description includes the initial values of the
object at the Entity level. As an example, let’s consider an
NCAPBlock object:

...
<!-- IEEE 1451.1 object model section -->
<IEEE1451Dot1>

<!-- NCAPBlock instance -->
<!-- properties filled with initial values -->
<NCAPBlock

ClassName=”NCAPBlock”
ClassID=”1.1.1.1”
ObjectTag=”ST0.0.0”
ObjectID=

”272145CB-AA07-4c91-84CC-A91ABCC16F5D”
ObjectName=”NCAPBlock0”
DispatchAddress=

”http://10.41.0.50:6000/NCAPBlock0.soap”
OwningBlockObjectTag=”ST0.0.0”
State=”0”

/>
...

</IEEE1451Dot1>
...

Configuration files are saved in a pre-defined directory on

the IS, accessible through FTP (File Transfer Protocol) and/or
through a dedicated Web Service. Each NCAP/XML Station
downloads its corresponding configuration file based on its
name and interprets it using a XML reader. The use of XML
helps interoperability and the centralized storage of all
configuration files helps system maintenance.

3.2. Script Files

Script files are text files containing code to be executed
by the NCAP/XML Station. This code adds “intelligence” to
the station allowing it to execute control routines locally.

Script files are saved in a pre-defined directory on the IS,
accessible through FTP and/or through a dedicated Web
Service. Each NCAP/XML Station downloads its
corresponding script file based on its name and interprets it
using a script engine. The centralized storage of all script
files helps system maintenance; on the other hand, scripting
reduces overall performance because the code is interpreted,
not compiled.

3.2. The Database

The state of the system is maintained in a database, which
can be queried and updated in real time using SQL (Standard
Query Language).

The database contains one table for each non-abstract
class of the IEEE 1451.1 object model. For example, a table
named “Parameters” can describe all Parameter objects
present in the system. The same principle is used for all other
object classes.

 Each table column, also known as field, describes a
property of an object instance. For example, the field named
“DispatchAddress” of the table named “Parameters” contains
the dispatch addresses of all Parameter objects present in the
system. Component tables contain two fields to store system
variables: a field named “Value” that stores the instantaneous
value of the variable (the last measured value of a
temperature, for example), and a field named “History” to
store all the past values of that variable. “History” fields are
indispensable to display trend graphics.

Block tables and component tables are related through a
field named “OwningBlockObjectTag”. According to the
1451.1 Std, this property defines a relation parent/children
between a block object (the parent) and many component
objects (the children). This relation is shown in figure 5.

In the beginning, we considered the use of an UDDI
Server to implement the database. UDDI [9] (Universal
Description Discovery and Integration) is often called the
“yellow pages” for Web Services, because it helps client
applications to discover and consume Web Services by
searches based on keywords, categories or interfaces.
Unfortunately, UDDI revealed to be very restrictive, without
margin for customization or extension, so we decided to
implement an SQL database from the scratch.

3.3. Data Flow

An explanation about how the data flows in the system
helps to understand how it works. The data flow is
represented in figure 4 by numbered arrows:

• Arrow 1: At boot time, each NCAP/XML Station

downloads its configuration file and script file. The
download can be made through FTP and/or through a
dedicated Web Service of the IS.

Fig. 5. Database snapshot.

 5

• Arrow 2: When a Parameter With Update object changes
above a pre-defined dead band (5 per cent, for example),
the NCAP/XML Station fires an event to the IS. The
event is listened and the corresponding record in the
database is updated using an SQL statement.

• Arrow 3: When the operator calls a function that changes
the property value of an object, the corresponding record
in the database is updated and the function is propagated
to the remote object. Examples of such functions are:
“SetObjectTag” (changes the tag of an Entity),
“SetGroupIDs” (defines a new group of correlated
blocks), “Write” (defines a new parameter value, for
example, a new set-point of pressure), among others. The
update of the database and the remote call are
transactional: both are committed when both are
successful. This way, we guarantee the consistence of
data between the database and the NCAP/XML Station.

• Arrow 4: When the operator requests the instantaneous
value of system variable, the corresponding record in the
database is selected and the field “Value” is read. To
refresh the value, this process is repeated periodically
using a pooling mechanism. By this way, we guarantee
the consistence of data between the database and the HMI
application. The same approach applies to trend graphics,
with the difference that the field “History” is the read one.

5. CONCLUSION

In this paper we describe the architecture of a complete
DMCS compliant with the 1451.1 Std, which is composed by
three main parts – NCAP/XML Stations, the Information
Server and a Web-enabled HMI application.

In our opinion, the system accomplishes five main
objectives:

• Compliance: The system behaviour was thought

according to the directives of the 1451.1 Std.
• Interoperability: All data exchanged between

NCAP/XML Stations and the IS is encapsulated in SOAP
messages.

• Scalability: The system is highly scalable by allowing
future extensions, not only in terms of devices (any device
with an XML parser can be added), but also in terms of
network protocols (which are abstracted by the 1451.1
object model).

• Performance: The new version of NCAP/XML is simpler,
faster and targeted for embedded devices. In addition, the
data flow between NCAP/XML Stations and the IS is
done asynchronously, by means of events, not pooling.

• Easy to maintain: The centralized storage of all
configuration files and script files in the IS helps system
maintenance.

In a near future we will implement the proposed solution
in an industrial PC in order to evaluate real system
capabilities under field operation conditions.

REFERENCES

[1] “IEEE 1451.1 Standard for a Smart Transducer Interface for Sensors
and Actuators – Network Capable Application Processor (NCAP)
Information Model”, IEEE, New York – USA, April 2000

[2] Vítor Viegas, J. M. Dias Pereira, P. Silva Girão, “Using a Commercial
Framework to Implement and Enhance the IEEE 1451.1 Standard”,
IMTC 2005 – Instrumentation and Measurement Technology
Conference, Ottawa, Ontario, CANADA, May 2005

[3] David S. Platt, “Introducing Microsoft .NET”, 2nd Edition, Microsoft
Press, Washington – USA, 2002

[4] Mathew MacDonald, “Microsoft .NET, Distributed Applications:
Integrating XML Web Services and .NET Remoting”, Microsoft Press,
US, 2003

[5] A. Russel Jones, “Mastering ASP.NET with C#”, Sybex, US, 2002
[6] www.w3c.org
[7] David Curran, Andy Olsen, Jon Pinnock, “Visual Basic .NET, Remoting

Handbook”, Wrox Press, UK, 2002
[8] www.beckhoff.com
[9] www.uddi.org

