Uma Aplicação do Teorema dos Resíduos

Miguel Moreira Escola Superior de Tecnologia de Setúbal SAM José Vieira Antunes Instituto Tecnológico e Nuclear LDA

Heitor Pina Instituto Superior Técnico DEM

15 de Outubro de 1998^*

Resumo

O movimento rotativo de um rotor numa região confinada determina o escoamento do fluído envolvente e o desenvolvimento de forças de interacção fluído-estrutura, cujo conhecimento é essencial na previsão do comportamento dinâmico deste sistema. A determinação explícita das força referidas a partir das equações de Navier-Stokes conduz à necessidade de resolução de integrais definidos do tipo,

$$G_k^{ij}(H, X, Y) = \int_0^{2\pi} \frac{\sin^i \theta \cos^j \theta}{\left(H - X \cos \theta - Y \sin \theta\right)^k} d\theta,$$

em que H, X, e Y são constantes tais que $X^2 + Y^2 < H^2$ e i, j e k são parâmetros inteiros que podem variar entre zero e quatro.

A aplicação de uma forma particular do teorema dos resíduos da análise complexa constitui a solução natural do problema anterior, concretizada recorrendo ao auxílio de um manipulador simbólico para fazer face à extensão das manipulações algébricas necessárias.

1 Introdução

1.1 Formulação do Problema

Consideremos as forças resultantes do escoamento de fluído na região anular representada na figura 1, determinado pela rotação Ω do veio circular interno de raio R. A determinação destas forças (também designadas fluído-elásticas) é essencial no estudo do comportamento vibratório dos veios e rotores de equipamentos rotativos em geral. Em Antunes *et al.* [1], por

^{*} Comunicação apresentada nas Jornadas de Aplicações da Matemática no Centro de Matemática do ISEL

exemplo, pode encontrar-se uma completa discussão teórica e a motivação para o estudo deste assunto.

Figura 1: Geometria do escoamento

No apêndice B faz-se referência ao significado da simbologia utilizada. De referir que a folga $h(\theta, t)$, representada na figura indicada, pode ser bem aproximada recorrendo à seguinte equação,

$$h(\theta, t) = H - X(t)\cos\theta - Y(t)\sin\theta, \qquad (1)$$

em que X e Y representam factores associados à excentricidade do sistema (posição do centro do veio interior) e H representa a folga que existiria se a excentricidade instantânea referida fosse nula. Naturalmente e para que o veio interior não entre em contacto com a superfície do *estator* supõe-se que, $X(t)^2 + Y(t)^2 < H^2$.

As equações de conservação da massa e do momento que permitem modelar (simplificadamente) o escoamento referido são (ver Antunes et al. [1]):

$$\frac{\partial h}{\partial t} + \frac{1}{R} \frac{\partial (hu)}{\partial \theta} = 0, \qquad (2)$$

$$\rho \left\{ \frac{\partial (hu)}{\partial t} + \frac{1}{R} \frac{\partial (hu^2)}{\partial \theta} \right\} + \tau + \frac{h}{R} \frac{\partial p}{\partial \theta} = 0,$$
(3)

em que $u(\theta, t)$ representa uma velocidade tangencial do fluído (valor médio na folga) e $\tau(\theta, t)$ as tensões de natureza dissipativa. Estas últimas podem ser descritas recorrendo à formulação semi-empírica

$$\tau (u) = \tau_r (u) + \tau_s (u)$$

= $-\frac{1}{2}\rho f (\Omega R - u)^2 + \frac{1}{2}\rho f u^2$
= $\rho f \Omega R u - \frac{1}{2}\rho f \Omega^2 R^2$ (4)

onde f representa um apropriado coeficiente de fricção.

Observe-se que reescrevendo a equação da continuidade (2) como, $\frac{\partial u}{\partial \theta} + \frac{u}{h} \frac{\partial h}{\partial \theta} = -\frac{R}{h} \frac{\partial h}{\partial t}$ deduz-se,

$$u(\theta, t) = \frac{R}{h} \left(-\int \left(\frac{\partial h}{\partial t}\right) d\theta \right) = \frac{R\left(\stackrel{\bullet}{X}\sin\theta - \stackrel{\bullet}{Y}\cos\theta + C\right)}{H - X\cos\theta - Y\sin\theta}, \quad (5)$$

tendo em conta (1). De assinalar a presença da constante de integração, C(t), na expressão da velocidade (5), assim obtida.

1.2 Determinação das Forças Fluído-elásticas

Denotando por $F_X(t)$ e $F_Y(t)$ as componentes segundo X e Y da força resultante que o fluído exerce no rotor, pode mostrar-se que

$$F_X(t) = -LR \int_0^{2\pi} p(\theta, t) \cos \theta d\theta = LR \int_0^{2\pi} \frac{\partial p(\theta, t)}{\partial \theta} \sin \theta d\theta, \qquad (6)$$

$$F_Y(t) = -LR \int_0^{2\pi} p(\theta, t) \sin \theta d\theta = -LR \int_0^{2\pi} \frac{\partial p(\theta, t)}{\partial \theta} \cos \theta d\theta, \quad (7)$$

em que $R \in L$ representam o raio e o comprimento do rotor. Assim, integrando entre 0 e 2π , as seguintes formas equivalentes da equação (3),

$$-\frac{\partial p}{\partial \theta}\sin\theta = \left\{\rho\left\{R\frac{\partial(hu)}{h\partial t} + \frac{\partial(hu^2)}{h\partial\theta}\right\} + R\frac{\tau(u)}{h}\right\}\sin\theta, \quad (8)$$

$$-\frac{\partial p}{\partial \theta}\cos\theta = \left\{\rho \left\{R\frac{\partial(hu)}{h\partial t} + \frac{\partial(hu^2)}{h\partial \theta}\right\} + R\frac{\tau(u)}{h}\right\}\cos\theta, \qquad (9)$$

deduz-se,

$$F_X(t) = -\rho R^2 L \int_0^{2\pi} \frac{\partial (hu)}{h\partial t} \sin \theta d\theta - \rho R L \int_0^{2\pi} \frac{\partial (hu^2)}{h\partial \theta} \sin \theta d\theta \quad (10)$$
$$-R^2 L \int_0^{2\pi} \frac{\tau (u)}{h} \sin \theta d\theta,$$

$$F_Y(t) = \rho R^2 L \int_0^{2\pi} \frac{\partial (hu)}{h\partial t} \cos \theta d\theta + \rho R L \int_0^{2\pi} \frac{\partial (hu^2)}{h\partial \theta} \cos \theta d\theta \quad (11)$$
$$+ R^2 L \int_0^{2\pi} \frac{\tau (u)}{h} \cos \theta d\theta.$$

Tendo em conta a expressão conhecida da velocidade (5), facilmente se verifica que cada um dos integrais definidos representados nas equações (10) e (11), pode ser descrito com base em integrais definidos elementares do tipo,

$$G_k^{ij}(H, X, Y) = \int_0^{2\pi} \frac{\sin^i \theta \cos^j \theta}{\left(H - X \cos \theta - Y \sin \theta\right)^k} d\theta, \ 0 \le i, j, k \le 4.$$
(12)

A título de exemplo apresentamos a representação de um dos integrais definidos indicados:

$$\begin{split} &\int_{0}^{2\pi} \frac{\partial (hu^2)}{h\partial \theta} \sin \theta d\theta = 2R^2 \left(\left(\left(\overset{\bullet}{X} \right)^2 - \left(\overset{\bullet}{Y} \right)^2 \right) G_2^{21} + \overset{\bullet}{2} \overset{\bullet}{X} \overset{\bullet}{Y} G_2^{30} \right) \\ &+ 2R^2 \left(- \overset{\bullet}{XY} \overset{\bullet}{G_2^{10}} + C \left(\overset{\bullet}{X} G_2^{11} + \overset{\bullet}{Y} G_2^{20} \right) \right) \\ &- R^2 \left(\left(\overset{\bullet}{X} \right)^2 X G_3^{40} + X \left(\overset{\bullet}{Y} \right)^2 G_3^{22} - 2X \overset{\bullet}{XY} \overset{\bullet}{G_3^{31}} \right) \\ &- R^2 \left(C^2 X G_3^{20} + 2CX \left(\overset{\bullet}{X} G_3^{30} - \overset{\bullet}{Y} G_3^{21} \right) \right) \\ &- R^2 \left(- \left(\overset{\bullet}{X} \right)^2 Y G_3^{31} - Y \left(\overset{\bullet}{Y} \right)^2 G_3^{13} + 2 \overset{\bullet}{X} Y \overset{\bullet}{Y} G_3^{22} \right) \\ &- R^2 \left(- C^2 Y G_3^{11} - 2CY \left(\overset{\bullet}{X} G_3^{21} - \overset{\bullet}{Y} G_3^{12} \right) \right). \end{split}$$

Torna-se assim claro que a obtenção de expressões analíticas que descrevam $F_X(t)$ e $F_Y(t)$ está dependente do cálculo dos integrais definidos do tipo (12) em função dos parâmetros $H, X \in Y$.

Refira-se que o seu cálculo recorrendo às técnicas da análise real dependente da computação prévia das primitivas envolvidas não é uma tarefa fácil, conduzindo frequentemente a expressões muito pesadas.

2 A aplicação do Teorema dos Resíduos

O procedimento natural para calcular estes integrais definidos (12) consiste na utilização do resultado elementar (consequência do teorema dos resíduos) da análise complexa (proposição 2.1) que seguidamente se expõe.

Proposição 2.1 Seja R(x, y) uma função racional em x e y cujo denominador não se anula na circunferência centrada na origem e de raio unitário. Então

$$\int_{0}^{2\pi} R\left(\cos\theta, \sin\theta\right) d\theta = 2\pi i \sum \left[residuos \ de \ f(z) \ no \ interior \ de \ D\right]$$
(13)

em que

$$f(z) = \frac{R\left(\frac{1}{2}\left(z+\frac{1}{z}\right), \frac{1}{2i}\left(z-\frac{1}{z}\right)\right)}{iz} \tag{14}$$

e D representa o interior do círculo unitário centrado na origem. Demonstração. Consultar Marsden [2], pg 302, por exemplo.

Pode encontrar-se também em Marsden [2] a definição dos conceitos de *resíduo*, *polo* e *ordem de um polo* de utilização necessária. A proposição 2.2 apresenta um resultado a partir do qual se torna possível a determinação de resíduos associados a polos de ordem arbitrária.

Proposição 2.2 Suponha-se que f tem um polo de ordem k em z_0 . Então

$$Res(f, z_0) = \lim_{z \to z_0} \frac{\Phi^{(k-1)}(z)}{(k-1)!},$$

em que $\Phi(z) = (z - z_0)^k f(z).$

Demonstração. Consultar Marsden [2], pg 272.

2.1 Exemplo de Aplicação

Ilustremos a aplicação destes resultados no cálculo de

$$G_3^{00}(H, X, Y) = \int_0^{2\pi} \frac{1}{(H - X\cos\theta - Y\sin\theta)^3} d\theta,$$

supondo naturalmente que H > 0 e $X^2 + Y^2 < H^2$.

1. Comecemos por determinar a função $f\left(z\right)$ nos termos da proposição 2.1,

$$f(z) = \frac{R\left(\frac{1}{2}\left(z+\frac{1}{z}\right), \frac{1}{2i}\left(z-\frac{1}{z}\right)\right)}{iz}$$

= $\frac{1}{iz\left(H-X\frac{1}{2}\left(z+\frac{1}{z}\right)-Y\frac{1}{2i}\left(z-\frac{1}{z}\right)\right)^{3}}$
= $\frac{-8z^{2}}{i\left((X-iY)z^{2}-2Hz+X+iY\right)^{3}}$
= $\frac{-8z^{2}}{i\left(X-iY\right)^{3}\left(z-z_{1}\right)^{3}\left(z-z_{2}\right)^{3}},$

em que

е

$$z_{1} = \frac{1}{(X - iY)} \left(H + \sqrt{H^{2} - X^{2} - Y^{2}} \right)$$

$$z_2 = \frac{1}{(X - iY)} \left(H - \sqrt{H^2 - X^2 - Y^2} \right)$$

são polos de ordem 3.

2. Repare-se que z_2 é o único polo que se localiza no interior do círculo unitário. Calculemos então o resíduo de f em z_2 com base na proposição 2.2. Seja,

$$\Phi(z) = \frac{-8z^2}{i(X - iY)^3(z - z_1)^3},$$

então

$$\operatorname{Res}(f; z_2) = \frac{1}{2} \lim_{z \to z_2} \Phi''(z) \,.$$

Concluíndo-se,

$$\operatorname{Res}(f; z_2) = i \frac{-16z_2^2 - 16z_1^2 - 64z_1z_2}{2(X - iY)^3(z_1 - z_2)^5}.$$

3. Substituindo em (13) e simplificando obtemos finalmente o resultado desejado:

$$\int_{0}^{2\pi} \frac{1}{\left(H - X\cos\theta - Y\sin\theta\right)^{3}} d\theta = \pi \frac{16z_{2}^{2} + 16z_{1}^{2} + 64z_{1}z_{2}}{\left(X - iY\right)^{3}\left(z_{1} - z_{2}\right)^{5}} \\ = \frac{\pi \left(2H^{2} + X^{2} + Y^{2}\right)}{\left(\sqrt{H^{2} - X^{2} - Y^{2}}\right)^{5}}.$$
 (15)

3 Conclusões

No apêndice A podem encontrar-se os integrais definidos do tipo G_k^{ij} calculados pela via apresentada.

De referir que a metodologia referida se bem que conceptualmente simples exige a realização de computações algébricas extensas e pesadas que só puderam ser facilmente ultrapassadas com o recurso a um manipulador simbólico.

Este trabalho reforça a ideia da importância de se considerar na formação do Engenheiro uma sólida preparação matemática (nomeadamente e em particular o conhecimento de alguns resultados elementares da análise complexa) e a familiaridade na utilização das ferramentas computacionais de manipulação simbólica actualmente disponíveis.

Referências

- Antunes, J., Axisa, F. and Grunenwald, T., Dynamics of rotors immersed in eccentric annular flow. Part1: Theory, Journal of Fluid and Structures (1996), 10, 893-918.
- [2] Marsden, J. E. and Hoffman, M. J., Basic Complex Analysis, Second Edition, Freeman, 1987.

A Integrais Azimutais

.

$$G_1^{00} = \frac{2\pi}{\sqrt{H^2 - X^2 - Y^2}} \tag{16}$$

$$G_1^{01} = \begin{cases} 0 \text{ se } X = Y = 0\\ 2\pi X \frac{H - \sqrt{(H^2 - X^2 - Y^2)}}{(X^2 + Y^2)\sqrt{(H^2 - X^2 - Y^2)}} \text{ c.c.} \end{cases}$$
(17)

$$G_1^{10} = \begin{cases} 0 \text{ se } X = Y = 0\\ 2\pi Y \frac{H - \sqrt{(H^2 - X^2 - Y^2)}}{(X^2 + Y^2)\sqrt{(H^2 - X^2 - Y^2)}}, \text{ c.c.} \end{cases}$$
(18)

$$G_{1}^{11} = \begin{cases} 0 \text{ se } X = Y = 0\\ -2\pi Y \frac{X^{2} + Y^{2} - 2H^{2} + 2\sqrt{(H^{2} - X^{2} - Y^{2})}}{(X^{2} + Y^{2})^{2}\sqrt{(H^{2} - X^{2} - Y^{2})}}, \text{ c.c.} \end{cases}$$
(19)

$$G_1^{20} = \begin{cases} \frac{\pi}{H} \text{ se } X = Y = 0\\ 2\pi \frac{X^2 (X^2 + Y^2) - H^2 (X^2 - Y^2) + H (X^2 - Y^2) \sqrt{(H^2 - X^2 - Y^2)}}{(X^2 + Y^2)^2 \sqrt{(H^2 - X^2 - Y^2)}}, \text{ c.c} \end{cases}$$
(20)

$$G_1^{02} = G_1^{00} - G_1^{20} =$$

$$= \begin{cases} \frac{\pi}{H} \text{ se } X = Y = 0, \\ 2\pi \frac{X^2 Y^2 + Y^4 + H^2 X^2 - H^2 Y^2 - H\sqrt{(H^2 - X^2 - Y^2)}X^2 + H\sqrt{(H^2 - X^2 - Y^2)}Y^2}{(X^2 + Y^2)^2 \sqrt{(H^2 - X^2 - Y^2)}}, \text{ c.c.} \end{cases}$$

$$(21)$$

$$G_2^{00} = 2\pi H \frac{\sqrt{(H^2 - X^2 - Y^2)}}{(H^2 - X^2 - Y^2)^2}$$
(22)

$$G_2^{01} = 2\pi X \frac{\sqrt{(H^2 - X^2 - Y^2)}}{(H^2 - X^2 - Y^2)^2}$$
(23)

$$G_2^{10} = 2\pi Y \frac{\sqrt{(H^2 - X^2 - Y^2)}}{(H^2 - X^2 - Y^2)^2}$$
(24)

$$G_2^{20} = \begin{cases} \frac{\pi}{H^2} \text{ se } X = Y = 0\\ 2\pi \frac{\left(HY^2 \left(Y^2 + X^2\right) + \left(H^2 \left(X^2 - Y^2\right) - X^4 + Y^4\right) \left(H - \sqrt{(H^2 - X^2 - Y^2)}\right)\right)}{(X^2 + Y^2)^2 \left(\sqrt{(H^2 - X^2 - Y^2)}\right)^3}, \text{ c.c.} \end{cases}$$
(25)

$$G_2^{02} = G_2^{00} - G_2^{20} \tag{26}$$

$$G_2^{11} = \begin{cases} 0 \text{ se } X = Y = 0\\ 2\pi XY \frac{H(-2H^2 + 3(X^2 + Y^2)) + 2(H^2 - Y^2 - X^2)\sqrt{(H^2 - X^2 - Y^2)}}{\left(\sqrt{(H^2 - X^2 - Y^2)}\right)^3 (X^2 + Y^2)^2}, \text{ c.c.} \end{cases}$$
(27)

$$G_2^{30} = 2\pi Y \frac{-3\sqrt{(H^2 - X^2 - Y^2)}X^2 - 3HX^2 - 2HY^2 + 3\sqrt{(H^2 - X^2 - Y^2)}H^2 + 3H^3}}{\left(\sqrt{(H^2 - X^2 - Y^2)}\right)^3 \left(H + \sqrt{(H^2 - X^2 - Y^2)}\right)^3}$$
(28)

$$G_2^{03} = 2\pi X \frac{-3\sqrt{(H^2 - X^2 - Y^2)}Y^2 - 3HY^2 - 2HX^2 + 3\sqrt{(H^2 - X^2 - Y^2)}H^2 + 3H^3}{\left(\sqrt{(H^2 - X^2 - Y^2)}\right)^3 \left(H + \sqrt{(H^2 - X^2 - Y^2)}\right)^3}$$
(29)

$$G_2^{12} = G_2^{10} - G_2^{30} \tag{30}$$

$$G_2^{21} = G_2^{01} - G_2^{03} \tag{31}$$

$$G_3^{00} = \left(2H^2 + X^2 + Y^2\right) \frac{\pi}{\left(\sqrt{(H^2 - X^2 - Y^2)}\right)^5}$$
(32)

$$G_3^{20} = \pi \frac{H^2 - X^2 + 2Y^2}{\left(\sqrt{(H^2 - X^2 - Y^2)}\right)^5}$$
(33)

$$G_3^{02} = G_3^{00} - G_3^{20} \tag{34}$$

$$G_3^{11} = \pi \frac{3XY}{\left(\sqrt{(H^2 - X^2 - Y^2)}\right)^5} \tag{35}$$

$$G_3^{10} = 3\pi \frac{HY}{\left(\sqrt{(H^2 - X^2 - Y^2)}\right)^5} \tag{36}$$

$$\left(\sqrt{(H^2 - X^2 - Y^2)}\right)^5 \tag{36}$$
$$G_3^{10} = 3\pi \frac{HY}{\left(\sqrt{(H^2 - X^2 - Y^2)}\right)^5} \tag{37}$$
$$G_3^{01} = 3\pi \frac{HX}{\left(\sqrt{(H^2 - X^2 - Y^2)}\right)^5}$$

$$G_{3}^{30} = \pi Y \frac{\left(9H^{4}+9\sqrt{(H^{2}-X^{2}-Y^{2})}\left(H^{3}-X^{2}H\right)-4H^{2}Y^{2}-15H^{2}X^{2}-2Y^{4}+4Y^{2}X^{2}+6X^{4}\right)}{\left(\sqrt{(H^{2}-X^{2}-Y^{2})}\right)^{5}\left(H+\sqrt{(H^{2}-X^{2}-Y^{2})}\right)^{3}}$$
(38)

$$G_3^{12} = G_3^{10} - G_3^{30} \tag{39}$$

$$G_{3}^{03} = \pi X \frac{\left(9H^{4} + 9\sqrt{(H^{2} - X^{2} - Y^{2})}(H^{3} - Y^{2}H) - 4H^{2}X^{2} - 15H^{2}Y^{2} - 2X^{4} + 4Y^{2}X^{2} + 6Y^{4}\right)}{\left(\sqrt{(H^{2} - X^{2} - Y^{2})}\right)^{5} \left(H + \sqrt{(H^{2} - X^{2} - Y^{2})}\right)^{3}}$$

$$G_{3}^{21} = G_{3}^{01} - G_{3}^{03}$$

$$(40)$$

$$(41)$$

$$G_{3}^{40} = 3\pi \frac{\left(2H^{6}-5H^{4}X^{2}+4H^{2}X^{4}-X^{6}+3H^{4}Y^{2}-6H^{2}X^{2}Y^{2}+3X^{4}Y^{2}-4H^{2}Y^{4}+4X^{2}Y^{4}\right)}{\left(\sqrt{(H^{2}-X^{2}-Y^{2})}\right)^{5}\left(H+\sqrt{(H^{2}-X^{2}-Y^{2})}\right)^{4}} + 3\pi \frac{2H\left(H^{4}-2H^{2}X^{2}+X^{4}+2H^{2}Y^{2}-2X^{2}Y^{2}-Y^{4}\right)}{(H^{2}-X^{2}-Y^{2})^{2}\left(H+\sqrt{(H^{2}-X^{2}-Y^{2})}\right)^{4}}$$
(42)

$$G_3^{04} = G_3^{00} - 2G_3^{20} + G_3^{40} \tag{43}$$

$$G_3^{22} = G_3^{20} - G_3^{40} \tag{44}$$

$$G_{3}^{31} = \frac{3\pi XY \frac{3X^{4} + X^{2}Y^{2} - 7H^{2}X^{2} - 2Y^{4} - H^{2}Y^{2} + 4H^{4}}{\left(H + \sqrt{(H^{2} - X^{2} - Y^{2})}\right)^{4} \left(\sqrt{(H^{2} - X^{2} - Y^{2})}\right)^{5}} + 3\pi XY \frac{4H(H^{2} - X^{2})}{\left(H + \sqrt{(H^{2} - X^{2} - Y^{2})}\right)^{4} (H^{2} - X^{2} - Y^{2})^{2}}$$
(45)

$$G_3^{13} = G_3^{11} - G_3^{31} \tag{46}$$

B Simbologia Utilizada

 $C\left(t\right)$ –Constante (dependente do tempo) associada à integração da equação da continuidade;

f-Coeficiente de fricção na parede do rotor/parede do estator;

 $F_X(t), F_Y(t)$ -Forças fluidoelásticas;

 $h(\theta, t)$ -Folga local;

L-Comprimento mergulhado do veio (rotor);

 $p(\theta, t)$ -Pressão azimutal;

R-Raio do veio (rotor) imerso;

t-Tempo;

 $u(\theta, t)$ -Velocidade tangencial local;

X(t), Y(t)-Posição do veio (rotor);

 θ -Ângulo azimutal;

 $\rho{\rm -Massa}$ volúmica do fluído;

 $\tau(u)$ – Tensão de corte total (como função de u);

 $\tau_r(u)$ – Tensão de corte na parede do rotor (como função de u);

 $\tau_s(u)$ – Tensão de corte na parede do estator (como função de u);

 $\Omega-Velocidade$ angular do rotor;

 μ -Viscosidade dinâmica do fluído em escoamento;