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Abstract 

This work presents a new approach for a current differential 

protection of the transmission lines. The proposed approach is 

based on the Clarke-Concordia transformation and principal 

component analysis. First the acquired current signals are 

transformed into “αβo” components by applying the Clarke-

Concordia transformation. This allows obtaining typical 

patterns. To identify these patterns a principal component 

analysis is performed. Several tests under different fault 

conditions were performed. The obtained results allow 

verifying the effectiveness of the proposed approach. 

1 Introduction 

The development of a computer relaying scheme allows 

improving power quality of modern power systems. One of 

the most important developments for the protection of 

transmission lines was the current differential relay. This 

protection was initially used for power transformers and 

generators [1,2,3,4]. However, with the development of 

communication and computer technology, this concept was 

also applied to transmission lines [5,6,7]. This allows 

improving speed clearing times for faults occurring at any 

point on a transmission line. However, the protection scheme 

is dependent of the available communications channel 

between the transmission line terminals. The communication 

channel is used to exchange information between each relay 

located at the transmission line terminal. However, when 

differential concept is applied to transmission lines, problems 

of sampling misalignment problem and communications 

channel delay make accurate current comparison difficult to 

achieve. 

 

To overcome the sampling misalignment problem and 

communications channel delay, current differential relay 

based on synchronized current measurement using Global 

Positioning system Satellite (GPS) is normally used [8].  

However, GPS presents some problems. In fact, GPS is a 

sophisticated system that may suffer interruption, and it is not 

controlled by power system utilities. In this way a method 

based on a synchronous rotating frame has been proposed [9]. 

However, this method does not allow identifying the faulty 

phase. 

 

This work presents an investigation of a new approach for a 

current differential relay for transmission line protection. This 

approach is based on the obtained patterns of the Clarke-

Concordia transformation and principal component analysis. 

So, instead of transmitting current samples, the obtained 

values of the principal component analysis are transmitted. 

This allows improving immunity to problems such as 

sampling misalignment and time delay of the communication 

channel.  Several test results allow the validation of the 

proposed approach. 

2 Proposed line current differential protection 

Current differential protection is one of the most effective 

power system protections. This concept is based on the 

kirchhoff’s current law. In this way current differential 

protection rests in the comparison of the sum of the incoming 

and outgoing currents. 

This protection has been used firstly for electrical equipments 

such as transformers and generators against internal faults. 

However, in the last years this protection has been used for 

the protection of transmission lines. However, for the 

protection of transmission lines a reliable communication 

channel is required. Fig. 1 shows an example for a 

transmission line current differential relaying scheme. This 

scheme consists of two relays at the terminations of the 

protected line with a communication channel between them. 

 

 
 

Fig. 1.  Transmission line current differential relaying 

scheme. 

 

In traditional schemes each relay compares the currents of 

both sides of the line. In this proposed approach there are 
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three main steps. First the acquired current signals in each of 

the line sides are transformed into “αβo” components by 

applying the Clarke-Concordia transformation. In the second 

step principal component analysis is performed. Finally, the 

operation condition of current differential relay system is 

defined.  

 

Clarke transform is a well-known de-coupling method for 

three-phase line parameters [10]. The main purpose is 

obtaining the line currents characteristic representation on 

αβ0 space vector. To achieve this, the line currents of the 

three phase system are measured and transformed using 

equations (1) and (2). This approach has already been used in 

power system protection [11].  
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 Fig. 2 shows the distribution of the line currents on the αβ0 

space for steady state condition. In this condition the current 

distribution is defined by a circle. For a three phase fault the 

current distribution in the space is also defined by a circle. 

However, the circumference related with the three-phase fault 

is much higher than in steady state condition. 

 

 

 
 

Fig. 2.  Distribution of the line currents on the αβ0 space for 

steady state condition. 

Fig. 3 shows the distribution of the line currents on the αβ0 

space for a phase to phase short circuit. For this fault type the 

current distribution is defined by an ellipse. The main 

orientation of the ellipse is in the αβ axis. 

 

 
 

Fig. 3.  Distribution of the line currents on the αβ0 space for 

phase to phase fault. 

 

Fig. 4 shows the distribution of the line currents on the αβ0 

space for a single phase to ground fault. In this fault type the 

current distribution is also defined by an ellipse. However, the 

main orientation of the ellipse is for the o axis. In this way, 

the main orientation of the ellipse allows to discriminate 

between different faults. 

 

 
Fig. 4.  Distribution of the line currents on the αβ0 space for 

phase to earth fault. 

 

From the principal components and their directions it is 

possible to discriminate about the fault type. In this way, the 

interpretation of the current signals on the αβ0 space is 

performed by an eigenvector/eigenvalue analysis. Using this 

analysis it is possible to obtain the main directions of the 

obtained pattern. To implement this analysis, first a data 



sample matrix of the current signals on the αβ0 space is 

performed (3).  The first sample will be [iα(t0) iβ(t0) i0(t0)], 

where t0 denotes the initial time and ∆t the sample interval. 
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(3) 

 

From the correlation matrix of S, denoted by E on (4), its 

eigenvectors, and respective eigenvalues, can be computed. 

The eigenvectors and eigenvalues of the correlation matrix 

are such that (5) holds true for each eigenvector/eigenvalue 

pair. 

 

S.SE T=  (4) 

 

λvEv =  (5) 

 

The obtained eigenvalues will then be used in the 

transmission channel between the two relays. Since in steady 

state these values are constant, immunity to problems such as 

sampling misalignment and time delay of the communication 

channel will be improved. 

 

Since the obtained patterns are located in a plane, then only 

the two first eigenvectors are significant. In this way, to 

discriminate a line fault the eigenvalues ( 1λ , 2λ ) associated 

with each eigenvector ( αe , βe , oe ) are used. So, the 

equation related with differential currents is defined as can be 

seen by the following expression: 
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The relay operation is implemented comparing diffe  with the 

restraint current re , defined as: 
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The differential relay operation is given by: 

 

rop eke ≥  (8) 

 

where K is a constant coefficient representing the slope of the 

relay characteristic. A minimum pick-up current to the relay 

can also be considered. In this way, the following condition 

was also considered: 

 

orop keke +≥  (9) 

 

The identification of the faulty phase or phases can be 

performed by the analysis of the eigenvalues with the 

correspondent eigenvector. The discrimination between a 

phase to phase fault and phase to ground fault will also be 

performed by the analysis of the eigenvalues with the 

correspondent eigenvector. From the analysis of the 

eigenvectors it is possible to identify the position quadrant of 

the αβo vectors.  Table 1 shows the fault classification 

patterns for each fault type. 

 

Fault Type 
Position quadrant of ααααββββ0 vectors 

 eαααα    eββββ    eo 

L1-E II V I 

L2-E III VI II 

L3-E VI II III 

L1-L2-E VIII V II 

L2-L3-E II I III 

L3-L1-E VI VIII I 

L1-L2 III II -- 

L2-L3 II I -- 

L3-L1 II IV -- 

Three-Phase -- -- -- 

Pre-fault State -- -- -- 

 

Table 1: Fault classification patterns. 

3 Case Study 

In this section it will be presented a case study in order to 

illustrate the effectiveness of the proposed approach. For this 

study it was used a 520 kV, 500 km transmission line. The 

simulation and implementation of this system has been done 

by the Matlab/Simulink software program and the Power 

System Blockset. 

 

Different fault types have been simulated in order to evaluate 

the proposed approach. Fig. 5 shows the test result for a three 

phase short circuit. As expected, the amplitude of the 

differential currents increases after the short circuit. Figs. 6 

and 7 show the time plots of the obtained first and second 

differential eigenvalues for this fault. As can be seen by these 

figures the first and second eigenvalues are similar at any 

time. After the short circuit both eigenvalues increase as the 

current amplitudes increase, indicating a three-phase fault.  

 

 
 

Fig. 5.  Differential line currents before and after a three-

phase short circuit. 

 



 
 

Fig. 6.  Obtained first differential eigenvalue before and after 

a three-phase short circuit. 

 

 

 
 

Fig. 7.  Obtained second differential eigenvalue before and 

after a three-phase short circuit. 

 

Fig. 8 shows the diffe  obtained values before and after the 

three-phase short circuit. As can be seen, these values related 

with the differential currents present a high increase after the 

short circuit.  

 

 
 

Fig. 8.  Obtained values related with the differential currents 

before and after a three-phase short circuit. 

 

Fig. 9 shows a simulation result for a metallic short circuit 

fault between two phases. As can be seen after the short 

circuit the amplitude of the faulty phase’s currents will 

increase. Figs. 10 and 11 show the correspondent first and 

second differential eigenvalues for this fault. As can be seen 

by these figures, after the short circuit the first differential 

eigenvalue will increase. The second differential eigenvalue 

almost maintains the same value. This indicaties that the 

pattern will change from a circle to an ellipse. 

 

 
Fig. 9.  Differential line currents before and after a phase to 

phase short circuit. 

 

 

 
Fig. 10.  Obtained first differential eigenvalue before and 

after a phase to phase short circuit. 

 

 

 
Fig. 11.  Obtained second differential eigenvalue before and 

after a phase to earth short circuit. 

 

Fig. 12 shows the results for a single phase to ground fault. 

The correspondent first and second differential eigenvalues 

for this fault type are presented in Figs. 13 and 14. As can be 

seen, the first differential eigenvalue increases after the fault 

while the second one almost maintains the same value. From 

the obtained eigenvectors it is possible to confirm about this 

fault type, since the main direction of the first differential 

eigenvalue is the o axis. 

 

 
Fig. 12.  Differential line currents before and after a phase to 

ground short circuit. 

 



 

 
Fig. 13.  Obtained first differential eigenvalue before and 

after a phase to ground short circuit. 

 

 

 
Fig. 14.  Obtained second differential eigenvalue before and 

after a phase to ground short circuit. 

 

4 Conclusions 

In this study an investigation of a novel differential concept 

for line protection has been introduced. The proposed concept 

is based on an automatic three step algorithm. First the line 

currents are obtained. Then a Clarke-Concordia 

transformation of the current samples is performed. This 

allows obtaining typical patterns for each fault type. Finally a 

eigenvector/eigenvalue analysis is performed to obtain the 

characteristic features. In this way, using the first and second 

eigenvalues it is possible to define the operation condition of 

the differential relay operation. From the analysis of the 

eigenvalues with the correspondent eigenvectors it is possible 

to identify the fault type. This also allows identifying the 

faulty phase. The main characteristics and particularities of 

the proposed approach are the improvement of immunity to 

problems such as sampling misalignment and time delay of 

the communication channel. Several simulation results have 

been presented in order to verify the effectiveness of the 

proposed approach. 
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