
BACO – A large database of text and co-occurrences

Luís Sarmento
Faculdade de Engenharia da Universidade do Porto (NIAD&R) and Linguateca

las@fe.up.pt

Abstract

In this paper we introduce a public resource named BACO (Base de Co-Ocorrências), a very large textual database built from the
WPT03 collection, a publicly available crawl of the whole Portuguese web in 2003. BACO uses a generic relational database engine to
store 1.5 million web documents in raw text (more than 6GB of plain text), corresponding to 35 million sentences, consisting of more
than 1000 million words. BACO comprises four lexicon tables, including a standard single token lexicon, and three n-gram tables
(2-grams, 3-grams and 4-grams) with several hundred million entries, and a table containing 780 million co-occurrence pairs. We
describe the design choices and explain the preparation tasks involved in loading the data in the relational database. We present several
statistics regarding storage requirements and we demonstrate how this resource is currently used.

1. Introduction
The use of generic relational databases for corpora search
and linguistic purposes has already been experimented
with for a few years (Davies, 2003), but has been
attracting renewed attention with the increasing amount
of textual data available, taken from large web crawls (see
for example the Wacky project at
(http://wacky.sslmit.unibo.it/). Given the current
limitations of specific linguistically-motivated corpus
query systems in dealing with “gigaword” corpora,
researchers are turning their attention to generic database
systems. Database systems may provide a very good
option for corpus linguistics when dealing with very large
amounts of raw text (i.e. non-annotated text), which is
often the case when working with very large crawls or text
collections. Recently, a large crawl of the Portuguese Web
– the WPT03 collection - was made available to the
scientific community (http://www.linguateca.pt/wpt03/).
The WPT collection is one of the largest Portuguese
document collections but has not yet been fully explored:
efficiently searching its 15 GB of data is not simple. We
thus decided to try to use a generic database system to see
if it was possible to efficiently deal with such a large
amount of data. After some simple but encouraging tests,
we started BACO (Base de Co-Ocorrências), a database
of text and co-occurrences.

2. Requirements and Design Choices
Developing BACO involved many design decisions
regarding how data from the WPT03 collection should be
pre-processed and stored in a generic database system.
The first design decision was concerned with the
granularity of the text representation i.e. which should be
the smallest unit of text to be stored as an individual tuple
in the database. The most common options usually
considered are (i) storing one complete document per
tuple, (ii) a sentence per tuple, or (iii) storing each
individual token in one separate tuple. This choice has
strong implications on the size (in number of tuples) of the
table that stores the text. Choosing a finer-grained text
unit will increase the number of tuples to be stored which
usually leads to some degradation in search and retrieval
performance, but it also allows one to build much more
expressive queries that may operate over smaller text
particles. But since for many NLP and IE applications

(e.g.: finding definitions or semantic relations, retrieving
answers in automatic QA systems) relevant information is
often found inside the scope of a single sentence we
decided that BACO would store text on the basis of
sentences. Furthermore, this is a solution that represents a
balance between query expressiveness and table size.

2.1 The Need for Auxiliary N-Gram Tables
In many NLP applications it is important to know which
are the most significant collocations / lexical contexts of a
given word. However, trying to obtain this information by
querying the entire text base each time we need it is
simply inefficient. We thus decided to include in BACO,
(besides the traditionally one-word dictionary) several
n-gram tables, i.e. 2-word, 3-word and 4-word lexicons,
which may be directly queried for obtaining information
about collocations or surrounding contexts, avoiding the
need to search the entire collection. Since these are very
simple tables, containing just a few columns, they may be
efficiently indexed and queried. The downside of
including these tables in BACO is that they involve
replicating the same data several times. For example, the
data in any N-gram table could be easily obtained from
the data contained in the (N+1)-gram table. As we will
describe later, this redundancy greatly increases the
database storage requirements (the N-gram tables grew to
approximately 18 GB, excluding indexes). Nevertheless,
we think its worth sacrificing disk storage for the query
speed that can be obtained in return.

2.2 The Co-occurrence Table
Information about the co-occurrence of words is also
relevant for many NLP tasks. However, compiling the
information about co-occurrences from very large text
collections may become problematic in practice and it
usually involves adopting some restrictions. Potentially,
any word in the lexicon of a language may co-occur with
any other word of that lexicon, so compiling information
about word co-occurrences between all pairs of words
from a N word lexicon may result in N^2 co-occurrence
tuples of the form (w1, w2, count), a number much larger
than can be handle by the usual desktop computer using
simple approaches. In order to make this process feasible,
and since we are not making use of any POS annotation
nor stemming techniques, our option was to limit the
lexical domain at stake by excluding some lexemes that

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Comum

https://core.ac.uk/display/62685228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wacky.sslmit.unibo.it/

we believed would not carry enough information.
Therefore, we decided that we would only consider
co-occurrence pairs that did not include (i) any lexemes
with less than 4 characters or more than 20 characters, (ii)
any lexeme composed of digits, (iii) or any word from a
list of 260 very frequent words (manually compiled) that
included prepositions, quantifiers, adverbs and very
frequent verbs. This allowed us to reduce the lexicon to be
processed from about 6.8M lexemes to less that 4M. More
importantly, it helped to significantly reduce the number
of co-occurrence pairs by excluding very frequently used
words that co-occur with a large portion of the lexicon.
The next design decision regards the scope in which
co-occurrences are considered. One may opt for
compiling document-scope co-occurrences pairs or
sentence-scope co-occurrences pairs. We believe,
however, that word co-occurrences at document level do
not exhibit enough semantic cohesion, and this seems to
be especially the case when considering web documents
that may have many unrelated sections (e.g. headers,
footers and navigation menus). Therefore, we decided to
compile co-occurrence pairs inside the scope of a
sentence, which is also compatible with the previous
decision of storing the text on a sentence basis. Another
important design option concerns to whether the
information about the distance and/or relative position of
the words in the co-occurrence pairs should be kept or not.
To avoid data explosion and still keep some useful
information we decided that BACO would just keep the
information about word order but not the corresponding
distance, meaning that we keep different co-occurrences
counts for the pair (w1, w2) and for the pair (w2, w1) but
we do not keep information about distance.

2.3 The database management system
Another practical design decision concerns the database
management system to be used. We should remember that
BACO is a read-only database: users will query the tables
but will not need (nor will be allowed) to insert new tuples
or to update values. Therefore, no complex transaction
mechanism is required for BACO.
We decided to use the “of-the-shelf” open-source
database system MySQL (http://www.mysql.org). Despite
other possible options, our previous experience with the
MySQL system showed it has a good performance for the
kind of task we had in mind. Additionally, MySQL has a
good user support and documentation, has versions in
many different platforms and it provides database
connectors for several programming languages.

2.4 Summary of BACO
The overall design of BACO includes:

1. the sentences table, containing all the text of the

collection, split into sentences;
2. the metadata table, containing some relevant

metadata originally provided in the WPT collection
for all documents stored (url, language, etc);

3. the dictionary table, a list of tokens along with the
information about the corresponding frequency and
the number of documents in which they occur;

4. the n-grams tables. A table of 2-grams, a tables of
3-grams and a table of 4-grams, each keeping
information about the n-gram and their frequency and

number of documents in which they occur;
5. the co-occurrence table, storing information about

pairs of words that co-occur in the scope of a
sentence, and about their relative positions.

3. Preparing and Loading Data
BACO was generated from a non-annotated subset of the
original WPT03 collection, which was obtained by
removing possible duplicates based on title and document
size comparisons 1 . This subset had roughly 6 GB,
contained about 1.5 million documents corresponding to
approximately 1000 million words. During the data
preparation stage we used a 2.8 GHz Pentium IV machine
with 2GB of RAM and 160Gb IDE hard-drive. The
machine was running Linux Fedora Core 2. All
pre-processing programs were written in Perl 5.6 and we
used MySQL version 5.0.15 to store the data. Perl /
MySQL interface was done using DBI with the
DBD-MySQL driver version 2.9008.

3.1 Sentence and Metadata Tables
The 6 GB subset of WTP03 collection was transformed
into a very simple relational scheme, by separating the
meta-data of each document from its content. The text
content was split into sentences, using PT::PLN tools
(http://search.cpan.org/~ambs/Lingua-PT-PLN/). We thus
obtained two text files in a tabular format that contained
information for the two base tables of BACO: a large file
containing all the sentences (35,575,103 sentences), and
another table containing the metadata for each document
(1,529,758 documents). Both files were loaded in the
database and indexes were generated for each of the
relevant fields. A full-text index was generated for the
sentence table. From this moment on, and in order to
ensure data consistency, we only used the data from these
tables to generate the remaining tables.

3.2 Dictionary and N-Grams Tables
Generating the dictionary table was achieved in a single
pass over the entire sentence table. The whole lexicon
fitted easily into RAM, and the frequency and document
count for each entry in the lexicon were obtained using
standard Perl hash tables. We obtained a simple text file in
tabular format with information about 6,834,420 lexemes.
This file was loaded into the database and the
corresponding B-Tree indexes were generated. The
2-word lexicon however did not fit into RAM using Perl
hash tables. We decided to perform several passes over
the sentence table, each of them only collecting 2-grams
in which the first word of the 2-gram had a certain number
of characters. This is a simple standard way to divide the
problem in several disjoint sub-problems, each of them
fitting into memory. We performed 13 passes, each one
taking approximately 90 minutes. We obtained 13 disjoint
2-gram lists that were concatenated, resulting in a file in
tabular format containing 54,610,655 tuples. The file was
loaded in the database system and the corresponding
B-Tree indexes were generated, taking about 24 hours to
complete.
For the 3-gram and 4-gram tables the previous approach
was impractical. Since the number of distinct 3-grams and
4-grams is potentially much larger than the number of

1 Thanks to Nuno Seco, nseco@dei.uc.pt

http://www.mysql.org/
http://search.cpan.org/~ambs/Lingua-PT-PLN/

2-grams, we needed to divide the problem into many more
sub-problems than before. However, we had no way of
knowing in advance if a given partition would fit in
memory or if it would be unbalanced and require further
partitioning. We then opted for dividing the problem by
calculating the n-gram list for D documents each time.
After each iteration the n-grams obtained from a set of D
documents were sorted alphabetically and then merged
with the ones obtained in the previous iteration, which had
been stored in file, also sorted alphabetically. We thus
followed the same strategy of the external merge-sort
algorithm. This strategy allowed us to incrementally
obtain the n-grams counts for the entire collection.
However, after processing several thousand documents
the size of the temporary file grew to more than 500 Mb,
which severely increased the time of merge routine
between the tuples in RAM and those in file. To avoid
unnecessary performance degradation, in those cases we
simply restarted the process with an empty temporary file.
In the end, we obtained several intermediate sorted files (4
for the 3-gram lexicon and 6 for the 4-gram lexicon) that
were merged in a final step. Tuples were loaded in the
database and corresponding B-Tree indexes were
generated for all columns of these tables. Although we do
not have precise numbers, index generation took more
than 40 CPU hours for the 3-gram table and more than
130 CPU hours for the 4-gram table.

3.3 The Co-occurrence Table
For compiling the co-occurrence table we followed the
same strategy as in the previous cases: we obtained tuples
for a set of D documents that were then merged with the
tuples obtained from the previous iteration, which had
been stored sorted in a temporary file. Again, after several
iterations, the temporary file reached gigabyte size and
the merge operation became very slow, so the process was
restarted with an empty temporary file. We obtained 18
intermediate files, which were then merged in a final
operation into a single 15GB file. Obtaining the complete
co-occurrence file took an enormous amount of time (by
our standards): it took more than 3 weeks of CPU time for
compiling the 18 intermediate files and about 48 CPU
hours to merge them. Index generation (also B-Tree
indexes for each column) took more than 60 CPU hours.

3.4 Statistics
Table 1 gives a brief view regarding the size and disk
usage of each of BACO’s tables.

Table # tuples
(millions)

Table size
(GB)

Index size
(GB)

Metadata 1.529 0.2 0.05
Sentences 35.575 6.55 5.90
dictionary 6.834 0.18 0.27
2-grams 54.610 1.50 0.92
3-grams 173.608 5.43 2.97
4- grams 293.130 10.40 6.35
Co-occurrence 761.044 20.10 7.56
BACO total - 44.4 ~ 24
Table 1. Overview of size and disk usage of BACO.

Storage requirements are huge and data expansion in
relation to the size of the collection (around 6GB) is close
to a factor of 11. There is a tremendous amount of

redundancy involved in BACO. Nevertheless, and as we
will show in the next sections, this seems to be an
effective tradeoff in exchange for higher performance and
simplicity in querying the data.

4. Using and Experimenting BACO
BACO is especially suited for three types of queries,
namely (i) pattern matching over non-annotated text, (ii)
context search using a 1 to 3-word window and (iii)
queries regarding co-occurrence data. We have been using
BACO in several tasks where there is a practical need to
efficiently perform these types of queries.

4.1 Helping to Build a Gazetteer
In one recent project we used BACO to find examples of
proper names (anthroponyms, toponyms, organizations,
etc.) for our online gazetteer REPENTINO (Sarmento et
al., 2006). The search was conducted by scanning the
sentence table with an array of archetype lexical patterns
(e.g.: “X is located in Y”) for specific classes of names.
Sentences matching these patterns were then parsed to
extract the corresponding candidates (i.e “X” or “Y”).
After manual validation, positive candidates were stored
in REPENTINO database. Similarly, since names of
several organizations and events sometimes follow a very
regular structure with very speicifc words (e.g.:
“Association for *” or “* Club”), we queried BACO for
sentences matching those patterns, which again were
parsed and subjected to manual validation. This procedure
allowed us to find many interesting examples. This was
feasible because of the speed provided by the database
engine, which allowed us to experiment with many
patterns over the whole collection with very reasonable
processing times, usually taking from 10 to 150 seconds
depending on the frequency of the words in the query and
the number of sentences to be retrieved from disk.
Differences in query times are related to very practical
issues regarding full-text indexes. Full-text indexes do not
usually include words with less than four characters
because it is assumed that such words are too frequent. In
those cases indexes would be almost useless because an
enormous number of tuples would still have to be fetched
from disk after locating them in the index, thus decreasing
performance to nearly the level of a complete sequential
scan over the whole text base (which takes approximately
3 minutes on our machine). A less severe, yet still
problematic, case occurs for longer but still very
frequently occurring words. In those cases MySQL does
find the words on the index but a very large number of
tuples still needs to be retrieved. This yields search times
of more than two minutes. Inversely, performance greatly
improves (5-20 seconds) for cases where the search
expression includes less frequent occurring words.

4.2 Finding Co-hyponyms
In another experiment, we used BACO to automatically
expand a set of co-hyponyms given by the user. In other
words, starting from a set of elements named seeds, which
belong to a certain class, for example (“yellow”, “orange”,
“black”) we wanted to find “similar” elements to expand
that initial set of seeds, for example (“red”, “green”,
“pink”…). A well-known example of such a function is
the Google Sets, available at http://labs.google.com/sets.
We were interested in exploring very simple methods,

http://labs.google.com/sets

which would make use of the large amount of information
available. One of the methods developed was based on the
fact that similar elements occur in the same lexical
context. Thus, finding words similar to the ones belonging
to the initial set of seeds would be achieved by looking for
words that co-occur in the same contexts. In our
experiment, for each of the seed words we used the
4-gram table to obtain a list of contexts, which was
composed of the three preceding words (there were other
possibilities but we only considered this specific 3-word
context). From all contexts obtained searching the 4-gram
table for all the seed words, we excluded all contexts that
co-occurred with a very large number of words (250)
because those would probably be very generic contexts.
From the remaining contexts we chose only those
contexts that co-occurred simultaneously with at least a
certain number of seed words. This can be seen as a
simple “quality” parameter because contexts that
co-occur with all the seed words should be strongly
semantically related to them and, therefore, more
productive for our goal. Using the selected 3-word
contexts (usually more than 20), we again searched the
4-gram table to obtain words that occurred in those
contexts. Although no formal evaluation was conducted,
we can report (Sarmento, 2006) that results are usually a
large set of words containing many “similar” words
(Table 2). Each word is given a figure of merit based on
the number of contexts in common with the seed words,
so that an appropriate cut-off threshold can be established.
There are obviously many limitations to this approach but
since the whole search procedure usually takes less than 5
minutes, it may be seen as a possible semi-automatic aid
for building lexical-semantic resources.

Seeds Result sets obtained (top 20)

fiat
renault
toyota

ford (79), opel (75), peugeot (70), volkswagen (64),
seat (63), bmw (62), honda (57), audi (55), mercedes
(55), citroen (54) …

morango
laranja
banana

maçã (19), pêssego (14), ananás (13), tomate (13),
chocolate (13), café (13), amêndoa (12), cenoura
(11), limão (11), cereja (11) …

Table 2. Obtaining “similar” elements using BACO

4.3 Clustering Contexts
In another recent experiment we tried to extend the “one
sense per collocation” principle (Yarowsky, 1993) to
investigate whether the information regarding
co-occurrences (not collocations) among words was
enough to identify possible word senses. The idea is that
for a given sense of a polysemic word, the words that
co-occur with the polysemic word under that sense are
expected to co-occur among themselves significantly,
thus forming contextual clusters. Following this idea, we
used BACO to obtain information about co-occurrences
and used several clustering algorithms available from the
R Statistic Package (http://www.r-project.org) to process
that information and to produce some meaningful clusters.
For a given polysemic word, BACO is queried to find all
possible co-occurrences, and the values of their frequency.
Then, BACO is queried again to obtain information about
the co-occurrences among each of those words. After
calculating the appropriate word association values –
using Pointwise Mutual Information (Church and Hanks,
1990) - we are able to obtain a square co-occurrence

matrix ready to be processed by the clustering procedures.
We have been experimenting with co-occurrence matrixes
ranging from 50 to 400 columns, for several polysemic
words. Given the amount of information involved,
building the co-occurrence matrix can take more than one
hour because many thousands of queries are performed.
Clustering data similarly takes a long time. Preliminary
results show that this clustering strategy leads to some
meaningful clusters although the large number of
parameters involved in the process makes it difficult to
control the final result. An important result is the
confirmation that the quality of results greatly depends on
the amount (and diversity) of data available. Because of
storage limitations, during the initial stages of
development the co-occurrence information used
corresponded to only a small sample (less the 5%) of the
WPT collection. Initial results were disappointing but,
interestingly, they immediately improved as soon as we
ran exactly the same program over the complete
co-occurrence information.

5. Conclusion
In this paper we have presented BACO, a large database
of text and co-occurrences. We explained the various
design decisions taken, we described the pre-processing
tasks required for creating the database and we presented
several statistics related to BACO. Our tests confirm that
generic database systems are a good alternative for
dealing with gigabyte text collections, despite the
complex pre-processing tasks and system tuning required.
We demonstrated the usefulness of BACO in three
different tasks, namely in constructing gazetteers, in
finding semantically related elements and in
implementing word-sense disambiguation techniques
based in clustering algorithms.

6. Acknowledgments
This work was partially supported by grant SFRH/BD/
23590/2005 from Fundação para a Ciência e Tecnologia
(Portugal), co-financed by POSI. The author also wishes
to thank Luís Cabral (Luis.M.Cabral@sintef.no) for his
help in Perl scripting and generic technical support.

7. References
Church, Kenneth and Patrick Hanks. 1990. Word

association norms, mutual information, and
lexicography. Computational Linguistics, 16(1), pp.
22–29.

Davies, Mark. 2003. Relational n-gram databases as a
basis for unlimited annotation on large corpora. Proc.
of the Workshop on Shallow Processing of Large
Corpora 2003, Lancaster. pp. 23-33.

Sarmento, Luís. 2006. A expansão de conjuntos de
co-hipónimos a partir de colecções de grandes
dimensões de texto em Português. Actas de 1ª
Conferência em Metodologias de Investigação
Científica. Janeiro 2006. Porto, Portugal.

Sarmento, Luís, Ana Sofia Pinto and Luís Cabral. 2006.
REPENTINO – A wide-scope gazetteer for Entity
Recognition in Portuguese. 2006. To appear in the
Proceedings of the PROPOR Conference 2006.

Yarowsky, David. 1993. One Sense Per Collocation.
Proceedings of the ARPA Human Language
Technology Workshop.

http://www.r-project.org/
mailto:Luis.M.Cabral@sintef.no

	3.2 Dictionary and N-Grams Tables
	Acknowledgments
	References

