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Abstract

The glycoprotein 130 (gp130) dependent family of cytokines comprises interleukin-6 (IL-6), IL-11, leukemia inhibitory factor
(LIF), cardiotrophin-like cytokine (CLC), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1) and oncostatin M (OSM).
These cytokines share the membrane gp130 as a common signal transducer. Recently, it was demonstrated that IL-6
promotes, whereas LIF inhibits fetal lung branching. Thus, in this study, the effects on fetal lung morphogenesis of the other
classical members of the gp130-type cytokines (IL-11, CLC, CNTF, CT-1 and OSM) were investigated. We also provide the first
description of these cytokines and their common gp130 receptor protein expression patterns during rat lung development.
Fetal rat lung explants were cultured in vitro with increasing concentrations of IL-11, CLC, CNTF, CT-1 and OSM. Treated lung
explants were morphometrically analyzed and assessed for MAPK, PI3K/AKT and STAT3 signaling modifications. IL-11, which
similarly to IL-6 acts through a gp130 homodimer receptor, significantly stimulated lung growth via p38 phosphorylation.
On the other hand, CLC, CNTF, CT-1 and OSM, whose receptors are gp130 heterodimers, inhibited lung growth acting in
different signal-transducing pathways. Thus, the present study demonstrated that although cytokines of the gp130 family
share a common signal transducer, there are specific biological activities for each cytokine on lung development. Indeed,
cytokine signaling through gp130 homodimers stimulate, whereas cytokine signaling through gp130 heterodimers inhibit
lung branching.
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Introduction

Normal lung development is particularly dependent on tightly

regulated signaling networks, triggered by both its classically

known effectors, such as growth factors, extracellular matrix

molecules and hormones, and by its recently implicated regulatory

factors like inflammatory cytokines [1–4].

The glycoprotein 130 (gp130) dependent family of cytokines or

interleukin 6 (IL-6) family of cytokines is quite a large group of

structurally related cytokines that includes IL-6, IL-11, leukemia

inhibitory factor (LIF), ciliary neurotrophic factor (CNTF),

cardiotrophin-1 (CT-1), cardiotrophin-like cytokine (CLC), and

oncostatin M (OSM) [5,6]. Other family members have recently

emerged (IL-27 and neuropoietin), thus it is likely that the

currently defined gp130 cytokine family is not complete [5,7,8].

These small proteins are grouped in same family, since all signal

through a common signal transducing receptor chain, the gp130.

However, each cytokine interacts with a specific receptor that is a

complex of receptor subunits. Thus, the multimeric receptor

complex for gp130 family of cytokines consists of (i) gp130

homodimers with a ligand-specific a chain for IL-6 and IL-11; (ii)

gp130 heterodimers (gp130/LIFR and gp130/OSMR) without

specific a chain for LIF and OSM; or (iii) gp130 heterodimers with

a ligand-specific a chain (CNTFRa) for CNTF and CLC or a
chain-like for CT-1 [5–7]. Until the moment, the a chain recruited

by CT-1 has not been characterized [5].

The gp130 cytokine receptors signal directly through the Janus

kinase-signal transducer and activator of transcription (JAK-

STAT) pathway, particularly STAT3 and STAT1 [6,9]. Alterna-

tively, gp130 cytokine family can also initiate cell signaling via

other signaling pathways, including the mitogen-activated protein

kinase (MAPK) and phosphatidylinositol-3 kinase (PI3K/AKT)

cascades [6,10,11]. Through these pathways, gp130 cytokine

signaling activates target genes involved in several cellular

responses namely, cell differentiation, survival, apoptosis and

proliferation. Concomitant with these responses, negative regula-

tion of cytokine function is critical to prevent the deleterious

biological consequences of excessive stimulation, and the suppres-

sor of cytokine signaling proteins (SOCS) are well-recognized for

contributing significantly to this process [6,12–14]. In particular,
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inhibitors such as SOCS3 regulate cytokine-induced STAT3

activation by a classical negative feedback loop.

Adding to their reputation as classical regulators of immune

response and inflammation, these cytokines are also well known

for their regulatory role in diverse biological processes including,

hematopoiesis, mammalian fertility, liver and neuronal regenera-

tion, myocardial development, pituitary proliferation, bone

homeostasis, adipocyte differentiation and function, and embry-

onic development [5,6,10,11,15]. Concerning lung development,

IL-6 was demonstrated to have an enhancing effect on lung

explant growth and proved to be an important regulator of normal

lung growth, whereas in opposition to IL-6, LIF was found to

inhibit lung branching [3,4,16]. Such evidences lead us to

speculate that other members of gp130 family of cytokines might

be involved in normal lung development. Moreover, these

cytokines present some functional redundancy, even though they

also exhibit specific biological activities [6,11]. Therefore, we

proposed to investigate the role of other gp130 family of cytokines

on fetal lung growth.

Materials and Methods

This study was carried out in strict accordance with the

recommendations in the ‘Guide for the Care and Use of

Laboratory Animals’, published by the US National Institutes of

Health (NIH Publication No. 85–23, revised 1996). Animal

experiments were also performed according to the Portuguese

law for animal welfare and the protocol was approved by the

Committee on the Ethics of Animal Experiments of the Life and

Health Sciences Research Institute of the University of Minho

(DGV 022162 - 520/000/000/2006). Moreover, all efforts were

made to minimize animal suffering.

Animal model and experimental design
Sprague-Dawley female rats (225 g; Charles-River, Spain) were

maintained in appropriate cages under temperature-controlled

room (22–23uC) on 12 hours light: 12 hours dark cycle, and fed

with commercial solid food. The rats were mated and checked

daily for vaginal plug. The day of plugging was defined as

gestational day 0.5 for time dating purposes. Fetuses were removed

by caesarean section at 13.5 dpc (days post-conception), sacrificed

by decapitation and their lungs dissected for fetal lung explant

cultures.

Immunohistochemistry
Immunostaining was performed on paraformaldehyde-fixed

and paraffin-embedded excised lungs and embryos of different

gestational ages (13.5–21.5dpc). Five mm sections were placed onto

glass microscope slides. Primary antibodies for IL-11 [1:200; IL-11

(H-169), Santa Cruz Biotechnology Inc., USA], CLC [1:50; NNT-

1/BSF-3 (FL-225), Santa Cruz Biotechnology Inc.], CNTF

[1:200; CNTF (R-20), Santa Cruz Biotechnology Inc.], CT-1

[4 mg/mL; CT-1 (3G6D9), Abcam Inc., UK], OSM [1:25; OSM

(A-9), Santa Cruz Biotechnology Inc.] and gp130 receptor [1:100;

GP130 (H-255), Santa Cruz Biotechnology Inc.] were used. Tissue

sections were deparaffinized in xylene and rehydrated in ethanol,

boiled in 10 mM citrate buffer for antigen retrieval and cooled

down at room temperature. Incubation with the primary antibody

occurred at 4uC overnight. Negative control reactions included

omission of the primary antibody and the simultaneous omission

of the primary and secondary antibodies, in both cases immuno-

reactive cytokine staining was not observed. Sections were

incubated with a labeled streptavidin-biotin immunoenzimatic

antigen detection system (UltraVision Large Volume Detection

System Anti-Polyvalent, Horseradish Peroxidase, Lab Vision

Corporation, USA) according to manufacturer’s instructions. For

visualization of the immune reaction, a diaminobenzidine

tetrahydrochloride solution (Dako, Denmark) was used. Sections

were finally counterstained with hematoxylin. The slides were

observed and photographed with Olympus BX61 microscope

(Olympus, Japan). At least three independent experiments were

performed, in each a different set of slides comprising the whole

range of gestational ages plus adult, obtained from different

individual samples, was used.

Fetal lung explant cultures
Harvesting and dissection of 13.5 dpc lungs was made in DPBS

(Lonza, Switzerland) under a dissection microscope (Leica

MZFLIII, Switzerland). The lungs were transferred to Nucleopore

membranes with an 8 mm pore size (Whatman, USA), previously

presoaked in DMEM (Invitrogen, UK) for 1 hour, and incubated

in a 24-well culture plates (Nunc, Denmark). Floating cultures of

the explants were incubated in 200 mL of 50% DMEM, 50%

nutrient mixture F-12 (Gibco, USA) supplemented with 100 mg/

mL streptomycin, 100 units/mL penicillin (Gibco), 0.25 mg/mL

ascorbic acid (Sigma-Aldrich, USA) and 10% FCS (Gibco). The

fetal lung explants were incubated in a 5% CO2 incubator at 37uC
for 96 hours, and the medium was replaced every 48 hours. The

branching morphogenesis was monitored daily by photographing

the explants. At day 0 (D0: 0 hours) and day 4 (D4: 96 hours) of

culture, the total number of peripheral airway buds (branching) in

all lung explants was determined, by counting the number of

peripheral airway epithelial buds of the developing respiratory

tree. Three additional morphometric parameters were assessed

using AxionVision Rel. 4.3 (Carl Zeiss, Germany) imaging

software: (1) epithelial perimeter which relates to the contour of

the internal airways of the explant and is defined by the folded

epithelial surface, (2) explant area and (3) external perimeter both

defined by the outer edge of the whole fetal lung explant. These

results were expressed as D4/D0 ratio.

IL-11, CLC, CNTF, CT-1 and OSM supplementation studies
In vitro cultures were daily supplemented with several doses of

recombinant IL-11 (0.1; 1; 10; 100 pg/mL), CLC (0.003; 0.03;

0.3; 3; 30 nM), CNTF (0.1; 1; 10; 100; 1000 ng/mL), CT-1 (0.1;

1; 10; 100; 200 ng/mL), and OSM (0.1; 1; 10; 100 ng/mL). All

recombinant proteins were purchased from R&D Systems (USA).

Per each tested dose at least nine, often more, fetal lung explants

were used; likewise twelve lung explants were used as control. For

CLC and CT-1 supplementation studies the control explants were

supplemented with 4 mM of sterile HCl (according to manufac-

turer’s instructions of recombinant proteins reconstitution). Sam-

pled lung explants were obtained in three independent experi-

ments performed.

After 4 days in culture, control and cytokine treated lung

explants at selected concentrations (IL-11 at 0.1 pg/mL; CLC at

30 nM; CNTF at 1000 ng/mL; CT-1 at 200 ng/mL; OSM at

100 ng/mL) were processed for western blot analysis according to

the method described below.

Western blot analysis
Pooled samples of the cultured lung explants were processed for

western blot analysis. Proteins were obtained according to Kling et

al [17]. Ten mg of protein were loaded onto 10% acrylamide

minigels, electrophoresed at 100 V at room temperature and then

transferred to nitrocellulose membranes (HybondTM -C Extra,

GE Healthcare Life Sciences, UK). Blots were probed with

antibodies to non-phosphorylated and phosphorylated forms of
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p38, p44/42 (ERK1/2), JNK, AKT and STAT3 (1:1000; Cell

Signaling Technology Inc.), additionally SOCS3 (1 mg/mL;

Abcam Inc.), PCNA [Proliferating cell nuclear antigen] (1:500;

Santa Cruz Biotechnology Inc.) and PARP [Poly (ADP-ribose)

polymerase] (1:1000; BD Biosciences, USA) antibodies were also

used according to the manufacturer’s instructions. For loading

control, blots were probed with b-tubulin (1:150000, Abcam).

Afterwards blots were incubated with a secondary horseradish

peroxidase conjugate (Santa Cruz Biotechnology Inc.), developed

with Super Signal West Femto Substrate (Pierce Biotechnology,

USA) and the chemiluminescent signal was captured using the

Chemidoc XRS (Bio-Rad, USA). Quantitative analysis was

performed with Quantity One 4.6.5 1-D Analysis Software (Bio-

Rad). Three independent experiments were performed (n = 3).

Statistical analysis
All quantitative data are presented as mean 6 SEM. Statistical

analysis was performed using the statistical software SigmaStat

(version 3.5; Systat Software Inc., USA). For supplementation

studies one-way ANOVA was used and for intracellular signaling

pathways analysis t-test was used. The Student-Newman-Keuls test

was used for post-test analysis. Statistical significance was set at

p,0.05.

Results

Gp130 cytokines expression pattern during rat fetal lung
development

Spatio-temporal protein expression pattern of IL-11, CLC,

CNTF, CT-1, OSM and gp130 receptor were assessed in the

developing lung at five gestational ages, specifically 13.5, 15.5,

17.5, 19.5 and 21.5 dpc and also in the adult lung tissue.

Immunohistochemistry revealed that all these cytokines and their

common gp130 receptor are expressed throughout all studied

gestational ages in the fetal lung (Figures 1, 2, 3, 4, 5, 6). IL-11 is

first mainly expressed in the undifferentiated mesenchyme at 13.5

Figure 1. IL-11 expression pattern during fetal lung development. IL-11 is expressed throughout all stages of lung development studied,
from early 13.5 dpc until late 21.5 dpc and also in the adult. Representative immunohistochemistry staining of (A–E) developing lung and (F) adult
lung. Original magnification 6100.
doi:10.1371/journal.pone.0067607.g001

Figure 2. CLC expression pattern during fetal lung development. CLC is expressed throughout all stages of lung development studied, from
early 13.5 dpc until late 21.5 dpc and also in the adult. Representative immunohistochemistry staining of (A–E) developing lung and (F) adult lung.
Original magnification 6100.
doi:10.1371/journal.pone.0067607.g002
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and 15.5 dpc, however at late pseudoglandular stage, 17.5 dpc,

immunostaining is observed in both mesenchyme and in the

epithelial lining of proximal and distal airways. At late gestational

stages, IL-11 is predominantly associated with both bronchial and

alveolar epithelium, similarly to the adult tissue (Figure 1). CLC

immunostaining is detected in the embryonic mesenchyme at

13.5 dpc, and remains predominant in this tissue at subsequent

gestational stages; inversely as gestation progresses CLC epithelial

expression is mostly observed, as illustrated at term as well as in

the adult (Figure 2). CNTF expression is also detected as early as

13.5 dpc in the primitive mesenchymal tissue, from 17.5 dpc until

term as airways develop CNTF epithelial expression gradually

becomes predominant. In the adult, CNTF staining is restricted to

the bronchi and alveoli (Figure 3). Mesenchymal CT-1 expression

is present early in gestation, 13.5 dpc, and is concomitant to

epithelial expression since 15.5 dpc onwards, throughout gestation

CT-1 immunostaining in the airways is increasingly more

apparent and also restricted to bronchi and alveoli epithelial

lining in the adult (Figure 4). Similarly, OSM is also detectable

since 13.5 dpc in the mesenchyme. At 15.5 dpc its expression is

evident in both mesenchymal and epithelial embryonic tissues.

OSM positive immunoreactivity in the epithelium of airways is

clearly detected since 17.5 dpc and remains until term. Likewise,

in the adult tissue protein expression is observed only in both

bronchial and alveolar airways (Figure 5). Gp130 receptor protein

is detected in the embryonic pulmonary mesenchyme at 13.5 dpc.

Also early in development, at 15.5 dpc, epithelial expression of

gp130 is already observed, and at subsequent gestational ages its

expression remains predominantly associated with the developing

epithelium. Additionally, gp130 immunostaining in the adult is

also evident in the proximal and distal epithelial tissue (Figure 6).

Role of gp130 cytokines on rat fetal lung development
This study aimed to clarify the role of gp130 dependent family

of cytokines on lung morphogenesis. Thus, rat fetal lung explants

cultured in vitro were treated daily with increasing concentrations

Figure 3. CNTF expression pattern during fetal lung development. CNTF is expressed throughout all stages of lung development studied,
from early 13.5 dpc until late 21.5 dpc and also in the adult. Representative immunohistochemistry staining of (A–E) developing lung and (F) adult
lung. Original magnification 6100.
doi:10.1371/journal.pone.0067607.g003

Figure 4. CT-1 expression pattern during fetal lung development. CT-1 is expressed throughout all stages of lung development studied,
from early 13.5 dpc until late 21.5 dpc and also in the adult. Representative immunohistochemistry staining of (A–E) developing lung and (F) adult
lung. Original magnification 6100.
doi:10.1371/journal.pone.0067607.g004
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of recombinant IL-11, CLC, CNTF, CT-1 and OSM. In

Figure 7A, representative examples of fetal lung explants treated

with increasing IL-11 concentrations, after 4 days in culture, are

illustrated. IL-11 appears to have an enhancing effect on lung

explant growth which is maximal at the lowest concentration

tested, 0.1 pg/mL. In fact, an increase in the total number of

peripheral airway buds (Figure 7B), epithelial perimeter

(Figure 7C), area (Figure 7D) and external perimeter (Figure 7E)

of lung explants was observed in all concentrations tested, except

the highest, 100 pg/mL. In all the above mentioned morphomet-

ric parameters, explants treated with the highest dose presented

the most similar effect to the control explants. In detail, increasing

doses of IL-11 induced a biphasic effect in all the morphometric

parameters assessed, generally the lowest dose of IL-11 enhanced

explant growth, whereas increasingly high doses gradually reduced

explant growth when compared to the maximal effect observed.

Regarding the role of CLC in fetal lung growth, in Figure 8A

representative examples of lung explants treated with increasing

CLC concentrations, after 4 days in culture, are illustrated. CLC

appears to have a dose-effect inhibitory action on lung explant

growth. In fact, a decrease in the total number of peripheral

airway buds (Figure 8B), epithelial perimeter (Figure 8C), area

(Figure 8D) and external perimeter (Figure 8E) of lung explants

was observed in all concentrations tested, and this effect is most

significant in the highest CLC concentration studied, 30 nM.

In Figure 9A, representative examples of fetal lung explants

treated with increasing CNTF concentrations, after 4 days in

culture, are illustrated. CNTF appears to have an inhibitory action

on lung explants growth, with the maximal effect induced by the

highest CNTF concentration studied, 1000 ng/mL.

Concerning CT-1, CT-1 appears to have a dose-effect

inhibitory action on lung explants growth, as illustrated in

figure 10A. In fact, a decrease in the total number of peripheral

airway buds (Figure 10B), epithelial perimeter (Figure 10C), area

(Figure 10D) and external perimeter (Figure 10E) of lung explants

Figure 5. OSM expression pattern during fetal lung development. OSM is expressed throughout all stages of lung development studied,
from early 13.5 dpc until late 21.5 dpc and also in the adult. Representative immunohistochemistry staining of (A–E) developing lung and (F) adult
lung. Original magnification 6100.
doi:10.1371/journal.pone.0067607.g005

Figure 6. Gp130 receptor expression pattern during fetal lung development. Gp130 receptor is expressed throughout all stages of lung
development studied, from early 13.5 dpc until late 21.5 dpc and also in the adult. Representative immunohistochemistry staining of (A–E)
developing lung and (F) adult lung. Original magnification 6100.
doi:10.1371/journal.pone.0067607.g006

gp130 Family of Cytokines and Fetal Lung Growth
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was observed in all concentrations tested, this effect is most

significant in the highest CT-1 concentration studied, 200 ng/mL.

As illustrated in figure 11A, OSM appears to have an inhibitory

effect on lung branching. In fact, OSM at 100 ng/mL induces a

significant decrease in the total number of peripheral airway buds

(Figure 11B), epithelial perimeter (Figure 11C), area (Figure 11D)

and external perimeter (Figure 11E) of lung explants.

Gp130 cytokines supplementation effects on intracellular
signaling pathways

The receptors of gp130 cytokines directly control the activities

of STAT, MAPK, and PI3K/AKT signaling pathways, and

simultaneously activate SOCS negative feedback regulation. In

order to further investigate gp130 cytokines effects on fetal rat lung

growth, treated lung explants were evaluated for signaling

modulation of these pathways. Pooled samples of lung explants

individually treated with recombinant cytokines (selected due to its

maximal effect either on stimulation or inhibition of explants

growth) were used to assess protein expression levels of non-

phosphorylated and phosphorylated forms of p38, p44/42

(ERK1/2), JNK, AKT and STAT3 by western blot, likewise

SOCS3 protein expression levels were also assessed (Figure 12).

Resulting signaling pathway alterations induced by gp130 cytokine

stimulation are summarized in Table 1. On one hand, lung growth

stimulation induced by IL-11 significantly increased p38 phos-

phorylation. On the other hand, inhibition of lung growth induced

by CLC, significantly reduced JNK and AKT phosphorylation

levels. Both CNTF and CT-1-induced inhibition of lung growth

significantly stimulated STAT3 phosphorylation and decreased

JNK phosphorylation. Additionally, CNTF treatment also induced

a significant increase of AKT phosphorylation, whereas CT-1

treatment significantly increased p38 phosphorylation. OSM

inhibitory effects on lung growth appear to be mediated by

significantly increase of p38 and p44/42 phosphorylation, and also

of AKT and STAT3 phosphorylation. Gp130 cytokines supple-

mentation, comparatively to no supplementation, induced an

Figure 7. IL-11 supplementation studies in a fetal lung explant culture system. (A) Representative examples of fetal lung explants treated
daily with increasing concentrations of recombinant IL-11, after 4 days in culture. Original magnification:625. (B) Number of peripheral airway buds ;
(C) Epithelial perimeter; (D) Area; (E) External perimeter of lung explants treated with IL-11. Results are expressed as ratio of day 4 (D4) and day 0 (D0)
of culture (D4/D0 ratio), and also as absolute number in D0 (black bar) and D4 (white bar). p,0.05: * vs. IL-11 at 0 pg/mL (control), 1 vs. IL-11 at 0.1 pg/
mL, ¥ vs. IL-11 at 1 pg/mL.
doi:10.1371/journal.pone.0067607.g007
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increase in SOCS3 expression levels, except for CLC treatment.

Both IL-11 and CNTF stimulation significantly increased SOCS3

expression.

Gp130 cytokines supplementation effects on
proliferation and apoptosis

Gp130 cytokines stimulatory or inhibitory effects on fetal rat

lung explant growth were further explored by assessing the protein

expression levels of proliferation and apoptosis markers, PCNA

and cleaved PARP respectively (Figure 13). Western blot was

performed, using pooled samples of lung explants individually

treated with recombinant cytokines. Concerning proliferation, IL-

11 stimulatory effects on lung growth are concomitant with a

significant increase of PCNA levels. Additionally, lung growth

inhibitory cytokines, CLC, CNTF, CT-1 and OSM did not induce

changes in PCNA levels relatively to no supplementation control

(Figure 13B). In relation to apoptosis, inhibition of lung growth by

CLC, CNTF, CT-1 and OSM induced a decrease in cleaved

PARP, comparatively to growth stimulating-IL-11. Concurrently,

IL-11 supplementation induced the highest expression level of

cleaved PARP observed, and OSM the lowest, both significantly

different relatively to control (Figure 13C).

Discussion

The gp130 cytokine family collectively exhibits a broad range of

physiological functions, including important roles in embryonic

development. Recently, some of these cytokines, namely IL-6 and

LIF, have been proposed to be mediators in fetal lung

development [3–4], but otherwise little is known about the role

of additional classical members of this family in the developing

lung.

Moreover, information regarding protein expression patterns of

these cytokines and their common gp130 receptor during

embryonic rat pulmonary development is lacking from literature.

Therefore, the present study demonstrated, for the first time, that

gp130 receptor and its ligand cytokines are expressed during lung

Figure 8. CLC supplementation studies in a fetal lung explant culture system. (A) Representative examples of fetal lung explants treated
daily with increasing concentrations of recombinant CLC, after 4 days in culture. Original magnification: 625. (B) Number of peripheral airway buds;
(C) Epithelial perimeter; (D) Area; (E) External perimeter of lung explants treated with CLC. Results are expressed as ratio of day 4 (D4) and day 0 (D0) of
culture (D4/D0 ratio), and also as absolute number in D0 (black bar) and D4 (white bar). p,0.05: * vs. CLC at 0 nM (control plus 4 mM HCl), 1 vs. CLC at
0.003 nM, ¥ vs. CLC at 0.03 nM, { vs. CLC at 0.3 nM, ` vs. CLC at 3 nM.
doi:10.1371/journal.pone.0067607.g008
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development. IL-11, CLC, CNTF, CT-1 and OSM are expressed

at very early gestational stages of lung development, suggesting a

biological role for these cytokines in early normal development of

this branching organ. These cytokines share a similar protein

expression pattern, in early stages of development with prevalence

in undifferentiated tissues, all gp130 cytokines are expressed

predominantly in the embryonic mesenchyme. Interestingly, as

gestation progresses and airways develop and differentiate, gp130

cytokine expression becomes increasingly more restricted to both

bronchial and alveolar epithelium. Concurring with our findings,

several expression studies regarding gp130 cytokines, although

referring mostly to IL-11, CLC, CNTF, CT-1 and OSM mRNA

levels, have proved the expression of these cytokines in the murine

adult lung [5,18–24]. Furthermore our findings demonstrated that

these cytokines also share a similar protein expression pattern in

the rat fetal lung and, that for the most part of pulmonary

development, gp130 cytokines expression is highly associated with

both proximal and distal airways. This is found to be in agreement

with further evidences that showed OSM [23] and CLC [25]

expression in the pulmonary airway epithelium. It is also

demonstrated that gp130 receptor protein is present in embryonic

mesenchyme since early pulmonary development, and as gestation

progresses its expression is predominantly associated with the

developing epithelium, similarly to both the expression patterns

observed for gp130 cytokines and LIFR in lung development [4].

In order to further clarify the role of the gp130 family of

cytokines in lung branching morphogenesis, in vitro supplementa-

tion studies were performed individually. Thus, fetal lung explants

were cultured with increasing concentrations of IL-11, CLC,

CNTF, CT-1 or OSM, selected according to literature [26–35].

Supplementation studies showed that cytokines within the gp130

family can elicit opposite effects in lung explant growth. Such

observation suggests that despite their shared use of the common

receptor subunit gp130, these cytokines can generate contradictory

signals in branching morphogenesis. Furthermore, intracellular

signaling contribution to the effects of each cytokine on fetal lung

Figure 9. CNTF supplementation studies in a fetal lung explant culture system. (A) Representative examples of fetal lung explants treated
daily with increasing concentrations of recombinant CNTF, after 4 days in culture. Original magnification:625. (B) Number of peripheral airway buds;
(C) Epithelial perimeter; (D) Area; (E) External perimeter of lung explants treated with CNTF. Results are expressed as ratio of day 4 (D4) and day 0 (D0)
of culture (D4/D0 ratio), and also as absolute number in D0 (black bar) and D4 (white bar). p,0.05: * vs. CNTF at 0 nM (control), 1 vs. CNTF at 0.1 ng/mL,
¥ vs. CNTF at 1 ng/mL, { vs. CNTF at 10 ng/mL.
doi:10.1371/journal.pone.0067607.g009
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growth were investigated by assessing non-phosphorylated and

phosphorylated protein expression levels of several intracellular

mediators, namely p38, p44/42, JNK, AKT, STAT3, and total

SOCS3. It is well-established that numerous players account for

the molecular basis of cytokine action, thus unsurprisingly in fetal

lung development each cytokine proved to elicit the activation of

either simple or combinatory signals from different signal-

transducing pathways. Additionally, gp130 cytokines effects on

lung explant growth were further explored by assessing prolifer-

ation and apoptosis levels.

In this study, it was demonstrated that IL-11 supplementation

stimulates lung branching evidenced by increased number of

peripheral airways buds, epithelial perimeter, area and external

perimeter of fetal lung explants, whereas CLC, CNTF, CT-1 and

OSM inhibit lung growth. Together with previously obtained

results which demonstrated that IL-6 and LIF have opposite effects

in branching morphogenesis, while the first stimulated lung

explant growth the latter inhibited, the current study extensively

contributes for a thorough comprehension of the role of these

cytokines in the complex process of lung development.

Similarly to what was previously described for IL-6, IL-11

supplementation stimulated fetal lung branching. This stimulatory

effect is concomitant with a significant increase in proliferation.

IL11 supplementation also significantly, elicited the highest level of

apoptosis observed. It is reasonable to expect an increase in

proliferation in a branching stimulatory context mainly supported

by epithelial development [1]. It is also known that apoptosis can

be detected throughout the lung developmental stages, however it

is most prominent during the pseudoglandular stage when

branching morphogenesis occurs [36,37,38]. In addition, most

cells undergoing apoptosis are reported to be located in the

mesenchyme [36,38,39]. Therefore the combination of these

processes is likely responsible for the observed IL-11 growth

stimulation. Interestingly, IL-11 has been demonstrated to

stimulate proliferation and differentiation of intestinal cells and

to prevent apoptosis of epithelial cells [40,41]. Regarding the lung,

Figure 10. CT-1 supplementation studies in a fetal lung explant culture system. (A) Representative examples of fetal lung explants treated
daily with increasing concentrations of recombinant CT-1, after 4 days in culture. Original magnification: 625. (B) Number of peripheral airway buds;
(C) Epithelial perimeter; (D) Area; (E) External perimeter of lung explants treated with CT-1. Results are expressed as ratio of day 4 (D4) and day 0 (D0)
of culture (D4/D0 ratio), and also as absolute number in D0 (black bar) and D4 (white bar). p,0.05: * vs. CT-1 at 0 ng/mL (control plus 4 mM HCl), 1 vs.
CT-1 at 0.1 ng/mL, ¥ vs. CT-1 at 1 ng/mL, { vs. CT-1 at 10 ng/mL, ` vs. CT-1 at 100 ng/mL.
doi:10.1371/journal.pone.0067607.g010
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IL-11 is produced by a variety of structural cells (fibroblasts,

epithelial cells, human airway smooth muscle cells] and eosino-

phils in response to a variety of stimuli [42,43]. Indeed, IL-11 acts

as a healing cytokine in the asthmatic airway and also provides

protective effects against oxidant-mediated injury in fetal and adult

lung [44,45].

On the contrary, it was demonstrated that CLC, CNTF, CT-1

and OSM inhibit lung growth. Simultaneously, these inhibitory

cytokines showed decreased apoptosis levels comparatively to

stimulatory IL-11, moreover OSM presented a significant

decrease in apoptosis relative to control. In agreement, others

have previously reported diminished fetal lung branching in the

presence of apoptosis inhibition [36,46]. Several evidences point

towards a role of these inflammatory cytokines in varied aspects of

lung physiology. During development, CLC is expressed in lung,

particularly in distal airway epithelium, as well as several other

organs [47], suggesting important biological roles of this cytokine.

In opposition to lung growth inhibition here demonstrated, during

kidney development (also a branching organ), CLC promotes

mesenchymal to epithelial conversion and nephrogenesis [28].

CNTF is described to be widely expressed in the adult [20], but

during embryonic development, CNTF is specifically expressed in

rat pineal gland and eyes [48]. This cytokine has been described to

act as a lesion factor, preventing neuronal cell death and

facilitating axonal regeneration after nerve injury [32]. CT-1 is

expressed in both adult and fetal lung and also in numerous other

embryonic and adult tissues [5,21,22,49]. In opposition to the

inhibitory effect on fetal lung growth described in this study, CT-1

has been related with hypertrophic and cytoprotective actions

[49]. In fact, CT-1 has been related with chronic asthma,

contributing to airway wall thickening and hypertrophy of airway

smooth muscle [22]. Lastly, OSM is expressed in hematopoietic

tissues, choroid plexus and limb during fetal life [50]. After birth, it

is detectable in many other organs, and also the lung, specifically

in alveolar and bronchiolar epithelium [23,24]. Moreover, OSM is

Figure 11. OSM supplementation studies in a fetal lung explant culture system. (A) Representative examples of fetal lung explants treated
daily with increasing concentrations of recombinant OSM, after 4 days in culture. Original magnification: 625. (B) Number of peripheral airway buds;
(C) Epithelial perimeter; (D) Area; (E) External perimeter of lung explants treated with OSM. Results are expressed as ratio of day 4 (D4) and day 0 (D0)
of culture (D4/D0 ratio), and also as absolute number in D0 (black bar) and D4 (white bar). p,0.05: * vs. OSM at 0 ng/mL (control), { vs. OSM at 0.1 ng/
mL, 1 vs. OSM at 1 ng/mL, ¥ vs. OSM at 10 ng/mL.
doi:10.1371/journal.pone.0067607.g011
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a potent mediator of lung inflammation and extracellular matrix

accumulation [51].

Our findings on this dual contribution of gp130 family of

cytokines, with inductive and suppressive actions in lung growth,

clearly suggest a regulatory role in fetal lung development.

Previously stressing a role for gp130 signaling during embryo

development are many studies of transgenic and knockout mice for

different components of this cytokine family or their receptors,

which report defects in bone and neurologic development,

disrupted placental architecture, hypoplastic development and a

decrease in fetal liver hematopoiesis. The most severe phenotypes

are displayed by mice lacking receptor components used by several

members of the gp130 family. For example, gp130 or LIFR

knockout mice die during development or shortly after birth

[11,52,53]. Likewise, conditional gp130-mutant mice presented

pulmonary defects and developed emphysema with increasing age

[54]. In the present study, it was revealed that individual gp130-

type cytokines can both enhance or inhibit fetal lung growth.

Besides, providing specificity for individual cytokines in fetal lung

development, these data underlines that cytokines operating

through gp130 homodimers may induce different and even

opposite biological responses than those operating through

gp130 heterodimers. Both IL-6 and IL-11 receptors are gp130

homodimers and stimulate lung growth, whereas all the other

receptors for this family of cytokines are gp130 heterodimers and

inhibit lung growth (Figure 14). Thus, the main findings of this

study stress the composition of these signaling receptor complexes

as an important mechanism to acquire signaling specificity from

pleiotropic-acting cytokines in lung development. This is in

agreement with the well-documented fact that such cytokines

with pleiotropic activities can also retain tissue-specific activities.

In fact, several mechanisms can be accountable for generating and

limiting those responses, specifically: cytokine restricted temporal

and spatial release, differential expression of cell surface receptors

and different signaling pattern between gp130 homodimers and

heterodimers [55].

Cytokine signaling on a developing lung cell-specific context

triggers diverging and non-overlapping intracellular signaling

cascades. For instance, IL-11 stimulating effect on lung growth

was associated with an increase in p38 phosphorylation. Interest-

ingly, the stimulation of lung growth induced by IL-6 was also

previously reported to be associated with increased p38 activation

[4]. In the case of gp130 cytokines that exert an inhibitory effect in

lung explant growth, diverse and combinatory intracellular signals

are more frequent. Clearly this study emphasizes that also in lung

branching morphogenesis, gp130 cytokine receptor activation is a

rather complex means of initiation of signal transduction that leads

to numerous possible signaling patterns able to elicit a similar

biological outcome. CLC induced lung growth inhibition and

concomitantly a decrease in the activation of JNK and AKT. Both

CNTF and CT-1-induced lung growth inhibition is associated

with activation of STAT3 and decreased JNK phosphorylation.

CNTF additionally activates PI3K/AKT cascade whereas CT-1

activates p38. OSM inhibition of lung growth demonstrated to

activate PI3K/AKT, different MAPK signaling pathways (p38

and p44/42) and also STAT3.

Unsurprisingly, gp130 cytokines fetal lung explant supplemen-

tation, comparatively to no supplementation, induced an increase

in SOCS3 expression levels, except for CLC treatment. SOCS3 is

rapidly induced following cytokine stimulation, both in vitro and in

vivo. Additionally it is well-established that STAT1 and STAT3

contribute significantly to upregulate socs3 gene [12–14,56]. In

agreement, we observe a significant increase in STAT3 activation

concomitant with increased SOCS3 expression, comparatively to

no stimulation, in CNTF, CT-1 and OSM treatments. Inversely,

such is not observed regarding IL-11 and CLC stimulation, the

first shows significantly increased SOCS3 expression and no

apparent STAT3 activation, CLC stimulation did not elicit

STAT3 activation neither SOCS3 overexpression. Considering

that SOCS are induced via JAK/STAT pathway, which in its turn

is initiated upstream by gp130 cytokines, and subsequently act

preventing STAT phosphorylation, they ultimately suppress

cytokine signaling in a classical feedback inhibition [13,56].

Narrowing cytokine stimulation to a single dose, instead of a

range when investigating alterations in STAT phosphorylation

and SOCS expression, may be accountable for missing observa-

tion of the whole negative feedback loop response, and rather be

restricted to observe partial cellular responses of this loop. This is

Figure 12. Analysis of intracellular signaling pathways that IL-11, CLC, CNTF, CT-1 and OSM supplementation mediates on lung
growth. (A) Western blot analysis of p38, p44/42, JNK1/2, AKT, STAT3 and SOCS3, and also diphosphorylated forms of p38 (dp-p38), p44/42 (dp-p44/
42), SAPK/JNK (dp-JNK1/2), AKT (dp-AKT) and STAT3 (dp-STAT3) in control (1), control plus 4 mM HCl for CLC and CT-1 lung explants (2) and treated
with IL-11 at 0.1 pg/mL (3), CLC at 30 nM (4), CNTF at 1000 ng/mL (5), CT-1 at 200 ng/mL (6), and OSM at 100 ng/mL (7). Control loading was
performed using b-tubulin (55 kDa). p38 corresponds to 38 kDa. p44/42 corresponds to 44 and 42 kDa, respectively. JNK1 and 2 corresponds to 46
and 54 kDa, respectively. AKT corresponds to 60 kDa. STAT3 corresponds to two bands, 79 and 86 kDa. SOCS3 corresponds to 30 kDa. Semi-
quantitative analysis for (B) dp-p38, (C) dp-p44/42, (D) dp-JNK1/2, (E) dp-AKT, (F) dp-STAT3, and (G) SOCS3. Results are presented as arbitrary units
normalized for b-tubulin and the respective control. p,0.05: * vs. control.
doi:10.1371/journal.pone.0067607.g012

Table 1. Gp130 cytokines effects on intracellular signaling pathways and lung growth.

Cytokine Effect on intracellular signaling Effect on fetal lung

IL11 q p38 phosphorylation; q SOCS3 expression Stimulation of lung growth

CLC Q JNK and AKT phosphorylation Inhibition of lung growth

CNTF Q JNK phosphorylation; qAKT and STAT3 phosphorylation; q SOCS3 expression Inhibition of lung growth

CT-1 Q JNK phosphorylation; q p38 and STAT3 phosphorylation Inhibition of lung growth

OSM q p38, p44/42, AKT and STAT3 phosphorylation Inhibition of lung growth

Analysis of the intracellular signaling pathways that IL-11, CLC, CNTF, CT-1 and OSM supplementation mediates on fetal lung growth. Note: (q) (Q) arrows indicate
increased and decreased, respectively.
doi:10.1371/journal.pone.0067607.t001
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likely to explain our diverse STAT3/SOCS3 signaling findings,

because only a specific dose of a particular gp130 cytokine was

analyzed. Moreover both, lung growth stimulating IL-11 dose and

lung growth inhibiting CNTF dose significantly increased SOCS3

expression, proving that gp130 cytokines regulation mechanisms

are induced independently of distinct physiological outcomes in

fetal lung development.

The role of gp130 cytokine signaling negative regulation in the

multiplicity of networks that are activated in response to these

cytokines is often difficult to elucidate. Therefore we acknowledge,

that future studies resourcing to other strategies such as gene

expression profiling, blocking parts of the signaling cascade or

using knockout technology in the context of fetal lung develop-

ment would provide a more thorough insight on the gp130-

induced signaling pathways and its regulation. Collectively, these

results suggest that integration of the activities of multiple

pathways might ultimately provide a balanced biological outcome

intended to respond to a particular physiological situation.

In conclusion, in a similar way to IL-6, IL-11 acts in a gp130

homodimer receptor and it was demonstrated that stimulates lung

branching. On the other hand, CLC, CNTF, CT-1 and OSM

receptors are gp130 heterodimers and it was described that they

inhibit lung growth. All these results demonstrated that cytokine

signaling through gp130 homodimers stimulate, whereas cytokine

signaling through gp130 heterodimers inhibit lung branching.

This specificity of gp130-type cytokines might represent a

regulatory mechanism of lung morphogenesis, intrinsic to this

family of cytokines, in order to achieve the correct lung growth.
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