
I2MTC 2008 – International Instrumentation and Measurement Technology Conference
Victoria, Vancouver Island, British Columbia, CANADA, 12-15 May 2008

Next Generation Application Processor
Based on the IEEE 1451.1 Standard and Web Services

Vítor Viegas1,2, J.M. Dias Pereira1,2, P. Silva Girão2
1ESTSetúbal-LabIM, Instituto Politécnico de Setúbal, 2910-761, Setúbal, Portugal
2Instituto de Telecomunicações, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal

Phone: +351-265790000, Fax: +351-265721869, Email: vviegas@est.ips.pt

Abstract – Over the last decade, the 1451.1 Std has
been a reference model to develop smart and open
distributed measurement and control systems. Now,
that the 1451.1 Std is about to be revised, there is the
opportunity to enrich it with emergent and successful
technologies as is the case of Web Services. Following
this idea, we present a prototype of Network Capable
Application Processor (NCAP) that runs on the .NET
Framework and exposes its functionality through a set
of Web Services. The prototype takes advantage of
three key technologies: (i) the abstraction layer
proposed by the 1451.1 Std; (ii) the interoperability
provided by Web Services; and (iii) the productivity
supplied by the .NET Framework.

Keywords – Smart Transducer, IEEE 1451.1, NCAP, Web
Services, .NET Framework, client/server, publish/subscribe.

1. INTRODUCTION

 This paper is divided in three main parts: we start
by introducing the key technologies that were used to
develop our work; secondly, we describe the
implementation of the NCAP prototype stressing its
transducer and network interfaces; and finally, we
present an application example to extract results and
draw conclusions.

1.1. IEEE 1451.1 Std

 The IEEE 1451 family of standards defines a set of
hardware and software interfaces that act as plugs
where heterogeneous components can be connected
and work together. The 1451.1 Std [1], in particular,
defines a generic object model suitable to represent any
networked transducer. This model must be
implemented in a processor, known as NCAP, which
acts as a bridge between transducers and the
communication network (figure 1). On the field side,
an abstraction layer provides high-level functions to
communicate with transducers. The 1451.1 Std
strongly recommends the adoption of 1451.X
transducer interfaces [2-5] but other alternatives still
remain open. On the network side, an abstraction layer
provides high-level services to handle network
requests. In the middle, the NCAP application
processes data received from both sides (the field and
the network) and decides the next state of the system.

 The object model proposed by the 1451.1 Std is
composed by a hierarchy of classes divided in three
main categories (figure 2):

• Block classes intended to do data processing.
• Component classes intended to encapsulate data.
• Service classes intended to handle inter-NCAP

communication and perform system-wide
synchronization.

 The objects created from these classes are the
bricks used to build the NCAP application. The
hierarchy is extensible by adding non-1451.1 classes to
satisfy particular requirements of a given application.
NCAP manufacturers shall develop the object model
for their product and deploy it as a reusable software
library.
 The 1451.1 Std provides two models for inter-
NCAP communications: a tightly-coupled client/server
model for one-to-one communications; and a loosely-
coupled publish/subscribe model for one-to-many
communications. Using the client/server model, a
client NCAP can invoke a function on the server
NCAP and consume any results returned. Three
invocation modes are available:

• Synchronous mode: The client blocks itself waiting

for the server to respond.
• Asynchronous mode: The client makes the remote

call and continues its execution path. Later, it can
query the network infrastructure to see if the server
has finished the call, and if so, request any data
returned.

• Send-and-forget mode: This mode is similar to the
previous one. The only difference is that the client
does not care about any returned data at all.

Figure 1. Network Capable Application Processor.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Comum

https://core.ac.uk/display/62691204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I2MTC 2008 – International Instrumentation and Measurement Technology Conference
Victoria, Vancouver Island, British Columbia, CANADA, 12-15 May 2008

 Using the publish/subscribe model, the publisher
NCAP can broadcast messages on the network
whenever it has some kind of public announcement to
make. These messages, known as publications, contain
metadata describing the syntax and semantics of the
information they carry. Based on this metadata, any
subscriber NCAP can filter the publications of its
interest and consume their attached data. This model is
a very efficient way to implement distributed events.

1.2. Web Services

 In simple terms, Web Services [6-7] are object
methods exposed via eXtended Markup Language
(XML) messages. These messages use a format
protocol known as Simple Object Access Protocol
(SOAP) [8] and travel across the network using a
transport protocol like the Hyper Text Transport
Protocol (HTTP). Every Web Service is described by
an XML document, known as its manifest, which is
written according the Web Service Definition
Language (WSDL) [9]. This manifest describes the
interface of the service, including the signatures of
available methods, the data types used for all input and
output parameters, and a list of supported
communication paths. This information is all the client
needs to consume the service without worrying about

its underlying implementation. Interoperability is
achieved by imposing strong standards (SOAP and
WSDL) and by using ubiquitous technologies (XML
and HTTP). Being supported by the World Wide Web
Consortium (W3C) [10], which includes all the major
software companies around the world (such as IBM,
Microsoft and Sun Microsystems), Web Services have
the chance to become the first wide-used middleware
solution and the answer for many interoperability
problems.

1.3. .NET Framework

 The .NET Framework [11-12] is a pre-fabricated
software infrastructure released by Microsoft to
develop and execute Windows applications. The .NET
Framework includes three main components:

• A high-performance virtual machine that executes

managed code in a secure and protected
environment (conceptually similar to the Java
virtual machine).

• An extensive class library that provides ready to use
components to develop desktop and Internet
applications.

• A set of last-generation programming languages,
such as Visual Basic .NET and C#, designed to
increase productivity.

 By the end of 2006, version 3.0 of the .NET
Framework was released including a new software
package called Windows Communication Foundation
(WCF) [13]. The WCF contains pre-built classes
designed to develop secure, reliable, and interoperable
distributed applications. The WCF supports the last
enhancements in terms of Web Services providing
many useful facilities such as hosting, service instance
management, asynchronous calls, reliability and
security. The WCF provides developers with the
essential off-the-shelf plumbing required by any
service-based application, and as such, it greatly
increases productivity.

2. NCAP PROTOTYPE

 The description of the NCAP prototype is divided
in three sub-sections: we start by presenting its service-
oriented object model; secondly, we talk about its
transducer interface; and finally, we cover its network
interface.

2.1. Object Model

 The NCAP prototype implements a fully-functional
subset of the 1451.1 object model. As shown in figure
3, this subset is composed by thirteen classes, each one
exposing a collection of methods according the
recommendations of the 1451.1 Std.

Figure 2. IEEE 1451.1 Std class hierarchy. Classes listed in
italic are abstract and shall not be instantiated.

I2MTC 2008 – International Instrumentation and Measurement Technology Conference
Victoria, Vancouver Island, British Columbia, CANADA, 12-15 May 2008

 The subset was developed using Visual Basic .NET
and Microsoft Development Environment 2005 v8.0. It
was compiled as a Dynamic Link Library (DLL), under
the name IEEE1451Dot1.dll, and it can be reused by
any Windows application.

The subset includes the following non-abstract
classes:

• NCAPBlock: This class represents the NCAP Block

which is the owner of all objects inside the NCAP
process. Owning relations were implemented using
a tree of pointers linking bottom-level objects to the
top-level NCAP Block. The NCAPBlock class
includes a boolean ParameterWithUpdate, named
status, which reflects the execution state of the
NCAP process: status = FALSE means that the
NCAP Block is running normally; status = TRUE
means that a software exception has occurred, and
as such, the NCAP Block has become defective.

• HysteresisBlock: This is a non-1451.1 class that
implements a simple ON/OFF controller,
commonly known as schmitt-trigger, which consists
of a comparator with hysteresis. During
instantiation, the developer can choose if the
hysteresis window is inverting or non-inverting.
The HysteresisBlock class includes three objects:
two floating-point ParametersWithUpdate, named
highThreshold and lowThreshold, which define the
high/low threshold values of the hysteresis window,

respectively; and a boolean ParameterWithUpdate,
named output, which holds the decision of the
comparator.

• DAQmxTaskBlock: This is a non-1451-1 class that
implements the transducer interface of the NCAP
prototype. More details will be given in section 2.2.

• Parameter: This class provides services to
read/write a generic network-visible variable.

• ParameterWithUpdate: This class provides
additional services to synchronize the network-
visible variable with its owning Block. Whenever
the variable is updated, a publication of type
PARAMETRIC_DATA is fired to the network.

• ScalarParameter: This class extends its parent by
including metadata structures that describe the
content of the network-visible variable.

• SubscriberPort: This class takes an important role
on the network interface of the NCAP prototype.
More details will be given in section 2.3.

During the instantiation process, objects are

initialized with startup data stored in a configuration
file. By editing the configuration file, it is possible to
tune the NCAP application without the need to
recompile it.

2.2. Transducer Interface

 Our prototype does not implement any of the
standard 1451.X transducer interfaces. Instead, it
communicates with Data AcQuisition (DAQ) boards
compliant with the DAQmx technology [14] from
National Instruments (NI). For that purpose, we built
the DAQmxTaskBlock that wraps the NI supplied class
library DAQmx.dll, which contains the .NET drivers
that indeed communicate with the board.
 The DAQmxTaskBlock takes advantage of pre-
configured DAQmx tasks. A task is a set of properties
that completely defines the process of
acquiring/updating data. Examples of such properties
are the hardware channel, input/output range, units,
number of samples, sampling frequency and trigger
settings. Using the Measurement and Automation
Explorer (MAX), a software tool provided by NI, the
developer can edit and save a given task. The task is
then loaded by the DAQmxTaskBlock which executes
read/write operations to transfer data from/to the field.
Using MAX facilities, the developer can also add a
custom scale to the DAQmx task. The scale act as a
correction engine [2] by transforming raw field data
into engineering units, and vice-versa.
 At the moment, the DAQmxTaskBlock only
supports scalar DAQmx tasks involving analog or
digital variables. The scalar value is buffered on a
ScalarParameter, named publicXdcr, which is included
in the DAQmxTaskBlock class.

Our future plans for the transducer interface are to
make it compliant with the 1451.4 Std and to extend it
in order to support non-scalar quantities.

Figure 3. Subset of the 1451.1 object model.

I2MTC 2008 – International Instrumentation and Measurement Technology Conference
Victoria, Vancouver Island, British Columbia, CANADA, 12-15 May 2008

2.3. Network Interface

 The network interface of our prototype is
completely based on Web Services. Although Web
Services are natively prepared to implement the
client/server communication model, our prototype
implements the publish/subscribe model as well.
 All object classes presented in figure 3 were
implemented as WCF Web Services following the best
practices described in the literature [15]. Whenever a
WCF service is created, it registers on the network
using a reliable HTTP endpoint and exposes a set of
methods according the recommendations of the 1451.1
Std. If a client wants to invoke a method, it accesses
the Web Service, creates a proxy at run-time and
executes the remote call using one of the invocation
modes (synchronous, asynchronous or send-and-
forget). This way, there is no need to implement
1451.1-ClientPorts because WCF automatically
handles the client/server communication model.
 To implement the publish/subscribe communication
model we built a WCF version of the 1451.1-
SubscriberPort, which is in charge for listening to
incoming publications. The listening process takes
place in a multicast endpoint using the User Datagram
Protocol (UDP). If a publisher wants to issue a
publication, it accesses the multicast endpoint, creates a
proxy at run-time and executes the remote call Publish
using the send-and-forget invocation mode. The proxy
interprets the role of 1451.1-PublisherPorts because the
publication reaches all listeners registered in the
multicast endpoint.

3. NCAP APPLICATION

To demonstrate the effectiveness of our prototype
we built a NCAP application that implements a simple
ON/OFF controller with hysteresis. The controller can
be applied to the water-supply system presented in
figure 4. By turning the pump ON and OFF, the system
works to maintain the water level between two
threshold values (say 20% and 80% of the tank
capacity). Assuming that the filling rate, when the
pump is ON, is higher that the consumption rate, water
never misses for consumption and it never exceeds
tank walls.

 As shown in figure 5, the NCAP application runs
in Windows XP environments with .NET Framework
v3.0 installed. It was developed using Visual Basic
.NET and Microsoft Development Environment 2005
v8.0.

The NCAP application is composed by the
following objects:

• pcNCAP: This object is an instance of the

NCAPBlock class. It represents the NCAP process
as a whole and keeps track of all underlying
network-visible entities.

• pcNCAP.status: This object is an instance of the
ParameterWithUpdate class. It signals eventual

exceptions occurred during the execution of the
NCAP application.

• levelController: This object is an instance of the
HysteresisBlock. It implements the control
algorithm that decides the next state of the pump.

• levelController.high/lowThreshold: These objects
are instances of the ParameterWithUpdate class.
They hold two floating-point network-visible
variables representing the high/low thresholds of
the control algorithm.

• levelController.output: This object is an instance of
the ParameterWithUpdate class. It holds a boolean
network-visible variable representing the output of
the control algorithm.

• levelInput: This object is an instance of the
DAQmxTaskBlock. It acquires the signal provided
by a level transmitter connected to an analog input
of the DAQmx board. For the present case, we used
the board NI USB-6008. The signal is converted to
relative units (% of tank capacity) by the built-in
correction engine.

• levelInput.publicXdcr: This object is an instance of
the ScalarParameter class. It holds a floating-point
network-visible variable representing the water
level.

• pumpOutput: This object is an instance of the
DAQmxTaskBlock. It updates the actuator of the
pump connected to a digital output of the DAQmx
board.

• pumpOutput.publicXdcr: This object is an instance
of the ScalarParameter class. It holds a boolean
network-visible variable representing the state of
the pump.

• subscriber: This object is an instance of the
SubscriberPort class. It listens to all incoming
publications on the multicast endpoint with address
soap.udp://239.255.1.1:8000/blackBoard.

The NCAP application presents a tree of all

instantiated objects including their class IDs, class
names and dispatch addresses. A column showing the
instantaneous values of Parameters is also provided.
The control algorithm is executed periodically by
means of a timer that ticks ten times per second. All
client/server communications take place on port 8000.

Figure 4. Water-supply pump system.

I2MTC 2008 – International Instrumentation and Measurement Technology Conference
Victoria, Vancouver Island, British Columbia, CANADA, 12-15 May 2008

4. RESULTS

To interact with the NCAP application, we built a

tiny client using the same development tools referred
previously plus NI Measurement Studio v8.1.

As shown in figure 6, the front panel of the tiny
client provides two numeric controls to define the
high/low thresholds of the control algorithm. It also
provides a numeric box and a virtual LED to indicate
the instantaneous values of the water level and pump
state, respectively. In addition, a trend graph presents
that same information as a function of time.

 Figure 7 summarizes the internal functioning of the
NCAP application and the tiny client. Both
applications start by creating the top-level NCAP
Block and its owning objects. All services are properly
registered on the corresponding endpoints and
Parameters are initialized to their default values. Once
completed the startup process, both applications issue
the publication NCAP_ ANNOUNCEMENT to inform
the network about their presence. Afterwards, event
handlers are enabled in order to start the processing
phase, which is driven by the following occurrences
(represented by numbered circles):

• Event 1: This event signals the execution of the

control loop on the NCAP application. It is
generated every 100 millisecond by a high-priority
software timer. In every timer tick, the water level
is read, the control algorithm is computed and the
pump is actuated. During this process, the objects
levelInput.publicXdcr, levelController.output and
pumpOutput.publicXdcr are updated and the
corresponding PARAMETRIC_DATA publications
are drawn on the network.

• Event 2: This event occurs on the tiny client
whenever it receives a PARAMETRIC_DATA
publication containing information about the water
level or the pump state. These publications are
filtered by a SubscriberPort and the attached data is
used to update the indicators on the front panel.
This is a classic application scenario for the
publish/subscribe communication model.

• Event 3: This event occurs on the tiny client
whenever the user changes threshold values using
the numeric controls. Consequently, the tiny client
calls the service WriteAndUpdate on the
corresponding ParameterWithUpdate hosted by the
NCAP application. The remote call is made using
the synchronous mode of the client/server
communication model.

Figure 5. Screenshot of the NCAP application.

Figure 6. Screenshot of the tiny client. This test was carried
under the following conditions: tank capacity = 10 litre;
input flow = 9 litre/minute; and output flow = 3
litre/minute.

I2MTC 2008 – International Instrumentation and Measurement Technology Conference
Victoria, Vancouver Island, British Columbia, CANADA, 12-15 May 2008

• Event 4: This event occurs on the NCAP
application whenever the objects
levelController.high/lowThreshold receive a remote
call to the service WriteAndUpdate.

• Event 5: This event is generated when the user
closes the application.

For this simple example, we used configuration

files to statically bind service endpoints on both sides
(the NCAP application and the tiny client). In the
future, dynamic binding shall be implemented by
taking advantage of NCAPBLOCK_ANNOUNCEMENT
publications.

The mention to commercially available products
from specific vendors was done only to exemplify
application scenarios of the proposed NCAP solution.
Obviously, interoperable products from others
manufacturers may also be considered.

5. CONCLUSION

 This paper demonstrates that it is possible to
combine the 1451.1 Std with Web Services in order to
build a service-based application processor. The
proposed NCAP prototype implements the client/server
communication model using native WCF facilities. It
also implements the publish/subscribe communication
model using a dedicated WCF Web Service connected
to a multicast UDP-based endpoint. In addition, the
prototype implements a correction engine and extends
transducer interfaces by supporting DAQmx boards.
Finally, our prototype takes advantage of the
productivity supplied by the .NET Framework and it is

completely interoperable with any Web Service
compliant device.

REFERENCES

[1] IEEE Std. 1451.1-1999, “IEEE Standard for a Smart Transducer

Interface for Sensors and Actuators – Network Capable
Application Processor (NCAP) Information Model”

[2] IEEE Std. 1451.2, “IEEE Standard for a Smart Transducer
Interface for Sensors and Actuators – Transducer to
Microprocessor Communication Protocols and Transducer
Electronic Datasheet (TEDS) Formats”, USA, 1998

[3] IEEE Std. 1451.3, “IEEE Standard for a Smart Transducer
Interface for Sensors and Actuators – Digital Communication
and Transducer Electronic Datasheet (TEDS) Formats for
Distributed Multidrop Systems”, USA, 2004

[4] IEEE Std. 1451.4, “IEEE Standard for a Smart Transducer
Interface for Sensors and Actuators – Mixed-Mode
Communication Protocols and Transducer Electronic Datasheet
(TEDS) Formats”, USA, 2004

[5] IEEE Std. 1451.5, “IEEE Standard for a Smart Transducer
Interface for Sensors and Actuators – Wireless Communication
Protocols and Transducer Electronic Datasheet (TEDS)
Formats”, USA, 2007

[6] Adam Freeman, Allen Jones, “Microsoft .NET, XML Web
Services Step by Step”, Microsoft Press, USA, 2003, ISBN 0-
7356-1720-1

[7] www.w3.org/2002/ws
[8] http://www.w3.org/2000/xp/Group
[9] http://www.w3.org/2002/ws/desc
[10] www.w3.org
[11] David S. Platt, “Introducing Microsoft .NET”, 3rd Edition,

Microsoft Press, USA, 2003, ISBN 0-7356-1918-2
[12] http://msdn2.microsoft.com/en-us/netframework/default.aspx
[13] http://msdn2.microsoft.com/en-us/netframework/aa663324.aspx
[14] http://zone.ni.com/devzone/cda/tut/p/id/5434
[15] Juval Lowy, “Programming WCF Services”, O’Reilly, USA,

2007, ISBN 0-596-52699-7

Figure 7. Flowchart of: a) NCAP application; b) tiny client.

