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Abstract – The paper describes a set of experiments conducted on 

a service-oriented middleware infrastructure in order to evaluate 

its performance and applicability in the context of Distributed 

Measurement and Control Systems (DMCS). The infrastructure, 

entirely based on Web Services, was built using the Windows 

Communication Foundation (WCF), a software package released 

by Microsoft to develop distributed applications. The 

experiments were performed on a real plant equipped with all the 

instrumentation needed to run control loops for pressure, level, 

flow and temperature, quantities widely found in the process 

industry. The work focus on measuring the time delays 

associated with control loops and remote calls. The methodology 

of each experiment is described, results are presented and 

conclusions are drawn. 
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I.  INTRODUCTION 

The explosion of the Internet in the 1990’s brought new 
challenges and new opportunities to the software industry. The 
market claimed for new products in areas such as browsing, 
multimedia and distributed applications in general. Companies 
worked day and night to fill market needs and to conquer new 
clients by proposing innovative solutions. The need to produce 
more and better code in less time could only be compensated 
by improving software productivity. This became possible with 
the release of new development frameworks that include last-
generation programming languages, pre-built code libraries, 
intuitive debugging tools and high-performance virtual 
machines. Two well-known examples of such frameworks are 
the Java Platform and the .NET Framework. 

The Java Platform [1-2] was released by Sun Microsystems 
in 1996. It refers to a set of components that together allow the 
development and execution of applications written in the Java 
programming language. Java is used in a wide variety of 
environments from embedded devices and mobile phones to 
desktop computers and enterprise servers. The platform is 
composed by three main components:  

• Java language: The Java language borrows heavily 
from C and C++ but it adds high-level facilities such as 
automatic memory management, security and 
threading. The high-level code is compiled to an 
intermediate language known as “Java bytecode”. 

• Java Virtual Machine (JVM): The JVM executes Java 
bytecode, which is the same no matter what hardware 
or operating system the program is running under. The 
JVM takes the Java bytecode and compiles it to native 
processor instructions by using a just-in-time compiler. 
Although Java applications are platform independent, 
the code of the JVM is not; every supported processor 
and operating system has its own JVM. 

• Class libraries: The Java Platform provides a vast set of 
dynamically loadable libraries that can be used by the 
programmer to perform common tasks. Thousands of 
pre-built classes are available to construct graphical 
user interfaces, interact with databases, handle network 
communications, access files and so on.  

The success of Java and its concept of write once and run 
anywhere has led to other similar efforts, notably the .NET 
Framework released by Microsoft in 2002. The .NET 
Framework [3-4] is targeted for the development and execution 
of applications in the Windows operating system (although in 
theory any other operating system can be used as well). The 
framework is composed by three main components: 

• New programming languages: Microsoft released two 
new programming languages to serve the purposes of 
the .NET Framework: the C# which is a kind of 
modern Java; and VB.NET which is the evolution of 
Visual Basic. The high-level code is compiled into an 
intermediate language known as “Microsoft Common 
Intermediate Language” (MSIL). 

• Common Language Runtime (CLR): The CLR is a 
virtual machine – conceptually similar to the JVM – 
that executes MSIL. 

• Class libraries: Like the Java Platform, the .NET 
Framework also provides a vast set of pre-built classes 
to simplify the programmer’s job. Correlated classes 
are grouped in software packages according their 
functional affinities. A good example is the Windows 
Communication Foundation (WCF) [5], a package that 
provides the essential off-the-shelf plumbing required 
to develop secure, reliable and interoperable distributed 
applications. 
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The gains concerning software productivity were followed 
by the development of cross-platform Web Service-oriented 
applications [6-7]. These applications cooperate in 
heterogeneous environments like the Internet by calling remote 
methods (services) between them. Interoperability is achieved 
by imposing standards that describe the behavior of the service 
and the way to access it, regardless of its underlying 
implementation. This idea is not new, but new is the fact that 
Web Services are getting a wide acceptance among the 
software community. Because they are supported by all the 
major software companies around the world (such as IBM, 
Microsoft and Sun Microsystems), Web Services have the 
chance to become the first widely used middleware solution 
and the answer for many interoperability problems. 

The advances in terms of software productivity and 
interoperability are very tempting to be used in the context of 
Distributed Measurement and Control Systems (DMCS). 
Following this idea, the authors present a DMCS that takes 
advantage of the productivity supplied by the .NET Framework 
and the interoperability provided by Web Services. 
Nevertheless, this strategy has some pitfalls and drawbacks, in 
particular those related with the overhead introduced by 
additional software layers involved in data transfer and 
processing. This overhead can be evaluated by measuring the 
time delays associated with control loops and remote calls as 
proposed in this paper. The results obtained can serve as 
guidelines and benchmarks for the future. 

The paper is organized as follows: section II describes the 
service-based DMCS prototype used as reference model; 
section III describes the physical process used as test bench; 
section IV reports the experiments conducted; and section V 
extracts conclusions. 

II. DMCS PROTOTYPE 

The DMCS prototype was presented by the authors in [8]. 
The system is composed by several computer stations that 
connect to a Local Area Network (LAN). All computers are 
equipped with the Windows XP operating system plus .NET 
Framework 3.5. Two types of stations must be considered: 

• Control stations: The control station is an application 
that executes one or more control loops, alone or in 
collaboration with other control stations. 

• Engineering stations: The engineering station is an 
application that performs configuration and monitoring 
tasks. The configuration process involves the discovery 
of all stations present in the system and the ability to 
invoke remote methods on them. The monitoring 
process implies the interception and logging of all 
remote variables each time they are updated. 

All stations follow the information model proposed by the 
IEEE 1451.1 Std [9], making them Network Capable 
Application Processors (NCAP). Each station is an object-
oriented application that creates and manipulates 1451.1-

Blocks and -Components. These objects were previously coded 
in VB.NET 2008 and assembled as a reusable Dynamic Link 
Library (DLL). The library is composed by 16 classes forming 
a fully functional subset of the 1451.1 object model (see table 
1). 

TABLE I.  SUBSET OF THE 1451.1 OBJECT MODEL 

Class Name Abstract? Summary 

Root Yes Is the root for all objects. 

Entity Yes Is the root for all network visible objects. 

Block Yes Is the root for all Blocks. 

PBlock No Represents the NCAP as a whole. 

FBlock Yes Is the root for all Function Blocks. 

HysteresisBlock No 
Implements the schmitt-trigger algorithm, 

useful for ON/OFF control. 

PIDBlock No 
Implements the Proportional Integral 

Derivative (PID) control algorithm. 

DAQmxTBlock No 
Supports Data AcQuisition (DAQ) tasks 
compliant with the DAQmx driver. 

Component Yes Is the root for all Components. 

Parameter No Represents a network visible variable. 

PhysicalParameter Yes 
Adds metadata structures to describe a 
network visible variable. 

ScalarParameter No 
Models quantities that are appropriately 

represented as mathematical scalars. 

DAQmxTChannel No 
Provides access to the properties of a DAQ 

channel. 

Subscriber No Listens to publications on the network. 

Publisher No Issues publications on the network. 

Client (Of T) No 
Helper class used to invoke remote 

methods on server objects. 

 

On the field side, control stations work with DAQ boards 
compliant with the DAQmx driver from National Instruments 
(NI). Field sensors/actuators are respectively connected to 
input/output channels of DAQ boards. Each DAQ channel can 
be automatically configured by reading the Transducer 
Electronic Data Sheet (TEDS) of the attached transducer 
according the directives of the 1451.4 Std [10]. Individual field 
variables are well represented by 1451.1-ScalarParameter 
objects. 

 On the network side, inter-station communications are 
completely based on Web Services. All 1451.1 objects are 
implemented as WCF Web Services following the best 
practices described in the literature [11]. Whenever a service is 
created, it registers itself on a HyperText Transfer Protocol 
(HTTP) endpoint and exposes its methods on the network. If a 
client wants to invoke a method, it gets the dispatch address of 
the service, creates a proxy at run-time, executes the remote 
call and waits for results (if any). No security credentials are 
used. 

As shown in figure 1, the control station provides a 
Graphical User Interface (GUI) through which the operator can 
view and edit the values of loop variables. 



III. PHYSICAL PROCESS 

The DMCS prototype was customized for the physical 
process represented in figure 2. The process is a training plant 
– model TE34 from Plint&Partners Ltd – that includes all the 
instrumentation needed to run the following control loops: 

• Pressure loop: The pressure inside the closed tank C2 
is measured by the transmitter PT and is controlled by 
operating the control valves PCV1 and PCV2 (which 
form a complementary pair). The pressure increases 
when PCV1 opens while PCV2 closes, and vice-versa. 

• Level loop: The water level inside C2 is measured by 
the transmitter LT and is controlled by operating the 
control valves FCV1 and FCV2 (which also form a 
complementary pair). The water is continuously 
pumped from the open tank C1 to the closed tank and 
returns back through the hand valve HV. 

• Temperature loop: The temperature of the water 
entering in C1 is measured by the transmitter TT1 and 
is controlled by operating the control valve TCV. In 
alternative, the temperature of the water inside C1 can 
be considered by using the transmitter TT2. The flow 
of hot water is constant while the flow of cold water 
can be adjusted. The open tank is equipped with an 
overflow tube connected to the drain. 

Table 2 lists all the instruments installed on the plant. The 
connection of the pneumatic instruments to the control stations 
was done using pressure-to-voltage converters (for the 
transmitters) and voltage-to-pressure converters (for the control 
valves). All converters, transmitters and control valves were 
properly calibrated before experiments took place. 

TABLE II.  FIELD INSTRUMENTS 

Tag Manufacturer Model Signal Summary 

PT FOXBORO 821GM-IS1NM1-A 4-20 mA Pressure transmitter 

PCV1 MASONEILAN 29000 0.2-1 bar Pressure control valve 

PCV2 MASONEILAN 29000 0.2-1 bar Pressure control valve 

LT FOXBORO 15A-LS1-R 0.2-1 bar Level transmitter 

FCV1 MASONEILAN 29000 0.2-1 bar Flow control valve 

FCV2 MASONEILAN 29000 0.2-1 bar Flow control valve 

FT FOXBORO 15A-LS1 0.2-1 bar Orifice flowmeter 

TT1 FOXBORO E94-P625 4-20 mA Temperature transmitter 

TT2 FOXBORO E94-P625 4-20 mA Temperature transmitter 

TCV MASONEILAN 29000 0.2-1 bar Temperature control valve 

 

Two control stations were used to execute the control 
loops: the pressure and level loops were assigned to control 
station number one (CS1) and the temperature loop was 
assigned to control station number two (CS2). Both control 
stations were equipped with identical DAQ boards – model 
USB-6008 from NI. Table 3 summarizes the connections 
between the field instruments and the control stations. 

TABLE III.  FIELD CONNECTIONS 

Station DAQ Channel Connects To 

CS1 

AI0 (a) PT 

AI1 LT 

AI2 FT 

AO0 (b) PCV1 and PCV2 

AO1 FCV1 and FCV2 

CS2 

AI0 TT1 

AI1 TT2 

AO0 TCV 

(a) Analog Input 

(b) Analog Output 

 

Finally, an engineering station (ES) was added to configure 
and monitor the control loops. The three stations were installed 
on three distinct machines, all having the same characteristics 
as described in table 4. The three computers were connected to 
an 8 port hub – model 3C16753 from 3Com – forming a 
private 100 Mbit Ethernet LAN. Figure 3 presents the topology 
of the final system. 

 

Figure 1.  Control station. 

 

Figure 2.  Control station. 



TABLE IV.  COMPUTATIONAL SUPPORT  

Component Description 

Motherboard INTEL ESSENTIAL DG41RQ 

Processor INTEL PENTIUM DUAL CORE E5300, 2.6 GHz 

Memory 4 GB of RAM DDR2 800 Mhz 

Hard disk SEAGATE 320 GB SATA II ST3320613AS 

Operating system Windows XP Home SP3 plus .NET Framework 3.5 
 

IV. EXPERIMENTAL RESULTS 

A. Cycle Time 

Each control station acts like a Programmable Logic 
Controller (PLC) by running a timed loop on a dedicated thread 
with priority above normal. On every loop iteration, data is 
acquired from transmitters, the control routine is executed and 
actuation values are written to control valves, by this order. 
Precise timing is achieved by performing passive waits with a 
resolution of 1 ms. The elapsed time between iterations – called 
“cycle time” – determines the sampling frequency of the 
control station and has a strong impact on the quality of control 
algorithms.  

To evaluate the cycle time of the proposed DMCS a set of 
experiments were done involving the station control CS1 
(because it is more loaded than CS2). The following 
methodology was adopted: 

1. A Stopwatch object [12] was added to the timed loop 
in order to measure the elapsed time between iterations 
with a resolution of 1/2.6 GHz < 39 ns. 

2. The CS1 was started assuming a nominal time cycle of 
100 ms. About 1000 samples of effective cycle time 
were acquired and logged in a file. 

3. Step 2 was repeated for the following nominal values: 
50 ms, 200 ms and 1000 ms. Figure 4 presents the 
distribution of the samples for 50 ms and 100 ms. 
Table 5 summarizes the results of all experiments. 

TABLE V.  CYCLE TIME OF CS1  

Nominal 

Value (ms) 

Effective Value (ms) Mean Relative 

Error (a) (%) 

Centered 

Samples (b) (%) Mean Min Max 

50 60,19 57 65 20,38 0 

100 100,48 100 101 0,480 100 

200 200,52 200 201 0,260 100 

1000 1000,46 1000 1001 0,046 100 

(a) Defined as 100 × |Nominal Value - Mean Effective Value| / Nominal Value. 

(b) Percentage of samples inside the interval Nominal Value ± 1 ms. 

 

The collected data can be analyzed as follows: 

• Above 100 ms inclusive, the mean value of effective 
cycle time is very close to the nominal value. The 
mean relative error tends to decrease suggesting that 
bigger cycle times are more accurate. 

• Above 100 ms inclusive, the percentage of centered 
samples is 100%, meaning that Windows performs 
reasonably well although is not a real-time operating 
system.  

• Below 100 ms the nominal cycle time is not satisfied. 
The minimum mean value of effective cycle time is 
approximately 60 ms, which corresponds to a 
maximum sampling frequency of 16 Hz. Given the 
inertia of the physical process, a sampling frequency of 
5 Hz is sufficient to control it. 

B. Communication Delay 

Web Services are natively prepared to implement the 
client/server communication model. When the client creates a 
proxy and executes a remote call a lot of work is done behind 
the scenes (see figure 5): 

1. The proxy serializes the call stack frame to a message 
and sends it down to a chain of channels. 

2. A channel is merely an interceptor, whose purpose is 
to perform a specific task like formatting the message 
or adding security credentials. The default formatter 
implements the Simple Object Access Protocol 
(SOAP) [13], which is targeted for cross-platform 

 

Figure 3.  Topology of the final system. 

 

Figure 4.  Effective cycle time occurrences (black circles for a nominal value 

of 50 ms and black squares for a nominal value of 100 ms). 



communications. The WCF allows the creation of 
custom channels to meet special requirements. 

3. The last channel on the client side – the transport 
channel – sends the SOAP message over the 
configured transport (such as HTTP).   

4. On the host side, the message goes through a chain of 
channels that perform operations such as security 
checking and message de-formatting. The last channel 
passes the message to the dispatcher, which converts it 
to a stack frame and calls the service locally. 

5. The service executes the call and returns control to the 
dispatcher, which then converts the returned values and 
error information (if any) to a return message. 

6. The return message flows in the opposite direction: it 
passes through the host-side channels, then the client-
side channels and arrives to the proxy, which converts 
it to a stack frame and returns control to the client. 

The layered structure depicted in figure 5 is very flexible 
but introduces a great amount of delay in the communication 
path between the client and the server. This delay interferes 
with the sampling frequency of distributed control loops and 
degrades the responsiveness of the whole system. 

To evaluate the communication delay of the proposed 
DMCS a set of experiments were done adopting the following 
methodology: 

1. The cycle time of all control stations was adjusted to 
200 ms. The control routine of CS1 was modified to 
periodically read the setpoint of the temperature loop 
running in CS2. In this scenario CS1 is the client and 
CS2 is the server. 

2. Two instructions were added on the client side, 
immediately before and after the remote call, in order 
to generate a positive pulse on the data bits of the 
client’s parallel port. This pulse defines the amount of 

time that the read operation takes to execute (including 
the communication delay). 

3. Two instructions were also added on the server side, 
one at the beginning of the service and the other at the 
end, in order to generate a positive pulse on the data 
bits of the server’s parallel port. This pulse defines the 
amount of time that the read operation takes to be 
serviced (excluding the communication delay). 

4. Both pulsed signals were connected to a XOR gate to 
discriminate two communication delays (see figure 6): 

τ1 representing the client-to-sever delay, and τ2 
representing the server-to-client delay.  

5. A Virtual Instrument (VI) was built in LabVIEW to 

measure τ1 and τ2. The VI runs on a dedicated 
computer equipped with a DAQ board – model PCI-
6024E from NI – that provides two 24-bit counters. 
The counter 0 was used to measure pulse width with a 
resolution of 1/20 MHz = 5 ns. 

6. The process was started and all stations were launched. 

About 1000 samples of τ1 and τ2 were acquired and 
processed. Figure 7 presents the corresponding 

distribution of τ1.  

7. The network was loaded by connecting two more 
computers to the hub. These computers were 
programmed to exchange large amounts of data 
between them using Transmission Control Protocol 
(TCP) sockets. Step 6 was repeated for the following 
values of traffic load: 6%, 12%, 25%, 50% and 70%. 

Figure 8 presents the distribution of τ1 for a traffic load 
of 50%. Table 6 summarizes the results of all 
experiments. 

The collected data can be analyzed as follows: 

• The communication delay (τ1 + τ2) is in the range of 
few ms. 

• The delay τ1 is longer than the delay τ2 because the 
client-to-server message is bigger than the return 
message. 

• For low traffic loads (less than 1% as is the case of 

figure 7) the delays τ1 and τ2 have Gaussian 
distributions, which are justified by the random 
behavior of the Windows scheduler. 

• For higher traffic loads (as is the case of figure 8) the 

delays τ1 and τ2 have exponential distributions, which 
are justified by the contention in the network. These 
distributions are in agreement with the queueing theory 
[14], which is accepted as a valid mathematical model 
for Ethernet. 

• The delays τ1 and τ2 become longer as the contention 
in the network worsens.  

 

Figure 5.  WCF Web Services data flow. 



V. CONCLUSIONS 

An innovative DMCS was presented in this paper. The 
system takes advantage of the productivity supplied by the 
.NET Framework and the interoperability provided by Web 
Services. The performance of the proposed solution was 
evaluated by measuring the maximum achievable sampling 
frequency and the communication delay of remote calls. 

In terms of sampling frequency, results were obtained for a 
control station running two control loops. The control station 
performed well for sampling frequencies of 10 Hz or lower. 
Given the inertia of the physical process, a sampling frequency 
of 5 Hz was adopted with good results. 

In terms of communication delay, the following 
conclusions shall be retained: 

• The communication delay is in the range of few ms, 
becoming longer as the contention in the network 
worsens. 

• The client-to-server and server-to-client delays depend 
on the size of the underlying SOAP messages. 

• For low traffic loads the communication delay has 
Gaussian distribution justified by the random behavior 
of the Windows scheduler. 

• For higher traffic loads the communication delay has 
exponential distribution justified by the contention in 
the network. 
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Figure 6.  Communication delays τ1 and τ2. 

 

Figure 7.  Distribution of τ1 with no extra traffic load. 

 

Figure 8.  Distribution of τ1 with traffic load = 50%. 

TABLE VI.  COMMUNICATION DELAYS FOR VARIOUS VALUES OF TRAFFIC 

LOAD  

Traffic 

Load 

ττττ1 ττττ2 

Distribution Mean (ms) Distribution Mean (ms) 

< 1% (a) Gaussian 1,303 Gaussian 0,619 

6% Exponential 1,458 Exponential 0,813 

12% Exponential 1,806 Exponential 0,969 

25% Exponential 1,807 Exponential 0,971 

50% Exponential 2,634 Exponential 1,373 

70% Exponential 3,062 Exponential 2,042 

(a) No extra traffic introduced in the network. 



 


