
Performance Evaluation of a

Web-Service-Based DMCS

Vítor Viegas
1,2
, Pedro Girão

2
, Miguel Dias Pereira

1,2

1
ESTSetúbal-LabIM, Instituto Politécnico de Setúbal, Setúbal, Portugal

2
Instituto de Telecomunicações, Lisboa, Portugal

Email: vviegas@est.ips.pt

Abstract – The paper describes a set of experiments conducted on

a service-oriented middleware infrastructure in order to evaluate

its performance and applicability in the context of Distributed

Measurement and Control Systems (DMCS). The infrastructure,

entirely based on Web Services, was built using the Windows

Communication Foundation (WCF), a software package released

by Microsoft to develop distributed applications. The

experiments were performed on a real plant equipped with all the

instrumentation needed to run control loops for pressure, level,

flow and temperature, quantities widely found in the process

industry. The work focus on measuring the time delays

associated with control loops and remote calls. The methodology

of each experiment is described, results are presented and

conclusions are drawn.

Keywords – Web Service, DMCS, process, time delay, network

traffic

I. INTRODUCTION

The explosion of the Internet in the 1990’s brought new
challenges and new opportunities to the software industry. The
market claimed for new products in areas such as browsing,
multimedia and distributed applications in general. Companies
worked day and night to fill market needs and to conquer new
clients by proposing innovative solutions. The need to produce
more and better code in less time could only be compensated
by improving software productivity. This became possible with
the release of new development frameworks that include last-
generation programming languages, pre-built code libraries,
intuitive debugging tools and high-performance virtual
machines. Two well-known examples of such frameworks are
the Java Platform and the .NET Framework.

The Java Platform [1-2] was released by Sun Microsystems
in 1996. It refers to a set of components that together allow the
development and execution of applications written in the Java
programming language. Java is used in a wide variety of
environments from embedded devices and mobile phones to
desktop computers and enterprise servers. The platform is
composed by three main components:

• Java language: The Java language borrows heavily
from C and C++ but it adds high-level facilities such as
automatic memory management, security and
threading. The high-level code is compiled to an
intermediate language known as “Java bytecode”.

• Java Virtual Machine (JVM): The JVM executes Java
bytecode, which is the same no matter what hardware
or operating system the program is running under. The
JVM takes the Java bytecode and compiles it to native
processor instructions by using a just-in-time compiler.
Although Java applications are platform independent,
the code of the JVM is not; every supported processor
and operating system has its own JVM.

• Class libraries: The Java Platform provides a vast set of
dynamically loadable libraries that can be used by the
programmer to perform common tasks. Thousands of
pre-built classes are available to construct graphical
user interfaces, interact with databases, handle network
communications, access files and so on.

The success of Java and its concept of write once and run
anywhere has led to other similar efforts, notably the .NET
Framework released by Microsoft in 2002. The .NET
Framework [3-4] is targeted for the development and execution
of applications in the Windows operating system (although in
theory any other operating system can be used as well). The
framework is composed by three main components:

• New programming languages: Microsoft released two
new programming languages to serve the purposes of
the .NET Framework: the C# which is a kind of
modern Java; and VB.NET which is the evolution of
Visual Basic. The high-level code is compiled into an
intermediate language known as “Microsoft Common
Intermediate Language” (MSIL).

• Common Language Runtime (CLR): The CLR is a
virtual machine – conceptually similar to the JVM –
that executes MSIL.

• Class libraries: Like the Java Platform, the .NET
Framework also provides a vast set of pre-built classes
to simplify the programmer’s job. Correlated classes
are grouped in software packages according their
functional affinities. A good example is the Windows
Communication Foundation (WCF) [5], a package that
provides the essential off-the-shelf plumbing required
to develop secure, reliable and interoperable distributed
applications.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Comum

https://core.ac.uk/display/62691202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The gains concerning software productivity were followed
by the development of cross-platform Web Service-oriented
applications [6-7]. These applications cooperate in
heterogeneous environments like the Internet by calling remote
methods (services) between them. Interoperability is achieved
by imposing standards that describe the behavior of the service
and the way to access it, regardless of its underlying
implementation. This idea is not new, but new is the fact that
Web Services are getting a wide acceptance among the
software community. Because they are supported by all the
major software companies around the world (such as IBM,
Microsoft and Sun Microsystems), Web Services have the
chance to become the first widely used middleware solution
and the answer for many interoperability problems.

The advances in terms of software productivity and
interoperability are very tempting to be used in the context of
Distributed Measurement and Control Systems (DMCS).
Following this idea, the authors present a DMCS that takes
advantage of the productivity supplied by the .NET Framework
and the interoperability provided by Web Services.
Nevertheless, this strategy has some pitfalls and drawbacks, in
particular those related with the overhead introduced by
additional software layers involved in data transfer and
processing. This overhead can be evaluated by measuring the
time delays associated with control loops and remote calls as
proposed in this paper. The results obtained can serve as
guidelines and benchmarks for the future.

The paper is organized as follows: section II describes the
service-based DMCS prototype used as reference model;
section III describes the physical process used as test bench;
section IV reports the experiments conducted; and section V
extracts conclusions.

II. DMCS PROTOTYPE

The DMCS prototype was presented by the authors in [8].
The system is composed by several computer stations that
connect to a Local Area Network (LAN). All computers are
equipped with the Windows XP operating system plus .NET
Framework 3.5. Two types of stations must be considered:

• Control stations: The control station is an application
that executes one or more control loops, alone or in
collaboration with other control stations.

• Engineering stations: The engineering station is an
application that performs configuration and monitoring
tasks. The configuration process involves the discovery
of all stations present in the system and the ability to
invoke remote methods on them. The monitoring
process implies the interception and logging of all
remote variables each time they are updated.

All stations follow the information model proposed by the
IEEE 1451.1 Std [9], making them Network Capable
Application Processors (NCAP). Each station is an object-
oriented application that creates and manipulates 1451.1-

Blocks and -Components. These objects were previously coded
in VB.NET 2008 and assembled as a reusable Dynamic Link
Library (DLL). The library is composed by 16 classes forming
a fully functional subset of the 1451.1 object model (see table
1).

TABLE I. SUBSET OF THE 1451.1 OBJECT MODEL

Class Name Abstract? Summary

Root Yes Is the root for all objects.

Entity Yes Is the root for all network visible objects.

Block Yes Is the root for all Blocks.

PBlock No Represents the NCAP as a whole.

FBlock Yes Is the root for all Function Blocks.

HysteresisBlock No
Implements the schmitt-trigger algorithm,

useful for ON/OFF control.

PIDBlock No
Implements the Proportional Integral

Derivative (PID) control algorithm.

DAQmxTBlock No
Supports Data AcQuisition (DAQ) tasks
compliant with the DAQmx driver.

Component Yes Is the root for all Components.

Parameter No Represents a network visible variable.

PhysicalParameter Yes
Adds metadata structures to describe a
network visible variable.

ScalarParameter No
Models quantities that are appropriately

represented as mathematical scalars.

DAQmxTChannel No
Provides access to the properties of a DAQ

channel.

Subscriber No Listens to publications on the network.

Publisher No Issues publications on the network.

Client (Of T) No
Helper class used to invoke remote

methods on server objects.

On the field side, control stations work with DAQ boards
compliant with the DAQmx driver from National Instruments
(NI). Field sensors/actuators are respectively connected to
input/output channels of DAQ boards. Each DAQ channel can
be automatically configured by reading the Transducer
Electronic Data Sheet (TEDS) of the attached transducer
according the directives of the 1451.4 Std [10]. Individual field
variables are well represented by 1451.1-ScalarParameter
objects.

 On the network side, inter-station communications are
completely based on Web Services. All 1451.1 objects are
implemented as WCF Web Services following the best
practices described in the literature [11]. Whenever a service is
created, it registers itself on a HyperText Transfer Protocol
(HTTP) endpoint and exposes its methods on the network. If a
client wants to invoke a method, it gets the dispatch address of
the service, creates a proxy at run-time, executes the remote
call and waits for results (if any). No security credentials are
used.

As shown in figure 1, the control station provides a
Graphical User Interface (GUI) through which the operator can
view and edit the values of loop variables.

III. PHYSICAL PROCESS

The DMCS prototype was customized for the physical
process represented in figure 2. The process is a training plant
– model TE34 from Plint&Partners Ltd – that includes all the
instrumentation needed to run the following control loops:

• Pressure loop: The pressure inside the closed tank C2
is measured by the transmitter PT and is controlled by
operating the control valves PCV1 and PCV2 (which
form a complementary pair). The pressure increases
when PCV1 opens while PCV2 closes, and vice-versa.

• Level loop: The water level inside C2 is measured by
the transmitter LT and is controlled by operating the
control valves FCV1 and FCV2 (which also form a
complementary pair). The water is continuously
pumped from the open tank C1 to the closed tank and
returns back through the hand valve HV.

• Temperature loop: The temperature of the water
entering in C1 is measured by the transmitter TT1 and
is controlled by operating the control valve TCV. In
alternative, the temperature of the water inside C1 can
be considered by using the transmitter TT2. The flow
of hot water is constant while the flow of cold water
can be adjusted. The open tank is equipped with an
overflow tube connected to the drain.

Table 2 lists all the instruments installed on the plant. The
connection of the pneumatic instruments to the control stations
was done using pressure-to-voltage converters (for the
transmitters) and voltage-to-pressure converters (for the control
valves). All converters, transmitters and control valves were
properly calibrated before experiments took place.

TABLE II. FIELD INSTRUMENTS

Tag Manufacturer Model Signal Summary

PT FOXBORO 821GM-IS1NM1-A 4-20 mA Pressure transmitter

PCV1 MASONEILAN 29000 0.2-1 bar Pressure control valve

PCV2 MASONEILAN 29000 0.2-1 bar Pressure control valve

LT FOXBORO 15A-LS1-R 0.2-1 bar Level transmitter

FCV1 MASONEILAN 29000 0.2-1 bar Flow control valve

FCV2 MASONEILAN 29000 0.2-1 bar Flow control valve

FT FOXBORO 15A-LS1 0.2-1 bar Orifice flowmeter

TT1 FOXBORO E94-P625 4-20 mA Temperature transmitter

TT2 FOXBORO E94-P625 4-20 mA Temperature transmitter

TCV MASONEILAN 29000 0.2-1 bar Temperature control valve

Two control stations were used to execute the control
loops: the pressure and level loops were assigned to control
station number one (CS1) and the temperature loop was
assigned to control station number two (CS2). Both control
stations were equipped with identical DAQ boards – model
USB-6008 from NI. Table 3 summarizes the connections
between the field instruments and the control stations.

TABLE III. FIELD CONNECTIONS

Station DAQ Channel Connects To

CS1

AI0 (a) PT

AI1 LT

AI2 FT

AO0 (b) PCV1 and PCV2

AO1 FCV1 and FCV2

CS2

AI0 TT1

AI1 TT2

AO0 TCV

(a) Analog Input

(b) Analog Output

Finally, an engineering station (ES) was added to configure
and monitor the control loops. The three stations were installed
on three distinct machines, all having the same characteristics
as described in table 4. The three computers were connected to
an 8 port hub – model 3C16753 from 3Com – forming a
private 100 Mbit Ethernet LAN. Figure 3 presents the topology
of the final system.

Figure 1. Control station.

Figure 2. Control station.

TABLE IV. COMPUTATIONAL SUPPORT

Component Description

Motherboard INTEL ESSENTIAL DG41RQ

Processor INTEL PENTIUM DUAL CORE E5300, 2.6 GHz

Memory 4 GB of RAM DDR2 800 Mhz

Hard disk SEAGATE 320 GB SATA II ST3320613AS

Operating system Windows XP Home SP3 plus .NET Framework 3.5

IV. EXPERIMENTAL RESULTS

A. Cycle Time

Each control station acts like a Programmable Logic
Controller (PLC) by running a timed loop on a dedicated thread
with priority above normal. On every loop iteration, data is
acquired from transmitters, the control routine is executed and
actuation values are written to control valves, by this order.
Precise timing is achieved by performing passive waits with a
resolution of 1 ms. The elapsed time between iterations – called
“cycle time” – determines the sampling frequency of the
control station and has a strong impact on the quality of control
algorithms.

To evaluate the cycle time of the proposed DMCS a set of
experiments were done involving the station control CS1
(because it is more loaded than CS2). The following
methodology was adopted:

1. A Stopwatch object [12] was added to the timed loop
in order to measure the elapsed time between iterations
with a resolution of 1/2.6 GHz < 39 ns.

2. The CS1 was started assuming a nominal time cycle of
100 ms. About 1000 samples of effective cycle time
were acquired and logged in a file.

3. Step 2 was repeated for the following nominal values:
50 ms, 200 ms and 1000 ms. Figure 4 presents the
distribution of the samples for 50 ms and 100 ms.
Table 5 summarizes the results of all experiments.

TABLE V. CYCLE TIME OF CS1

Nominal

Value (ms)

Effective Value (ms) Mean Relative

Error (a) (%)

Centered

Samples (b) (%) Mean Min Max

50 60,19 57 65 20,38 0

100 100,48 100 101 0,480 100

200 200,52 200 201 0,260 100

1000 1000,46 1000 1001 0,046 100

(a) Defined as 100 × |Nominal Value - Mean Effective Value| / Nominal Value.

(b) Percentage of samples inside the interval Nominal Value ± 1 ms.

The collected data can be analyzed as follows:

• Above 100 ms inclusive, the mean value of effective
cycle time is very close to the nominal value. The
mean relative error tends to decrease suggesting that
bigger cycle times are more accurate.

• Above 100 ms inclusive, the percentage of centered
samples is 100%, meaning that Windows performs
reasonably well although is not a real-time operating
system.

• Below 100 ms the nominal cycle time is not satisfied.
The minimum mean value of effective cycle time is
approximately 60 ms, which corresponds to a
maximum sampling frequency of 16 Hz. Given the
inertia of the physical process, a sampling frequency of
5 Hz is sufficient to control it.

B. Communication Delay

Web Services are natively prepared to implement the
client/server communication model. When the client creates a
proxy and executes a remote call a lot of work is done behind
the scenes (see figure 5):

1. The proxy serializes the call stack frame to a message
and sends it down to a chain of channels.

2. A channel is merely an interceptor, whose purpose is
to perform a specific task like formatting the message
or adding security credentials. The default formatter
implements the Simple Object Access Protocol
(SOAP) [13], which is targeted for cross-platform

Figure 3. Topology of the final system.

Figure 4. Effective cycle time occurrences (black circles for a nominal value

of 50 ms and black squares for a nominal value of 100 ms).

communications. The WCF allows the creation of
custom channels to meet special requirements.

3. The last channel on the client side – the transport
channel – sends the SOAP message over the
configured transport (such as HTTP).

4. On the host side, the message goes through a chain of
channels that perform operations such as security
checking and message de-formatting. The last channel
passes the message to the dispatcher, which converts it
to a stack frame and calls the service locally.

5. The service executes the call and returns control to the
dispatcher, which then converts the returned values and
error information (if any) to a return message.

6. The return message flows in the opposite direction: it
passes through the host-side channels, then the client-
side channels and arrives to the proxy, which converts
it to a stack frame and returns control to the client.

The layered structure depicted in figure 5 is very flexible
but introduces a great amount of delay in the communication
path between the client and the server. This delay interferes
with the sampling frequency of distributed control loops and
degrades the responsiveness of the whole system.

To evaluate the communication delay of the proposed
DMCS a set of experiments were done adopting the following
methodology:

1. The cycle time of all control stations was adjusted to
200 ms. The control routine of CS1 was modified to
periodically read the setpoint of the temperature loop
running in CS2. In this scenario CS1 is the client and
CS2 is the server.

2. Two instructions were added on the client side,
immediately before and after the remote call, in order
to generate a positive pulse on the data bits of the
client’s parallel port. This pulse defines the amount of

time that the read operation takes to execute (including
the communication delay).

3. Two instructions were also added on the server side,
one at the beginning of the service and the other at the
end, in order to generate a positive pulse on the data
bits of the server’s parallel port. This pulse defines the
amount of time that the read operation takes to be
serviced (excluding the communication delay).

4. Both pulsed signals were connected to a XOR gate to
discriminate two communication delays (see figure 6):

τ1 representing the client-to-sever delay, and τ2
representing the server-to-client delay.

5. A Virtual Instrument (VI) was built in LabVIEW to

measure τ1 and τ2. The VI runs on a dedicated
computer equipped with a DAQ board – model PCI-
6024E from NI – that provides two 24-bit counters.
The counter 0 was used to measure pulse width with a
resolution of 1/20 MHz = 5 ns.

6. The process was started and all stations were launched.

About 1000 samples of τ1 and τ2 were acquired and
processed. Figure 7 presents the corresponding

distribution of τ1.

7. The network was loaded by connecting two more
computers to the hub. These computers were
programmed to exchange large amounts of data
between them using Transmission Control Protocol
(TCP) sockets. Step 6 was repeated for the following
values of traffic load: 6%, 12%, 25%, 50% and 70%.

Figure 8 presents the distribution of τ1 for a traffic load
of 50%. Table 6 summarizes the results of all
experiments.

The collected data can be analyzed as follows:

• The communication delay (τ1 + τ2) is in the range of
few ms.

• The delay τ1 is longer than the delay τ2 because the
client-to-server message is bigger than the return
message.

• For low traffic loads (less than 1% as is the case of

figure 7) the delays τ1 and τ2 have Gaussian
distributions, which are justified by the random
behavior of the Windows scheduler.

• For higher traffic loads (as is the case of figure 8) the

delays τ1 and τ2 have exponential distributions, which
are justified by the contention in the network. These
distributions are in agreement with the queueing theory
[14], which is accepted as a valid mathematical model
for Ethernet.

• The delays τ1 and τ2 become longer as the contention
in the network worsens.

Figure 5. WCF Web Services data flow.

V. CONCLUSIONS

An innovative DMCS was presented in this paper. The
system takes advantage of the productivity supplied by the
.NET Framework and the interoperability provided by Web
Services. The performance of the proposed solution was
evaluated by measuring the maximum achievable sampling
frequency and the communication delay of remote calls.

In terms of sampling frequency, results were obtained for a
control station running two control loops. The control station
performed well for sampling frequencies of 10 Hz or lower.
Given the inertia of the physical process, a sampling frequency
of 5 Hz was adopted with good results.

In terms of communication delay, the following
conclusions shall be retained:

• The communication delay is in the range of few ms,
becoming longer as the contention in the network
worsens.

• The client-to-server and server-to-client delays depend
on the size of the underlying SOAP messages.

• For low traffic loads the communication delay has
Gaussian distribution justified by the random behavior
of the Windows scheduler.

• For higher traffic loads the communication delay has
exponential distribution justified by the contention in
the network.

REFERENCES

[1] http://www.sun.com/java

[2] http://java.sun.com/docs/books/tutorial

[3] David S. Platt, “Introducing Microsoft .NET”, 3rd Edition, Microsoft
Press, USA, 2003, ISBN 0-7356-1918-2

[4] http://msdn2.microsoft.com/en-us/netframework/default.aspx

[5] http://msdn2.microsoft.com/en-us/netframework/aa663324.aspx

[6] http://www.w3.org/TR/ws-arch

[7] Adam Freeman, Allen Jones, “Microsoft .NET, XML Web Services Step
by Step”, Microsoft Press, USA, 2003, ISBN 0-7356-1720-1

[8] Vítor Viegas, P. Silva Girão, J. M. Dias Pereira, “Open Controller for
Distributed Instrumentation Systems”, IEEE International Workshop on
Intelligent Data Acquisition and Advanced Computing Systems
(IDAACS) – Technology and Applications, Rende, Cosenza, Italy,
September 2009

[9] IEEE Std. 1451.1-1999, “IEEE Standard for a Smart Transducer
Interface for Sensors and Actuators – Network Capable Application
Processor (NCAP) Information Model”

[10] IEEE Std. 1451.4, “IEEE Standard for a Smart Transducer Interface for
Sensors and Actuators – Mixed-Mode Communication Protocols and
Transducer Electronic Datasheet (TEDS) Formats”, USA, 2004

[11] Juval Lowy, “Programming WCF Services”, O’Reilly, USA, 2007,
ISBN 0-596-52699-7

[12] http://msdn.microsoft.com/en-us/library/system.diagnostics.stopwatch.aspx

[13] http://www.w3schools.com/soap/default.asp

[14] Gerd E. Keiser, “Local Area Networks”, McGraw-Hill, 1989, ISBN 0-07-
100380-0

Figure 6. Communication delays τ1 and τ2.

Figure 7. Distribution of τ1 with no extra traffic load.

Figure 8. Distribution of τ1 with traffic load = 50%.

TABLE VI. COMMUNICATION DELAYS FOR VARIOUS VALUES OF TRAFFIC

LOAD

Traffic

Load

ττττ1 ττττ2

Distribution Mean (ms) Distribution Mean (ms)

< 1% (a) Gaussian 1,303 Gaussian 0,619

6% Exponential 1,458 Exponential 0,813

12% Exponential 1,806 Exponential 0,969

25% Exponential 1,807 Exponential 0,971

50% Exponential 2,634 Exponential 1,373

70% Exponential 3,062 Exponential 2,042

(a) No extra traffic introduced in the network.

